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We present a framework to describe completely general first-order perturbations of static, spa-
tially compact, and locally rotationally symmetric class II spacetimes within the theory of general
relativity. The perturbation variables are by construction covariant and identification gauge invari-
ant and encompass the geometry and the thermodynamics of the fluid sources. The new equations
are then applied to the study of isotropic, adiabatic perturbations. We discuss how the choice of
frame in which perturbations are described can significantly simplify the mathematical analysis of
the problem and show that it is possible to change frames directly from the linear level equations.
We find explicitly that the case of isotropic, adiabatic perturbations can be reduced to a singular
Sturm-Liouville eigenvalue problem, and lower bounds for the values of the eigenfrequencies can be
derived. These results lay the theoretical groundwork to analytically describe linear, isotropic, and
adiabatic perturbations of static, spherically symmetric spacetimes.

I. INTRODUCTION

In the last few years, we have witnessed a true renaissance of relativistic astrophysics. The detection of gravi-
tational waves [1] and the first images of the shadows of supermassive black holes [2] have brought a new wealth
of data to the research community. It has, therefore, become paramount to devise new tools that allow for a clear
interpretation of the latest data and deepen our understanding of relativistic astrophysical systems.

Due to the fundamental nonlinear nature of the field equations of the theory of general relativity (GR), finding
exact solutions for these systems, even assuming highly symmetric setups with simple source fields, is a formidable
task. Indeed, although several exact solutions have been found in vacuum or in the presence of matter, many of the
latter type of solutions are, in general, not suitable to accurately model physically meaningful setups, especially in
the so-called strong field regime, where relativistic gravitational effects play a pivotal role in the dynamics of the
matter fields.

To circumvent the limitations in the applicability of idealized solutions, various perturbative schemes were devel-
oped to linearize the field equations and study perturbations of exact solutions. Indeed, the study of perturbations
of black holes has been an area of intense development in the past few decades. Combining the advent of numerical
relativity techniques with the analytical results from linear perturbation theory for vacuum solutions ultimately
allowed for identifying patterns in the data and detecting gravitational waves. On the other hand, in the case of
compact stars, several open problems remain in developing analytic tools to study perturbations of this type of
objects. Especially in the strong field regime, we have so far relied almost exclusively on numerical methods to
evolve the full nonlinear equations of GR. These methods allow us to understand oscillations of compact stellar
objects in great generality, but carry the inevitable limitation of purely numerical approaches. Hence, there is a
need for analytic methods that could complement the numerics in a synergic way.

The problem of linear perturbations of massive astrophysical objects is markedly different from black hole pertur-
bations. Black holes are described by vacuum solutions of the Einstein field equations. In contrast, compact stellar
objects are described by solutions of GR with matter fluid sources characterized by perfect fluids with complex
equations of state, fluids with non-trivial anisotropic pressure terms, or non-perfect multifluid models. Understand-
ably, the evolution of the perturbations of these solutions is strongly tied to the properties of the matter fluid where,
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in general, anisotropies and momentum flows may be generated, even at a linear level, which then act as sources of
shear and vorticity.

In 1964, by encoding the spacetime perturbations directly in the choice of gauge, Chandrasekhar derived for
the first time in Refs. [3, 4] an equation to describe isotropic, adiabatic perturbations of static self-gravitating
perfect fluids with a barotropic equation of state. In the 1990s, in Refs. [5, 6], structure equations were derived for
nonradial perturbations of non-rotating perfect fluids. In Refs. [7–10], various extensions were proposed to study
perturbations of slowly rotating stars. However, understanding the perturbative properties of relativistic stars using
those frameworks has remained challenging because of fundamental mathematical limitations and the underlying
methods used by those approaches. For instance, the original radial pulsation equation by Chandrasekhar for
isotropic, adiabatic perturbations relies on the introduction of auxiliary trial functions, making it impossible to
assert the stability of the background solution unequivocally. Moreover, it was later noticed that the choice of
gauge in Ref. [5] leads to a higher-order system of equations when compared to the choice of another gauge because
of an extraneous degree of freedom, adding unnecessary complication to the equations [11]. Several works have
tried to improve these results in the following years, but all versions of those equations remain gauge-dependent.

In geometric gravity theories, the identification gauge problem in perturbation theory arises because, even if
the choice of perturbation variables is physically reasonable, those might depend on the mapping between the
equilibrium and the perturbed manifold. Hence, their values and rates of change are ambiguous. Therefore, to
develop a rigorous perturbative framework in geometric theories of gravity, the perturbation variables have to be
methodically chosen [12, 13].

In the case of vanishing or slow rotation, a Locally Rotationally Symmetric (LRS) metric can be used to success-
fully describe the geometry of the spacetime for the interior of compact stellar objects. This class of spacetimes
was first identified and classified according to their extra symmetries by Ellis [14] and Ellis and Stewart [15] at
the end of the 1960s and is characterized by a local rotational symmetry at every event. Many spacetimes of
interest in astrophysics and cosmology belong to the LRS class. Examples are the Bianchi cosmologies [16], the
Lemaître-Tolman-Bondi spacetime [17–19], the Oppenheimer-Snyder spacetime [20], and the vacuum Schwarzschild
spacetime.

Recently, a new formalism has been proposed that is especially suitable to deal with LRS spacetimes: the 1+1+2
covariant approach [21–23]. This formalism, analogous to the better-known covariant 1+3 formalism extensively
used in cosmology [24–26], is based on the procedure of covariant spacetime threading. It can also be considered a
semi-tetradic approach to the description of spacetimes, which makes full use of the symmetries of the spacetime.
The covariant approaches have two important properties: (i) they allow the maintenance of covariance at all stages
of the calculations, and (ii) they enable the description of spacetimes in terms of well-defined physical quantities.

Analyzing LRS spacetimes with the 1+1+2 formalism can reveal many important aspects of these spacetimes
and their physical processes. For instance, in Refs. [27, 28] it was found a covariant formulation of the Tolman-
Oppenheimer-Volkoff equation for perfect fluids and fluids with non-trivial anisotropic pressure terms, allowing
for the derivation of new solutions. In Ref. [29], using this formalism, it was proved a generalization of Derrick’s
theorem, showing that the conclusion of the original theorem holds independently of the geometric properties of
the spacetime. In Ref. [30], the 1+1+2 formalism was applied to the Einstein-Cartan theory to derive the general
structure equations for static, isotropic spacetimes, which were then used to find the first known regular solutions
suitable to model the interior of massive astrophysical objects. However, the power of covariant formalisms is truly
revealed in the context of perturbation theory. Indeed, these approaches are the cornerstone for constructing a
covariant, gauge-invariant theory of perturbations, which can be employed in many contexts. In particular, the
1+1+2 formalism has been used to describe tensor perturbations of Schwarzschild black holes [21], to describe
complex interaction between gravitational and electromagnetic degrees of freedom [31], or to study cosmological
perturbations [32, 33].

The scope of this work is to construct a completely general covariant and gauge-invariant perturbation theory
of non-vacuum, static, spatially compact LRS II spacetimes. Moreover, as a first application, we aim to describe
the dynamics of adiabatic isotropic perturbations. Using the covariant nature of the equations, we will be able
to describe the evolution of the perturbation equations from the point of view of an observer locally comoving
with the fluid and one which is static with respect to an observer at spatial infinity. For both cases, we propose a
method to find a family of exact solutions in the form of a power series for a wide variety of background solutions.
We will also prove that the perturbation equations with appropriate boundary conditions constitute a singular
Sturm-Liouville eigenvalue problem with a limit-point-non-oscillating endpoint, which, to our knowledge, has not
been rigorously proven before. Using this property, we will be able to establish lower bounds for the absolute value
of the fundamental eigenfrequency in terms of quantities of the background equilibrium solution.

The paper is organized as follows: Section II summarizes the 1+1+2 formalism for a generic spacetime. In
Section III, we derive the linearized covariant gauge-invariant perturbation equations for a static, spatially compact
LRSII background, and we perform a harmonic decomposition, in particular, isolating even and odd perturbations.
In Section IV, we focus on adiabatic and isotropic perturbations, writing the equations in a comoving frame and
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a static frame, and for each frame, we properly define the boundary value problem. Here, we show that the
perturbation equations in the static frame form a Sturm-Liouville eigenvalue problem and derive lower bounds
for the values of the fundamental eigenvalue. Last, we summarize and draw some conclusions in Section VI. The
paper also contains four appendices. In Appendix A, we present the Einstein field equations in the language of the
1+1+2 formalism, and in Appendices B and C we display the linearized field equations for the two sets of gauge
invariant quantities adopted in the body of the text. In Appendix D, we present the definitions and properties of
the eigenfunctions of the covariant Laplace-Beltrami operator on 2-hypersurfaces. In Appendix E, we discuss the
effects on the equation of state of a generalized Lorentz boost between two frames.

Throughout the article, we will work in the geometrized unit system where 8πG = c = 1, and consider the metric
signature (− + ++).

II. THE 1+1+2 DECOMPOSITION

To construct a general set of gauge-invariant, covariant equations for the perturbations of locally rotationally
symmetric class II spacetimes, from hereon LRS II [15], we will adopt the language of the 1+1+2 covariant for-
malism [21–23]. In this section, we will then introduce the basic quantities and conventions used throughout the
article.

A. Projectors and the Levi-Civita volume form

Consider a Lorentzian manifold of dimension 4, (M, g), where g represents the metric tensor, admitting in some
open neighborhood the existence of a congruence of timelike curves with tangent vector field u. We will assume that
the congruence to be affinely parameterized and uαuα = −1. Without loss of generality, we can locally foliate the
manifold in 3-surfaces, V , orthogonal at each point to the curves of the congruence, such that all tensor quantities
are defined by their behavior along the direction of u and in V . This procedure is usually called 1+3 spacetime
decomposition. Such decomposition of the spacetime manifold relies on the existence of a pointwise projector to
the cotangent space of V , which can be naturally defined as

hαβ = gαβ + uαuβ , (1)

where gαβ represents the components of the metric tensor in some local coordinate system, with the following
properties

hαβ = hβα , hαβhβγ = hα
γ ,

hαβuα = 0 , hα
α = 3 .

(2)

The 1+1+2 decomposition builds from the 1+3 decomposition by defining a congruence of spacelike curves with
tangent vector field e such that any tensor quantity defined in the submanifold V is defined by its behavior along e
and the 2-surfaces W , orthogonal to both u and e at each point. We shall refer to each surface W as “sheet”. We
will consider that the spacelike congruence is affinely parameterized and eαeα = 1. We can then define a projector
onto W by

Nαβ = hαβ − eαeβ , (3)

verifying

Nαβ = Nβα , NαβNβγ = Nα
γ ,

Nαβuα = Nαβeα = 0 , Nα
α = 2 .

(4)

It is useful to introduce the following tensors derived from the covariant Levi-Civita tensor εαβγσ,

εαβγ = εαβγσuσ ,

εαβ = εαβγeγ ,
(5)
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with the following properties

εαβγ = ε[αβγ] , εαβ = ε[αβ] ,

εαβγuγ = 0 , εαβuα = εαβeα = 0 ,

εαβγεµνσ = 6hµ
[α hν

βh γ]
σ εαβεµν = Nµ

αNν
β − Nµ

βNν
α

εαβγεµνγ = hα
µhβ

ν − hβ
µhα

ν , εα
γεβγ = Nαβ ,

εαµνεβµν = 2hα
β , εαβγ = eαεβγ − eβεαγ + eγεαβ ,

(6)

where in the right-hand side of the relation for εαβγεµνσ the anti-symmetrization is to be considered on all, and
only, the lower indices. We will adopt the convention to indicate the symmetric and anti-symmetric part of a tensor
using parentheses and brackets, such that for a 2-tensor χ

χ(αβ) =
1

2
(χαβ + χβα) ,

χ[αβ] =
1

2
(χαβ − χβα) .

(7)

B. Covariant derivatives of u and e

1. Decomposition of the covariant derivatives on the sheet W

Using the definitions of the projector operators onto the surfaces V and W , the covariant derivatives of the
tangent vector fields u and e can be, at each point, uniquely decomposed in their components along u, e and in W .1

For notational convenience, given a tensor quantity χ, throughout the article, we will use the compact notation

χ̇ := uµ∇µχ , χ̂ := eµ∇µχ , (8)

to represent the derivative along the integral curves of the vector field u and the derivative along the integral curves
of the vector field e, respectively.

The covariant derivatives of the tensor fields u and e on the sheet can be uniquely decomposed as

δαuβ ≡ Nα
µNβ

ν∇µuν =
1

2
Nαβ θ̃ + Σαβ + εαβΩ , (9)

where

θ̃ = δαuα ,

Σαβ = δ{αuβ} ,

Ω =
1

2
εµνδµuν ,

(10)

and

δαeβ =
1

2
Nαβφ + ζαβ + εαβξ , (11)

with

φ = δµeµ ,

ζαβ = δ{αeβ} ,

ξ =
1

2
εµνδµeν ,

(12)

where the curly brackets represent the projected symmetric part without trace of a tensor in W , that is, for a tensor
χαβ ,

χ{αβ} =

[
Nµ

(αNβ)
ν −

Nαβ

2
Nµν

]
χµν . (13)

1 Although it is an abuse of language, we will refer to the tensor fields h and N as projectors onto the space V or W , being implicit

that we mean that the projection is onto the respective tangent and cotangent spaces.
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Using the 2-form εαβ , a completely anti-symmetric tensor defined on the sheet, χαβ = χ[αβ] = Nµ
[αNβ]

νχµν , can
be written as

χ[αβ] = εαβ

(
1

2
εµνχµν

)
. (14)

2. Decomposition of the covariant derivatives on V

The decomposition of the projected covariant derivatives of u onto V is given by

Dαuβ = hα
µhβ

ν∇µuν =
1

3
hαβθ + σαβ + ωαβ , (15)

with

θ = hµνDµuν , (16)

σαβ = D〈α u β〉 , (17)

ωαβ = hµ
[αhβ]

νDµuν , (18)

where we used the angular brackets to represent the projected symmetric part without trace of a tensor on V , that
is, for a tensor, χαβ ,

χ〈αβ〉 =

[
hµ

(αhβ)
ν −

hαβ

3
hµν

]
χµν . (19)

The scalar and tensor quantities in Eqs. (16)–(18) can themselves be further decomposed in their contributions
exclusively on W and along e, such that

θ = θ̃ + ϑ , (20)

where θ̃ is defined in Eq. (10) and

ϑ = −uµ (eνDνeµ) = −uµ êµ ; (21)

σαβ = Σαβ + 2Σ(αeβ) + Σ

(
eαeβ −

1

2
Nαβ

)
, (22)

with

Σαβ = σ{αβ} ,

Σα = Nα
µeνσµν ,

Σ = eµeνσµν = −Nµνσµν ,

(23)

and

ωαβ = εαβµ (Ωeµ + Ωµ) , (24)

where Ω is given in Eq. (10) and

Ωα =
1

2
Nγ

αεµνγDµuν . (25)

The quantities θ, Σ, θ̃ and ϑ are not independent, in fact:

θ̃ =
2

3
θ − Σ , (26)

ϑ =
1

3
θ + Σ ; (27)

as such, when setting up the 1+1+2 formalism, only two of those quantities are chosen. The convention followed
here uses the variables θ and Σ.

For the projected covariant derivative of the vector field e on V we have

Dαeβ = hα
µhβ

ν∇µeν = δαeβ + eαaβ , (28)

where δαeβ is given by Eq. (11) and

aα = eµDµeα = êα . (29)
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3. Decomposition of the covariant derivatives on the full manifold

Finally, we can decompose the total covariant derivatives of uα and eα, such that

∇αuβ = −uα (Aeβ + Aβ) + Dαuβ , (30)

with

A = −uµuν∇νeµ = −uµėµ ,

Aα = Nαµu̇µ ,
(31)

and

∇αeβ = Dαeβ − uααβ − Auαuβ +

(
1

3
θ + Σ

)
eαuβ + (Σα − εαµΩµ) uβ , (32)

where

αα = hα
µėµ . (33)

C. Covariant derivatives of the projectors and the Levi-Civita volume form

Gathering the results in subsection II B, the covariant derivatives of the tangent vector fields u and e can be
written as

δαuβ = Nα
µNβ

ν∇µuν = Nαβ

(
1

3
θ −

1

2
Σ

)
+ Σαβ + εαβΩ ,

Dαuβ = hα
µhβ

ν∇µuν = δαuβ +

(
1

3
θ + Σ

)
eαeβ + 2Σ(αeβ) − εαµΩµeβ + eαεβµΩµ ,

∇αuβ = Dαuβ − uα (Aeβ + Aβ) ,

(34)

and

δαeβ = Nα
µNβ

ν∇µeν =
1

2
Nαβφ + ζαβ + εαβξ ,

Dαeβ = hα
µhβ

ν∇µeν =δαeβ + eαaβ ,

∇αeβ =Dαeβ − uααβ − Auαuβ +

(
1

3
θ + Σ

)
eαuβ + (Σα − εαµΩµ) uβ .

(35)

From these relations, we find the following expressions for the covariant derivatives of the projector tensors:

δαNβγ = 0 , ∇ρεαβγδ = 0 ,

eµDµNαβ = −2e(αaβ) , uµ∇µεαβγ = εαβγµ (Aeµ + Aµ) ,

uµ∇µNαβ = 2u(αAβ) − 2e(ααβ) , Dαεβγδ = 0 ,

Dαhβγ = 0 , uµ∇µhαβ = 2u(α|

(
Ae|β) + A|β)

)
.

(36)

D. Weyl and stress-energy tensors

For the Levi-Civita connection, the Riemann tensor can be defined by the Ricci identity valid for an arbitrary
1-form χ:

Rαβδ
ρχρ = (∇α∇β − ∇β∇α) χδ . (37)

In the case of a manifold of dimension 4, the components of the Riemann curvature tensor, Rαβγδ, can be written
as the following sum

Rαβγδ = Cαβγδ + Rα[γ g δ]β − Rβ[γ g δ]α −
1

3
R gα[γ g δ]β , (38)
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where Cαβγδ represent the components of the Weyl tensor, Rαβ := Rαµβ
µ the components of the Ricci tensor and

R the Ricci scalar. The Weyl tensor plays a pivotal role in relativistic gravity, describing the tidal forces and the
properties of gravitational waves. Remarkably, the Weyl 4-tensor can be completely characterized by two 2-tensors,
defined as

Eαβ = Cαµβνuµuν , (39)

Hαβ =
1

2
εα

µνCµνβδuδ , (40)

respectively referred as the “electric” and “magnetic” part of the Weyl tensor, both symmetric and traceless tensors,
such that

Cαβγδ = −εαβµεγδνEνµ − 2uαEβ[γ u δ] + 2uβEα[γ u δ] − 2εαβµHµ
[γ u δ] − 2εµγδHµ

[α u β] . (41)

In the 1+1+2 spacetime decomposition formalism, the components of the Weyl tensor are given by

Eαβ = E

(
eαeβ −

1

2
Nαβ

)
+ Eαeβ + eαEβ + Eαβ ,

Hαβ = H

(
eαeβ −

1

2
Nαβ

)
+ Hαeβ + eαHβ + Hαβ ,

(42)

where

E = Eµνeµeν = −NµνEµν , H = eµeνHµν = −NµνHµν ,

Eα = Nα
µeνEµν = eµNα

νEµν , Hα = Nα
µeνHµν = eµNα

νHµν ,

Eαβ = E{αβ} , Hαβ = H{αβ} .

(43)

We shall also decompose the metric stress-energy tensor, with components Tαβ in a local coordinate system, in
terms of its pointwise projections onto u, e, and W :

Tαβ = µ uαuβ + (p + Π) eαeβ +

(
p −

1

2
Π

)
Nαβ + 2Qe(α u β) + 2Q(α u β) + 2Π(α e β) + Παβ , (44)

with

µ = uµuνTµν , Qα = −Nα
µuνTµν = −uµNα

νTµν ,

p =
1

3
(eµeν + Nµν) Tµν , Πα = Nα

µeνTµν = eµNα
νTµν ,

Π =
1

3
Tαβ

(
2eαeβ − Nαβ

)
, Παβ = T{αβ} .

Q = −eµuνTµν = −uµeνTµν ,

(45)

Moreover, we have the following equations

pr = eµeµTµν = p + Π ,

p⊥ =
1

2
NµνTµν = p −

1

2
Π ,

(46)

relating, respectively, the 1+1+2 variables p and Π with the “radial” and “tangential” components of the pressure.

E. Commutation relations

Given a scalar field χ in (M, g), using the 1+1+2 spacetime decomposition, we have the following useful com-
mutation relations for its covariant derivatives:

̂̇χ − ˙̂χ =

(
1

3
θ + Σ

)
χ̂ − Aχ̇ + (Σµ + εµνΩν − αµ) δµχ ,

δαχ̇ − Nα
µ (δµχ)

·
=

(
1

3
θ −

1

2
Σ

)
δαχ + (Σαµ + εαµΩ) δµχ + (Σα − εαµΩµ + αα) χ̂ − Aαχ̇ ,

δαχ̂ − Nα
µ
(

δ̂µχ
)

=
1

2
φδαχ + (ζα

µ + εα
µξ) δµχ − 2εαµΩµχ̇ + χ̂aα ,

δαδβχ − δβδαχ = 2εαβΩχ̇ − 2εαβξχ̂ .

(47)
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In the case of the covariant derivatives of a 1-form field χ defined on the sheet, that is χα = Nα
µχµ, the

commutation relations take the form:

Nα
µ̂̇χµ − Nα

µ (χ̂µ)
·

=

(
1

3
θ + Σ

)
Nα

µχ̂µ − ANα
µχ̇µ + χµ (Σµ + εµνΩν) Aα

+ (Σµ + εµνΩν − αµ) (δµχα) + εα
µχµH ,

(48)

δαχ̇β − Nα
µNβ

ν (δµχν)
·

=
(
Σα + αα − εαλΩλ

)
Nβ

µχ̂µ − AαNβ
µχ̇µ −

1

2
NαβQµχµ + Hαεβ

µχµ

+

[
Nα

µ

(
1

3
θ −

1

2
Σ

)
+ Σα

µ + εα
µΩ

]
(δµχβ) − χµ (ζα

µ + εα
µξ) αβ

+ χα

[
Aβ

(
1

3
θ −

1

2
Σ

)
+

1

2
Qβ −

1

2
φαβ

]
+ χµ (Σα

µ + εα
µΩ) Aβ ,

(49)

δαχ̂β − Nα
µNβ

ν
(

δ̂µχν

)
= aαNβ

µχ̂µ − 2εαµΩµNβ
νχ̇ν +

(
1

2
Nα

µφ + ζα
µ + εα

µξ

)
δµχβ

+ χα

[
(Σβ + εβµΩµ)

(
1

3
θ −

1

2
Σ

)
− Eβ −

1

2
Πβ −

1

2
φaβ

]

+ χµ

[
(Σα

µ + εα
µΩ)

(
Σβ + εβλΩλ

)
− (ζα

µ + εα
µξ) aβ

]

+ Nαβχµ

[
Eµ +

1

2
Πµ −

(
1

3
θ −

1

2
Σ

)
(Σµ + εµνΩν)

]

− χµ (Σαβ + εαβΩ) (Σµ + εµνΩν) ,

(50)

δαδβχγ − δβδαχγ = 2εαβNγ
µ (χ̇µΩ − χ̂µξ) + 2χ[α N β]γ

[(
1

3
θ −

1

2
Σ

)2

−
1

4
φ2 + E +

1

2
Π −

1

3
(µ + Λ)

]

+ 2
[(

Σ[α|
µ + ε[α|

µΩ
) (

Σ|β]γ + ε|β]γΩ
)

−
(
ζ[α|

µ + ε[α|
µξ
) (

ζ|β]γ + ε|β]γξ
)]

χµ

+ 2

[(
1

3
θ −

1

2
Σ

)(
Σ[α|

µ + ε[α|
µΩ
)

−
1

2
φ
(
ζ[α|

µ + ε[α|
µξ
)

−
1

2
Π[α|

µ

]
N|β]γχµ

+ 2χ[α|

[(
1

3
θ −

1

2
Σ

)(
Σ|β]γ + ε|β]γΩ

)
−

1

2
φ
(
ζ|β]γ + ε|β]γξ

)
−

1

2
Π|β]γ

]
.

(51)

F. The set of 1+1+2 equations

The 1+1+2 variables introduced in the previous subsections completely describe the geometry of the spacetime
manifold and the properties of the matter fields that permeate it. Using the Ricci and Bianchi identities and the
Einstein field equations for the theory of General Relativity,

Rαβ −
1

2
gαβR + gαβΛ = Tαβ , (52)

where Λ represents the cosmological constant, we can find a set of evolution, propagation, and constraint equations
for the 1+1+2 variables. In Appendix A we give the general set of these equations. Using the freedom of choice of
frame to describe the setup and providing an equation of state for the matter fields, those equations form a closed
system, describing the geometry of the manifold and the dynamics of the permeating matter fields.

III. LINEARIZED EQUATIONS FOR THE PERTURBED SPACETIME

A. Background spacetime

Having properly introduced the 1+1+2 covariant formalism, we are now in a position to derive a set of covariant
and gauge invariant equations to describe linear order perturbations of a spacetime assumed to be static, LRS II,
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and permeated by a general matter fluid. As is customary in relativistic perturbation theory, throughout the article,
we will refer to the unperturbed spacetime as the “background spacetime”.

For a proper choice of frame, in an LRS II spacetime, all covariantly defined vector and tensor quantities of
the 1+1+2 decomposition can be made to vanish identically. If, in addition, the spacetime is static, we can align
the u vector field with the timelike, hypersurface orthogonal Killing vector field, such that all dot-derivatives of
the covariantly defined quantities are zero and the scalars {θ, Σ, Ω, ξ, H, Q} also vanish. Hence, a static LRS II
background spacetime can be completely characterized by the quantities {φ0, A0, E0, µ0, p0, Π0, Λ}, which satisfy
the following equations

Â0 =
1

2
(µ0 + 3p0) − Λ − A0 (A0 + φ0) ,

φ̂0 = −
1

2
φ2

0 −
2

3
(µ0 + Λ) −

1

2
Π0 − E0 ,

p̂0 + Π̂0 = −

(
3

2
φ0 + A0

)
Π0 − (µ0 + p0) A0 ,

Ê0 −
1

3
µ̂0 +

1

2
Π̂0 = −

3

2
φ0

(
E0 +

1

2
Π0

)
,

(53)

and the constraint

µ0 + 3p0 − 2Λ − 3A0φ0 = −
3

2
Π0 + 3E0 , (54)

where the subscript “0” from hereon will be used to refer to the quantities that characterize the equilibrium
configuration. The system is closed by providing an equation of state that relates the pressure components, p0 and
Π0, with the energy density, µ0, or some functional dependencies for these matter variables are imposed.

B. Gauge invariant variables

Following the Stewart-Walker lemma [12], to write a set of equations for the linear perturbations that are identi-
fication gauge invariant, we will consider perturbation variables that either vanish in the background spacetime or
are scalars with the same constant value in the background and the perturbed spacetimes (e.g., the cosmological
constant). Since the background spacetime is assumed to be static LRS II, provided the choice of frame adopted in
the previous subsection, all vector and tensor quantities can be used as identification gauge invariant perturbation
quantities. Moreover, for such spacetimes, the scalars {θ, Σ, Ω, ξ, H, Q} are identically zero, hence are identification
gauge invariant quantities. Then, we only have to find a set of variables that vanish in the background spacetime,
and that can be used to characterize the linear perturbations of the remaining scalars, i.e. {A, φ, E , µ, p, Π}. Given
the symmetries of the background spacetime, two natural sets of variables can be adopted. The first one is given
by

Aα := δαA , Fα := δαφ , Eα := δαE ,

mα := δαµ , pα := δαp , Pa := δαΠ ,
(55)

which represent the gradients on the sheets of the various scalar quantities that describe the background spacetime.
The second one instead contains

A := Ȧ , F := φ̇ , E := Ė ,

m := µ̇ , p := ṗ , P := Π̇ ,
(56)

which represent the dot-derivatives of the various scalar quantities that describe the spacetime. In a static LRS II
background, both the δ-gradients in Eq. (55), which are vectors, and the quantities in Eq. (56), which are related
to the proper-time variation, vanish. Therefore, the quantities of the sets above can be used as gauge invariant
variables that characterize the linear perturbations of a static LRS II spacetime.

In principle, we can use either set among Eq. (55) and (56). Moreover, as shown in Eq. (C34), the above
perturbation variables are not independent. Then, in general, we can also construct a set of variables containing
elements of both Eq. (55) and (56), provided that they form a closed system. Note, however, that dependence does
not imply equivalence. For example, the δ-gradients variables in Eq. (55) preserve the information regarding the
degrees of freedom on the sheet, however, if we only perturb the background spacetime in directions parallel to
the u and e vector fields, these variables by themselves are not suitable to fully describe the perturbed spacetime,
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as they will remain identically zero. Conversely, the variables in Eq. (56) can be used to fully characterize linear
perturbations of {A, φ, E , µ, p, Π}, only losing information in the case of constant-in-time perturbations. Thus, this
second set of variables can appear more convenient to analyze the dynamics of the perturbations. The drawback
is that some of the linearized 1+1+2 equations for the variables (56) are second order in time (cf. Appendix C),
introducing extra complexity to the problem. Then, in what follows, we will opt for using the δ-gradients in
Eq. (55) only to describe vector and tensor perturbations, since those will be characterized by first-order equations.
Conversely, we will use the variables in Eq. (56) to describe the scalar modes.

C. The linearization procedure

The procedure to find the set of gauge invariant structure equations for linear perturbations of static, LRS II
spacetimes is relatively straightforward, although rather laborious. After choosing the gauge-invariant quantities
from those in Eqs. (55) or (56), we deduce the equations for these quantities by applying the projected derivative
operators “dot" and δα to the 1+1+2 equations in Appendix A. Then, using the commutation relations in subsec-
tion II E, we express all gauge-dependent terms as a combination of gauge-independent quantities. Successively, the
terms containing the products of two or more first-order quantities are discarded as higher order. We present in
Appendices B and C the general set of gauge independent field equations, valid at linear level, for the perturbations
for both the δ-gradients and the dot-derivatives variables, respectively. As explained above, we will opt to use a
mix of these equations to describe general linear perturbations. However, the set of equations in each appendix
mentioned above is completely general and can be used by themselves.

D. Harmonic decomposition

The sets of the linearized equations in Appendices B and C form two systems of partial differential equations.
The appearance of δ-derivatives makes the system particularly complicated to integrate, such that finding solutions,
even in relatively simple setups, an intractable problem. Following Refs. [21–23], to transform this system into a
system of ordinary differential equations (ODEs) valid at linear level, we can use the fact that the background
spacetime is static and LRS II.

Using the eigenfunctions of the projected covariant Laplace-Beltrami operator, δ2 ≡ δµδµ, locally defined on the
sheets of the LRSII background spacetime, we can make a harmonic decomposition and write the various quantities
that characterize the perturbed spacetime as a linear combination of these eigenfunctions. In Appendix D, we list
the definitions and various useful properties of the scalar, vector, and tensor harmonics of the δ2 operator. Then,
given some scalar, 1-tensor, or symmetric, traceless 2-tensor quantity defined on a sheet of the perturbed spacetime,
say χ, χα or χαβ , at linear level we can formally write these as the following infinite sum

χ = Ψ(k,S)
χ Q(k) ,

χα = Ψ(k,V )
χ Q(k)

α + Ψ
(k,V )

χ Q̄(k)
α , (57)

χαβ = Ψ(k,T )
χ Q

(k)
αβ + Ψ

(k,T )

χ Q̄
(k)
αβ ,

where summation or integration in the Laplace-Beltrami eigenvalue k (the so-called “modes” ) is assumed, depending

on the geometry of the sheets. We will use the compact notation Ψ
(k,S)
χ to refer to the harmonic coefficients

associated with the eigenfunctions Q(k) of the scalar quantity χ, Ψ
(k,V )
χ and Ψ

(k,V )

χ to refer to the coefficients

associated with the eigenfunctions Q
(k)
α or Q̄

(k)
α of the 1-tensor quantity χα, and Ψ

(k,T )
χ and Ψ

(k,T )

χ to refer to the

coefficients associated with the eigenfunctions Q
(k)
αβ or Q̄

(k)
αβ of the 2-tensor quantity χαβ .

Additionally, since the background spacetime is assumed to be static, we can Fourier transform the harmonic
coefficients of Eq. (57), explicitly factorizing their time dependence, writing them as a linear combination of the
eigenfunctions of the Laplace operator in R (or some subset of it) for the appropriate boundary conditions. That

is, we can write all coefficients for linear perturbations: Ψ
(k,I)
χ , where I = {S, V, T }, as linear combinations of

the eigenfunctions eiυτ , where τ represents the proper time of an observer with 4-velocity u and υ represent the
eigenvalues of the Laplace operator in that manifold. The scalar υ takes discrete or continuous values depending
on the chosen boundary conditions. To make this idea precise, consider the time-harmonic functions T (υ) with the
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following properties

Ṫ (υ) = iυT (υ) ,

T̂ (υ) = δαT (υ) = 0 ,

υ̇ = δαυ = 0 ,

(58)

where i represents the imaginary unit. These properties imply that ̂̇T
(υ)

= −A0Ṫ (υ), from which we find

υ̂ = −A0υ . (59)

Knowing the function A0 = A0 (xα) in the background, where {xα} represent some local coordinate system, Eq. (59)
allow us to relate the eigenfrequencies υ defined with respect to τ and the eigenfrequencies defined with respect to
the x0 time coordinate.

Gathering these results, formally, we can expand any scalar, 1-tensor or a symmetric, traceless 2-tensor charac-
terizing first-order quantities as

χ = Ψ(υ,k,S)
χ Q(k)T (υ) ,

χα =
(

Ψ(υ,k,V )
χ Q(k)

α + Ψ
(υ,k,V )

χ Q̄(k)
α

)
T (υ) ,

χαβ =
(

Ψ(υ,k,T )
χ Q

(k)
αβ + Ψ

(υ,k,T )

χ Q̄
(k)
αβ

)
T (υ) ,

(60)

where either discrete sums or multiple integrals in υ and k are assumed, once again, depending on the boundary
conditions of the problem.

Using the harmonic decomposition just described, we can turn the sets of partial differential equations in Ap-
pendices B and C, in a set of ODEs. We remark, though, that since the different harmonics are not defined for all
values of k, we have to distinguish between the modes where the vector and tensor harmonics are not identically
zero and those where these harmonics are zero. Then, we have the following set of gauge invariant equations for
the linear perturbations that characterize the perturbed spacetime.

E. Even sector

1. k-Modes where

{
Q

(k)
αβ , Q̄

(k)
αβ

}
6= 0

Equations for the kinematical quantities associated with the timelike congruence

• Evolution and propagation equations for the harmonic coefficients of gradients of scalar quantities:

1

r
iυΨ

(υ,k,S)
θ − Ψ̂

(υ,k,V )
A

= Â0Ψ(υ,k,V )
a −

1

2

(
Ψ

(υ,k,V )
m + 3Ψ

(υ,k,V )
p

)
−

k2

r2
Ψ

(υ,k,V )
A

+ A0Ψ
(υ,k,V )
F

+

(
3

2
φ0 + 2A0

)
Ψ

(υ,k,V )
A

,

(61)

2

3r
iυΨ

(υ,k,S)
θ −

1

r
iυΨ

(υ,k,S)
Σ = φ0Ψ

(υ,k,V )
A

+ A0Ψ
(υ,k,V )
F

−
k2

r2
Ψ

(υ,k,V )
A

−
1

3
Ψ

(υ,k,V )
m − Ψ

(υ,k,V )
p −

1

2
Ψ

(υ,k,V )
P

+ Ψ
(υ,k,V )
E

,

(62)

3

2
Ψ̂

(υ,k,S)
Σ − Ψ̂

(υ,k,S)
θ =

3k2

2r

(
Ψ

(υ,k,V )
Σ − Ψ

(υ,k,V )

Ω

)
−

3

2
Ψ

(υ,k,S)
Q −

9

4
φ0Ψ

(υ,k,S)
Σ ; (63)

• Evolution and propagation equations for the harmonic coefficients of vector quantities:

2iυΨ
(υ,k,V )

Ω + Ψ̂
(υ,k,V )
A = Ψ

(υ,k,V )
A

−
1

2
φ0Ψ

(υ,k,V )
A − A0Ψ(υ,k,V )

a , (64)
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iυ
(

Ψ
(υ,k,V )
Σ + Ψ

(υ,k,V )

Ω

)
=

(
A0 −

1

2
φ0

)
Ψ

(υ,k,V )
A + Ψ

(υ,k,V )
A

− Ψ
(υ,k,V )
E +

1

2
Ψ

(υ,k,V )
Π , (65)

Ψ̂
(υ,k,V )
Σ + Ψ̂

(υ,k,V )

Ω =
1

2r
Ψ

(υ,k,S)
Σ +

2

3r
Ψ

(υ,k,S)
θ −

3

2
φ0Ψ

(υ,k,V )
Σ −

(
1

2
φ0 + 2A0

)
Ψ

(υ,k,V )

Ω

−
2 − k2

2r
Ψ

(υ,k,T )
Σ − Ψ

(υ,k,V )
Q ;

(66)

• Evolution and propagation equations for the harmonic coefficients of tensor quantities:

iυΨ
(υ,k,T )
Σ =

1

r
Ψ

(υ,k,V )
A + A0Ψ

(υ,k,T )
ζ − Ψ

(υ,k,T )
E +

1

2
Ψ

(υ,k,T )
Π , (67)

Ψ̂
(υ,k,T )
Σ =

1

r

(
Ψ

(υ,k,V )
Σ − Ψ

(υ,k,V )

Ω

)
−

1

2
φ0Ψ

(υ,k,T )
Σ + Ψ

(υ,k,T )

H ; (68)

• Constraint equations for the harmonic coefficients:

φ0

(
Ψ

(υ,k,V )
Σ + Ψ

(υ,k,V )

Ω

)
+

1

r
Ψ

(υ,k,S)
Σ −

2

3r
Ψ

(υ,k,S)
θ + Ψ

(υ,k,V )
Q − 2Ψ

(υ,k,V )

H +
2 − k2

r
Ψ

(υ,k,T )
Σ = 0 . (69)

Equations for the kinematical quantities associated with the spacelike congruence

• Evolution and propagation equations for the harmonic coefficients of gradients of scalar quantities:

iυΨ
(υ,k,V )
F

= − φ̂0

(
Ψ

(υ,k,V )
Σ + Ψ(υ,k,V )

α + Ψ
(υ,k,V )

Ω

)
+

1

r
Ψ

(υ,k,S)
Q

+

(
A0 −

1

2
φ0

)(
2

3r
Ψ

(υ,k,S)
θ −

1

r
Ψ

(υ,k,S)
Σ

)
−

k2

r2
Ψ(υ,k,V )

α ,

(70)

Ψ̂
(υ,k,V )
F

= −

(
φ̂0 +

k2

r2

)
Ψ(υ,k,V )

a −
3

2
φ0Ψ

(υ,k,V )
F

−
2

3
Ψ

(υ,k,V )
m −

1

2
Ψ

(υ,k,V )
P

− Ψ
(υ,k,V )
E

; (71)

• Evolution and propagation equations for the harmonic coefficients of vector quantities:

Ψ̂(υ,k,V )
α − iυΨ(υ,k,V )

a = Ψ
(υ,k,V )

H −

(
A0 +

1

2
φ0

)
Ψ(υ,k,V )

α +
1

2
Ψ

(υ,k,V )
Q

+

(
1

2
φ0 − A0

)(
Ψ

(υ,k,V )
Σ − Ψ

(υ,k,V )

Ω

)
;

(72)

• Evolution and propagation equations for the harmonic coefficients of tensor quantities:

iυΨ
(υ,k,T )
ζ =

(
A0 −

1

2
φ0

)
Ψ

(υ,k,T )
Σ +

1

r
Ψ(υ,k,V )

α + Ψ
(υ,k,T )

H , (73)

Ψ̂
(υ,k,T )
ζ =

1

r
Ψ(υ,k,V )

a − φ0Ψ
(υ,k,T )
ζ − Ψ

(υ,k,T )
E −

1

2
Ψ

(υ,k,T )
Π ; (74)

• Constraint equations for the harmonic coefficients:

2 − k2

r
Ψ

(υ,k,T )
ζ − Ψ

(υ,k,V )
F

− 2Ψ
(υ,k,V )
E − Ψ

(υ,k,V )
Π = 0 . (75)
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Equations for the Weyl tensor components and the matter variables

• Evolution and propagation equations for the harmonic coefficients of gradients of scalar quantities:

1

r
Ψ̂

(υ,k,S)
Q + iυΨ

(υ,k,V )
m = − µ̂0

(
Ψ

(υ,k,V )

Ω + Ψ
(υ,k,V )
Σ + Ψ(υ,k,V )

α

)
−

1

r
(µ0 + p0) Ψ

(υ,k,S)
θ

−
3

2r
Π0Ψ

(υ,k,S)
Σ −

1

r
(φ0 + 2A0) Ψ

(υ,k,S)
Q +

k2

r2
Ψ

(υ,k,V )
Q ,

(76)

1

3
iυΨ

(υ,k,V )
m −

1

2
iυΨ

(υ,k,V )
P

− iυΨ
(υ,k,V )
E

=

(
µ0 + p0 −

1

2
Π0 − 3E0

)(
1

2r
Ψ

(υ,k,S)
Σ −

1

3r
Ψ

(υ,k,S)
θ

)

−
3

2
φ0

(
E0 +

1

2
Π0

)(
Ψ

(υ,k,V )

Ω + Ψ
(υ,k,V )
Σ + Ψ(υ,k,V )

α

)

+
k2

r2

(
1

2
Ψ

(υ,k,V )
Q − Ψ

(υ,k,V )

H

)
−

1

2r
φ0Ψ

(υ,k,S)
Q ,

(77)

1

r
iυΨ

(υ,k,S)
Q + Ψ̂

(υ,k,V )
P

+ Ψ̂
(υ,k,V )
p = (µ0 + p0)

(
A0Ψ(υ,k,V )

a − Ψ
(υ,k,V )
A

)
− A0

(
Ψ

(υ,k,V )
m + Ψ

(υ,k,V )
p + Ψ

(υ,k,V )
P

)

−
1

2
φ0

(
Ψ

(υ,k,V )
p + 4Ψ

(υ,k,V )
P

)
+

(
3

2
φ0 + A0

)
Π0Ψ(υ,k,V )

a

− Π0

(
3

2
Ψ

(υ,k,V )
F

+ Ψ
(υ,k,V )
A

)
+

k2

r2
Ψ

(υ,k,V )
Π ,

(78)

Ψ̂
(υ,k,V )
E

+
1

2
Ψ̂

(υ,k,V )
P

−
1

3
Ψ̂

(υ,k,V )
m = − 2φ0

(
Ψ

(υ,k,V )
E

+
1

2
Ψ

(υ,k,V )
P

−
1

12
Ψ

(υ,k,V )
m

)

−
3

2

(
E0 +

1

2
Π0

)(
Ψ

(υ,k,V )
F

− φ0Ψ(υ,k,V )
a

)

+
k2

r2

(
Ψ

(υ,k,V )
E +

1

2
Ψ

(υ,k,V )
Π

)
;

(79)

• Evolution and propagation equations for the harmonic coefficients of vector quantities:

iυ

(
Ψ

(υ,k,V )
E +

1

2
Ψ

(υ,k,V )
Π

)
=

(
1

2
φ0 − A0

)(
1

2
Ψ

(υ,k,V )
Q − Ψ

(υ,k,V )

H

)
−

3

2

(
E0 +

1

2
Π0

)
Ψ(υ,k,V )

α

−
1

2
(µ0 + p0 + Π0)

(
Ψ

(υ,k,V )
Σ + Ψ

(υ,k,V )

Ω

)

−
1

2r
Ψ

(υ,k,S)
Q +

2 − k2

2r
Ψ

(υ,k,T )

H ,

(80)

Ψ̂
(υ,k,V )
E +

1

2
Ψ̂

(υ,k,V )
Π = −

3

2
φ0

(
Ψ

(υ,k,V )
E +

1

2
Ψ

(υ,k,V )
Π

)
−

3

2

(
E0 +

1

2
Π0

)
Ψ(υ,k,V )

a

+
1

2
Ψ

(υ,k,V )
E

+
1

3
Ψ

(υ,k,V )
m +

1

4
Ψ

(υ,k,V )
P

−
2 − k2

2r

(
Ψ

(υ,k,T )
E +

1

2
Ψ

(υ,k,T )
Π

)
,

(81)

1

2
Ψ̂

(υ,k,V )
E − iυΨ

(υ,k,V )

H −
1

4
Ψ̂

(υ,k,V )
Π =

3

2
E0Ψ

(υ,k,V )
A +

3

4

(
Ψ

(υ,k,V )
E

−
1

2
Ψ

(υ,k,V )
P

)
−

3

4

(
E0 −

1

2
Π0

)
Ψ(υ,k,V )

a

−
1

4
φ0

(
Ψ

(υ,k,V )
E −

1

2
Ψ

(υ,k,V )
Π

)
− A0Ψ

(υ,k,V )
E

+
2 − k2

4r

(
Ψ

(υ,k,T )
E −

1

2
Ψ

(υ,k,T )
Π

)
,

(82)
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Ψ̂
(υ,k,V )

H −
1

2
Ψ̂

(υ,k,V )
Q =

2 − k2

2r
Ψ

(υ,k,T )

H −
1

2r
Ψ

(υ,k,S)
Q −

3

2

(
E0 +

1

2
Π0

)
Ψ

(υ,k,V )
Σ

−

(
µ0 + p0 +

1

4
Π0 −

3

2
E0

)
Ψ

(υ,k,V )

Ω −
3

2
φ0

(
Ψ

(υ,k,V )

H −
1

6
Ψ

(υ,k,V )
Q

)
,

(83)

iυΨ
(υ,k,V )
Q + Ψ̂

(υ,k,V )
Π =

1

2
Ψ

(υ,k,V )
P

− Ψ
(υ,k,V )
p −

3

2
Π0Ψ(υ,k,V )

a −
2 − k2

2r
Ψ

(υ,k,T )
Π

−

(
3

2
φ0 + A0

)
Ψ

(υ,k,V )
Π −

(
µ0 + p0 −

1

2
Π0

)
Ψ

(υ,k,V )
A ;

(84)

• Evolution and propagation equations for the harmonic coefficients of tensor quantities:

iυ

(
Ψ

(υ,k,T )
E +

1

2
Ψ

(υ,k,T )
Π

)
+ Ψ̂

(υ,k,T )

H = −
1

r

(
Ψ

(υ,k,V )

H +
1

2
Ψ

(υ,k,V )
Q

)
−

(
1

2
φ0 + 2A0

)
Ψ

(υ,k,T )

H

−
1

2

(
µ0 + p0 + 3E0 −

1

2
Π0

)
Ψ

(υ,k,T )
Σ ,

(85)

1

2
Ψ̂

(υ,k,T )
Π − Ψ̂

(υ,k,T )
E − iυΨ

(υ,k,T )

H =
1

r

(
1

2
Ψ

(υ,k,V )
Π − Ψ

(υ,k,V )
E

)
−

1

4
φ0Ψ

(υ,k,T )
Π

−
3

2

(
E0 −

1

2
Π0

)
Ψ

(υ,k,T )
ζ +

(
1

2
φ0 + 2A0

)
Ψ

(υ,k,T )
E .

(86)

2. k-Modes where

{
Q

(k)
α , Q̄

(k)
α

}
6= 0 ∧

{
Q

(k)
αβ , Q̄

(k)
αβ

}
= 0: k2 = 2

For the k2 = 2 modes, the tensor harmonics are not defined, but in general, the vector and scalar harmonics do
not vanish. For those modes, we find the following equations for the harmonic coefficients.

Equations for the kinematical quantities associated with the timelike congruence

• Evolution and propagation equations for the harmonic coefficients of gradients of scalar quantities:

1

r
iυΨ

(υ,k,S)
θ − Ψ̂

(υ,k,V )
A

= Â0Ψ(υ,k,V )
a −

2

r2
Ψ

(υ,k,V )
A −

1

2

(
Ψ

(υ,k,V )
m + 3Ψ

(υ,k,V )
p

)

+ A0Ψ
(υ,k,V )
F

+

(
3

2
φ0 + 2A0

)
Ψ

(υ,k,V )
A

,

(87)

2

3r
iυΨ

(υ,k,S)
θ −

1

r
iυΨ

(υ,k,S)
Σ = φ0Ψ

(υ,k,V )
A

+ A0Ψ
(υ,k,V )
F

−
2

r2
Ψ

(υ,k,V )
A

−
1

3
Ψ

(υ,k,V )
m − Ψ

(υ,k,V )
p −

1

2
Ψ

(υ,k,V )
P

+ Ψ
(υ,k,V )
E

,

(88)

3

2
Ψ̂

(υ,k,S)
Σ − Ψ̂

(υ,k,S)
θ =

3

r

(
Ψ

(υ,k,V )
Σ − Ψ

(υ,k,V )

Ω

)
−

3

2
Ψ

(υ,k,S)
Q −

9

4
φ0Ψ

(υ,k,S)
Σ , (89)

• Evolution and propagation equations for the harmonic coefficients of vector quantities:

2iυΨ
(υ,k,V )

Ω + Ψ̂
(υ,k,V )
A = Ψ

(υ,k,V )
A

−
1

2
φ0Ψ

(υ,k,V )
A − A0Ψ(υ,k,V )

a , (90)

iυ
(

Ψ
(υ,k,V )
Σ + Ψ

(υ,k,V )

Ω

)
=

(
A0 −

1

2
φ0

)
Ψ

(υ,k,V )
A + Ψ

(υ,k,V )
A

− Ψ
(υ,k,V )
E +

1

2
Ψ

(υ,k,V )
Π , (91)

Ψ̂
(υ,k,V )
Σ + Ψ̂

(υ,k,V )

Ω =
1

2r
Ψ

(υ,k,S)
Σ +

2

3r
Ψ

(υ,k,S)
θ −

3

2
φ0Ψ

(υ,k,V )
Σ −

(
1

2
φ0 + 2A0

)
Ψ

(υ,k,V )

Ω − Ψ
(υ,k,V )
Q ; (92)
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• Constraint equations for the harmonic coefficients:

φ0

(
Ψ

(υ,k,V )
Σ + Ψ

(υ,k,V )

Ω

)
+

1

r
Ψ

(υ,k,S)
Σ −

2

3r
Ψ

(υ,k,S)
θ + Ψ

(υ,k,V )
Q − 2Ψ

(υ,k,V )

H = 0 . (93)

Equations for the kinematical quantities associated with the spacelike congruence

• Evolution and propagation equations for the harmonic coefficients of gradients of scalar quantities:

iυΨ
(υ,k,V )
F

= − φ̂0

(
Ψ

(υ,k,V )
Σ + Ψ(υ,k,V )

α + Ψ
(υ,k,V )

Ω

)
+

1

r
Ψ

(υ,k,S)
Q

+

(
A0 −

1

2
φ0

)(
2

3r
Ψ

(υ,k,S)
θ −

1

r
Ψ

(υ,k,S)
Σ

)
−

2

r2
Ψ(υ,k,V )

α ,

(94)

Ψ̂
(υ,k,V )
F

= −

(
φ̂0 +

2

r2

)
Ψ(υ,k,V )

a −
3

2
φ0Ψ

(υ,k,V )
F

−
2

3
Ψ

(υ,k,V )
m −

1

2
Ψ

(υ,k,V )
P

− Ψ
(υ,k,V )
E

; (95)

• Evolution and propagation equations for the harmonic coefficients of vector quantities:

Ψ̂(υ,k,V )
α − iυΨ(υ,k,V )

a = Ψ
(υ,k,V )

H −

(
A0 +

1

2
φ0

)
Ψ(υ,k,V )

α +
1

2
Ψ

(υ,k,V )
Q

+

(
1

2
φ0 − A0

)(
Ψ

(υ,k,V )
Σ − Ψ

(υ,k,V )

Ω

)
;

(96)

• Constraint equations for the harmonic coefficients:

Ψ
(υ,k,V )
F

+ 2Ψ
(υ,k,V )
E + Ψ

(υ,k,V )
Π = 0 . (97)

Equations for the Weyl tensor components and the matter variables

• Evolution and propagation equations for the harmonic coefficients of gradients of scalar quantities:

1

r
Ψ̂

(υ,k,S)
Q + iυΨ

(υ,k,V )
m = − µ̂0

(
Ψ

(υ,k,V )

Ω + Ψ
(υ,k,V )
Σ + Ψ(υ,k,V )

α

)
−

1

r
(µ0 + p0) Ψ

(υ,k,S)
θ

−
3

2r
Π0Ψ

(υ,k,S)
Σ −

1

r
(φ0 + 2A0) Ψ

(υ,k,S)
Q +

2

r2
Ψ

(υ,k,V )
Q ,

(98)

1

3
iυΨ

(υ,k,V )
m −

1

2
iυΨ

(υ,k,V )
P

− iυΨ
(υ,k,V )
E

=

(
µ0 + p0 −

1

2
Π0 − 3E0

)(
1

2r
Ψ

(υ,k,S)
Σ −

1

3r
Ψ

(υ,k,S)
θ

)

−
3

2
φ0

(
E0 +

1

2
Π0

)(
Ψ

(υ,k,V )

Ω + Ψ
(υ,k,V )
Σ + Ψ(υ,k,V )

α

)

+
2

r2

(
1

2
Ψ

(υ,k,V )
Q − Ψ

(υ,k,V )

H

)
−

1

2r
φ0Ψ

(υ,k,S)
Q ,

(99)

1

r
iυΨ

(υ,k,S)
Q + Ψ̂

(υ,k,V )
P

+ Ψ̂
(υ,k,V )
p = (µ0 + p0)

(
A0Ψ(υ,k,V )

a − Ψ
(υ,k,V )
A

)
− A0

(
Ψ

(υ,k,V )
m + Ψ

(υ,k,V )
p + Ψ

(υ,k,V )
P

)

−
1

2
φ0

(
Ψ

(υ,k,V )
p + 4Ψ

(υ,k,V )
P

)
+

(
3

2
φ0 + A0

)
Π0Ψ(υ,k,V )

a

− Π0

(
3

2
Ψ

(υ,k,V )
F

+ Ψ
(υ,k,V )
A

)
+

2

r2
Ψ

(υ,k,V )
Π ,

(100)
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Ψ̂
(υ,k,V )
E

+
1

2
Ψ̂

(υ,k,V )
P

−
1

3
Ψ̂

(υ,k,V )
m = − 2φ0

(
Ψ

(υ,k,V )
E

+
1

2
Ψ

(υ,k,V )
P

−
1

12
Ψ

(υ,k,V )
m

)

−
3

2

(
E0 +

1

2
Π0

)(
Ψ

(υ,k,V )
F

− φ0Ψ(υ,k,V )
a

)

+
2

r2

(
Ψ

(υ,k,V )
E +

1

2
Ψ

(υ,k,V )
Π

)
;

(101)

• Evolution and propagation equations for the harmonic coefficients of vector quantities:

iυ

(
Ψ

(υ,k,V )
E +

1

2
Ψ

(υ,k,V )
Π

)
=

(
1

2
φ0 − A0

)(
1

2
Ψ

(υ,k,V )
Q − Ψ

(υ,k,V )

H

)
−

3

2

(
E0 +

1

2
Π0

)
Ψ(υ,k,V )

α

−
1

2
(µ0 + p0 + Π0)

(
Ψ

(υ,k,V )
Σ + Ψ

(υ,k,V )

Ω

)
−

1

2r
Ψ

(υ,k,S)
Q ,

(102)

Ψ̂
(υ,k,V )
E +

1

2
Ψ̂

(υ,k,V )
Π = −

3

2
φ0

(
Ψ

(υ,k,V )
E +

1

2
Ψ

(υ,k,V )
Π

)
−

3

2

(
E0 +

1

2
Π0

)
Ψ(υ,k,V )

a

+
1

2
Ψ

(υ,k,V )
E

+
1

3
Ψ

(υ,k,V )
m +

1

4
Ψ

(υ,k,V )
P

,

(103)

1

2
Ψ̂

(υ,k,V )
E − iυΨ

(υ,k,V )

H −
1

4
Ψ̂

(υ,k,V )
Π =

3

2
E0Ψ

(υ,k,V )
A +

3

4

(
Ψ

(υ,k,V )
E

−
1

2
Ψ

(υ,k,V )
P

)
−

3

4

(
E0 −

1

2
Π0

)
Ψ(υ,k,V )

a

−
1

4
φ0

(
Ψ

(υ,k,V )
E −

1

2
Ψ

(υ,k,V )
Π

)
− A0Ψ

(υ,k,V )
E ,

(104)

Ψ̂
(υ,k,V )

H −
1

2
Ψ̂

(υ,k,V )
Q = −

1

2r
Ψ

(υ,k,S)
Q −

(
µ0 + p0 +

1

4
Π0 −

3

2
E0

)
Ψ

(υ,k,V )

Ω

−
3

2
φ0

(
Ψ

(υ,k,V )

H −
1

6
Ψ

(υ,k,V )
Q

)
−

3

2

(
E0 +

1

2
Π0

)
Ψ

(υ,k,V )
Σ ,

(105)

iυΨ
(υ,k,V )
Q + Ψ̂

(υ,k,V )
Π =

1

2
Ψ

(υ,k,V )
P

− Ψ
(υ,k,V )
p −

(
µ0 + p0 −

1

2
Π0

)
Ψ

(υ,k,V )
A

−
3

2
Π0Ψ(υ,k,V )

a −

(
3

2
φ0 + A0

)
Ψ

(υ,k,V )
Π .

(106)

3. k-Modes where Q(k) 6= 0 ∧

{
Q

(k)
α , Q̄

(k)
α

}
= 0 ∧

{
Q

(k)
αβ , Q̄

(k)
αβ

}
= 0: k = 0

As mentioned above, for the k-modes where the vector and tensor harmonics are not defined, we cannot use
the equations in Appendix B, since those only relate to vector and tensor quantities, that is, those equations are
trivially verified and do not contain information regarding linear perturbations that are only along the u and the e
directions. Then, to describe the dynamics of the perturbations that are not along the directions on the sheets, we
will use, instead, the relations in Appendix C. The equations for the harmonic coefficients for the k = 0 mode are

Ψ̂
(υ,0,S)
A + υ2Ψ

(υ,0,S)
θ =

1

2

(
Ψ(υ,0,S)

m + 3Ψ(υ,0,S)
p

)
+ Â0

(
1

3
Ψ

(υ,0,S)
θ + Ψ

(υ,0,S)
Σ

)

− (3A0 + φ0) Ψ
(υ,0,S)
A − A0Ψ

(υ,0,S)
F ,

(107)

υ2

(
2

3
Ψ

(υ,0,S)
θ − Ψ

(υ,0,S)
Σ

)
=

1

3

(
Ψ(υ,0,S)

m + 3Ψ(υ,0,S)
p

)
+

1

2
Ψ

(υ,0,S)
P − Ψ

(υ,0,S)
E

− A0Ψ
(υ,0,S)
F − φ0Ψ

(υ,0,S)
A ,

(108)
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2

3
Ψ̂

(υ,0,S)
θ − Ψ̂

(υ,0,S)
Σ = Ψ

(υ,0,S)
Q +

3

2
φ0Ψ

(υ,0,S)
Σ , (109)

−υ2Ψ
(υ,0,S)
Q + Ψ̂(υ,0,S)

p + Ψ̂
(υ,0,S)
P =

(
p̂0 + Π̂0

)(1

3
Ψ

(υ,0,S)
θ + Ψ

(υ,0,S)
Σ

)
− (µ0 + p0) Ψ

(υ,0,S)
A

− Π0

(
3

2
Ψ

(υ,0,S)
F + Ψ

(υ,0,S)
A

)
−

(
3

2
φ0 + 2A0

)
Ψ

(υ,0,S)
P

− A0

(
Ψ(υ,0,S)

m + 2Ψ(υ,0,S)
p

)
,

(110)

Ψ(υ,0,S)
m + Ψ̂

(υ,0,S)
Q = − (φ0 + 2A0) Ψ

(υ,0,S)
Q −

3

2
Π0Ψ

(υ,0,S)
Σ − (µ0 + p0) Ψ

(υ,0,S)
θ ; (111)

and the constraints

Ψ
(υ,0,S)
F = Ψ

(υ,0,S)
Q + (2A0 − φ0)

(
1

3
Ψ

(υ,0,S)
θ −

1

2
Ψ

(υ,0,S)
Σ

)
, (112)

Ψ
(υ,0,S)
E +

1

2
Ψ

(υ,0,S)
P −

1

3
Ψ(υ,0,S)

m =

(
µ0 + p0 −

1

2
Π0 − 3E0

)(
1

3
Ψ

(υ,0,S)
θ −

1

2
Ψ

(υ,0,S)
Σ

)
+

1

2
φ0Ψ

(υ,0,S)
Q . (113)

F. Odd sector

1. k-Modes where

{
Q

(k)
αβ , Q̄

(k)
αβ

}
6= 0

Equations for the kinematical quantities associated with the timelike congruence

• Evolution and propagation equations for the harmonic coefficients of scalars and gradients of scalar quantities:

Ψ̂
(υ,k,V )

A = − Â0Ψ
(υ,k,V )

a −

(
3

2
φ0 + 2A0

)
Ψ

(υ,k,V )

A

− A0Ψ
(υ,k,V )

F +
1

2

(
Ψ

(υ,k,V )

m + 3Ψ
(υ,k,V )

p

)
,

(114)

iυΨ
(υ,k,S)
Ω =

k2

2r
Ψ

(υ,k,V )

A + A0Ψ
(υ,k,S)
ξ , (115)

Ψ̂
(υ,k,S)
Ω = (A0 − φ0) Ψ

(υ,k,S)
Ω +

k2

r
Ψ

(υ,k,V )
Ω ; (116)

• Evolution and propagation equations for the harmonic coefficients of vector quantities:

iυΨ
(υ,k,V )
Ω −

1

2
Ψ̂

(υ,k,V )

A =
1

2

(
1

2
φ0Ψ

(υ,k,V )

A + A0Ψ
(υ,k,V )

a − Ψ
(υ,k,V )

A

)
, (117)

iυ
(

Ψ
(υ,k,V )

Σ − Ψ
(υ,k,V )
Ω

)
=

(
A0 −

1

2
φ0

)
Ψ

(υ,k,V )

A + Ψ
(υ,k,V )

A − Ψ
(υ,k,V )

E +
1

2
Ψ

(υ,k,V )

Π , (118)

Ψ̂
(υ,k,V )

Σ − Ψ̂
(υ,k,V )
Ω = −

1

r
Ψ

(υ,k,S)
Ω −

3

2
φ0Ψ

(υ,k,V )

Σ − Ψ
(υ,k,V )

Q

+

(
1

2
φ0 + 2A0

)
Ψ

(υ,k,V )
Ω +

2 − k2

2r
Ψ

(υ,k,T )

Σ ;

(119)
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• Evolution and propagation equations for the harmonic coefficients of tensor quantities:

iυΨ
(υ,k,T )

Σ = −
1

r
Ψ

(υ,k,V )

A + A0Ψ
(υ,k,T )

ζ − Ψ
(υ,k,T )

E +
1

2
Ψ

(υ,k,T )

Π , (120)

Ψ̂
(υ,k,T )

Σ = −
1

r

(
Ψ

(υ,k,V )

Σ + Ψ
(υ,k,V )
Ω

)
−

1

2
φ0Ψ

(υ,k,T )

Σ − Ψ
(υ,k,T )
H ; (121)

• Constraint equations for the harmonic coefficients:

k2

2r
Ψ

(υ,k,V )

A + Â0Ψ
(υ,k,S)
ξ = 0 , (122)

−Ψ
(υ,k,S)
H + (φ0 − 2A0) Ψ

(υ,k,S)
Ω +

k2

r

(
Ψ

(υ,k,V )

Σ − Ψ
(υ,k,V )
Ω

)
= 0 , (123)

φ0

(
Ψ

(υ,k,V )

Σ − Ψ
(υ,k,V )
Ω

)
+ Ψ

(υ,k,V )

Q + 2Ψ
(υ,k,V )
H +

2

r
Ψ

(υ,k,S)
Ω −

2 − k2

r
Ψ

(υ,k,T )

Σ = 0 , (124)

φ0Ψ
(υ,k,V )

A + A0Ψ
(υ,k,V )

F −
1

3
Ψ

(υ,k,V )

m − Ψ
(υ,k,V )

p −
1

2
Ψ

(υ,k,V )

P + Ψ
(υ,k,V )

E = 0 . (125)

Equations for the kinematical quantities associated with the spacelike congruence

• Evolution and propagation equations for the harmonic coefficients of scalars and gradients of scalar quantities:

iυΨ
(υ,k,V )

F = −φ̂0

(
Ψ

(υ,k,V )

Σ + Ψ
(υ,k,V )

α − Ψ
(υ,k,V )
Ω

)
, (126)

Ψ̂
(υ,k,V )

F = −φ̂0Ψ
(υ,k,V )

a −
2

3
Ψ

(υ,k,V )

m −
1

2
Ψ

(υ,k,V )

P − Ψ
(υ,k,V )

E −
3

2
φ0Ψ

(υ,k,V )

F , (127)

iυΨ
(υ,k,S)
ξ =

1

2
Ψ

(υ,k,S)
H +

(
A0 −

1

2
φ0

)
Ψ

(υ,k,S)
Ω +

k2

2r
Ψ

(υ,k,V )

α , (128)

Ψ̂
(υ,k,S)
ξ = −φ0Ψ

(υ,k,S)
ξ +

k2

2r
Ψ

(υ,k,V )

a ; (129)

• Evolution and propagation equations for the harmonic coefficients of vector quantities:

Ψ̂
(υ,k,V )

α − iυΨ
(υ,k,V )

a = − Ψ
(υ,k,V )
H −

(
A0 +

1

2
φ0

)
Ψ

(υ,k,V )

α +
1

2
Ψ

(υ,k,V )

Q

+

(
1

2
φ0 − A0

)(
Ψ

(υ,k,V )

Σ + Ψ
(υ,k,V )
Ω

)
;

(130)

• Evolution and propagation equations for the harmonic coefficients of tensor quantities:

iυΨ
(υ,k,T )

ζ =

(
A0 −

1

2
φ0

)
Ψ

(υ,k,T )

Σ −
1

r
Ψ

(υ,k,V )

α − Ψ
(υ,k,T )
H , (131)

Ψ̂
(υ,k,T )

ζ = −
1

r
Ψ

(υ,k,V )

a − φ0Ψ
(υ,k,T )

ζ − Ψ
(υ,k,T )

E −
1

2
Ψ

(υ,k,T )

Π ; (132)
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• Constraint equations for the harmonic coefficients:

k2

2r
Ψ

(υ,k,V )

F = −φ̂0Ψ
(υ,k,S)
ξ , (133)

2

r
Ψ

(υ,k,S)
ξ −

2 − k2

r
Ψ

(υ,k,T )

ζ − Ψ
(υ,k,V )

F − 2Ψ
(υ,k,V )

E − Ψ
(υ,k,V )

Π = 0 . (134)

Equations for the Weyl tensor components and the matter variables

• Evolution and propagation equations for the harmonic coefficients of scalars and gradients of scalar quantities:

iυΨ
(υ,k,V )

m = µ̂0

(
Ψ

(υ,k,V )
Ω − Ψ

(υ,k,V )

Σ − Ψ
(υ,k,V )

α

)
, (135)

iυΨ
(υ,k,V )

E +
1

2
iυΨ

(υ,k,V )

P =

(
Ê0 +

1

2
Π̂0

)(
Ψ

(υ,k,V )
Ω − Ψ

(υ,k,V )

Σ − Ψ
(υ,k,V )

α

)
, (136)

Ψ̂
(υ,k,V )

P + Ψ̂
(υ,k,V )

p = (µ0 + p0)
(

A0Ψ
(υ,k,V )

a − Ψ
(υ,k,V )

A

)
− A0

(
Ψ

(υ,k,V )

m + Ψ
(υ,k,V )

p + Ψ
(υ,k,V )

P

)

−
1

2
φ0

(
Ψ

(υ,k,V )

p + 4Ψ
(υ,k,V )

P

)
+

(
3

2
φ0 + A0

)
Π0Ψ

(υ,k,V )

a

− Π0

(
3

2
Ψ

(υ,k,V )

F + Ψ
(υ,k,V )

A

)
,

(137)

Ψ̂
(υ,k,V )

E +
1

2
Ψ̂

(υ,k,V )

P −
1

3
Ψ̂

(υ,k,V )

m = − 2φ0

(
Ψ

(υ,k,V )

E +
1

2
Ψ

(υ,k,V )

P −
1

12
Ψ

(υ,k,V )

m

)

−
3

2

(
E0 +

1

2
Π0

)(
Ψ

(υ,k,V )

F − φ0Ψ
(υ,k,V )

a

)
,

(138)

iυΨ
(υ,k,S)
H =

k2

r

(
1

2
Ψ

(υ,k,V )

Π − Ψ
(υ,k,V )

E

)
+ 3

(
1

2
Π0 − E0

)
Ψ

(υ,k,S)
ξ , (139)

Ψ̂
(υ,k,S)
H =

k2

r

(
Ψ

(υ,k,V )
H −

1

2
Ψ

(υ,k,V )

Q

)
−

3

2
φ0Ψ

(υ,k,S)
H −

(
3E0 + µ0 + p0 −

1

2
Π0

)
Ψ

(υ,k,S)
Ω ; (140)

• Evolution and propagation equations for the harmonic coefficients of vector quantities:

iυ

(
Ψ

(υ,k,V )

E +
1

2
Ψ

(υ,k,V )

Π

)
=

(
1

2
φ0 − A0

)(
1

2
Ψ

(υ,k,V )

Q + Ψ
(υ,k,V )
H

)
−

3

2

(
E0 +

1

2
Π0

)
Ψ

(υ,k,V )

α

−
1

2
(µ0 + p0 + Π0)

(
Ψ

(υ,k,V )

Σ − Ψ
(υ,k,V )
Ω

)

+
1

2r
Ψ

(υ,k,S)
H +

2 − k2

2r
Ψ

(υ,k,T )
H ,

(141)
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Ψ̂
(υ,k,V )

E +
1

2
Ψ̂

(υ,k,V )

Π = −
3

2
φ0

(
Ψ

(υ,k,V )

E +
1

2
Ψ

(υ,k,V )

Π

)
−

3

2

(
E0 +

1

2
Π0

)
Ψ

(υ,k,V )

a

+
1

2
Ψ

(υ,k,V )

E +
1

3
Ψ

(υ,k,V )

m +
1

4
Ψ

(υ,k,V )

P +
2 − k2

2r

(
Ψ

(υ,k,T )

E +
1

2
Ψ

(υ,k,T )

Π

)
,

(142)

1

4
Ψ̂

(υ,k,V )

Π −
1

2
Ψ̂

(υ,k,V )

E − iυΨ
(υ,k,V )
H = −

3

4

(
Ψ

(υ,k,V )

E −
1

2
Ψ

(υ,k,V )

P

)
+

2 − k2

4r

(
Ψ

(υ,k,T )

E −
1

2
Ψ

(υ,k,T )

Π

)

−
3

2
E0Ψ

(υ,k,V )

A +
1

4
φ0

(
Ψ

(υ,k,V )

E −
1

2
Ψ

(υ,k,V )

Π

)

+
3

4

(
E0 −

1

2
Π0

)
Ψ

(υ,k,V )

a + A0Ψ
(υ,k,V )

E ,

(143)

Ψ̂
(υ,k,V )
H +

1

2
Ψ̂

(υ,k,V )

Q =
1

2r
Ψ

(υ,k,S)
H −

2 − k2

2r
Ψ

(υ,k,T )
H +

3

2

(
E0 +

1

2
Π0

)
Ψ

(υ,k,V )

Σ

−
3

2
φ0

(
Ψ

(υ,k,V )
H +

1

6
Ψ

(υ,k,V )

Q

)
−

(
µ0 + p0 +

1

4
Π0 −

3

2
E0

)
Ψ

(υ,k,V )
Ω ,

(144)

iυΨ
(υ,k,V )

Q + Ψ̂
(υ,k,V )

Π =
1

2
Ψ

(υ,k,V )

P − Ψ
(υ,k,V )

p −
3

2
Π0Ψ

(υ,k,V )

a +
2 − k2

2r
Ψ

(υ,k,T )

Π

−

(
3

2
φ0 + A0

)
Ψ

(υ,k,V )

Π −

(
µ0 + p0 −

1

2
Π0

)
Ψ

(υ,k,V )

A ;

(145)

• Evolution and propagation equations for the harmonic coefficients of tensor quantities:

iυΨ
(υ,k,T )

E +
1

2
iυΨ

(υ,k,T )

Π − Ψ̂
(υ,k,T )
H = −

1

r

(
Ψ

(υ,k,V )
H −

1

2
Ψ

(υ,k,V )

Q

)
+

(
1

2
φ0 + 2A0

)
Ψ

(υ,k,T )
H

−
1

2

(
µ0 + p0 + 3E0 −

1

2
Π0

)
Ψ

(υ,k,T )

Σ ,

(146)

Ψ̂
(υ,k,T )

E −
1

2
Ψ̂

(υ,k,T )

Π − iυΨ
(υ,k,T )
H =

1

r

(
1

2
Ψ

(υ,k,V )

Π − Ψ
(υ,k,V )

E

)
+

1

4
φ0Ψ

(υ,k,T )

Π

+
3

2

(
E0 −

1

2
Π0

)
Ψ

(υ,k,T )

ζ −

(
1

2
φ0 + 2A0

)
Ψ

(υ,k,T )

E ;

(147)

• Constraint equations for the harmonic coefficients:

k2

r

(
1

3
Ψ

(υ,k,V )

m − Ψ
(υ,k,V )

E −
1

2
Ψ

(υ,k,V )

P

)
= −3φ0

(
E0 +

1

2
Π0

)
Ψ

(υ,k,S)
ξ , (148)

k2

2r
Ψ

(υ,k,V )

p + p̂0Ψ
(υ,k,S)
ξ = 0 . (149)

2. k-Modes where

{
Q

(k)
α , Q̄

(k)
α

}
6= 0 ∧

{
Q

(k)
αβ , Q̄

(k)
αβ

}
= 0: k2 = 2

As was discussed in the even sector, for the k2 = 2 modes, the tensor harmonics are not defined, but the vector
and scalar harmonics do not vanish necessarily. For those modes, we find the following equations for the harmonic
coefficients.
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Equations for the kinematical quantities associated with the timelike congruence

• Evolution and propagation equations for the harmonic coefficients of scalars and gradients of scalar quantities:

Ψ̂
(υ,k,V )

A = −Â0Ψ
(υ,k,V )

a − A0Ψ
(υ,k,V )

F −

(
3

2
φ0 + 2A0

)
Ψ

(υ,k,V )

A +
1

2

(
Ψ

(υ,k,V )

m + 3Ψ
(υ,k,V )

p

)
, (150)

iυΨ
(υ,k,S)
Ω =

1

r
Ψ

(υ,k,V )

A + A0Ψ
(υ,k,S)
ξ , (151)

Ψ̂
(υ,k,S)
Ω = (A0 − φ0) Ψ

(υ,k,S)
Ω +

2

r
Ψ

(υ,k,V )
Ω ; (152)

• Evolution and propagation equations for the harmonic coefficients of vector quantities:

2iυΨ
(υ,k,V )
Ω − Ψ̂

(υ,k,V )

A =
1

2
φ0Ψ

(υ,k,V )

A + A0Ψ
(υ,k,V )

a − Ψ
(υ,k,V )

A , (153)

iυ
(

Ψ
(υ,k,V )

Σ − Ψ
(υ,k,V )
Ω

)
=

(
A0 −

1

2
φ0

)
Ψ

(υ,k,V )

A + Ψ
(υ,k,V )

A − Ψ
(υ,k,V )

E +
1

2
Ψ

(υ,k,V )

Π , (154)

Ψ̂
(υ,k,V )

Σ − Ψ̂
(υ,k,V )
Ω = −

1

r
Ψ

(υ,k,S)
Ω −

3

2
φ0Ψ

(υ,k,V )

Σ − Ψ
(υ,k,V )

Q +

(
1

2
φ0 + 2A0

)
Ψ

(υ,k,V )
Ω ; (155)

• Constraint equations for the harmonic coefficients:

1

r
Ψ

(υ,k,V )

A + Â0Ψ
(υ,k,S)
ξ = 0 , (156)

−Ψ
(υ,k,S)
H + (φ0 − 2A0) Ψ

(υ,k,S)
Ω +

2

r

(
Ψ

(υ,k,V )

Σ − Ψ
(υ,k,V )
Ω

)
= 0 , (157)

φ0

(
Ψ

(υ,k,V )

Σ − Ψ
(υ,k,V )
Ω

)
+ Ψ

(υ,k,V )

Q + 2Ψ
(υ,k,V )
H +

2

r
Ψ

(υ,k,S)
Ω = 0 , (158)

φ0Ψ
(υ,k,V )

A + A0Ψ
(υ,k,V )

F −
1

3
Ψ

(υ,k,V )

m − Ψ
(υ,k,V )

p −
1

2
Ψ

(υ,k,V )

P + Ψ
(υ,k,V )

E = 0 . (159)

Equations for the kinematical quantities associated with the spacelike congruence

• Evolution and propagation equations for the harmonic coefficients of scalars and gradients of scalar quantities:

iυΨ
(υ,k,V )

F = −φ̂0

(
Ψ

(υ,k,V )

Σ + Ψ
(υ,k,V )

α − Ψ
(υ,k,V )
Ω

)
, (160)

Ψ̂
(υ,k,V )

F = −φ̂0Ψ
(υ,k,V )

a −
2

3
Ψ

(υ,k,V )

m −
1

2
Ψ

(υ,k,V )

P − Ψ
(υ,k,V )

E −
3

2
φ0Ψ

(υ,k,V )

F , (161)

iυΨ
(υ,k,S)
ξ =

1

2
Ψ

(υ,k,S)
H +

(
A0 −

1

2
φ0

)
Ψ

(υ,k,S)
Ω +

1

r
Ψ

(υ,k,V )

α , (162)

Ψ̂
(υ,k,S)
ξ = −φ0Ψ

(υ,k,S)
ξ +

1

r
Ψ

(υ,k,V )

a ; (163)
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• Evolution and propagation equations for the harmonic coefficients of vector quantities:

Ψ̂
(υ,k,V )

α − iυΨ
(υ,k,V )

a = − Ψ
(υ,k,V )
H −

(
A0 +

1

2
φ0

)
Ψ

(υ,k,V )

α +
1

2
Ψ

(υ,k,V )

Q

+

(
1

2
φ0 − A0

)(
Ψ

(υ,k,V )

Σ + Ψ
(υ,k,V )
Ω

)
;

(164)

• Constraint equations for the harmonic coefficients:

1

r
Ψ

(υ,k,V )

F = −φ̂0Ψ
(υ,k,S)
ξ , (165)

2

r
Ψ

(υ,k,S)
ξ − Ψ

(υ,k,V )

F − 2Ψ
(υ,k,V )

E − Ψ
(υ,k,V )

Π = 0 . (166)

Equations for the Weyl tensor components and the matter variables

• Evolution and propagation equations for the harmonic coefficients of scalars and gradients of scalar quantities:

iυΨ
(υ,k,V )

m = µ̂0

(
Ψ

(υ,k,V )
Ω − Ψ

(υ,k,V )

Σ − Ψ
(υ,k,V )

α

)
, (167)

iυΨ
(υ,k,V )

E +
1

2
iυΨ

(υ,k,V )

P =

(
Ê0 +

1

2
Π̂0

)(
Ψ

(υ,k,V )
Ω − Ψ

(υ,k,V )

Σ − Ψ
(υ,k,V )

α

)
, (168)

Ψ̂
(υ,k,V )

P + Ψ̂
(υ,k,V )

p = (µ0 + p0)
(

A0Ψ
(υ,k,V )

a − Ψ
(υ,k,V )

A

)
− A0

(
Ψ

(υ,k,V )

m + Ψ
(υ,k,V )

p + Ψ
(υ,k,V )

P

)

−
1

2
φ0

(
Ψ

(υ,k,V )

p + 4Ψ
(υ,k,V )

P

)
+

(
3

2
φ0 + A0

)
Π0Ψ

(υ,k,V )

a

− Π0

(
3

2
Ψ

(υ,k,V )

F + Ψ
(υ,k,V )

A

)
,

(169)

Ψ̂
(υ,k,V )

E +
1

2
Ψ̂

(υ,k,V )

P −
1

3
Ψ̂

(υ,k,V )

m = − 2φ0

(
Ψ

(υ,k,V )

E +
1

2
Ψ

(υ,k,V )

P −
1

12
Ψ

(υ,k,V )

m

)

−
3

2

(
E0 +

1

2
Π0

)(
Ψ

(υ,k,V )

F − φ0Ψ
(υ,k,V )

a

)
,

(170)

iυΨ
(υ,k,S)
H =

2

r

(
1

2
Ψ

(υ,k,V )

Π − Ψ
(υ,k,V )

E

)
+ 3

(
1

2
Π0 − E0

)
Ψ

(υ,k,S)
ξ , (171)

Ψ̂
(υ,k,S)
H =

2

r

(
Ψ

(υ,k,V )
H −

1

2
Ψ

(υ,k,V )

Q

)
−

3

2
φ0Ψ

(υ,k,S)
H −

(
3E0 + µ0 + p0 −

1

2
Π0

)
Ψ

(υ,k,S)
Ω ; (172)

• Evolution and propagation equations for the harmonic coefficients of vector quantities:

iυ

(
Ψ

(υ,k,V )

E +
1

2
Ψ

(υ,k,V )

Π

)
=

(
1

2
φ0 − A0

)(
1

2
Ψ

(υ,k,V )

Q + Ψ
(υ,k,V )
H

)
−

3

2

(
E0 +

1

2
Π0

)
Ψ

(υ,k,V )

α

−
1

2
(µ0 + p0 + Π0)

(
Ψ

(υ,k,V )

Σ − Ψ
(υ,k,V )
Ω

)
+

1

2r
Ψ

(υ,k,S)
H ,

(173)
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Ψ̂
(υ,k,V )

E +
1

2
Ψ̂

(υ,k,V )

Π = −
3

2
φ0

(
Ψ

(υ,k,V )

E +
1

2
Ψ

(υ,k,V )

Π

)
−

3

2

(
E0 +

1

2
Π0

)
Ψ

(υ,k,V )

a

+
1

2
Ψ

(υ,k,V )

E +
1

3
Ψ

(υ,k,V )

m +
1

4
Ψ

(υ,k,V )

P ,

(174)

1

4
Ψ̂

(υ,k,V )

Π −
1

2
Ψ̂

(υ,k,V )

E − iυΨ
(υ,k,V )
H = −

3

4

(
Ψ

(υ,k,V )

E −
1

2
Ψ

(υ,k,V )

P

)
+

3

4

(
E0 −

1

2
Π0

)
Ψ

(υ,k,V )

a

−
3

2
E0Ψ

(υ,k,V )

A +
1

4
φ0

(
Ψ

(υ,k,V )

E −
1

2
Ψ

(υ,k,V )

Π

)

+ A0Ψ
(υ,k,V )

E ,

(175)

Ψ̂
(υ,k,V )
H +

1

2
Ψ̂

(υ,k,V )

Q =
1

2r
Ψ

(υ,k,S)
H −

3

2
φ0

(
Ψ

(υ,k,V )
H +

1

6
Ψ

(υ,k,V )

Q

)

+
3

2

(
E0 +

1

2
Π0

)
Ψ

(υ,k,V )

Σ −

(
µ0 + p0 +

1

4
Π0 −

3

2
E0

)
Ψ

(υ,k,V )
Ω ,

(176)

iυΨ
(υ,k,V )

Q + Ψ̂
(υ,k,V )

Π =
1

2
Ψ

(υ,k,V )

P − Ψ
(υ,k,V )

p −

(
3

2
φ0 + A0

)
Ψ

(υ,k,V )

Π

−
3

2
Π0Ψ

(υ,k,V )

a −

(
µ0 + p0 −

1

2
Π0

)
Ψ

(υ,k,V )

A ;

(177)

• Constraint equations for the harmonic coefficients:

2

r

(
1

3
Ψ

(υ,k,V )

m − Ψ
(υ,k,V )

E −
1

2
Ψ

(υ,k,V )

P

)
= −3φ0

(
E0 +

1

2
Π0

)
Ψ

(υ,k,S)
ξ , (178)

1

r
Ψ

(υ,k,V )

p + p̂0Ψ
(υ,k,S)
ξ = 0 . (179)

3. k-Modes where Q(k) 6= 0 ∧

{
Q

(k)
α , Q̄

(k)
α

}
= 0 ∧

{
Q

(k)
αβ , Q̄

(k)
αβ

}
= 0: k = 0

Once again, as was discussed in the even sector, for k-modes where the vector and tensor harmonics are not
defined, to describe the dynamics of the perturbations that are not along the directions on the sheets, we will use
the relations in Appendix C. The equations for the harmonic coefficients for the k = 0 mode are:

iυΨ
(υ,0,S)
Ω = A0Ψ

(υ,0,S)
ξ , (180)

Ψ̂
(υ,0,S)
Ω = (A0 − φ0) Ψ

(υ,0,S)
Ω , (181)

iυΨ
(υ,0,S)
ξ = 0 , (182)

Ψ̂
(υ,0,S)
ξ = −φ0Ψ

(υ,0,S)
ξ , (183)

iυΨ
(υ,0,S)
H = −3

(
E0 −

1

2
Π0

)
Ψ

(υ,0,S)
ξ , (184)

Ψ̂
(υ,0,S)
H = −

3

2
φ0Ψ

(υ,0,S)
H −

(
3E0 + µ0 + p0 −

1

2
Π0

)
Ψ

(υ,0,S)
Ω ; (185)

and the constraint

(2A0 − φ0) Ψ
(υ,0,S)
Ω + Ψ

(υ,0,S)
H = 0 . (186)



24

IV. ADIABATIC ISOTROPIC PERTURBATIONS

As a first application of the system of covariant, gauge invariant equations presented in the previous section, in the
remainder of the article we will consider linear isotropic perturbations of a static, spherically symmetric spacetime
permeated by a perfect fluid, which we will call, for brevity and its immediate physical application, “star”. Due
to the scope of this article, here we will analyze the general properties of the system of differential equations and
relegate finding and discussing the solutions for specific background spacetimes to another article.

A. The equilibrium spacetime

In the language of the 1+1+2 decomposition, static, spherically symmetric spacetimes with a perfect fluid source
can be completely characterized by the six scalars {A0, φ0, E0, µ0, p0, Λ}, such that all their “dot derivatives” vanish.
For simplicity, we will set the cosmological constant to zero: Λ = 0. Then, the covariant defined scalars verify
(cf. Eqs. (53) and (54)):

p̂0 = − (µ0 + p0) A0 , (187)

φ̂0 = −
1

2
φ2

0 −
2

3
µ0 − E0 , (188)

Â0 =
3

2
E0 +

(
1

2
φ0 − A0

)
A0 , (189)

Ê0 +
3

2
φ0E0 =

1

3
µ̂0 , (190)

and the constraint

1

3
(µ0 + 3p0) − A0φ0 = E0 . (191)

We will consider the setup where two solutions of the Einstein field equations are smoothly matched at a common
timelike hypersurface. The interior of the star is described by a static, spatially compact solution with a perfect
fluid source, while the exterior spacetime is described by an asymptotically flat branch of the vacuum Schwarzschild
solution with no event horizons.

B. Choice of frame in the perturbed spacetime

The sheets of the background spacetime have spherical symmetry. Hence, by choosing the e tangent vector field
of the background spacetime to be aligned with the gradient of the circumferential radius, r, we can particularize
the harmonics Q(k) to be the spherical harmonics: Ylm, where the eigenvalues k verify k2 = l (l + 1), with l ≥ 0,
and −l ≤ m ≤ l. Moreover, this choice of frame implies that,

Q(0)
α = 0, Q̄(0)

α = 0, Q
(0)
αβ = Q

(1)
αβ = 0, Q̄

(0)
αβ = Q̄

(1)
αβ = 0. (192)

The perturbed spacetime is assumed to maintain spherical symmetry, therefore, it is useful also to consider the
spacelike vector field e to not have angular components and dependencies in the perturbed spacetime. Notice that,
at this point, we are free to choose any smooth mapping between the background and the perturbed spacetimes given
that covariantly defined tensors, vectors, and the quantities in Eqs. (55) and (56) are identification gauge invariant.
Considering the equations in subsections III E and III F, since the perturbations are spherically symmetric, all
coefficients, in both even and odd sectors, with l ≥ 1 vanish identically. Then, only the coefficients for the l = 0
mode, the monopole, may not be trivial.

In addition to the imposition that the perturbation maintains the spherical symmetry of the spacetime, for
simplicity, we will further assume that the perturbation does not generate anisotropic pressure and is adiabatic,
that is, in the comoving matter frame, the perturbation will not give rise to heat flows within the fluid. Moreover,
we will also impose that the vorticity of the timelike congruence is identically zero in the perturbed spacetime.
These extra conditions set the coefficients

Ψ
(υ,0,S)
P , Ψ

(υ,0,S)
Ω , Ψ

(υ,0,S)
ξ , Ψ

(υ,0,S)
H = 0 , (193)
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and in the comoving frame

Ψ
(υ,0,S)
Q = 0 . (194)

Now, the choice of frame is not completely determined by the choice of frame in the background spacetime and
the choice that the e vector field does not have angular components and dependencies in the perturbed spacetime.
Since the background spacetime is assumed to be static, comoving observers with the fluid in equilibrium are also
static. Therefore, to describe the perturbed fluid, we can choose either to consider a congruence that describes the
world-lines of observers locally comoving with the elements of the fluid or a congruence that describes the world-lines
of static, ṙ = 0, observers. Both choices are valid, and both have advantages. For the former choice, the matter field
is described by the source fluid in its rest frame, i.e., a perfect fluid model. Hence, it can be characterized simply
by its energy density and pressure. Moreover, all quantities that characterize the observer directly characterize the
elements of the fluid, allowing for a clear interpretation of the quantities and how their dependencies give rise to
the various physical effects. In the latter case, we have the constraint 2

3 θ = Σ between the expansion and shear
kinematical variables, Eq. (D2). However, for static observers, the fluid will no longer be perfect: such observers
will measure momentum flows, and we have to consider a heat flow term in the perturbed stress-energy tensor:
Q 6= 0 (cf. Appendix E). Nonetheless, the description of the problem in this frame is greatly simplified, allowing us
to find some general properties of the solutions easily. Below, we show the system of equations for both frames.

In order to lighten the notation, here and in the following sections, we will indicate the perturbation-coefficients
as

Ψ(υ,0,S)
χ = Ψχ . (195)

where χ is a generic perturbation variable. This will not compromise clarity as only the monopole perturbations
mode is nontrivial for the considered setup.

C. Comoving observers

In the comoving frame, the perturbed fluid can be modeled by a perfect fluid. Hence, it can be fully characterized
by its energy density and pressure. To close the system, we have to provide a matter model for the perturbed fluid.
As a simplifying assumption, we will consider that the perturbed matter fluid still verifies a barotropic equation of
state such that

p = f (µ) , (196)

where f is assumed to be non-vanishing and of class C1 in some neighborhood containing µ0. Then, at linear order

p ≈ f ′ (µ0) m , (197)

where prime represents derivative with respect to the function’s parameter, so that f ′ (µ0) represents the square of
the adiabatic speed of sound, to be assumed non-vanishing in the interior of the perturbed star. Notice that the
function f does not have to be equal to the equation of state of the background configuration, in particular, the
equilibrium fluid is not even required to verify a barotropic equation of state.

Imposing the previous conditions in the equations of subsections III E 3 and III F 3, we are left with the following
system for the non-trivial coefficients of the perturbation variables

Ψ̂p + 2A0

(
1 +

1

3f ′ (µ0)

)
Ψp = − (µ0 + p0) (ΨA + A0ΨΣ) , (198)

Ψ̂A +

(
3A0 −

1

2
φ0

)
ΨA =

E0

(µ0 + p0) f ′ (µ0)
Ψp −

3

2

(
υ2 + A2

0 +
1

3
µ0 − 2E0

)
ΨΣ , (199)

Ψ̂Σ +

(
3

2
φ0 −

2A0

3f ′ (µ0)

)
ΨΣ =

2

3 (µ0 + p0) f ′ (µ0)

[
3f ′′ (µ0) µ̂0 + 2A0

3f ′ (µ0)
+

µ̂0

µ0 + p0
+ A0

]
Ψp

+
2

3f ′ (µ0)
ΨA ,

(200)
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and the constraints

(
υ2 + A0φ0 + A2

0 − p0

)(2

3
Ψθ − ΨΣ

)
= Ψp − φ0ΨA , (201)

ΨE = E0

(
3

2
ΨΣ +

Ψp

f ′ (µ0) (µ0 + p0)

)
−

1

2
(µ0 + p0) ΨΣ , (202)

ΨF =

(
1

2
φ0 − A0

)(
2Ψp

3f ′ (µ0) (µ0 + p0)
+ ΨΣ

)
, (203)

Ψm = − (µ0 + p0) Ψθ , (204)

Ψp = f ′ (µ0) Ψm , (205)

where Eq. (205) follows from Eq. (197). It can be readily shown that Eqs. (198)–(201) are consistent with the
relation (59).

To select the physically acceptable solutions and formalize the boundary value problem, we impose the following
boundary conditions:

(i) the energy density and the pressure perturbations at the center of the star must be finite in a neighborhood
of the initial instant;

(ii) the spacetime interior to the perturbed star can be smoothly matched to an exterior vacuum Schwarzschild
spacetime at a timelike hypersurface B, which will represent the “surface of the star”.

From the point of view of the comoving observer, the boundary condition (ii) implies that the pressure of the
perturbed fluid is identically zero at all times at the surface of the star and thus, p, hence Ψp, are also identically
zero at the boundary B.

D. Static observers

An advantage of the adopted covariant formalism is the ability to readily change frames without deriving a new
set of equations for the perturbations. Hence, an alternative way to describe isotropic adiabatic perturbations is to
consider the frame of static observers.

As was discussed previously, static observers will not describe the perturbed fluid as a perfect fluid since, in general,
these will measure a local net momentum flow. Therefore, the relation between the energy density, pressure and
heat flow terms of the perturbed stress-energy tensor is more complex than that of the comoving frame above. It
is shown in Appendix E that a barotropic equation of state in the comoving frame leads to the following relation
between the matter variables measured in a static frame

m =
1

f ′ (µ0)
p −

1

µ0 + p0

(
µ̂0 −

p̂0

f ′ (µ0)

)
Q , (206)

where f ′ (µ0) represents the square of the speed of sound measured in the comoving frame. We highlight that
although we have kept the nomenclature of the previous subsection, m and p refer here, respectively, to the dot
derivatives of the energy density and pressure, and Q to the scalar heat flow density, all three measured by a radially
static observer. In this form, it is immediate to see that if the equilibrium and the perturbed fluids verify the same
equation of state, the second term in the right-hand side of Eq. (206) vanishes. Therefore, the extra term accounts
for the phase change between the two fluids. This is a very interesting result, showing that in the static frame the
correction to the equation of state has to be taken into account already at linear level.

Imposing condition ΨΣ = 2
3 Ψθ, Eq. (D2), and using Eq. (206) in the equations of subsections III E 3 and III F 3,

we find the following system for the non-trivial coefficients of the perturbation variables in the static frame

Ψ̂p +

[
µ0 + p0

φ0
+

(
2 +

1

f ′ (µ0)

)
A0

]
Ψp =

[
µ0 + p0

φ0

(
1

2
φ0 + 2A0

)
+

A2
0

f ′ (µ0)
+

A0µ̂0

µ0 + p0
+ υ2

]
ΨQ , (207)
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Ψ̂Q +

(
φ0 + 2A0 −

A0

f ′ (µ0)
−

µ̂0

µ0 + p0
−

µ0 + p0

φ0

)
ΨQ = −

1

f ′ (µ0)
Ψp ; (208)

and the constraints

Ψm =
1

f ′ (µ0)
Ψp −

(
A0

f ′ (µ0)
+

µ̂0

µ0 + p0

)
ΨQ ,

ΨA =
1

φ0

[
Ψp −

(
1

2
φ0 + A0

)
ΨQ

]
,

ΨE =
1

2
φ0ΨQ +

1

3f ′ (µ0)
Ψp ,

Ψθ = −
1

φ0
ΨQ ,

ΨΣ =
2

3
Ψθ ,

ΨF = ΨQ .

(209)

To select the physically relevant solutions, we impose the boundary conditions (i) and (ii). In particular, for the
static observer, condition (ii) implies that at the surface of the star, at all times, we must have (cf, Eq. (E15))

p − A0Q|B = 0 , (210)

hence

Ψp − A0ΨQ|
B

= 0 . (211)

V. GENERAL SOLUTIONS, STURM-LIOUVILLE PROBLEM AND PROPERTIES OF

EIGENFREQUENCIES

The system (198)–(205) found for the comoving frame and the one found for the static frame, Eqs. (207)–(209),
both describe the same setup. Nonetheless, comparing the equations of each system, it is manifest that there is a
trade-off when considering one picture over the other: in the comoving frame, the characterization of the matter
fluid is simpler, but the dynamic description of the perturbed star is more complex, whereas from the point of view
of static observers the description of the dynamics of the perturbed star is simpler, but the characterization of the
matter fluid is more complex. The solutions of each system with appropriate boundary conditions are exactly the
same, however when analyzing the properties and computing the solutions, from a technical point of view, it is
easier to work in the static frame.

One key result that can be readily proven from Eqs. (207) and (208) is that if the background spacetime is a
solution of the Tolman-Oppenheimer-Volkoff equations for energy density and pressure functions, µ0 and p0, that
are real analytic in the interior and boundary of the star, we can find real analytic solutions for the perturbations.
Moreover, in those conditions the coefficients ΨQ verify a Sturm-Liouville eigenvalue problem with a limit-point-
non-oscillating (LPNO) endpoint and a regular endpoint, with separated self-adjoint boundary conditions. This
fact, in particular, allows us to relate the properties of the eigenfrequencies υ with the properties of the eigenvalues
of the Sturm-Liouville problem. This section focuses on the derivation of these results.

A. General solutions for the perturbations

To find explicit solutions for the system (207) and (208), we must break covariance. In that regard, consider
the parameter r defined in Eq. (D2). Following Ref. [22], if the sheets are isometric to 2-spheres, r−2 is, up to
a multiplicative constant, equal to the Gauss curvature of the sheets. Therefore, the parameter r represents the
circumferential radius function both in the background and the perturbed spacetime. Consequently, let r = 0
represents the center C of the star, and we will consider that the background quantities {A0, φ0, E0, µ0, p0} and the
coefficients Ψp and ΨQ are functions of r.

Now, we will impose that the following regularity constraints hold:

• the equilibrium fluid verifies the weak energy condition;
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• the background spacetime is a solution of the Tolman-Oppenheimer-Volkoff equation for real analytic, non-
trivial energy density and pressure functions for the whole range within the equilibrium star;

• the square of the speed of sound of the perturbed fluid, f ′, is positive and real analytic in the interior and at
the boundary of the star.

Requiring real analytical background solutions is a rather strong constraint; nonetheless, to our knowledge, all
classical exact solutions for compact astrophysical objects, verify this hypothesis in some open neighborhood of the
center, at r = 0. Therefore, the following results are appropriate for treating perturbations of physically relevant
setups. The radius of convergence of the power series, of course, may or may not be greater than the radius of the
equilibrium star, in which case further treatment has to be carried out, nonetheless, for the following results, it
suffices that the radius of convergence of the power series around the center is non-zero.

Imposing these conditions, Eqs. (188), (191) and (D3) imply

φ0 =
2

r

√
1 −

2M (r)

r
,

E0 =
1

3
µ0 −

2M (r)

r3
,

A0φ0 = p0 +
2M (r)

r3
,

(212)

where

M (r) :=
1

2

∫ r

0

µ0x2dx , (213)

is usually dubbed the mass function, and Eq. (59) yields

υ (r) = λe
−
∫

2A0

rφ0
dr

, (214)

relating the eigenfrequencies measured by an observer comoving with the fluid, υ, with the constant eigenfrequencies
λ, measured by a free-falling observer at spatial infinity. If the functions µ0 and p0 verify the weak energy condition
and are real analytic within the star, so are the functions A0 and E0, and φ0 has a simple pole at the center C, but
is otherwise real analytic in the interior and boundary of the star.

Hence, in the considered setup, Eqs. (207) and (208) form a system of ordinary differential equations with real
analytic coefficients in a neighborhood of C, with a simple pole at r = 0, and solutions can be found around the
singular point.

Using Eq. (D2) to relate the hat derivatives with the derivatives with respect to r of first order quantities, the
system of ODEs (207) and (208) is given by

rφ0

2

dΨp

dr
+

[
µ0 + p0

φ0
+

(
2 +

1

f ′ (µ0)

)
A0

]
Ψp =

[
µ0 + p0

φ0

(
1

2
φ0 + 2A0

)
+

A2
0

f ′ (µ0)
+

rA0φ0

2 (µ0 + p0)

dµ0

dr
+ υ2

]
ΨQ ,

(215)

rφ0

2

dΨQ

dr
+

(
φ0 + 2A0 −

A0

f ′ (µ0)
−

rφ0

2 (µ0 + p0)

dµ0

dr
−

µ0 + p0

φ0

)
ΨQ = −

1

f ′ (µ0)
Ψp . (216)

To find solutions for this system, it is useful to write it in the matrix form:

dW

dr
=

(
1

r
R + Θ

)
W , (217)

where

W =

[
Ψp

ΨQ

]
, R =

[
0 0
0 −2

]
, (218)

and
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Θ = −
2

rφ0

[
µ0+p0

φ0

+ 2A0 + A0

f ′(µ0) − µ0+p0

φ0

(
1
2 φ0 + 2A0

)
−

A2

0

f ′(µ0) − rA0φ0

2(µ0+p0)
dµ0

dr
− υ2

1
f ′(µ0) 2A0 − A0

f ′(µ0) − rφ0

2(µ0+p0)
dµ0

dr
− µ0+p0

φ0

]
. (219)

The regularity conditions that we have imposed on the thermodynamic variables of the equilibrium configuration,
µ0 and p0, and on the equation of state of the perturbed fluid in the comoving frame, f , guarantee that the matrix
Θ is analytic at r = 0 and rφ0 does not vanish in the interior or boundary of the star. These conditions imply that
r = 0 is a regular singular point of the system.

To solve the system of ordinary differential equations, we will follow the formalism in Ref. [34]. Since the Θ is
assumed to be a real analytic matrix at the center of the star, it can be expanded in a convergent power series of
the form

Θ (r) =

+∞∑

n=0

Θnrn . (220)

Then, the solution matrix W can be written in a power series guaranteed to converge to the solution in a neighbor-
hood of r = 0. The radius of convergence of the power series solution is equal, except for possibly at r = 0, to the
radius of convergence of the power series of Θ, which, of course, depends on the equilibrium background spacetime
considered.

Before proceeding, we remark that the general form of the solutions of the boundary value problem (207)–(211)
for a general static, spherically symmetric spacetime can be rather complicated. However, imposing the previous
regularity conditions on µ0 and p0, and assuming f ′ (µ0) is not zero in a neighborhood of the center of the star, it
can be shown that various entries of the Θ0 and Θ1 coefficient-matrices of the series (220) are zero, which greatly
simplifies the general family of solutions.

Taking into consideration the regularity of the background yields the power series solution
[

Ψp

ΨQ

]
=

[
− 1

r
(Θ0)12 1

1
r2 0

]
PW

[
c1

c2

]
, (221)

where c1 and c2 are integration constants, which might depend on the eigenfrequencies υ, or equivalently on λ,
defined in Eq. (214). The notation (Θn)ij is to be interpreted as the ij-entry of the nth order coefficient of the
power series of Θ, and PW is a real analytic matrix, such that

PW (r) =

+∞∑

n=0

Pnrn

P0 = I2

Pk =
1

k

k−1∑

j=0

Ak−1−jPj , for k ≥ 1

(222)

where I2 represents the 2 × 2 identity matrix, the matrix A is given by

A =

[
Θ22 − r (Θ0)12 Θ21 r2Θ21
Θ12−(Θ0)

12

r2 +
(Θ0)

12
(Θ22−Θ11)

r
− (Θ0)

2
12 Θ21 Θ11 + r (Θ0)12 Θ21

]
, (223)

and An represents the nth order coefficient of its power series, that is, A (r) =
∑+∞

n=0 Anrn.
The general family of solutions of the system, for 0 < r < a, where a ∈ R>0, is given by Eqs. (221) and

(222). To select the physically acceptable solutions and extend the domain to r = 0, we will impose the boundary
conditions (i) and (ii) of Sec. IV C. Considering P0 = I2, we can directly compute the lower order coefficients of
the power series expansion of W. Imposing the boundary condition at the center sets the coefficient c1 to be zero
so that the perturbations do not diverge at r = 0 at all times. Then, we find

[
Ψp

ΨQ

]
=

[
c2 + O

(
r2
)

O (r)

]
. (224)

Provided the background spacetime, the equation of state of the perturbed fluid, and the values of the eigenfre-
quencies, these results allow us to find analytic solutions for the perturbations that verify the boundary conditions.
The eigenfrequencies themselves cannot be restricted directly from these results. Nonetheless, in the following
subsection, we will show that general useful properties for the eigenfrequencies can be derived by relating υ with
the eigenvalues of a Sturm-Liouville problem.
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B. Sturm-Liouville eigenvalue problem

We do not need to break covariance for the following result. Therefore, to keep the discussion independent of a
local coordinate system, we will consider the hat derivatives without associating them with derivatives in a specific
coordinate system. Let ℓ be an affine parameter of the e congruence, and without loss of generality, we set that
ℓ = 0 represents the center of the star and ℓ = ℓB the boundary of the equilibrium star.

Taking the hat derivative of Eq. (208) we find

De

[
exp

(∫ ℓ

ℓ0

F (x) dx

)
Ψ̂Q

]
+ exp

(∫ ℓ

ℓ0

F (x) dx

)
G (ℓ) ΨQ = −

1

f ′ (µ0)
exp

(∫ ℓ

ℓ0

F (x) dx

)
λ2ΨQ , (225)

where, for notational convenience, we have indicated the hat derivatives as De ≡ eαDα, ℓ0 ∈ R, λ is an integration
constant following from Eq. (59) and

F (ℓ) = φ0 + 4A0 −
µ̂0

µ0 + p0
+

f ′′ (µ0) µ̂0

f ′ (µ0)
,

G (ℓ) =
f ′′ (µ0) µ̂0

f ′ (µ0)

(
φ0 + 2A0 −

µ̂0

µ0 + p0
−

µ0 + p0

φ0

)
+

1

f ′ (µ0)

(
2A0φ0 − p0 + A2

0

)

+ µ0 + 3p0 + A0φ0 + 2A2
0 −

1

2
φ2

0 −
2A0µ̂0

µ0 + p0
−

µ0 + p0

φ0

(
µ̂0

µ0 + p0
+

µ0 + p0

φ0

)

−

[
De

(
µ̂0

µ0 + p0

)
+ De

(
µ0 + p0

φ0

)]
.

(226)

Moreover, conditions (i) and (ii) of Sec. IV C imply the following set of separated self-adjoint boundary conditions:




ΨQ|
C

= 0

Ψ̂Q +

(
φ0 + 2A0 −

µ̂0

µ0 + p0
−

µ0 + p0

φ0

)
ΨQ

∣∣∣∣
B

= 0
(227)

Therefore, provided the background spacetime and f ′ are sufficiently regular, ΨQ verifies a formal Sturm-Liouville
eigenvalue problem with weight function

w (ℓ) =
1

f ′ (µ0)
exp

(∫ ℓ

ℓ0

F (x) dx

)
, (228)

and eigenvalues λ2. This last assumption, however, is not trivial, and we have to specify the conditions under which
the associated Sturm-Liouville operator is self-adjoint.

Considering the discussion in the previous subsection, in particular the regularity conditions in subsec V A, the
function φ0 has a simple pole at C. This endpoint, at ℓ = 0, is limit-point since we have found solutions that are
not in L2 (]0, δ[ , w), for any δ ∈ R>0. However, in the conditions considered in the previous subsection, we have
explicitly shown that all solutions for ΨQ are real analytic in ]0, ε[, for some ε ∈ R>0, hence there are no non-trivial
solutions that have an infinite number of zeros in a right-neighborhood of ℓ = 0. We can then conclude that the
endpoint ℓ = 0 is LPNO. Moreover, the regularity conditions guarantee that the coefficients of the differential
equation verify

w(ℓ) > 0, exp

(∫ ℓ

ℓ0

F (x) dx

)
> 0 , (229)

almost everywhere and

exp

(
−

∫ ℓ

ℓ0

F (x) dx

)
, exp

(∫ ℓ

ℓ0

F (x) dx

)
G (ℓ) , w (ℓ) ∈ Lloc (]0, ℓB[ ,R) (230)

where Lloc (]0, ℓB[ ,R) is the set of locally Lebesgue integrable real functions on ]0, ℓB[. Given the previous con-
siderations, we can apply the results in Refs. [35, 36] to Eq. (225) together with the boundary conditions (227),
concluding that the eigenvalues verify several very useful properties. In particular, the eigenvalues λ2 are (i) real,
(ii) simple, (iii) countable, and (iv) have a minimum and are unbounded from above, that is λ2 = {λ0, λ1, λ2, ...},
with λ0 < λ1 < λ2 < ... → +∞, and λ0 ∈ R. Indeed, in the following subsection, we show explicitly that, in the
considered setup, the eigenfrequencies are such that υ2 are bounded from below and derive necessary constraints
for the minimum value.
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C. Lower bound for the square of the eigenfrequencies

The result that ΨQ verifies a Sturm-Liouville eigenvalue problem is of great importance for the description of
the behavior of the perturbed star. The fact that the eigenvalues λ2, hence υ2, are bounded from below sets
that either in the oscillating case or in the continuous collapse or expanding scenarios, the eigenfrequencies of the
excitable eigenmodes are not arbitrarily small. In addition to those results, in the considered setup, we will prove
the following:

Proposition 1. Let the boundary conditions (i) and (ii) of Sec. IV C and the regularity conditions in Sec. V A

hold. If, in addition, Â0 (ℓB) ≥ 0, then non-trivial C1 solutions of the system (207) and (208) exist only if

υ2 ≥ −A0φ0 −
1

2
µ0

∣∣∣∣
ℓB

. (231)

The premises of Proposition 1 can be significantly relaxed, leading to the following result:

Proposition 2. Let the boundary conditions (i) and (ii) of Sec. IV C hold and consider the following regularity
conditions

• the equilibrium fluid verifies the weak energy condition;

• the background spacetime is a solution of the Tolman-Oppenheimer-Volkoff equation characterized by non-
trivial, C1 functions A0, µ0 and p0, and φ0 has a simple pole at the center, but is otherwise of class C1 within
the domain of the solution;

• f ′ (µ0) is positive in the interior of the perturbed star.

Then, non-trivial C1 solutions of the system (207) and (208) exist only if

max
ℓ∈]0,ℓB[

υ2 > − max
ℓ∈]0,ℓB[

[
µ0 + p0

φ0

(
1

2
φ0 + 2A0

)
+

A2
0

f ′ (µ0)
+

A0µ̂0

µ0 + p0

]
. (232)

Lemma 1. If the premises of Proposition 2 hold, a non-trivial C1 solution Ψp has at least one root.

Notice that (231) is much simpler than (232). However, even under the conditions where both inequalities can
be used, it should be stressed that without specifying the background spacetime and the equation of state of the
perturbed fluid, there is no way to infer which provides a tighter bound. Indeed, the determination of the tighter
bound depends critically of the background spacetime. Nonetheless, finding a constraint on the minimum allowed
values of υ2 is of great importance when searching for solutions to the system. Since the results in Ref. [36] also
associate the number of nodes of the eigenfunctions with the ordinal number of the eigenvalues in the sequence
(λn)n∈N

, these constraints provide a baseline to search for the eigenfrequencies algorithmically. Lemma 1 provides
a further criterion useful to find the fundamental eigenfrequency.

As in the previous subsection, in the following proofs, we will consider ℓ to be an affine parameter of the congruence
associated with the integral curves of the e vector field, and without loss of generality, we set that ℓ = 0 represents
the center of the star and ℓ = ℓB the boundary of the equilibrium star.

Proof for Proposition 1. The function φ0 has a simple pole at ℓ = 0. Therefore, imposing regularity of ΨQ and Ψp

and their derivatives in the interior and boundary of the star, Eq. (208) implies

ΨQ (0) = 0 . (233)

In that case, we can disregard the solution with Ψp (0) = 0 since this corresponds to the trivial solution. Then,
depending on the initial conditions, either Ψp (0) > 0 or Ψp (0) < 0. As expected, the reasoning for one case applies
similarly to the other. Therefore, we will explicitly treat only the case Ψp (0) > 0. Then, assume Ψp (0) > 0.
Imposing f ′ (µ0) > 0 and given that φ0 is positive, Eq. (208) further implies

Ψ̂Q (0) Ψp (0) < 0 . (234)

Therefore, for all ℓ ∈ ]0, ǫ[, for some 0 < ǫ < ℓB, we have Ψp (ℓ) ΨQ (ℓ) < 0, that is, for our choice of initial data

ΨQ (ℓ) < 0 , for all ℓ ∈ ]0, ǫ[ . (235)
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Now, the values of the eigenfrequencies are those that verify the boundary conditions (i) and (ii), in particular
Eq. (211). Imposing that the regularity conditions in Sec. V A hold, then A0 ≥ 0 within the equilibrium star, being
zero only at the center: ℓ = 0. Therefore, if C1 solutions exist, for the fundamental mode, that is, for the lowest
value of υ2, choosing Ψp (0) > 0, we must have

Ψp − A0ΨQ > 0 , for ℓ ∈ [0, ℓB[ , (236)

and

Ψp − A0ΨQ = 0 , at ℓ = ℓB . (237)

These results then imply that at the boundary

De (Ψp − A0ΨQ)|
ℓB

= Ψ̂p − A0Ψ̂Q − Â0ΨQ

∣∣∣
ℓB

≤ 0 , (238)

where, for notational convenience, we have indicated the hat derivative as De ≡ eαDα. Since ΨQ verifies a Sturm-
Liouville eigenvalue problem, for the fundamental eigenmode ΨQ has no zeros. Therefore, ΨQ (ℓ) < 0, for all

ℓ ∈ ]0, ℓB]. Then, further imposing that Â0 (ℓB) ≥ 0, the previous inequality is verified if

Ψ̂p − A0Ψ̂Q

∣∣∣
ℓB

≤ 0 . (239)

At the boundary, ℓ = ℓB, Eqs. (207) and (208) reduce to

Ψ̂p =

[
µ0

φ0

(
1

2
φ0 + A0

)
+

A0µ̂0

µ0
− 2A2

0 + υ2

]
ΨQ ,

Ψ̂Q = −

(
φ0 + 2A0 −

µ̂0

µ0
−

µ0

φ0

)
ΨQ .

(240)

Substituting Eq. (240) in the inequality (239) we find

(
1

2
µ0 + φ0A0 + υ2

)
ΨQ

∣∣∣∣
ℓB

≤ 0 . (241)

Remarking once again that for the fundamental eigenmode ΨQ (ℓ) < 0, for all ℓ ∈ ]0, ℓB], inequality (241) implies
inequality (231).

Proof for Proposition 2 and Lemma 1. For clarity, we will repeat some of the intermediate results found in the proof
of Proposition 1.

Consider the premises of Proposition 2. In those conditions, A0 ≥ 0 within the equilibrium star, being zero
only at the center: ℓ = 0. Now, if C1 solutions of the boundary value problem (207), (208) and (211) exist for all
ℓ ∈ [0, ℓB], then

Ψp (ℓB) ΨQ (ℓB) ≥ 0 . (242)

On the other hand, since φ0 has a simple pole at ℓ = 0, from Eq. (208), regularity of Ψ̂Q (0) implies

ΨQ (0) = 0 . (243)

In particular, this allows us to disregard the solution with Ψp (0) = 0, since this corresponds to the trivial solution.
Moreover, imposing f ′ (µ0) > 0, given that φ0 is positive, Eq. (208) leads to the conclusion that

Ψ̂Q (0) Ψp (0) < 0 . (244)

Therefore, for all ℓ ∈ ]0, ǫ[, for some 0 < ǫ < ℓB, we have

Ψp (ℓ) ΨQ (ℓ) < 0 . (245)

Considering Bolzano’s theorem, from Eqs. (242) and (245) we conclude that there is a point 0 < a ≤ ℓB where
either Ψp (ℓ) or ΨQ (ℓ) vanishes. Now, either Ψp (0) > 0 or Ψp (0) < 0. As expected, the reasoning for one case
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applies similarly to the other. Hence, we will explicitly treat only the case Ψp (0) > 0. In that case, Eq. (245)
implies that for all ℓ ∈ ]0, ǫ[, ΨQ (ℓ) < 0. Continuing, assume a ∈ ]0, ℓB[ is such that

ΨQ (a) = 0 ,

Ψ̂Q (a) ≥ 0 ,

Ψp (ℓ ≤ a) > 0 .

(246)

If several such values exist, we take a to be the smallest one that verifies Eq. (246). Notice that if Ψp (a) = 0, we
would recover the trivial solution, hence in light of Eq. (211), we can exclude the case a = ℓB. At ℓ = a, Eq. (208)
reads

Ψ̂Q = −
1

f ′ (µ0)
Ψp , (247)

however, further assuming f ′ (µ0) > 0, the above equation contradicts the hypothesis. This result, in particular,
proves Lemma 1, that is, either ΨQ or Ψp must have a root in the interior of the star, but independently of υ2, we
have shown that ΨQ can only have a root at ℓ = a if Ψp has a root at some ℓ < a.

From the previous result, we conclude that for a valid solution of the boundary value problem to exist, there
must be either a point ℓ = b < a or, if there is no value a that verifies Eq. (246), a value b ∈ ]0, ℓB[, such that

Ψp (b) = 0 ,

Ψ̂p (b) ≤ 0 ,

ΨQ (ℓ ≤ b) < 0 .

(248)

Once again, notice that if ΨQ (b) = 0, we would recover the trivial solution, hence in light of Eq. (211), we can
exclude the case b = ℓB. At ℓ = b, Eq. (207) then reads

Ψ̂p =

[
µ0 + p0

φ0

(
1

2
φ0 + 2A0

)
+

A2
0

f ′ (µ0)
+

A0µ̂0

µ0 + p0
+ υ2

]
ΨQ . (249)

However, for υ2 negative and sufficiently small we would have

µ0 + p0

φ0

(
1

2
φ0 + 2A0

)
+

A2
0

f ′ (µ0)
+

A0µ̂0

µ0 + p0
+ υ2

∣∣∣∣
ℓ=b

< 0 , (250)

hence Ψ̂p (b) ≥ 0, which would contradict the hypothesis.
The case where Ψp (0) < 0 follows exactly the same reasoning, confirming that in the considered setup, regular

solutions of the system with the considered boundary conditions exist only if the value of υ2 is bounded from below.
Based on these results, we can find a lower bound for the value of υ2. Since the quantity

µ0 + p0

φ0

(
1

2
φ0 + 2A0

)
+

A2
0

f ′ (µ0)
+

A0µ̂0

µ0 + p0
+ υ2 , (251)

cannot be negative at all interior points of the perturbed star, non-trivial C1 solutions of the boundary value problem
necessarily verify inequality (232). We remark, however, that inequality (232) is rather conservative, so much so
that even if υ2 verifies the inequality, the quantity in (251) might still be negative at all points within the star.

VI. CONCLUSIONS

We developed a framework to describe general first-order perturbations of static, locally rotationally symmetric
of class II spacetimes within the theory of general relativity. The new system of equations is completely general and
applicable to any equilibrium configuration. Moreover, by construction, the framework is covariant and identification
gauge invariant. This last point is of pivotal importance when compared with perturbation theory available in the
literature. The classical metric-based approaches are intrinsically dependent on a coordinate system and the gauge,
which makes it challenging to understand the dynamics of the perturbed spacetime unambiguously. Indeed, the
adopted covariant spacetime decomposition formalism provides a manifest advantage over the standard theory: all
quantities are geometrically and physically motivated, which clearly shows the dependencies and the source of the
various physical properties of the perturbations. In addition, the framework leads to a natural separation between
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even and odd parity components of the perturbations, such that the systems of differential equations for each parity
are completely decoupled at the linear level.

As a first application, we considered the study of linear, isotropic, and adiabatic perturbations. To do so, we
have explicitly shown the importance of choosing frames to describe the unperturbed and the perturbed spacetimes.
To our knowledge, this cannot be done in general in the metric-based linearized theory available in the literature
and makes the covariant gauge-invariant approach all the more powerful. Given the symmetries of the problem, we
considered two meaningful frames: a frame associated with observers locally comoving with the elements of volume
of the fluid and a frame associated with static observers with respect to an observer at spatial infinity. These frames
represent the classical Lagrangian and Eulerian pictures, respectively. The adopted formalism makes it quite simple
to change between frames and evaluate the advantages of one frame over the other. In particular, we were able to
derive the relation between the equations of state of the comoving and static frames in the perturbed spacetime,
showing that, even at linear level, we have to account for phase changes between the equilibrium and the perturbed
fluids. Moreover, we have shown that, since a perfect fluid in the comoving frame will not be perceived as perfect in
the static frame, and the net momentum flow must be included in the equation of state to account for the correction
to the rate of change of the energy density and the pressure when compared to those measured in the comoving
frame.

Focusing on analyzing the general properties of linear, isotropic, and adiabatic perturbations, we have rigorously
shown that the problem can be cast in the form of a singular Sturm-Liouville eigenvalue problem, inheriting the
standard properties for the eigenfunctions and eigenvalues. Moreover, under rather general regularity conditions,
we have found lower bounds for the values of the eigenfrequencies. The application of the methods developed in
this article, the determination of the analytical solutions to the system of equations, and the discussion regarding
the stability of selected solutions of the theory will be done elsewhere.
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Appendix A: Field equations in the 1+1+2 formalism

Here, we present the Einstein field equations for the theory of General Relativity, written in the 1+1+2 covariant
spacetime decomposition formalism introduced in Section II. Although the complete set of equations has already
been presented in literature, these expressions are known to contain several typographical errors. To our knowledge,
these errors do not affect published works. However, the corrected equations are essential in studying general linear
perturbations of static LRS II spacetimes, hence the importance of presenting them here.

1. Equations for the kinematical quantities associated with the timelike congruence

We find the following evolution and propagation equations for the kinematical quantities associated with the u
congruence.

Scalar equations:

Â − θ̇ =
1

2
(µ + 3p) − Λ +

1

3
θ2 +

3

2
Σ2 − 2Ω2 + 2ΣµΣµ − A (A + φ)

− 2ΩµΩµ + Aµ (aµ − Aµ) + ΣµνΣµν − δµAµ ,

(A1)
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Σ̇ −
2

3
Â =

1

2
Π − E +

1

3
(2A − φ) A −

(
2

3
θ +

1

2
Σ

)
Σ −

2

3
Ω2 + Σµ

(
2αµ −

1

3
Σµ

)

−
1

3
Aµ (Aµ + 2aµ) +

1

3
ΩµΩµ +

1

3
ΣµνΣµν −

1

3
δµAµ ,

(A2)

Ω̇ =
1

2
εµνδµAν + Aξ +

(
Σ −

2

3
θ

)
Ω + Ωµ (Σµ + αµ) , (A3)

Ω̂ = Ω (A − φ) + Ωµ (Aµ + aµ) − δµΩµ , (A4)

2

3
θ̂ − Σ̂ = Q +

3

2
Σφ + 2Ωξ + δµΣµ + εµνδµΩν − 2Σµaµ + 2εµνAµΩν − ζµνΣµν ; (A5)

Vector equations:

Nα
µΩ̇µ +

1

2
εα

µÂµ =
1

2
ξAα −

(
2

3
θ +

1

2
Σ

)
Ωα + Ω (Σα − αα)

−
1

2
εα

µ

(
1

2
φAµ + Aaµ − δµA

)
−

1

2
εα

µζµνAν + ΣαµΩµ ,

(A6)

Nα
µΣ̇µ −

1

2
Nα

µÂµ =
1

2
δαA +

(
A −

1

4
φ

)
Aα −

(
2

3
θ +

1

2
Σ

)
Σα +

1

2
Aaα −

3

2
Σαα

− ΩΩα −
1

2
(ζαµ + εαµξ) Aµ + Σαµ (αµ − Σµ) − Eα +

1

2
Πα ,

(A7)

Nα
µΣ̂µ − εα

µΩ̂µ =
1

2
δαΣ +

2

3
δαθ − εα

µδµΩ −
3

2
φΣα + εα

µΣµξ − Ωαξ +

(
1

2
φ + 2A

)
εα

µΩµ

−
3

2
Σaα + εα

µΩ (aµ − 2Aµ) − δµΣα
µ − ζα

µΣµ + Σα
µaµ + εαµζµνΩν − Qα ;

(A8)

Tensor equations:

Nµ
{αNβ}

νΣ̇µν = δ{αAβ} + A{αAβ} − Σ{αΣβ} − 2Σ{ααβ} − Ω{αΩβ} + Aζαβ

−

(
2

3
θ − Σ

)
Σαβ − Σ{α|

µΣµ|β} − Eαβ +
1

2
Παβ ,

(A9)

Nµ
{αNβ}

νΣ̂µν = δ{αΣβ} +
1

2
ε{α|

µδµΩ|β} +
1

2
ε{α|

µδ|β}Ωµ −
1

2
Σαβφ + εµ

{αΣβ}µξ +
3

2
Σζαβ

− εµ{αζβ}
µΩ − 2a{αΣβ} + ε{α|

µΩµA|β} + ε{α|
µΩ|β}Aµ − Σµ{αζβ}

µ − εµ{αHβ}
µ ;

(A10)

Constraint equations:

δµΩµ + εµνδµΣν = (2A − φ) Ω − 3Σξ + H + εµνζµ
γΣγν , (A11)

δαΣ −
2

3
δαθ + 2εα

µδµΩ + 2δµΣα
µ = φ (εα

µΩµ − Σα) − 2ξ (Ωα − 3εα
µΣµ) − 4εα

µΩAµ

+ 2ζαµΣµ + 2εα
µΩνζµν − 2εα

µHµ − Qα .

(A12)
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2. Equations for the kinematical quantities associated with the spacelike congruence

We also find the following evolution and propagation equations for the kinematical quantities associated with the
e congruence.

Scalar equations:

φ̇ = Q +

(
1

3
θ −

1

2
Σ

)
(2A − φ) + 2Ωξ + δµαµ − αµ (aµ − Aµ)

− (Aν + aν) (Σν + εµνΩµ) − Σµνζµν ,

(A13)

φ̂ =

(
1

3
θ + Σ

)(
2

3
θ − Σ

)
−

1

2
φ2 + 2ξ2 −

2

3
(µ + Λ) −

1

2
Π − E

+ δµaµ − aµaµ − ΣµΣµ + ΩµΩµ + 2εµναµΩν − ζµνζµν ,

(A14)

ξ̇ =

(
1

2
Σ −

1

3
θ

)
ξ +

1

2
H + Ω

(
A −

1

2
φ

)
+

1

2
εµνδµαν

+
1

2
(Aµ + aµ) [Ωµ + εµν (Σν + αν)] −

1

2
εµνΣµγζγ

ν ,

(A15)

ξ̂ =

(
1

3
θ + Σ

)
Ω − φξ +

1

2
εµνδµaν + Ωµ (αµ + Σµ) −

1

2
εµνζµγζγ

ν ; (A16)

Vector equations:

Nµ
αα̂µ − Nµ

αȧµ = εµαHµ −

(
A +

1

2
φ

)
αα + εαµαµξ +

(
1

3
θ + Σ

)
(Aα + aα)

+

(
1

2
φ − A

)
(Σα + εαµΩµ) + (Ωα − εαµΣµ) ξ

+ (Σµ + εµνΩν − αµ) ζµα +
1

2
Qα ;

(A17)

Tensor equations:

Nµ
{αNβ}

ν ζ̇µν =

(
1

2
Σ −

1

3
θ

)
ζαβ + εµ{α|ζ

µ
|β}Ω +

(
A −

1

2
φ

)
Σαβ − Σ{α|µ

(
ζµ

|β} + εµ
|β}ξ

)

+ δ{ααβ} +
(
A{α − a{α

)
αβ} −

(
Σ{α − ε{α|µΩµ

) (
Aβ} + aβ}

)
− εµ

{αHβ}µ ,

(A18)

Nµ
{αNβ}

ν ζ̂µν = δ{αaβ} − φζαβ − ζ{α|µζµ
|β} − a{αaβ} − Σ{αΣβ} − Ω{αΩβ}

+ 2α{αεβ}µΩµ +

(
1

3
θ + Σ

)
Σαβ − Eαβ −

1

2
Παβ ;

(A19)

Constraint equation:

1

2
δαφ − δµζα

µ − εα
µδµξ = − 2εαµaµξ − Ω (Ωα + εαµΣµ − 2εαµαµ) +

(
1

3
θ −

1

2
Σ

)
(Σα − εαµΩµ)

− Eα −
1

2
Πα − Σα

µ (Σµ − εµνΩν) .

(A20)

3. Electric and magnetic parts of the Weyl tensor

Moreover, we have the following evolution and propagation equations the electric and magnetic part of the Weyl
tensor.
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Scalar equations:

Ė +
1

2
Π̇ +

1

3
Q̂ = 3Hξ + E

(
3

2
Σ − θ

)
−

1

2
Π

(
1

3
θ +

1

2
Σ

)
+

1

3
Q

(
1

2
φ − 2A

)
−

1

2
(µ + p) Σ

+
1

6
δµQµ + εµνδµHν +

1

3
Qµ (aµ + Aµ) + 2εµνAµHν

+ Eµ (Σµ + 2αµ − εµνΩν) −
1

2

(
1

3
Σµ − 2αµ + εµνΩν

)
Πµ

−

(
Eµν −

1

6
Πµν

)
Σµν + εµνHα

µζνα ,

(A21)

Ê −
1

3
µ̂ +

1

2
Π̂ = − δµEµ −

1

2
δµΠµ −

3

2
φ

(
E +

1

2
Π

)
+

(
1

2
Σ −

1

3
θ

)
Q + 3HΩ

+ 2

(
Eµ +

1

2
Πµ

)
aµ +

1

2
ΣµQµ + 3HµΩµ +

3

2
εµνQµΩν

+ εµνΣµHν + εµνΣµγHν
γ +

(
Eµν +

1

2
Πµν

)
ζµν ,

(A22)

Ḣ =
1

2
εµνδµΠν − εµνδµEν + ΩQ − 3

(
E −

1

2
Π

)
ξ −

(
θ −

3

2
Σ

)
H

− 2εµνAµEν + Hµ (2αµ + Σµ − εµνΩν) − HµνΣµν

−
1

2
(Ωµ + εµνΣν) Qµ + εµνEνγζµ

γ +
1

2
εµ

νΠγµζνγ ,

(A23)

Ĥ = − δµHµ −
1

2
εµνδµQν −

3

2
Hφ −

(
3E + µ + p −

1

2
Π

)
Ω − Qξ

+ 2Hµaµ −

(
3Eµ −

1

2
Πµ

)
Ωµ + εµνΣν

(
Eµ +

1

2
Πµ

)

− ενγΣνµ

(
Eµ

γ +
1

2
Πµ

γ

)
+ Hµνζµν ;

(A24)

Vector equations:

Nα
µĖµ +

1

2
Nα

µΠ̇µ =

(
1

2
φ − A

)(
1

2
Qα + εαµHµ

)
−

1

2
QAα +

3

2
EαΣ + 3Hαξ −

3

2

(
E +

1

2
Π

)
αα

+ εαµΩ

(
Eµ −

1

2
Πµ

)
−

(
Eα +

1

6
Πα

)
θ +

3

2
εαµAµH +

1

4
ΣΠα

−
1

2
(µ + p + Π) (Σα − εαµΩµ) +

1

2
(ζαµ + εαµξ) Qµ

+ Eαµ (2Σµ + αµ − 2εµνΩν) + Σαµ

(
Eµ −

1

2
Πµ

)

− εµνHαµAν − εµνHµζνα +
1

2
Παµαµ

−
1

2
δαQ +

1

2
εα

µδµH + εµνδµHνα ,

(A25)
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Nµ
αÊµ +

1

2
Nµ

αΠ̂µ =
1

2
QΣα + 3HαΩ −

3

2
HΩα −

(
1

3
θ +

1

4
Σ

)
Qα −

3

2

(
Eα +

1

2
Πα

)
φ

−
3

2

(
E +

1

2
Π

)
aα +

3

2
εαµ (ΣµH − ΣHµ) + εαµ

(
Eµ +

1

2
Πµ

)
ξ

+
3

2
εαµ (QµΩ − QΩµ) +

1

2
ΣαµQµ + εαν (HµΣµν − ΣµHµν)

+

(
Eαµ +

1

2
Παµ

)
aµ −

(
Eµ +

1

2
Πµ

)
ζµα + 3HαµΩµ

+
1

2
δαE +

1

3
δαµ +

1

4
δαΠ − δµEα

µ −
1

2
δµΠα

µ ,

(A26)

1

2
εα

µÊµ − Nα
µḢµ −

1

4
εα

µΠ̂µ =
3

4
εα

µδµE −
3

8
εα

µδµΠ +
1

2
εµνδµEνα −

1

4
εµνδµΠνα −

3

4
H (Σα − 2αα)

+
3

2
εαµAµE +

3

8
εαµQµΣ −

1

4
εαµΣµQ −

3

4
εαµΩµH +

5

2
ξ

(
Eα −

1

2
Πα

)

−
3

4
(QαΩ + QΩα) −

3

4
εαµaµ

(
E −

1

2
Π

)
− εαµEµA + Hα

(
θ −

3

4
Σ

)

−
1

4
εαµ

(
Eµ −

1

2
Πµ

)
φ +

1

2
εαµHµΩ +

1

2
εαµaν

(
Eµν −

1

2
Πµν

)

−
1

2
εµνζνα

(
Eµ −

1

2
Πµ

)
− εαµζµν

(
Eν −

1

2
Πν

)
+ εµνAµEνα

−
1

2
Σαµ

(
3Hµ +

1

2
εµνQν

)
− Hαµ

(
3

2
Σµ + αµ −

1

2
εµνΩν

)
,

(A27)

Nµ
αĤµ −

1

2
εα

µQ̂µ =
1

2
δαH − δµHα

µ −
1

2
εα

µδµQ −
3

2
εαµΣµ

(
E +

1

2
Π

)
−

3

2
Haα

+
1

2
εαµQaµ − Ω

(
3Eα −

1

2
Πα

)
+

3

2
εαµΣ

(
Eµ +

1

2
Πµ

)

+

(
εαµHµ −

1

2
Qα

)
ξ − Ωα

(
µ + p +

1

4
Π −

3

2
E

)

−
3

2

(
Hα −

1

6
εαµQµ

)
φ − Ωµ

(
3Eαµ −

1

2
Παµ

)

+ Hαµaµ − Hµζαµ + εανΣµ

(
Eµν +

1

2
Πµν

)

− εανΣµ
ν

(
Eµ +

1

2
Πµ

)
+

1

2
εαµQνζµν ;

(A28)

Tensor equations:

Nµ
{αNβ}

ν Ėµν +
1

2
Nµ

{αNβ}
νΠ̇µν + Nµ

{αεβ}
νĤµν = ε{α|

νδνH|β} −
1

2
δ{αQβ} −

1

2

(
µ + p + 3E −

1

2
Π

)
Σαβ

−
1

2
Qζαβ −

3

2
Hεν

{αζβ}ν −

(
θ +

3

2
Σ

)
Eαβ + Hαβξ

+ εµ{αEβ}
µΩ −

(
1

6
θ −

1

4
Σ

)
Παβ +

1

2
εµ

{αΠβ}µΩ

+

(
1

2
φ + 2A

)
εµ{αHβ}

µ +

(
3E{α −

1

2
Π{α

)
Σβ}

− A{αQβ} −
(
2E{α + Π{α

)(
αβ} −

1

2
εβ}

µΩµ

)

+ H{αεβ}
µ (2Aµ − aµ) + Hµεµ

{αaβ}

− Hµ
{αεβ}

νζµν ,

(A29)
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Nµ
{αεβ}

ν Êµν −
1

2
Nµ

{αεβ}
νΠ̂µν − Ḣ{αβ} = ε{α|

µδµE|β} −
1

2
ε{α|

µδµΠ|β} + ξ

(
Eαβ −

1

2
Παβ

)

+
3

2
HΣαβ +

1

2
Qεµ{αΣβ}

µ +

(
θ +

3

2
Σ

)
Hαβ

− εµ{αHβ}
µΩ −

3

2
Q{αΩβ} −

1

4
φεµ{αΠβ}

µ

−
1

2
aµεµ{αΠβ} −

(
3H{α +

1

2
εµ{αQµ

)
Σβ}

+ Ωµεµ{αHβ} −
3

2

(
E −

1

2
Π

)
εµ{αζβ}

µ

+ εµ{αaβ}

(
Eµ −

1

2
Πµ

)
− 3Hµ{αΣβ}

µ

+ 2H{ααβ} +

(
1

2
φ + 2A

)
εµ{αEβ}

µ

+ ζµνεµ
{α

(
Eν

β} −
1

2
Πν

β}

)

− εµ{αEβ} (2Aµ − aµ) ,

(A30)

where we have used the fact that for any two symmetric and traceless 2-tensors on the sheet, A and B, that is
Aµν = N{µ

αNν}
βAαβ and Bµν = N{µ

αNν}
βBαβ , the contraction Aδ

{aBb}δ = 0.

4. Matter conservation laws

Lastly, the energy and momentum conservation equations are given by

µ̇ + Q̂ = Qµ (aµ − 2Aµ) − 2ΠµΣµ − (φ + 2A) Q −
3

2
ΠΣ − θ (µ + p) − δµQµ − ΠµνΣµν , (A31)

Q̇ + p̂ + Π̂ = − δµΠµ −

(
3

2
φ + A

)
Π −

(
4

3
θ + Σ

)
Q − (µ + p) A

+ (αµ − Σµ + εµνΩν) Qµ + Πµ (2aµ − Aµ) + Πµνζµν ,

(A32)

Nα
µQ̇µ + Nα

µΠ̂µ = − δαp +
1

2
δαΠ − δµΠα

µ − Q
(
αα + Σα + εαβΩβ

)
+ εαµQµΩ

−
3

2
Πaα −

(
4

3
θ −

1

2
Σ

)
Qα −

(
3

2
φ + A

)
Πα − Πµ (ζαµ − εαµξ)

−

(
µ + p −

1

2
Π

)
Aα − QµΣαµ + Παµ (aµ − Aµ) .

(A33)

Appendix B: Linearized 1+1+2 equations for the angular gradients variables

In this appendix, we present a set of covariant, gauge invariant equations for the linear order perturbations
of a background spacetime assumed to be static LRS II and permeated by a general matter fluid, such that the
equilibrium configuration is characterized by the scalars {φ0, A0, E0, µ0, p0, Π0, Λ}. Considering the variables in
Eq. (55) and using the commutation relations (47), we find the following set of linearized equations for the various
quantities that characterize the perturbed spacetime.



40

1. Linearized equations for the kinematical quantities associated with the timelike congruence

• Evolution and propagation equations for scalars and gradients of scalar quantities:

(δαθ)
·
− Âα =

[
1

2
(µ0 + 3p0) − Λ − A0 (A0 + φ0)

]
aα −

1

2
(mα + 3pα)

+ A0Fα +

(
3

2
φ0 + 2A0

)
Aα + δα (δµAµ) ,

(B1)

2

3
(δαθ)

·
− (δαΣ)

·
= φ0Aα + A0 (Fα + φ0Aα) −

(
1

3
µ0 + p0 −

2

3
Λ +

1

2
Π0 − E0

)
Aα

−
1

3
mα − pα −

1

2
Pα + Eα + δα (δµAµ) ,

(B2)

3

2
δ̂αΣ − δ̂αθ =

(
µ0 + 3p0 − 2Λ +

3

2
Π0 − 3E0 − 3A0φ0

)
εαµΩµ

+
1

2
φ0 (δαθ − 6δαΣ) −

3

2
δαQ −

3

2
δα (δµΣµ) −

3

2
εµνδα (δµΩν) ,

(B3)

Ω̇ =
1

2
εµνδµAν + A0ξ , (B4)

Ω̂ = (A0 − φ0) Ω − δµΩµ ; (B5)

• Evolution and propagation equations for vector quantities:

Ω̇α +
1

2
εα

µÂµ = −
1

2
εα

µ

(
1

2
φ0Aµ + A0aµ − Aµ

)
, (B6)

Σ̇α −
1

2
Âα =

(
A0 −

1

4
φ0

)
Aα +

1

2
A0aα +

1

2
Aα − Eα +

1

2
Πα , (B7)

Σ̂α − εα
µΩ̂µ =

1

2
δαΣ +

2

3
δαθ −

3

2
φ0Σα +

(
1

2
φ0 + 2A0

)
εα

µΩµ

− εα
µδµΩ − δµΣα

µ − Qα ;

(B8)

• Evolution and propagation equations for tensor quantities:

Σ̇αβ = δ{αAβ} + A0ζαβ − Eαβ +
1

2
Παβ , (B9)

Σ̂αβ = δ{αΣβ} +
1

2
ε{α|

µδµΩ|β} +
1

2
ε{α|

µδ|β}Ωµ −
1

2
φ0Σαβ − εµ{αHβ}

µ ; (B10)

• Constraint equations:

εµνδµAν = −2Â0ξ , (B11)

δµΩµ + εµνδµΣν = (2A0 − φ0) Ω + H , (B12)

εα
µδµΩ + δµΣα

µ =
1

2
φ0 (εα

µΩµ − Σα) − εα
µHµ +

1

3
δαθ −

1

2
δαΣ −

1

2
Qα . (B13)
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2. Linearized equations for the kinematical quantities associated with the spacelike congruence

• Evolution and propagation equations for scalars and gradients of scalar quantities:

Ḟα =

[
1

2
φ2

0 +
2

3
(µ0 + Λ) +

1

2
Π0 + E0

]
(Σα + αα − εαµΩµ)

+ δαQ +

(
A0 −

1

2
φ0

)(
2

3
δαθ − δαΣ

)
+ δα (δµαµ) ,

(B14)

F̂α =

[
1

2
φ2

0 +
2

3
(µ0 + Λ) +

1

2
Π0 + E0

]
aα + δα (δµaµ)

−
2

3
mα −

1

2
Pα − Eα −

3

2
φ0Fα ,

(B15)

ξ̇ =
1

2
H +

(
A0 −

1

2
φ0

)
Ω +

1

2
εµνδµαν , (B16)

ξ̂ = −φ0ξ +
1

2
εµνδµaν ; (B17)

• Evolution and propagation equations for vector quantities:

α̂α − ȧα = εµαHµ −

(
A0 +

1

2
φ0

)
αα +

1

2
Qα +

(
1

2
φ0 − A0

)
(Σα + εαµΩµ) ; (B18)

• Evolution and propagation equations for tensor quantities:

ζ̇αβ =

(
A0 −

1

2
φ0

)
Σαβ + δ{ααβ} − εµ

{αHβ}µ , (B19)

ζ̂αβ = δ{αaβ} − φ0ζαβ − Eαβ −
1

2
Παβ ; (B20)

• Constraint equations:

εµνδµFν =

[
φ2

0 +
4

3
(µ0 + Λ) + Π0 + 2E0

]
ξ , (B21)

δµζα
µ + εα

µδµξ =
1

2
Fα + Eα +

1

2
Πα . (B22)

3. Linearized equations for the Weyl tensor components and the matter variables

• Evolution and propagation equations for scalars and gradients of scalar quantities:

δ̂αQ + ṁα = µ̂0 (εαµΩµ − Σα − αα) −
3

2
Π0δαΣ − δα (δµQµ)

− (µ0 + p0) δαθ −

(
3

2
φ0 + 2A0

)
δαQ ,

(B23)
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1

3
ṁα −

1

2
Ṗα − Ėα =

3

2
φ0

(
E0 +

1

2
Π0

)
(εαµΩµ − Σα − αα) −

1

2
φ0δαQ

+

(
µ0 + p0 −

1

2
Π0 − 3E0

)(
1

2
δαΣ −

1

3
δαθ

)

−
1

2
δα (δµQµ) − εµνδα (δµHν) ,

(B24)

(δαQ)
·
+ P̂α + p̂α = (µ0 + p0) (A0aα − Aα) − A0 (mα + pα + Pα)

−
1

2
φ0 (pα + 4Pα) +

(
3

2
φ0 + A0

)
Π0aα

− Π0

(
3

2
Fα + Aα

)
− δα (δµΠµ) ,

(B25)

3

2
P̂α + 3Êα − m̂α = − 6φ0

(
Eα +

1

2
Pα −

1

12
mα

)
−

9

2

(
E0 +

1

2
Π0

)
(Fα − φ0aα)

− 3δα (δµEµ) −
3

2
δα (δµΠµ) ,

(B26)

Ḣ =
1

2
εµνδµΠν − εµνδµEν − 3

(
E0 −

1

2
Π0

)
ξ , (B27)

Ĥ = −δµHµ −
1

2
εµνδµQν −

3

2
φ0H −

(
3E0 + µ0 + p0 −

1

2
Π0

)
Ω ; (B28)

• Evolution and propagation equations for vector quantities:

Ėα +
1

2
Π̇α =

(
1

2
φ0 − A0

)(
1

2
Qα + εαµHµ

)
−

3

2

(
E0 +

1

2
Π0

)
αα

−
1

2
(µ0 + p0 + Π0) (Σα − εαµΩµ) −

1

2
δαQ

+
1

2
εα

µδµH + εµνδµHνα ,

(B29)

Êα +
1

2
Π̂α = −

3

2
φ0

(
Eα +

1

2
Πα

)
−

3

2

(
E0 +

1

2
Π0

)
aα −

1

2
δµΠα

µ

+
1

2
Eα +

1

3
mα +

1

4
Pα − δµEα

µ ,

(B30)

1

2
εα

µÊµ − Ḣα −
1

4
εα

µΠ̂µ =
3

4
εα

µEµ −
3

8
εα

µPµ +
1

2
εµνδµEνα −

1

4
εµνδµΠνα

+
3

2
E0εαµAµ −

3

4

(
E0 −

1

2
Π0

)
εαµaµ − A0εαµEµ

−
1

4
φ0εαµ

(
Eµ −

1

2
Πµ

)
,

(B31)

Ĥα −
1

2
εα

µQ̂µ =
1

2
δαH − δµHα

µ −
1

2
εα

µδµQ −
3

2

(
E0 +

1

2
Π0

)
εαµΣµ

−

(
µ0 + p0 +

1

4
Π0 −

3

2
E0

)
Ωα −

3

2
φ0

(
Hα −

1

6
εαµQµ

)
,

(B32)
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Q̇α + Π̂α =
1

2
Pα − pα −

3

2
Π0aα −

(
3

2
φ0 + A0

)
Πα

− δµΠα
µ −

(
µ0 + p0 −

1

2
Π0

)
Aα ;

(B33)

• Evolution and propagation equations for tensor quantities:

Ėαβ +
1

2
Π̇αβ + Nµ

{αεβ}
νĤµν = ε{α|

νδνH|β} −
1

2
δ{αQβ} +

(
1

2
φ0 + 2A0

)
εµ{αHβ}

µ

−
1

2

(
µ0 + p0 + 3E0 −

1

2
Π0

)
Σαβ ,

(B34)

Nµ
{αεβ}

ν Êµν −
1

2
Nµ

{αεβ}
νΠ̂µν − Ḣαβ = ε{α|

µδµE|β} −
1

2
ε{α|

µδµΠ|β} −
3

2

(
E0 −

1

2
Π0

)
εµ{αζβ}

µ

+

(
1

2
φ0 + 2A0

)
εµ{αEβ}

µ −
1

4
φ0εµ{αΠβ}

µ ;

(B35)

• Constraint equations:

1

3
εµνδµmν − εµνδµEν −

1

2
εµνδµPν = −3φ0

(
E0 +

1

2
Π0

)
ξ , (B36)

εµνδµpν = −2p̂0ξ , (B37)

Appendix C: Linearized 1+1+2 equations for the dot-derivatives variables

In this appendix, we present a set of covariant, gauge invariant equations for the linear order perturbations
of a background spacetime assumed to be static LRS II and permeated by a general matter fluid, such that the
equilibrium configuration is characterized by the scalars {φ0, A0, E0, µ0, p0, Π0, Λ}. Considering the variables in (56)
and using the commutation relations (47), we find the following set of linearized equations for the various quantities
that characterize the perturbed spacetime. Here, we also show that the variables in Eq. (55) and (56) are not fully
independent.

1. Linearized equations for the kinematical quantities associated with the timelike congruence

• Evolution and propagation equations for scalars and dot-derivatives of scalar quantities:

Â − θ̈ =
1

2
(m + 3p) + Â0

(
1

3
θ + Σ

)
− (3A0 + φ0) A − A0F − (δµAµ)·

, (C1)

Σ̈ −
2

3
θ̈ =

1

3
(m + 3p) +

1

2
P − E − A0F − φ0A − (δµAµ)

.
, (C2)

Ω̇ =
1

2
εµνδµAν + A0ξ , (C3)

Ω̂ = (A0 − φ0) Ω − δµΩµ , (C4)

2

3
θ̂ − Σ̂ = Q +

3

2
φ0Σ + δµΣµ + εµνδµΩν ; (C5)
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• Evolution and propagation equations for vector quantities:

Ω̇α +
1

2
εα

µÂµ = −
1

2
εα

µ

(
1

2
φ0Aµ + A0aµ − Aµ

)
, (C6)

Σ̇α −
1

2
Nα

µÂα =
1

2
Aα +

(
A0 −

1

4
φ0

)
Aα +

1

2
A0aα − Eα +

1

2
Πα , (C7)

Σ̂α − εα
µΩ̂µ =

1

2
δαΣ +

2

3
δαθ − εα

µδµΩ +

(
1

2
φ0 + 2A0

)
εα

µΩµ

−
3

2
φ0Σα − δµΣα

µ − Qα ;

(C8)

• Evolution and propagation equations for tensor quantities:

Σ̇αβ = δ{αAβ} + A0ζαβ − Eαβ +
1

2
Παβ , (C9)

Σ̂αβ = δ{αΣβ} +
1

2
ε{α|

µδµΩ|β} +
1

2
ε{α|

µδ|β}Ωµ −
1

2
φ0Σαβ − εµ{αHβ}

µ ; (C10)

• Constraint equations:

δµΩµ + εµνδµΣν = (2A0 − φ0) Ω + H , (C11)

δαΣ −
2

3
δαθ + 2εα

µδµΩ + 2δµΣα
µ = φ0 (εα

µΩµ − Σα) − 2εα
µHµ − Qα . (C12)

2. Linearized equations for the kinematical quantities associated with the spacelike congruence

• Evolution and propagation equations for scalars and dot-derivatives of scalar quantities:

F = Q + (2A0 − φ0)

(
1

3
θ −

1

2
Σ

)
+ δµαµ , (C13)

F̂ = φ̂0

(
1

3
θ + Σ

)
− (A0 + φ0) F −

2

3
m −

1

2
P − E + (δµaµ)

.
, (C14)

ξ̇ =
1

2
H +

(
A0 −

1

2
φ0

)
Ω +

1

2
εµνδµαν , (C15)

ξ̂ = −φ0ξ +
1

2
εµνδµaν ; (C16)

• Evolution and propagation equations for vector quantities:

α̂α − ȧα = εµαHµ −

(
A0 +

1

2
φ0

)
αα +

1

2
Qα +

(
1

2
φ0 − A0

)
(Σα + εαµΩµ) ; (C17)

• Evolution and propagation equations for tensor quantities:

ζ̇αβ =

(
A0 −

1

2
φ0

)
Σαβ + δ{ααβ} − εµ

{αHβ}µ , (C18)

ζ̂αβ = δ{αaβ} − φ0ζαβ − Eαβ −
1

2
Παβ ; (C19)

• Constraint equation:

δµζα
µ + εα

µδµξ −
1

2
Fα = Eα +

1

2
Πα . (C20)
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3. Linearized equations for the Weyl tensor components and the matter variables

• Evolution and propagation equations for scalars and dot-derivatives of scalar quantities:

E +
1

2
P +

1

3
Q̂ = E0

(
3

2
Σ − θ

)
−

1

2
Π0

(
1

3
θ +

1

2
Σ

)
+

1

3

(
1

2
φ0 − 2A0

)
Q

−
1

2
(µ0 + p0) Σ +

1

6
δµQµ + εµνδµHν ,

(C21)

Ê −
1

3
m̂ +

1

2
P̂ =

(
Ê0 −

1

3
µ̂0 +

1

2
Π̂0

)(
1

3
θ + Σ

)
− (δµEµ)

.
−

1

2
(δµΠµ)

.

+
1

3
A0m −

3

2

(
E0 +

1

2
Π0

)
F −

(
A0 +

3

2
φ0

)(
E +

1

2
P

)
,

(C22)

Ḣ =
1

2
εµνδµΠν − εµνδµEν − 3

(
E0 −

1

2
Π0

)
ξ , (C23)

Ĥ = −δµHµ −
1

2
εµνδµQν −

3

2
φ0H −

(
3E0 + µ0 + p0 −

1

2
Π0

)
Ω , (C24)

m + Q̂ = − (φ0 + 2A0) Q −
3

2
Π0Σ − (µ0 + p0) θ − δµQµ , (C25)

Q̈ + p̂ + P̂ =
(

p̂0 + Π̂0

)(1

3
θ + Σ

)
− Π0

(
3

2
F + A

)
−

(
3

2
φ0 + 2A0

)
P

− A0 (m + 2p) − (µ0 + p0) A − (δµΠµ). ;

(C26)

• Evolution and propagation equations for vector quantities:

Ėα +
1

2
Π̇α =

(
1

2
φ0 − A0

)(
1

2
Qα + εαµHµ

)
−

3

2

(
E0 +

1

2
Π0

)
αα

−
1

2
(µ0 + p0 + Π0) (Σα − εαµΩµ)

−
1

2
δαQ +

1

2
εα

µδµH + εµνδµHνα ,

(C27)

Êα +
1

2
Π̂α = −

3

2
φ0

(
Eα +

1

2
Πα

)
−

3

2

(
E0 +

1

2
Π0

)
aα

+
1

2
Eα +

1

3
mα +

1

4
Pα − δµEα

µ −
1

2
δµΠα

µ ,

(C28)

1

2
εα

µÊµ − Ḣα −
1

4
εα

µΠ̂µ =
3

4
εα

µEµ −
3

8
εα

µPµ +
1

2
εµνδµEνα −

1

4
εµνδµΠνα

+
3

2
εαµE0Aµ −

3

4
εαµ

(
E0 −

1

2
Π0

)
aµ − εαµEµA

−
1

4
εαµφ0

(
Eµ −

1

2
Πµ

)
,

(C29)

Ĥα −
1

2
εα

µQ̂µ =
1

2
δαH − δµHα

µ −
1

2
εα

µδµQ −
3

2
εαµ

(
E0 +

1

2
Π0

)
Σµ

−

(
µ0 + p0 +

1

4
Π0 −

3

2
E0

)
Ωα −

3

2
φ0

(
Hα −

1

6
εαµQµ

)
,

(C30)
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Q̇α + Π̂α = −pα +
1

2
Pα − δµΠα

µ −
3

2
Π0aα −

(
3

2
φ0 + A0

)
Πα −

(
µ0 + p0 −

1

2
Π0

)
Aα ; (C31)

• Evolution and propagation equations for tensor quantities:

Ėαβ +
1

2
Π̇αβ + ε{α|

νĤ|β}ν = ε{α|
νδνH|β} −

1

2

(
µ0 + p0 + 3E0 −

1

2
Π0

)
Σαβ

+

(
1

2
φ0 + 2A0

)
εµ{αHβ}

µ −
1

2
δ{αQβ} ,

(C32)

ε{α|
ν Ê|β}ν −

1

2
ε{α|

νΠ̂|β}ν − Ḣ{αβ} = ε{α|
µδµE|β} −

1

2
ε{α|

µδµΠ|β} −
1

4
φ0εµ{αΠβ}

µ

−
3

2

(
E0 −

1

2
Π0

)
εµ{αζβ}

µ +

(
1

2
φ0 + 2A0

)
εµ{αEβ}

µ .

(C33)

4. Extra equations

The variables {m, p,P,F,A,E} and {m, p, P , F, A, E} are not fully independent. Using the commutation rela-
tions (47) we find

δαm − ṁα = µ̂0 (Σα − εαµΩµ + αα) ,

δαp − ṗα = p̂0 (Σα − εαµΩµ + αα) ,

δαP − Ṗα = Π̂0 (Σα − εαµΩµ + αα) ,

δαF − Ḟα = φ̂0 (Σα − εαµΩµ + αα) ,

δαA − Ȧα = Â0 (Σα − εαµΩµ + αα) ,

δαE − Ėα = Ê0 (Σα − εαµΩµ + αα) .

(C34)

Moreover, we also have

εαβδαmβ = −2µ̂0ξ ,

εαβδαpβ = −2p̂0ξ ,

εαβδαPβ = −2Π̂0ξ ,

εαβδαFβ = −2φ̂0ξ ,

εαβδαAβ = −2Â0ξ ,

εαβδαEβ = −2Ê0ξ .

(C35)

Appendix D: Scalar, vector and tensor harmonics

We list some of the properties of the scalar, vector, and tensor eigenfunctions of the covariantly defined Laplace-
Beltrami operator on 2-hypersurfaces. For concreteness, we consider a locally rotationally symmetric of class II
spacetime, such that it admits the existence of spatial sections that can be described by 2-hypersurfaces.

1. Scalar harmonics

Let Q(k) represent the scalar eigenfunctions of the covariantly defined Laplace-Beltrami operator δ2 ≡ δµδµ,
where the δ operator was defined in Eq. (9), such that

δ2Q(k) = −
k2

r2
Q(k) ,

Q̂(k) = Q̇(k) = 0 ,

(D1)
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where we have assumed that the harmonic index verifies k2 ≥ 0 and the function r is covariantly defined as

r̂

r
=

1

2
φ ,

ṙ

r
=

1

3
θ −

1

2
Σ ,

δαr = 0 ,

(D2)

or, using the 1+1+2 equations in Appendix A in the particular case of an LRS II spacetime, we have:

1

r2
=

φ2

4
− E +

1

3
(µ + Λ) −

Π

2
−

(
1

3
θ −

1

2
Σ

)2

. (D3)

2. Vector harmonics

From the scalar harmonics Q(k), we may define a complete set of 1-tensors that can be used as a basis for
sufficiently smooth 1-tensor fields defined on the 2-hypersurfaces. The vector harmonics are defined as

Q(k)
α = rδαQ(k) ,

Q̄(k)
α = rεαµδµQ(k) ,

(D4)

where Q
(k)
α are referred as the “even” vector harmonics and Q̄

(k)
α as the “odd” vector harmonics. These have the

following properties

uµ∇µQ(k)
α = 0 ,

eµDµQ(k)
α = 0 ,

δµQ(k)
µ = −

k2

r
Q(k) ,

εµνδµQ(k)
ν = 0 ,

δ2Q(k)
α =

1 − k2

r2
Q(k)

α ;

(D5)

and

uµ∇µQ̄(k)
α = 0 ,

eµDµQ̄(k)
α = 0 ,

δµQ̄(k)
µ = 0 ,

εµνδµQ̄(k)
ν =

k2

r
Q(k) ,

δ2Q̄(k)
α =

1 − k2

r2
Q̄(k)

α .

(D6)

Moreover, we have

Q̄(k)
α = εα

µQ(k)
µ ,

Q(k)
α = −εα

µQ̄(k)
µ ,

(D7)

which can be used to readily verify NµνQ
(k)
µ Q̄

(k)
ν = 0, valid for each value of k.

3. Tensor harmonics

The scalar and vector harmonics introduced in the previous subsection can themselves be used to define a complete
set of symmetric, traceless 2-tensors that form a basis for sufficiently smooth, symmetric, traceless 2-tensor fields
defined on the 2-hypersurfaces. The tensor harmonics are defined as

Q
(k)
αβ = r2δ{αδβ}Q(k) ,

Q̄
(k)
αβ = r2εµ{α|δ

µδ|β}Q(k) ,
(D8)
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where, similarly to the vector harmonics above, Q
(k)
αβ are referred as the “even” tensor harmonics and Q̄

(k)
αβ are

referred to as the “odd” tensor harmonics. These have the following properties

uµ∇µQ
(k)
αβ = 0 ,

eµDµQ
(k)
αβ = 0 ,

δβQ
(k)
αβ =

2 − k2

2r
Q(k)

α ,

εµνδµQ(k)
να =

2 − k2

2r
Q̄(k)

α ;

(D9)

and

uµ∇µQ̄
(k)
αβ = 0 ,

eµDµQ̄
(k)
αβ = 0 ,

δµQ̄(k)
αµ = −

2 − k2

2r
Q̄(k)

α ,

εµνδµQ̄(k)
να =

2 − k2

2r
Q(k)

α .

(D10)

Moreover, we have

Q
(k)
αβ = −εµ

{αQ̄
(k)
β}µ

,

Q̄
(k)
αβ = εµ

{αQ
(k)
β}µ

,
(D11)

which can be used to readily prove that NαµNβνQ
(k)
αβ Q̄

(k)
µν = 0, valid for each value of k.

Appendix E: Change in the equation of state under isotropic frame transformations

In this Appendix, we make use of generalized Lorentz boosts in the 1+1+2 formalism to derive the transformation
law for the equation of state when changing between the comoving frame and the static frame.

1. Isotropic frame transformations and projectors

Let the dyad (u, e) be formed, respectively, by a timelike and a spacelike vector field in a spacetime, such that
uαuα = −1 and eαeα = 1, and let

ūα = (1 + a) uα + beα + mα ,

ēα = cuα + (1 + d) eα + kα ,
(E1)

represent the components in some local coordinate system of a dyad (ū, ē), with {a, b, c, d} being scalar coefficients
and

uαmα = 0 , uαkα = 0 ,

eαmα = 0 , eαkα = 0 .
(E2)

In the expressions above, we can assume, without loss of generality, that the vector fields m and k are associated
with rotational displacements. Then, for our purposes, it suffices to consider that the frame transformation is
isotropic, such that mα = 0 and kα = 0.

Imposing that the new dyad verifies

ūαūα = −1 ,

ēαēα = +1 ,

ūαēα = 0 ,

(E3)



49

we find that the transformation coefficients verify

(1 + d)
2

= (1 + a)
2

(1 + a)
2

= 1 + c2

b2 = c2 .

(E4)

Assuming, b, c > 0, hence a, d > 0, that is, the transformation does not swap the direction between the corresponding
vector fields, i.e., imposing that uαūα ≤ 0 and eαēα ≥ 0, we see that the relation between a and c can be made
obvious by introducing a single hyperbolic angle β such that

1 + a = cosh β ,

c = sinh β .
(E5)

Then, we have the following relation between the two dyads

ūα = uα cosh β + eα sinh β ,

ēα = uα sinh β + eα cosh β .
(E6)

Given relations (E6), the projectors h and N transform accordingly as

h̄αβ = hαβ + (uαuβ + eαeβ) sinh2 β +
1

2
(uαeβ + eαuβ) sinh (2β) , (E7)

N̄αβ = Nαβ , (E8)

which verify h̄αβ ūβ = 0, N̄αβ ūβ = 0 and N̄αβ ēβ = 0, as expected.

2. Fluid variables transformations

Consider now a general symmetric stress-energy tensor decomposed accordingly with Eq. (44). Under the trans-
formation (E6) we have

µ̄ = µ − Q sinh (2β) + (µ + p + Π) sinh2 β ,

p̄ = p −
1

3
Q sinh (2β) +

1

3
(µ + p + Π) sinh2 β ,

Q̄ = Q cosh (2β) −
1

2
(µ + p + Π) sinh (2β) ,

Π̄ = Π

(
1 +

2

3
sinh2 β

)
−

2

3
Q sinh (2β) +

2

3
(µ + p) sinh2 β ,

(E9)

where we have used the intuitive notation of keeping an overline to indicate variables measured in the frame
associated with the dyad (ū, ē). Moreover, we have the following relations between the scalar kinematical quantities

θ̄ = θ cosh β + (φ + A) sinh β + ∇u cosh β + ∇e sinh β ,

Σ̄ = Σ cosh β −
1

3
(φ − 2A) sinh β +

2

3
∇u cosh β +

2

3
∇e sinh β ,

(E10)

where ∇u ≡ uα∇α and ∇e ≡ eα∇α.

3. Relation between equations of state of the comoving and static observers

The comoving and static observer frames considered in Sec. IV are related by an isotropic change of frame. Then,
we can use the results in the previous subsections of this appendix to find the equation of state experienced by a
static observer, knowing the equation of state measured by the comoving observer.

Assuming the dyad (u, e) to be associated to the comoving frame and the dyad (ū, ē) to be associated with the
static frame, we can particularize Eq. (E9) to the case when Q = 0 and Π = 0, such that
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µ̄ = µ + (µ + p) sinh2 β ,

p̄ = p +
1

3
(µ + p) sinh2 β ,

Q̄ = −
1

2
(µ + p) sinh (2β) ,

Π̄ =
2

3
(µ + p) sinh2 β ,

(E11)

relating the nontrivial matter variables of the two frames. Moreover, since in the static frame — the one associated
with the barred variables — we have 3

2 Σ̄ = θ̄, then

tanh β =
1

φ

(
Σ −

2

3
θ

)
, (E12)

which upon substitution in Eq. (E11) yields

Q̄ = −
µ + p

φ

(
Σ −

2

3
θ

)
cosh2 β . (E13)

Assuming the background spacetime to be static and LRS II, Eq. (E12) explicitly shows that β is a first-order
quantity with respect to the background, i.e., β vanishes in the background. This is expected since comoving
observers are also static observers for a static LRS II spacetime. Moreover, these results confirm the expectation that
the anisotropic pressure measured by the static observer, Π̄, is zero at linear level for adiabatic, radial perturbations.

We can now find the linear order correction with respect to the background of the equation of state in the static
frame. Taking the derivative along ū of p̄ and µ̄, and using Eqs. (E6) and (E11) we find, in general,

∇ūµ̄ = µ̇ cosh β + µ̂ sinh β +
[(

∇u sinh2 β
)

(µ + p) + sinh2 β (µ̇ + ṗ)
]

cosh β

+
[(

∇e sinh2 β
)

(µ + p) + sinh2 β (µ̂ + p̂)
]

sinh β ,

∇ūp̄ = ṗ cosh β + p̂ sinh β +
1

3

[(
∇u sinh2 β

)
(µ + p) + sinh2 β (µ̇ + ṗ)

]
cosh β

+
1

3

[(
∇e sinh2 β

)
(µ + p) + sinh2 β (µ̂ + p̂)

]
sinh β ,

(E14)

where µ̇ = uα∇αµ and µ̂ = eα∇αµ, and similarly for p. Using the fact that β is a first-order quantity with respect
to the background, in first-order perturbation theory Eq. (E14) simplifies to

∇ūµ̄ = µ̇ + µ̂0β ,

∇ūp̄ = ṗ + p̂0β .
(E15)

Also, from Eq. (E11), at first order, we have

β = −
Q̄

µ0 + p0
. (E16)

Gathering the intermediate results and using the equations that characterize the background solution (cf. sub-
section IV A) we find the transformed equation of state for the static frame

∇ūµ̄ =
1

f ′ (µ0)
∇ūp̄ −

1

µ0 + p0

(
µ̂0 −

p̂0

f ′ (µ0)

)
Q , (E17)

where ṗ = f ′ (µ0) µ̇, that is, f ′ (µ0) represents the square of the adiabatic speed of sound measured in the comoving
frame.
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