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Abstract

The emergence of large language models (LLMs) has sparked enormous interest
due to their potential application across a range of educational tasks. For exam-
ple, recent work in programming education has used LLMs to generate learning
resources, improve error messages, and provide feedback on code. However, one
factor that limits progress within the field is that much of the research uses bespoke
datasets and different evaluation metrics, making direct comparisons between
results unreliable. Thus, there is a pressing need for standardization and bench-
marks that facilitate the equitable comparison of competing approaches. One task
where LLMs show great promise is program repair, which can be used to provide
debugging support and next-step hints to students. In this article, we propose a
novel educational program repair benchmark. We curate two high-quality publicly
available programming datasets, present a unified evaluation procedure introducing
a novel evaluation metric rouge@k for approximating the quality of repairs, and
evaluate a set of five recent models to establish baseline performance.

1 Introduction

In education, the emergence of large language models (LLMs) has led to a plethora of research
evaluating their performance on educationally relevant tasks (27; 10). LLMs have been explored
for educational tasks such as providing automatic feedback to students (51; 29; 20), generating
novel exercises (58), and producing novice-friendly explanations of source code (44; 36). Within
computing education, one long-standing challenge has been generating automated feedback on
students’ programs (28). This has traditionally been achieved using unit-test-based automated
assessment systems (50; 25), or intelligent tutoring systems that provide hints on the next steps
that students should take (17; 56; 55). A key parallel stream to this research is ‘automated program
repair’, which employs rule-based and machine-learning-based strategies for automatically fixing
bugs in code (54; 33; 26; 1; 52). Drawing from this extensive body of prior research, we recognize
automated program repair as a crucial intermediary step toward enhancing the accuracy and reliability
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of feedback for novice programmers. Currently, substantial interest lies in harnessing LLMs for
generating feedback based on program repairs (71; 54; 33).

In general, much of the prior work exploring LLMs in education has used bespoke datasets due to
the lack of widely used benchmarks. This makes it difficult to meaningfully compare results and
identify effective techniques. Benchmarks are an essential tool in computer science and software
engineering, including machine learning. They provide a standardized method for comparing various
techniques and for monitoring progress within an area over time, driving innovation and improvement.
Datasets in particular have served as benchmarks for comparing algorithms in a reproducible way
which is the bedrock of modern science. For example, within the field of machine learning standard
benchmarks such as ImageNet (8), MNIST (35) and HumanEval (6) have been crucial for identifying
breakthroughs in algorithms for image recognition and program synthesis.

In this paper, we propose a framework for evaluating program repair techniques using LLMs. By
providing a benchmark for this task, we hope to facilitate future research by allowing easy replication
of results and evaluation of new models using the same data that older models have been evaluated
with. In particular, this work makes the following contributions: we (1) formalize the task of
educational program repair, (2) describe an evaluation procedure including a novel metric for the
quality of program repairs called rouge@k, (3) curate two high-quality and publicly available datasets
suitable for serving as a benchmark to evaluate program repairs, and (4) report the performance of
several recent decoder-only transformer models on these datasets.

2 Related Work

Benchmarking program synthesis. In assessing the capabilities of code language models across
various contexts, programming benchmarks have become a common tool (6; 2; 21; 34). However,
when it comes to program synthesis, few of these benchmarks offer a large number of problems
that are suitable for introductory programming courses (2; 21). While code language models have
traditionally been used in industry and research, the emergence of highly proficient easily accessible
language models such as ChatGPT has sparked interest in Computing Education Research (CER).
In line with program synthesis principles, extensive research in CER has explored these models’
abilities to solve real-world introductory programming problems under authentic course conditions,
moving beyond artificial examples found in standard code benchmarks (14; 15; 9; 68; 60). We notice
a similar transition happening with program repair.

Benchmarking program repair. The task of program repair is often approached as a synthesis
problem. In our study, we draw inspiration from this paradigm to design components of our evaluation
procedure. Similarly to program synthesis, there exist program refinement benchmarks (42; 41)
and particularly close to our work is a recent extension (46) to the human evaluation benchmark
(6) that introduces bugs in code for LLMs to rectify. Although the bugs in all these datasets are
relevant to student programming, they do not fully encapsulate the complexities of errors encountered
in student-written code, which can present a wide array of issues extending beyond mere bugs.
Consequently, while such refinement benchmarks assume the presence of ground truth annotations,
our evaluation procedure operates without assuming the existence of a single ground truth repair, and,
in fact, did not necessitate manual annotations.

Our work also builds upon recent efforts utilizing large language models to provide feedback and
repair programs for students. Notably, LLMs have shown great promise in fixing syntax errors
(26; 1; 52; 37) and rectifying bugs in student programs (71), and preliminary work exists on using
them to automatically generate feedback (20; 29; 51; 39; 70). While most of these endeavours
leverage closed-source systems such as OpenAI Codex, some explore the use of open-language
models (31; 33). Many of the methods we introduce align with these previous efforts. In particular,
our proposed evaluation procedure aims to encompass the different scenarios explored in this prior
research while leveraging recent insights into evaluation methodologies (32). Although some prior
work has integrated human judgment into the evaluation (53; 37), we focus on a fully automated
evaluation approach which is more scalable, primarily relying on program correctness and NLP
scoring metrics as proxies for quality. In addition to presenting the evaluation procedure, we
also identify two publicly available datasets that we curate in such a way that they are suitable as
benchmarks for evaluating program repair.
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3 Educational Program Repair

In this section, we formalize the educational program repair task for large language models and
present an evaluation procedure for that task (Figure 1 shows an overview). We also introduce two
educational scenarios of interest and propose two high-quality publicly available datasets that match
these scenarios.
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Figure 1: Overview of the program repair task and its evaluation procedure. (1) For each
incorrect program, we pass to a language model a prompt which contains the programming task,
and the incorrect student code. In addition, the prompt may contain more contextual information,
e.g. grader’s feedback. (2) The model generates multiple feedbacks based on the instructions; each
feedback must contain (at least) a full correction to the incorrect program. (3) We extract the full
code repairs, which we (4) pass to unit tests. The samples which pass or fail the unit tests allow us to
evaluate (5) functional correctness and (6) closeness to the incorrect program.

3.1 Task and Evaluation Procedure

Problem setup and motivations. For this task, we consider a student working on a programming
assignment. We have access to the problem description, associated unit tests, and a grader that
employs these unit tests to provide summative feedback to students. When presented with an
incorrect program that doesn’t pass all unit tests, our goal is to utilize a language model to generate a
repair to the student’s code, addressing all the issues in the incorrect program. In essence, we view
student program repair as a program synthesis problem, conditioned upon an existing (non-working)
solution (71). Our primary objective is to ensure that the generated programs are not only functionally
correct but also closely aligned with the original incorrect program. This closeness is akin to the
preference for hint-generation systems to provide hints that are in proximity to the student’s current
state of knowledge (17; 56; 55). The basic assumption is that enforcing this closeness will enhance
the comprehensibility of the associated feedback (11), such as hints generated by an Intelligent
Tutoring System (ITS), or the natural language explanations generated by an LLM (52).

Evaluation procedure. Generally, we consider each buggy program as an independent “problem”,
and use our language model to generate one or multiple repairs for each problem. Classically,
(educational) program repair has reported performance in terms of the total number of buggy programs
successfully repaired (i.e., the total number of problems solved) and the average edit distance between
the buggy programs and their associated code repairs (71; 52). In this work, we generate up to n = 10
different repairs and introduce two distinctions to the classical evaluation procedure.

pass@k First, following prior program synthesis research, we assess functional correctness using
the pass@k estimator (6). We first generate n repairs. Then for a given k (k ≤ n), we generate all
combinations of k elements from the n repairs, and count those with at least one repair passing all
unit tests. Dividing this count by the total combinations gives the probability of a random sample of
k repairs fixing a buggy program. We average this probability for each program in our test set.

rouge@k Second, recent research (32) suggests that the Rouge score (40) serves as a better repair
quality indicator compared to sequence edit distance. Building upon this insight, we introduce a
novel evaluation metric, ‘rouge@k’ mirroring ‘pass@k’. For each of the passing n model generations,
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we calculate Rouge1 scores with the buggy program (using the buggy program as the reference
‘sentence’). Importantly, candidates that fail unit tests receive a score of 0. For some k, we generate
all combinations of k scores from the n candidates and average the highest scores from each
combination. We repeat this for each buggy program in our test set, and average the values to produce
the final rouge@k score.

3.2 Educational Scenarios and Datasets

We propose two versions of the program repair task: a version where prior educational data is
available, and one where no prior data is available. For both scenarios, we propose to rely on publicly
available real-life datasets collected from various institutions. Due to space limitations, we refer the
reader to the original dataset papers (resp. Appendix A.1) for curation (resp. processing) details.

Prior data available. In this scenario, we assume having access to prior data. Specifically, we
define “prior” data as a repository of both correct and incorrect solutions submitted by students in
preceding iterations of the same programming assignments, typically offered on a semester basis.
Automated Program Repair has frequently relied on such prior data to construct repairs for students’
buggy programs (24; 18; 45; 65). In our context, access to prior data offers significant advantages
for large language models, whether for few-shot prompting (71) or supervised fine-tuning (31).
Additionally, it facilitates the proper division of our datasets into training, validation/development,
and testing subsets. This mirrors a real-life scenario in which educational teams continually enhance
their models each semester as they accumulate more data. For this scenario, we propose harnessing
the recently released FalconCode dataset (7). Beyond its substantial scale, this dataset distinguishes
itself through the presence of associated unit tests, and the inclusion of pertinent metadata (e.g.
assignment difficulty level). Notably, it contains free-form assignments where students are not
necessarily required to write functions. This change from the focus of prior work to repair functions
(33; 71) allows for a broader evaluation of LLM-based repair techniques. For evaluation purposes,
we propose to utilize a smaller curated subset of 1,305 solutions for testing. It’s worth noting that
code benchmarks with fewer than 1000 problems are common in the field (2; 21; 34; 6), partly due to
the computational and/or financial resources required for LLM-based evaluation techniques.

No prior data available. In the second version of the problem, we introduce a setup where models
are tasked with fixing programs in a dataset where no prior data is available. This scenario aligns
with contexts such as new courses (typically small) or courses where data about students’ previous
submissions is not retained. To address this challenge, we propose leveraging a dataset collected at
the National University of Singapore (24). This dataset comprises five assignments where students
are required to write functions to solve specific tasks involving loops, conditions, and other standard
introductory concepts. The reasons for selecting this dataset include an appropriate size, the selection
of exercises with intermediate levels of difficulty, the presence of associated unit tests, and a good
variety of issues in the submissions. We use a curated subset of 1238 incorrect submissions.

4 Baseline and Experiments

In this section, we present a set of simple baseline models obtained from fine-tuning a variety of
open-source pretrained language models of code. We leave the evaluation of instruction-tuned (66)
and chat models (49) for future work.

4.1 Models

We experiment with several decoder-only transformer models, using the CodeGen family of models
(48) with 350M, and 2B parameters, as well as models from the StarCoder family (38) with 164M,
1B, and 3B parameters. We chose these models for their relatively small size which allows them
to fit fully (without quantization) inside a single consumer GPU. Although we could evaluate the
repair capabilities of these models using zero-shot and few-shot prompting (26), prior work suggests
that their relatively small size (less than several billion parameters) prevents them from fully taking
advantage of in-context examples (4). For this reason, we choose to finetune these models to repair

1Rouge embodies a family of metrics. For this study, we use the Rouge-L (40) score.
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student programs via supervised learning. Because most educational datasets do not contain ground
truth repairs to students’ incorrect programs, prior work in neural program repair (19) suggested
creating artificial repair examples by mapping each incorrect program in a dataset to the closest
correct program submitted to the same assignment. Instead of using the closest correct program, we
follow recent work (31) and map each incorrect program to the correction found by an Automated
Repair Tool applied to the same dataset. Using an Automated Repair Tool (in our case, Refactory (24))
allows for efficiently selecting a semantically close program while smoothing out many irrelevant
syntactic differences (e.g., variable name conventions, needless reformulations) between the incorrect
program and the chosen one."

We trained our supervised baselines on the FalconCode dataset with the above-mentioned methodol-
ogy, using the first two semesters of data as training and development sets (1299 and 1339 distinct
programs respectively). Appendix A.2 details our exact training procedure including prompting strat-
egy, and hyperparameter tuning. As an additional contribution, we released the code for conducting
our experiments on GitHub2.

4.2 Experiments and Results

We report the performance of the supervised baselines on the test set of the FalconCode dataset.
Following (2), we separate the results for two distinct assignment difficulty levels: “easy” and “hard”
(with 767 and 538 incorrect programs respectively). We also report the performance of the models
fine-tuned on FalconCode when prompted on the 1238 incorrect submissions of the Singapore dataset.
The results for these three scenarios, including pass rates and Rouge scores, are presented in Table 1.
We can make the following observations.

Table 1: Functional and closeness results for our baselines models (higher is better).

(a) Pass@k for k = 1, 5, 10

falconcode_easy falconcode_hard singapore
model size k = 1 k = 5 k = 10 k = 1 k = 5 k = 10 k = 1 k = 5 k = 10

starcoder 164M 6.88 12.46 14.68 20.27 35.93 41.85 2.54 7.62 10.46
codegen-mono 350M 12.08 23.19 27.88 13.68 28.28 33.77 3.72 12.92 18.90
starcoder 1B 16.91 30.38 36.06 26.44 44.94 50.72 7.35 21.02 28.77
codegen-mono 2B 16.10 25.99 30.67 13.85 25.92 30.38 11.24 24.97 31.63
starcoder 3B 19.11 31.68 37.73 14.63 29.88 36.51 12.29 29.37 36.14

(b) Rouge@k for k = 1, 5, 10

model size k = 1 k = 5 k = 10 k = 1 k = 5 k = 10 k = 1 k = 5 k = 10

starcoder 164M 5.91 10.66 12.57 12.14 23.43 28.32 2.18 6.58 9.07
codegen-mono 350M 10.56 20.14 24.12 9.06 19.32 23.50 2.49 8.66 12.92
starcoder 1B 14.32 25.41 29.93 17.02 30.91 35.90 5.60 15.95 21.68
codegen-mono 2B 13.70 21.91 25.66 10.22 19.14 22.70 7.63 13.59 15.91
starcoder 3B 15.89 26.18 31.12 10.48 21.59 26.54 7.85 19.97 25.73

Model performance scales with training compute and model sizes. Within the same architectural
family, performance scales with model sizes and number of generations. However, between different
model families, the quality of the pretraining can make smaller models (e.g., starcoder 1B) outperform
larger ones (e.g., codegen-mono 2B). The generalization capabilities of language models have been
shown to scale smoothly with the amount of computing used during pretraining in proportion with
model size and dataset size (22; 63).

Fine-tuned language models can overfit their datasets. Some models demonstrate superior
performance on the ‘hard’ section of the Falcon-code dataset compared to the ‘easy’ section. We
posit that this divergence stems from a training data imbalance, leading to ‘overfitting’ on more

2https://github.com/KoutchemeCharles/gaied_nips23

5

https://github.com/KoutchemeCharles/gaied_nips23


challenging assignments (62). Notably, overfitting is more pronounced in smaller models, which may
exhibit better performance than larger counterparts on the ‘hard’ subset (e.g., codegen-mono 350M
outperforming Codegen 2B on Falcon-code hard). However, this advantage does not extend to the
smaller training subset (FalconCode easy) or to the Singapore dataset.

Supervised training can transfer across datasets. Despite being fine-tuned on the FalconCode
dataset, our models managed to fix some of the buggy programs in another dataset featuring distinct
problem types and other unique issues within the incorrect programs. Interestingly, beyond 1B
parameters, the models reach similar performance on the FalconCode and Singapore datasets.

5 Discussion and Conclusion

We have introduced a benchmark for program repair using LLMs. However, the versatility of
language models extends beyond program repair; they are also capable of generating natural language
explanations paired with functioning solutions. Evaluating the quality of these explanations poses
a challenge in the absence of ground truths or manual assessments. Although we cannot guarantee
the accuracy of generated explanations with certainty, we assert that the relative quality of repairs
can act as a reliable proxy for the relative quality of associated Natural Language Explanations
(NLEs) when these NLEs are generated prior to the repairs. Previous research suggests that, for
a given model, repairs of higher quality that are closely aligned with the student’s code are more
likely to be derived from in-context, high-quality explanations (67). Conversely, generating natural
language explanations from in-context, high-quality repairs (52; 30) – first generating the repair and
then generating explanations – reduces the risk of introducing inaccuracies or inventing non-existent
issues, thus mitigating the risk of hallucinations (3; 20). Thus, while our primary focus is on program
repair, our work also serves as a step towards improving the feedback that can be provided to students.

While our baseline models provide valuable insights, it’s essential to recognize the growing presence
of powerful language models capable of program repair without additional training. In the source code
modelling landscape, we observe a division between permissive (open-source) and non-permissive
(proprietary) models. While prior work in educational program repair primarily focused on using
non-permissive models (71; 52; 53; 1; 37), we forecast a potential shift occurring with the emergence
of robust open-source alternatives (63; 57). Historically, non-permissive models such as ChatGPT
and OpenAI Codex have demonstrated state-of-the-art performance on benchmarks, but open-source
alternatives are beginning to match or surpass them. However, running such powerful permissive
instruction-tuned and chat models requires significant computational resources (e.g. custom GPUs)
due to their size. This is becoming less of a barrier due to the rise of open-source hosting services (69),
the ability of smaller models to achieve high performance (22), and the use of Parameter Efficient
Finetuning Techniques (PEFT) (23). While non-permissive models such as ChatGPT or OpenAI
Codex offer high performance without the need for custom hardware, they also raise significant
concerns about privacy and potential non-reliability due to model changes (5).

Prior studies in program repair have yielded valuable insights into the application of various methods.
However, meaningful comparisons between methods have been hindered by the lack of accessible,
high-quality datasets. To overcome this limitation, we have curated the FalconCode and Singapore
datasets specifically for program repair tasks relevant to educational settings. Nevertheless, we
acknowledge concerns that any individual educational benchmarking dataset can not fully capture the
diversity of exercises and instructional approaches present in programming classes (64; 43). We feel
it is important to emphasize that the purpose of these benchmarks should not be to establish a rigid
hierarchy of method superiority but to serve as reference points for comparing methods in common
scenarios, and for identifying issues in prior studies (59). We believe that educational AI researchers
can benefit from presenting and evaluating their novel techniques on both private datasets and the
common benchmark, providing a well-rounded perspective.

Finally, we acknowledge several limitations to our current work. First, both the FalconCode and
Singapore datasets are limited to Python and represent data from only two institutions. Furthermore,
syntax errors are currently not included due to our curation processes. We are also aware of the
potential risk of contamination, a common challenge in code benchmarks (16). While the FalconCode
dataset is unlikely to be part of any model’s pretraining dataset (as access requires a manual request via
an online form), the Singapore dataset is readily available in a GitHub repository. Lastly, we recognize
that assessing qualitative performance based solely on code closeness may introduce biases and may
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not always align with instructors’ pedagogical objectives, such as teaching specific programming
composition methods or emphasizing certain coding approaches (see e.g. (47; 13; 61; 12)). To address
these limitations, our future plans include introducing other high-quality datasets that cover a broad
range of programming languages and scenarios (e.g. from online MOOC courses). We have also
identified datasets suitable for evaluating both syntax and semantic errors, and we are working on
annotating a subset of our datasets to provide accessible ground truth annotations (32). Looking
further ahead, we intend to expand our benchmark to encompass a broader range of educational
programming tasks (53) (e.g. hint generation), and we aim to establish an open online leaderboard
(69) for result tracking. As educational program feedback presents distinctive challenges and real-
life constraints, we anticipate cross-domain collaborations between educational program feedback
research and pure NLP research to be essential.
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A Appendix

A.1 Dataset details

In this section, we detail the processing steps applied to each of our datasets.

A.1.1 FalconCode

We requested and acquired the FalconCode dataset from the authors’ website website, which consists
of multiple tables as detailed in the paper by (7). The downloaded dataset encompasses 1,433,323
submissions written by 1,563 students across 478 distinct assignments spanning three semesters.

There are three levels of difficulty of assignments in the dataset: "skill", "lab" and "project". For this
study, we excluded “project” assignments, which have high complexity, often require extensive code
writing across multiple files, and lack automated tests. For all our analysis, we refer to “skill” and
“lab” assignments as “easy” and “hard” (respectively). Several other assignments require access to
external files (e.g, .csv files or .txt files) which the authors did not release in the current version of
the dataset. However, we are currently in the process of retrieving this information. We excluded
all assignments that require these external files. We then removed students’ intermediate runs (not
submitted for grading). All other submissions present were automatically graded and assigned a score
comprised between 0 and the exercise maximum score (typically 100). We removed all submissions
which have a score of 0, as manual inspection reveals that these solutions are often the results of
students’ obvious mistakes (e.g. forgetting to print) or students’ "trial and error". After removing
intermediate runs and zero-passing codes, we have in total 270,478 submitted programs to 334
problems written by 1557 students.

Following (24), we selected only the final submissions for each student for each assignment. This
resulted in our test set comprising submissions from students who did not complete the assignments
successfully. While we acknowledge that this selection may not fully capture the range of difficulties
students encounter during their attempts, it aligns with the idea that a student’s last attempt often
reflects their improved understanding of the problem. Additionally, students are more likely to seek
help after several unsuccessful attempts. Thus, our setup can be viewed as providing feedback to
students as a last resort for elements they may not have grasped. In our dataset, this selection process
yielded 118,764 distinct solutions. We recognize the potential for future work to explore more refined
methods for automatically selecting meaningful solutions within large datasets.

For dataset splitting, we adopted a methodology similar to (31). We divided the dataset by semester,
designating the first two semesters (fall and spring 2021) for training and development purposes,
respectively. The remaining semester constituted the testing set (spring 2022). Within each split, we
independently removed submissions that shared identical abstract syntax tree (AST) structures after
variable normalization. Table 2 provides an overview of the dataset statistics after this processing.

Table 2: FalconCode dataset statistics.
subset training development testing
difficulty easy hard easy hard easy hard
# correct solutons 4413 16463 4521 13552 3678 12164
# incorrect solutions 398 901 622 717 538 767
# problems 89 104 87 68 83 89

Note that we intentionally also limited the size of our training and dev subsets to match the distribution
of the test set. We encourage further experimentation with larger subsets of training datasets.

A.1.2 Singapore

We obtained the Singapore dataset from the original paper’s GitHub repository (24). The downloaded
dataset initially contains 4225 submissions from 361 students. As with the FalconCode data, we
removed similar submissions based on AST comparison on the Singapore dataset, which left us with
a total of 2436 submissions. Table 3 displays the dataset statistics. It’s important to note that the
original dataset lacks information regarding which student submitted which assignment, and that we
do not make use of the correct solutions.
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Table 3: Singapore dataset statistics.
Assignment 1 2 3 4 5 Total

# correct solutions 480 157 152 186 223 1196
# incorrect solutions 296 331 246 261 104 1238

A.2 Experiment details

In this section, we detail how we created artificial code repair examples for supervised training
(fine-tuning) of the used models, and how we trained and evaluated our models.

A.2.1 Neural Automated Repair

Prior to training, we utilized the Refactory Automated Repair Tool (ART) (24) to generate repairs for
each incorrect program in the training and development datasets from FalconCode (31). Detailed
information about Refactory’s functionality can be found in the original paper and its associated
GitHub repository3.

We configured Refactory with online refactoring, sampling 100% of correct student programs from
both the training and development subsets, and enabled structure mutation and block repair phases
(i.e., using the best settings available). Unlike in (31), if ART couldn’t successfully repair a faulty
program, we followed the approach described in (19). In such cases, we employed the Rouge-L score
(32; 40) to map the incorrect program to the nearest correct program.

A.2.2 Supervised training

We finetuned our models for next token prediction using HuggingFaces’ transformers library (69)
using separate training and development sets. To ensure efficient training, we truncated each sequence
to a maximum of 512 tokens. We decayed the learning rate with a cosine schedule, using an initial
learning rate of 5e-5. We then performed a hyperparameter search, varying the number of epochs (1,
2, or 3) and batch sizes (4, 8, 16, or 32); the model selected for final evaluation with the testing set is
the one showing the lowest validation loss on (a subset of) the development set. Our template prompt
displayed in Figure 2 shows the structure of the prompts that we used to generate the repairs with
the models. Notably, the last part of the prompt that includes the repair example found with ART is
included only for the training and development set and excluded for testing sets. It’s important to
note that the prompt used did not include the graders’ feedback. In our future work, we will evaluate
separately the effect of adding such feedback on program repair performance.

A.2.3 Evaluation

We generated 10 repairs for each incorrect program in our test set using our prompt template shown
in Figure 2. The repaired programs were generated using top_p nucleus sampling with a fixed
temperature of 0.6, similarly as in (6) (all other parameters are default). We refer the reader to section
3.1 for the rest of the evaluation procedure.

A.2.4 Computational resources.

The training and evaluation pipelines were run individually and separately for each model on a single
Nvidia Tesla A100 GPU using our institution research cluster.

3https://github.com/githubhuyang/refactory
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R e p a i r t h e i n c o r r e c t program . 1

{PROBLEM_DESCRIPTION} 2

** I n c o r r e c t program ** 3

{BUGGY PROGRAM} 4

** R e p a i r e d code * * : 5

{CORRECTED PROGRAM} 6

Figure 2: The prompt template used for model training and evaluation: (1) a preamble orienting
the model to the task of the program repair (although pretrained models are not instruction tuned,
a preamble remains a useful signal), (2) the problem description extracted from the dataset, (3) an
indication of the start of the buggy program, (4) the buggy program to fix, (5) an indication of the
start of the repaired program, (6) the artificial repair found for the buggy program (see section A.2.1)
– included only in the training phase.
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