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FLATTENED CATALAN WORDS

JEAN-LUC BARIL, PAMELA E. HARRIS, AND JOSÉ L. RAMÍREZ

Abstract. In this work, we define flattened Catalan words as Catalan words whose runs
of weak ascents have leading terms that appear in weakly increasing order. We provide
generating functions, formulas, and asymptotic expressions for the number of flattened
Catalan words based on the number of runs of ascents (descents), runs of weak ascents
(descents), ℓ-valleys, valleys, symmetric valleys, ℓ-peaks, peaks, and symmetric peaks.

1. Introduction

A word w = w1w2 · · ·wn over the set of nonnegative integers is called a Catalan word
if w1 = 0 and 0 ≤ wi ≤ wi−1 + 1 for i = 2, . . . , n. Throughout this paper, |w| denotes
the length of w and ǫ denotes the empty word, which is the unique word of length zero.
For n ≥ 0, let Cn denote the set of Catalan words of length n. We set C :=

⋃

n≥0 Cn and
C+ :=

⋃

n≥1 Cn be the set of nonempty Catalan words. For example,

C4 =

{

0000, 0001, 0010, 0011, 0012, 0100, 0101,
0110, 0111, 0112, 0120, 0121, 0122, 0123

}

.

Note that |Cn| = cn = 1
n+1

(

2n
n

)

is the nth Catalan number. The exploration of Catalan
words has begun with the comprehensive generation of Gray codes tailored for growth-
constricted words [12]. Baril et al. [2, 4, 5] have delved into analyzing the distribution of
descents and the ultimate symbol in Catalan words avoiding one or two classical patterns
of length at most three. Similar findings [1, 7, 17] emerge in studies of restricted Catalan
words avoiding consecutive patterns of length three or pairs of relations. Callan et al. [10]
initiate the enumeration of statistics, including area and perimeter, on the polyominoes
associated with Catalan words. Furthermore, assorted combinatorial statistics regarding
polyominoes associated with both Catalan and Motzkin terminologies have been scrutinized
[6, 13, 14, 15]. Next Shattuck [18] initiated an examination into the frequency of distinct
subword occurrences, spanning no more than three characters, nestled within Catalan
words, like descents, ascents, and levels. In a recent paper [3], Baril et al. provide generating
functions, formulas, and asymptotic expressions for the number of Catalan words based on
the number of runs of ascents (descents), runs of weak ascents (descents), ℓ-valleys, valleys,
symmetric valleys, ℓ-peaks, peaks, and symmetric peaks.
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Given a permutation of [n] = {1, 2, . . . , n} in one-line notation π = π1π2 · · ·πn, the runs
of π are the maximal contiguous increasing subwords of π. If the sequence of leading terms
of the runs of π appears in increasing order, then π is called flattened partition of length
n. Nabawanda et al. give recursive formula for the number of flattened partitions of length
n with k runs [16, Theorem 1]. Callan gives the number of flattened partitions of length
n avoiding a single 3-letter pattern [9]. Elder et al. extended the work Nabawanda et al.
to establish recursive formulas for the number of flattened parking functions built from
permutations of [n], with r additional ones inserted that have k runs [11, Theorems 29, 30
and 35]. A further generalization includes the work of Buck et al. [8] who establish that
flattened Stirling permutations are enumerated by the Dowling numbers, which corresponds
to the OEIS entry [19, A007405].

In this work, we define flattened Catalan words, which are Catalan words whose maximal
contiguous nondecreasing subwords have leading terms in weakly increasing order. For
example, the Catalan word 0012301222345523343 ∈ C19 is a flattened Catalan word with
four maximal contiguous nondecreasing subwords 00123, 012223455, 2334, and 3, whose
leading terms satisfy 0 ≤ 0 ≤ 2 ≤ 3. Conversely, 012321 ∈ C6 is not a flattened Catalan
word as it has maximal contiguous nondecreasing subwords 0123, 2, and 1, and the leading
terms 0, 2, and 1 are not in weakly increasing order. We denote the sets of nonempty
flattened Catalan words and flattened Catalan words of length n as Flat(C+) and Flat(Cn),
respectively.

Let w = w1w2 · · ·wn ∈ Flat(Cn). As usual, we say that w has an ascent (descent) at
position ℓ if wℓ < wℓ+1 (wℓ > wℓ+1), where ℓ ∈ [n − 1]. Similarly, we define weak ascent
(resp. weak descent) at position ℓ if wℓ ≤ wℓ+1 (wℓ ≥ wℓ+1), where ℓ ∈ [n−1]. A run (resp.
weak run) of ascents (resp. weak ascents) in a word w is a maximal subword of consecutive
ascents (resp. weak ascents). The number of runs in w is denoted by runs(w), and the
number of weak runs in w is denoted by wruns(w). The runs of descents and weak descents
are defined similarly, and the statistics will be denoted runs(w) and wruns(w), respectively.
An ℓ-valley in a flattened Catalan word w is a subword of the form abℓ(b+1), where a > b
and ℓ is a positive integer and bℓ denotes ℓ consecutive copies of the letter b. If ℓ = 1, we
say that it is a short valley. The number of ℓ-valleys of w is denoted by ℓ-val(w) and the
number of all ℓ-valleys for ℓ ≥ 1 of w is denoted by val(w). A symmetric valley is a valley
of the form a(a − 1)ℓa with ℓ ≥ 1. The number of symmetric valleys of w is denoted by
symv(w). Analogously, we define the peak statistic. Namely, an ℓ-peak in w is a subword
of the form a(a+1)ℓb, where a ≥ b and ℓ is a positive integer. The number of ℓ-peaks of w
is denoted by ℓ-peak(w) and the sum of all ℓ-peaks for ℓ ≥ 1 of w is denoted by peak(w).
If ℓ = 1, we say that it is a short peak ; and if a = b, it is called a symmetric peak. The
number of symmetric peaks of w is denoted by symp(w).

Our contributions include generating functions and combinatorial expressions for the
number of flattened Catalan words based on the number of runs of ascents (descents),
runs of weak ascents (descent), ℓ-valleys, valleys, symmetric valleys, ℓ-peaks, peaks, and
symmetric peaks. We also establish one-to-one correspondences between:

http://oeis.org/A007405
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• flattened Catalan words of length n with k runs of ascents and k-part order-
consecutive partitions of n, which have been studied in [21], see Theorem 3.5;

• flattened Catalan words of length n and compositions of all even natural numbers
into n− 1 parts of at most two where the part 0 is allowed, see Theorem 3.4;

• flattened Catalan words of length n with k runs of weak ascents and binary words
of length n− 1 where 2k − 2 symbols are replaced with a dot •, see Theorem 3.11;

• flattened Catalan words of length n and Dyck paths of semilength n with k occur-
rences of DDUU, where the height sequence of occurrences DDU (from left to right) is
nondecreasing, see Remark 4.3.

• flattened Catalan words of length n and ordered trees with n edges and with k+ 1
nodes having only children as leaves and satisfying two additional conditions, see
Remark 4.6.

We aggregate our results and the notation used throughout in Table 1.

Statistics
runs of asc. runs of w. asc. runs of desc. runs of w. desc. ℓ-valleys short valleys

Statistic on w runs(w) wruns(w) runs(w) wruns(w) ℓ-val(w) 1-val(w)
Bivariate g. function R(x, y) W (x, y) R̄(x, y) W̄ (x, y) Vℓ(x, y) V1(x, y)
Distribution r(n, k) w(n, k) r̄(n, k) w̄(n, k) vℓ(n, k) v1(n, k)
Total occurrences over Flat(Cn) r(n) w(n) r̄(n) w̄(n) vℓ(n) v1(n)

valleys sym. valleys ℓ-peaks short peaks peaks sym. peaks
Statistic on w val(w) symv(w) ℓ-peak(w) 1-peak(w) peak(w) symp(w)
Bivariate g. function V (x, y) S(x, y) Pℓ(x, y) P1(x, y) P (x, y) T (x, y)
Distribution v(n, k) s(n, k) pℓ(n, k) p1(n, k) p(n, k) t(n, k)
Total occurrences over Flat(Cn) v(n) s(n) pℓ(n) p1(n) p(n) t(n)

Statistic Bivariate g. f. Total occurrences over Flat(Cn) OEIS

runs
xy(1−x−xy)

1−2x+x2−2xy+x2y+x2y2
1
4
(3n−1 + 1)(n+ 1) Not in OEIS

wruns
(1−2x)xy

1−4x+4x2−x2y
1
36
(27− 9n+ (5 + n)3n) Not in OEIS

runs
xy(1−2xy)

1−4xy−x2y+4x2y2
1
36
(27n− 9 + (5n+ 1)3n) Not in OEIS

wruns
yx(1−xy−x)

x2y2+x2y+x2−2xy−2x+1
n+1
4
(1 + 3n−1) Not in OEIS

ℓ-val x(1−2x+xℓ+1−xℓ+1y)
(1−x)(1−3x+xℓ+1−xℓ+1y)

1
4

(

1− 3n−2−ℓ + 2 · 3n−2ℓ(n− 2− ℓ)
)

Not in OEIS

val
x−3x2+x3(3−y)

(1−x)(1−4x+4x2−x2y)
1
36
(3n(n− 4) + 9n) A212337

symv
x(1−2x)(1−2x+2x2−x2y)

(1−x)(1−5x+8x2−5x3−x2y+2x3y)
1

144
(3n(2n− 5)− 18n2 + 54n− 27) Not in OEIS

ℓ-peak x(1−2x)
(1−x)(1−3x+xℓ+1(1−y))

1
4

(

(3n−ℓ−2(2n+ 1− 2ℓ))− 1
)

Not in OEIS

peak
x(1−2x)

1−4x+4x2−x2y
1
4
(3n−2 − 1)(n− 1) A261064

symp
x(1−x)(1−2x)

1−5x+8x2−5x3−x2y+2x3y
1

144
(63 + 3n + 2(−45 + 3n)n + 18n2)) Not in OEIS

Table 1. Summary of notation and results for statistics considered.

http://oeis.org/A212337
http://oeis.org/A261064
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2. Basic Definitions

Throughout the article, we will use the following decomposition of Catalan words, called
first return decomposition of a Catalan word w, which is

w = 0(w′ + 1)w′′,

where w′ and w′′ are Catalan words (w′ and w′′ could be empty), and where (w′ + 1) is
the word obtained from w′ by adding 1 at all these symbols. Note that whenever w′ is the
empty word, denoted by ǫ, then (w′ + 1) remains the empty word.

For example, the first return decomposition of w = 0122200122322334544 ∈ Flat(C19)
is given by setting w′ = 0111 and w′′ = 00122322334544. For this word w, we have
runs(w) = 11, wruns(w) = 4, runs(w) = 16, wruns(w) = 9, 1-val(w) = 0, 2-val(w) = 2,
ℓ-val(w) = 0 (ℓ > 2), symv(w) = 1, 1-peak(w) = 2, 2-peak(w) = 0, 3-peak(w) = 1,
ℓ-peak(w) = 0 (ℓ > 3), and symp(w) = 2.

Drawing Catalan words as lattice diagrams on the plane proves to be a convenient
representation. These diagrams are constructed using unit up steps (0, 1), down steps
(0,−1), and horizontal steps (1, 0). Each symbol wi of a Catalan word is represented by
the horizontal segment between the points (i− 1, wi) and (i, wi), and the vertical steps are
inserted to obtain a connected diagram. For example, in Figure 1, we illustrate the lattice
diagram associated to the Catalan word w.

Figure 1. Lattice diagram of the word w = 0122200122322334544.

Remark 2.1. Let C↑
n denote the set of weakly increasing Catalan words of length n. Notice

that |C↑
0 | = 1 and for n ≥ 1 |C↑

n| = 2n−1, then its generating functions is 1 + x/(1 − 2x)
if we include the empty word. Note that the set of nonempty weakly increasing Catalan
words is precisely the set of flattened Catalan words with a single weak run. Hence, the
generating functions for the later set is x/(1 − 2x).

3. The Distribution of Runs

3.1. Runs of Ascents. In order to count nonempty flattened Catalan words according to
the length and the number runs of ascents, we introduce the following bivariate generating
function

R(x, y) =
∑

w∈Flat(C+)

x|w|yruns(w) =
∑

n≥1

x|w|
∑

w∈Flat(Cn)

yruns(w),

where the coefficient of xnyk is the number of flattened Catalan words of length n with k
runs of ascents.
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In Theorem 3.2, we give an expression for this generating function, but first we provide
an example.

Example 3.1. Consider the flattened Catalan word w = 012230123122 ∈ Flat(C12). Then
w has 5 runs of ascents: 012, 23, 0123, 12, and 2.

Theorem 3.2. The generating function for nonempty flattened Catalan words with respect
to the length and the number of runs of ascents is

R(x, y) =
xy(1− x− xy)

1− 2x+ x2 − 2xy + x2y + x2y2
.

Proof. Let w be a nonempty flattened Catalan word and let w = 0(w′ + 1)w′′ be the first
return decomposition, with w′, w′′ ∈ Flat(C). There are four different types of this word.
Figure 2 illustrates this case.

0 0w
′′0(w′ + 1) 0 · 11 . . . 22 . . . 33 · · ·w

′′

Figure 2. Decomposition of a nonempty flattened Catalan word in Flat(C).

If w′ = w′′ = ǫ, then w = 0. Then its generating function is xy.
If w′′ = ǫ and w′ 6= ǫ, then w = 0(w′ + 1). Then the generating function is xR(x, y).
If w′ = ǫ and w′′ 6= ǫ, then w = 0w′′. Then the generating function is xyR(x, y) because

we have an extra run.
If w′ 6= ǫ and w′′ 6= ǫ, then w = 0(w′+1)w′′. Note w′ is a weakly increasing word because

w ∈ Flat(C+). Then the bivariate generating function for such words w′ is

∑

n≥1

n
∑

k=1

(

n− 1

k − 1

)

xnyk =
∑

n≥0

y(1 + y)n−1xn =
xy

1− x(1 + y)
.

Therefore, the generating function for this case is given by

x2y

1− x− xy
R(x, y).

Therefore, we have the functional equation

R(x, y) = xy + x(1 + y)R(x, y) +
x2y

1− x− xy
R(x, y).

Solving this equation, we obtain the desired result. �

Corollary 3.3. The generating function for nonempty flattened Catalan words is given by

R(x, 1) =
∑

n≥1

f(n)xn =
x(1 − 2x)

(1− 3x)(1− x)
.
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Therefore,

f(n) =
1

2

(

3n−1 + 1
)

.

The first few values of the sequence f(n) (n ≥ 1) correspond to the OEIS entry [19,
A007051]:

1, 2, 5, 14, 41, 122, 365, 1094, 3281, 9842, . . . .

This sequence also counts the compositions of all even natural numbers (from 0 to
2(n− 1)) into n− 1 parts of at most two (the part 0 is allowed).

Theorem 3.4. Flattened Catalan words of length n and compositions of all even natural
numbers (from 0 to 2(n− 1)) into n− 1 parts of at most two (the part 0 is allowed) are in
bijection.

Proof. A bijection ψ between flattened Catalan words of length n and this combinatorial
class is given by ψ(0) = ǫ; ψ(0(w + 1)) = 2ψ(w); ψ(0w) = 0ψ(w); and ψ(0(w + 1)w′) =
1ψ(w)1ψ(w′). �

Let r(n, k) denote the number of flattened Catalan words of length n with exactly k runs
of ascents, that is r(n, k) = [xnyk]R(x, y), which denotes the coefficient of xnyk in R(x, y).
The first few rows of this array are

R := [r(n, k)]n,k≥1 =

























1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 3 1 0 0 0 0 0

1 6 6 1 0 0 0 0
1 10 19 10 1 0 0 0
1 15 45 45 15 1 0 0
1 21 90 141 90 21 1 0
1 28 161 357 357 161 28 1

























.

For example, r(4, 3) = 6, the entry boxed in R above, and the corresponding flattened
Catalan words (and lattice diagrams) are shown in Figure 3.

0010 0100 0101 0110 0120 0121

Figure 3. Flattened Catalan words of length 4 with 2 runs of ascents. The
red marked vertex denotes the start of the second run of ascents.

The array R corresponds to the OEIS entry [19, A056241]. Notice that this sequence has
a different combinatorial interpretation. It counts the number of k-part order-consecutive
partitions of n. An order-consecutive partition of {1, 2, . . . , n} with k parts is a k-uplet

(S1, S2, . . . , Sk) of subsets such that Si ∩Sj = ∅ if i 6= j,
k
⋃

i=1

Si = {1, 2, . . . , n}, where every

http://oeis.org/A007051
http://oeis.org/A056241
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subset Si are in increasing order relatively to their maximum elements, and satisfying the

property: for j = 1, . . . , k,
j
⋃

i=1

Si is an interval (cf. [21]).

Theorem 3.5. Flattened Catalan words of length n with exactly k runs of ascents are in
bijection with k-part order-consecutive partitions of n.

Proof. We define recursively a map ψ from the set of words in Flat(Cn) and the set OCPn

of order-consecutive partitions of {1, 2, . . . , n}. We consider the four cases of Figure 2.

- If w belongs to the case (i), then w = 0 and we set ψ(w) = {1};
- If w belongs to the case (ii), then w = 0(w′ + 1) and ψ(w) is obtained from
ψ(w′) by inserting n in the last part; for instance, if f(w′) = {2, 3}{1, 4}, then
f(w) = {2, 3}{1, 4, 5};

- If w belongs to the case (iii), then w = 0w′ and ψ(w) is obtained from ψ(w′)
by adding the part {n} on the right; for instance, if f(w′) = {2, 3}{1, 4}, then
f(w) = {2, 3}{1, 4}{5};

- If w belongs to the case (iv), then w = w′w′′ where w′ consists of one weak
run starting with 01. Using the previous cases, ψ(w′) = S1 . . . Sk where Sk =
{a1, . . . aℓ, |w

′| − 1, |w′|} ends with a part containing both |w′| − 1 and |w′|. So,
we set ψ(w) = S1 . . . Sk−1(ψ(w

′′) + |w′| − 1){a1, . . . , aℓ, |w
′| − 1, |w′| + |w′′|}. For

instance if w = 0112 0120, w′ = 0112, w′′ = 0120 and f(w′) = {1, 2}{3, 4} and
f(w′′) = {3}{1, 2, 4} then f(w) = {1, 2}{6}{4, 5, 7}{3, 8}. �

Theorem 3.5 and [21, Theorem 6] imply the following combinatorial expression.

Corollary 3.6. If n, k ≥ 1, then

r(n, k) =
k−1
∑

j=0

(

n− 1

2k − j − 2

)(

2k − j − 2

j

)

.

Let r(n) be the total number of runs of ascents over all flattened Catalan words of
length n.

Corollary 3.7. We have

∑

n≥0

r(n)xn =
x− 5x2 + 8x3 − 3x4

(1− 3x)2(1− x)2
.

Moreover, for n ≥ 1, we have

r(n) =
1

4
(3n−1 + 1)(n+ 1).

The first few values of the sequence r(n) (n ≥ 1) are

1, 3, 10, 35, 123, 427, 1460, 4923, 16405, 54131, . . . .

This sequence does not appear in the OEIS.
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3.2. Runs of Weak Ascents. In order to count nonempty flattened Catalan words ac-
cording to the length and the number runs of weak ascents, we introduce the following
bivariate generating function

W (x, y) =
∑

w∈Flat(C+)

x|w|ywruns(w) =
∑

n≥1

x|w|
∑

w∈Flat(Cn)

ywruns(w),

where the coefficient of xnyk is the number of flattened Catalan words of length n with k
runs of weak ascents.

Example 3.8. Consider the flattened Catalan word w = 012230123122 ∈ Flat(C12). Then
w has 3 runs of weak ascents: 01223, 0123, 122.

In Theorem 3.9, we give an expression for this generating function.

Theorem 3.9. The generating function for the number of nonempty flattened Catalan
words with respect to the length and the number of runs of weak ascents is

W (x, y) =
(1− 2x)xy

1− 4x+ 4x2 − x2y
.

Proof. Let w be a nonempty flattened Catalan word and let w = 0(w′ + 1)w′′ be the first
return decomposition, with w′, w′′ ∈ Flat(C). There are four different types of this word.
If w′ = w′′ = ǫ, then w = 0. Then its generating function is xy. If w′′ = ǫ and w′ 6= ǫ,
then w = 0(w′ + 1). Then the generating function is xW (x, y). Similarly, if w′ = ǫ and
w′′ 6= ǫ, then w = 0w′′. Then the generating function is xW (x, y). If w′ 6= ǫ and w′′ 6= ǫ,
then w = 0(w′ + 1)w′′. Note w′ is a weakly increasing word because w ∈ Flat(C+). Then
the generating function is given by

x
∑

k≥1

2kxkyW (x, y) =
x2y

1− 2x
W (x, y).

Therefore, we have the functional equation

W (x, y) = xy + 2xW (x, y) +
x2y

1− 2x
W (x, y).

Solving this equation, we obtain the desired result. �

Let w(n, k) denote the number of flattened Catalan words of length n with exactly k
runs of weak ascents, that is w(n, k) = [xnyk]W (x, y), which denotes the coefficient of xnyk
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in W (x, y). The first few values of this array are

W := [w(n, k)]n,k≥1 =



























1 0 0 0 0
2 0 0 0 0
4 1 0 0 0

8 6 0 0 0
16 24 1 0 0
32 80 10 0 0
64 240 60 1 0
128 672 280 14 0
256 1792 1120 112 1



























.

For example, w(4, 2) = 6, the entry boxed in W above, and the corresponding flattened
Catalan words (and lattice diagrams) are shown in Figure 4. The array W does not appear
in the OEIS.

0010 0100 0101 0110 0120 0121

Figure 4. Flattened Catalan words of length 4 with 2 runs of weak ascents.
The red marked vertex denotes the start of the second run of weak ascents.

Corollary 3.10. For n, k ≥ 1, we have

w(n, k) = 2n−2k+1

(

n− 1

2k − 2

)

.

Proof. From Theorem 3.9, we obtain the recurrence relation

w(n, k)− 4w(n− 1, k) + 4w(n− 2, k)− 4w(n− 2, k − 1) = 0, n ≥ 3, k ≥ 1,

with the initial values w(2, 1) = 2, w(1, 1) = 1, and w(n, k) for n < k. It is not difficult to
verify that 2n−2k+1

(

n−1
2k−2

)

satisfies the same recurrence relation and the same initial values.
Therefore, the sequences are the same. �

We give an alternate proof of Corollary 3.10 through a bijective proof. We state the
result formally for ease of reference.

Theorem 3.11. Flattened Catalan words of length n with k runs of weak ascents and
binary words of length n−1 where 2k−2 symbols are replaced with a dot • are in bijection.

Proof. We now give bijection between flattened Catalan words of length n with k runs of
weak ascents and binary words of length n − 1 where 2k − 2 symbols are replaced with
a dot • (Corollary 3.10 and a simple combinatorial argument prove that the two classes
of objects have the same cardinality). Let u = u1u2 · · ·un−1 be such a binary word with
2k− 2 •’s, and let us suppose that the •’s are on the positions {i1, i2, . . . , i2k−2}. Then, we
define the flattened Catalan words with k runs of weak ascents as follows:
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Let v = v0v1 · · · vn−1 be the word of length n constructed from u by fixing v0 = 0,
vi2a+1 := 1, vi2a := 0, a = 0, 1, . . . , k−1, and vi := ui for all other positions i. We fix i0 = 0
and i2k−1 = n. Now, v consists of the juxtaposition of k nonempty factors of the form
ra = vi2a · · · vi2a+2−1, a = 0, 1, . . . , k − 1, all of them starting with 0. We associate to each
factor s = 0s2 · · · sp the nondecreasing Catalan word c(s) = 0c2 · · · c|s|, where ci = ci−1 if
si = 0 and ci = ci−1+1, otherwise (for instance, if s = 011010110 then c(s) = 012233455).

The bijection f is defined as follows:

f(u) = c(r0)(a0 + c(r1))(a0 + a1 + c(r2)) · · · (a0 + a1 + · · ·+ ak−2 + c(rk−1)),

where aj is the number of 1’s in the factor vi2(j+1)
· · · vi2(j+1)+1−1.

For instance, if n = 29 and k = 4 and u = 10100 • 1010 • 0110 • 01 • 0110 • 0 • 00. We
have

v = 01010011010 00110101 0011010 000,

and
f(u) = 01122234455 22344556 4456677 666. �

Let w(n) be the total number of runs of weak ascents over all flattened Catalan words
of length n.

Corollary 3.12. For n ≥ 1, we have

∑

n≥1

w(n)xn =
x(1− 2x)3

(1− 4x+ 3x2)2
.

Moreover, for n ≥ 1, we have

w(n) =
1

36
(27− 9n+ (5 + n)3n) .

The first few values of the sequence w(n) (n ≥ 1) are

1, 2, 6, 20, 67, 222, 728, 2368, 7653, 24602, . . .

This sequence does not appear in the OEIS.

3.3. Runs of Descents. In order to count nonempty flattened Catalan words according to
the length and the number runs of descents, we introduce the following bivariate generating
function

R̄(x, y) =
∑

w∈Flat(C+)

x|w|yruns(w) =
∑

n≥1

x|w|
∑

w∈Flat(Cn)

yruns(w),

where the coefficient of xnyk is the number of flattened Catalan words of length n with k
runs of descents.

Example 3.13. Consider the flattened Catalan word w = 012230123122 ∈ Flat(C12).
Then w has 10 runs of descents: 0, 1, 2, 2, 30, 1, 2, 31, 2, and 2.

It is worth noticing that in any flattened Catalan word w of length n, we have runs(w) =
n+ 1− wruns(w). Therefore, we can directly deduce Theorem 3.14 and Corollary 3.15.
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Theorem 3.14. The generating function for the number of nonempty flattened Catalan
words with respect to the length and the number of runs of descents is

R̄(x, y) = yW

(

xy,
1

y

)

=
xy(1− 2xy)

1− 4xy − x2y + 4x2y2
.

Let r̄(n, k) denote the number of flattened Catalan words of length n with exactly k
runs of descents, that is r̄(n, k) = [xnyk]R̄(x, y), which denotes the coefficient of xnyk in
R̄(x, y). The first few values of this arrays are

R̄ := [r̄(n, k)]n,k≥1 =

























1 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0
0 1 4 0 0 0 0 0 0

0 0 6 8 0 0 0 0 0
0 0 1 24 16 0 0 0 0
0 0 0 10 80 32 0 0 0
0 0 0 1 60 240 64 0 0
0 0 0 0 14 280 672 128 0

























.

For example, r̄(4, 3) = 6, the entry boxed in R̄ above, and the corresponding flattened
Catalan words (and lattice diagrams) are shown in Figure 5. The array R̄ does not appear
in the OEIS.

0100 01010010 01210110 0120

Figure 5. Flattened Catalan words of length 4 with 3 runs of descents.
The red marked vertices denote the end of a run of descents.

Corollary 3.15. For n, k ≥ 1, we have

r̄(n, k) = 22k−n−1

(

n− 1

2(n− k)

)

.

A combinatorial interpretation of this last formula can be obtained from the bijection f
(see Section 3.2) between flattened Catalan words of length n with n+ 1− k runs of weak
ascents (or equivalently with k descents) and binary words of length n− 1 with (2n− 2k)
dots •.

Let r̄(n) be the total number of runs of descents over all flattened Catalan words of
length n.

Corollary 3.16. We have

∑

n≥0

r̄(n)xn =
x(1− 4x+ 4x2 + 2x3)

(1− 4x+ 3x2)2
.
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Moreover, for n ≥ 1, we have

r̄(n) =
1

36
(27n− 9 + (5n+ 1)3n) .

The first few values of the sequence r̄(n) (n ≥ 1) are

1, 4, 14, 50, 179, 632, 2192, 7478, 25157, 83660, . . . .

This sequence does not appear in the OEIS.

3.4. Runs of Weak Descents. In a flattened Catalan word of length n, the number of
runs of ascents plus the number of runs of weak descents equals n+1. Hence, the number
w̄(n, k) of flattened Catalan words of length n with k runs of weak descents equals the
number r(n, k) of flattened Catalan words of length n with k runs of ascents. Moreover,
we can defined a simple involution φ on Flat(Cn) such that φ(w) = w′ with wruns(φ(w)) =
runs(w), as follows: φ(ǫ) = ǫ, φ(0(w + 1)) = 0φ(w), φ(0w) = 0(1 + φ(w)), and φ(0(1 +
w)w′) = 0(1 + φ(w))φ(w′) whenever w,w′ 6= ǫ. Then, we the results can be restated as
those in Section 3.1.

Theorem 3.17. The generating function for the number of nonempty flattened Catalan
words with respect to the length and the number of runs of weak descents is

W̄ (x, y) = R(x, y) =
yx (1− xy − x)

x2y2 + x2y + x2 − 2 xy − 2 x+ 1
.

Therefore,

w̄(n, k) = r(n, k) =

k−1
∑

j=0

(

n− 1

2k − j − 2

)(

2k − j − 2

j

)

.

Corollary 3.18. We have
∑

n≥0

w̄(n)xn =
∑

n≥0

r(n)xn =
x (1− 3 x3 + 8 x2 − 5 x)

(3 x2 − 4 x+ 1)2
.

Moreover, for n ≥ 1, we have

w̄(n) = r(n) =
n+ 1

4
(1 + 3n−1).

4. The Distribution of Valleys

4.1. Valleys. In order to count nonempty flattened Catalan words according to the length
and the number ℓ-valleys, we introduce the following bivariate generating function

Vℓ(x, y) =
∑

w∈Flat(C+)

x|w|yℓ-val(w) =
∑

n≥1

x|w|
∑

w∈Flat(Cn)

yℓ-val(w),

where ℓ-val(w) denotes the number of occurrences of subwords of the form abℓ(b+ 1), and
a > b, in w. The coefficient of xnyk in Vℓ(x, y) is the number of flattened Catalan words of
length n with k ℓ-valleys.

In Theorem 4.1, we give an expression for this generating function.
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Theorem 4.1. The generating function for nonempty flattened Catalan words with respect
to the length and the number of ℓ-valleys is

Vℓ(x, y) =
x(1 − 2x+ xℓ+1 − xℓ+1y)

(1− x)(1− 3x+ xℓ+1 − xℓ+1y)
.

Proof. Let w be a nonempty flattened Catalan word, and let w = 0(w′ + 1)w′′ be the
first return decomposition, with w′, w′′ ∈ Flat(C). If w′ = w′′ = ǫ, then w = 0, and its
generating function is x. If w′ 6= ǫ and w′′ = ǫ, then w = 0(w′ + 1), and its generating
function is xVℓ(x, y). Similarly, if w′ = ǫ and w′′ 6= ǫ, then w = 0w′′, and its generating
function is xVℓ(x, y). Finally, if w′ 6= ǫ and w′′ 6= ǫ, then w = 0(w′ + 1)w′′. Because w is
a flattened Catalan word, w′ must be a weakly increasing word, and we distinguish two
cases. If w′′ is of the form 0

ℓ−1w′′′, where w′′′ starts with 01, then w = 0(w′ + 1)0ℓ−1w′′′,
and the generating function is

(

xℓ+1y

1− 2x

)

(Vℓ(x, y)− (x+ xVℓ(x, y)) .

Notice that Tℓ(x, y) := Vℓ(x, y)− (x+ xVℓ(x, y)) is obtained using the complement of the
generating function for the word 0 and the words starting with 00.

The second case is the negation, so, w′′ does not start with 0
ℓ
1. Notice that ℓ is fixed

because we are interested in the ℓ-valleys, so the generating function is

x2

1− 2x
(Vℓ(x, y)− xℓ−1Tℓ(x, y)).

Therefore, we have the functional equation

Vℓ(x, y) = x+ 2xVℓ(x, y) +

(

xℓ+1y

1− 2x

)

Tℓ(x, y) +
x2

1− 2x
(Vℓ(x, y)− xℓ−1Tℓ(x, y)).

Solving this equation, we obtain the desired result. �

Let vℓ(n, k) denote the number of flattened Catalan words of length n with exactly k
ℓ-valleys, that is vℓ(n, k) = [xnyk]Vℓ(x, y), which denotes the coefficient of xnyk in Vℓ(x, y).
For example, the first few values of this array for ℓ = 2 are

V2 := [v2(n, k)]n≥4,k≥0 =





















14 0 0 0
40 1 0 0

115 7 0 0
331 34 0 0
953 140 1 0
2744 527 10 0
7901 1877 64 0





















.

For example, v2(6, 1) = 7, the entry boxed in V2 above, and the corresponding flattened
Catalan words of length 6 with one 2-valley (and lattice diagrams) are shown in Figure 6.
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010010 010011001001 010012

011001 012001 012112

Figure 6. Flattened Catalan words of length 6 with one 2-valley. The red
edges indicate the location of the 2-valley.

The first column of the array V2 corresponds to OEIS entry [19, A052963].
Let vℓ(n) be the sum of all ℓ-valleys in the set of flattened Catalan words of length n.

Corollary 4.2. The generating function of the sequence vℓ(n) is

∑

n≥1

vℓ(n)x
n =

xℓ+3

(1− x)(1− 3x)2
.

Moreover, for n ≥ 1, we have

vℓ(n) =
1

4

(

1− 3n−2−ℓ + 2 · 3n−2ℓ(n− 2− ℓ)
)

.

Taking ℓ = 1 in Theorem 4.1, we obtain the generating function for nonempty flattened
Catalan words with respect to the length and the number of short valleys

V1(x, y) =
∑

w∈Flat(C+)

x|w|y1-val(w) =
x− 2x2 + x3(1− y)

(1− x)(1− 3x+ x2(1− y))
.

Let v1(n, k) denote the number of flattened Catalan words of length n with exactly k
short valleys, that is v1(n, k) = [xnyk]V1(x, y), which denotes the coefficient of xnyk in
V1(x, y). The first few values of this array are

V1 = [v1(n, k)]n≥1,k≥0 =



























1 0 0 0
2 0 0 0
5 0 0 0
13 1 0 0

34 7 0 0
89 32 1 0
233 122 10 0
610 422 61 1
1597 1376 295 13



























.

For example, v1(5, 1) = 7, the entry boxed in V1 above, and the corresponding flattened
Catalan words of length 5 with exactly one short valley (and lattice diagrams) are shown
in Figure 7.

http://oeis.org/A052963


FLATTENED CATALAN WORDS 15

01010 01011 01101 00101

01012 01201 01212

Figure 7. Flattened Catalan words of length 5 with one short valley. The
red edges indicates the location of the short valley.

Remark 4.3. In [3], we proved that Catalan words of length n with k short valleys are in
one-to-one correspondence with Dyck paths of semilength n with k occurrences of DDUU.
Taking the restriction on flattened Catalan words of this bijection, we obtain a one-to-one
correspondence between flattened Catalan words of length n and Dyck paths of semilength
n with k occurrences of DDUU, where the height sequence of occurrences DDU (from left to
right) is nondecreasing.

We can also obtain the generating function for the number of flattened Catalan words
of length n with respect to the number of valleys (we consider all ℓ-valleys for ℓ ≥ 1).

Theorem 4.4. The generating function for nonempty flattened Catalan words with respect
to the length and the number of valleys is

V (x, y) =
x− 3x2 + x3(3− y)

(1− x)(1 − 4x+ 4x2 − x2y)
.

Let v(n, k) denote the number of flattened Catalan words of length n with exactly k
valleys, that is v(n, k) = [xnyk]V (x, y), which denotes the coefficient of xnyk in V (x, y).
The first few values of this arrays are

V = [v(n, k)]n≥1,k≥0 =



























1 0 0 0
2 0 0 0
5 0 0 0
13 1 0 0
33 8 0 0
81 40 1 0

193 160 12 0
449 560 84 1
1025 1792 448 16



























.

For example, v(7, 2) = 12, the entry boxed in V above, and the corresponding flattened
Catalan words of length 7 with exactly two valleys are

0010101, 0100101, 0101001, 0101010, 0101011, 0101012,

0101101, 0101201, 0101212, 0110101, 0120101, 0121212.
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Corollary 4.5. For n ≥ 0 we have

v(n, k) =

{

(n− 1)2n−2 + 1, if k = 0

2n−2k−2
(

n−1
2k+1

)

, if k ≥ 1
.

Note that v(n, 0) corresponds to OEIS entry [19, A005183].

Remark 4.6. In [3], we proved that Catalan words of length n with k valleys are in one-
to-one correspondence with ordered trees with n edges and having exactly k + 1 nodes
all of those children are leaves. Taking the restriction on flattened Catalan words of this
bijection, we obtain a one-to-one correspondence between flattened Catalan words of length
n and ordered trees with n edges and with k + 1 nodes having only children as leaves and
satisfying the following:

• if T1, T2, . . . , Tr are the subtrees of the root, then Ti, i ∈ [1, r− 1], is nondecreasing
(i.e. for any node, its subtrees, except the rightmost, consist of one node only),

• the rightmost subtree of the root again satisfies all these properties.

Let v(n) be the sum of all valleys in the set of flattened Catalan words of length n.

Corollary 4.7. The generating function of the sequence v(n) is

∑

n≥0

v(n)xn =
x4

(1− x)2(1− 3x)2
.

Moreover, for n ≥ 4, we have

v(n) =
1

36
(3n(n− 4) + 9n) .

For n ≥ 4, the first few values of the sequence v(n) are

1, 8, 42, 184, 731, 2736, 9844, 34448, 118101, 398584, . . . .

This sequence corresponds to OEIS entry [19, A212337].

4.2. Symmetric Valleys. A symmetric valley is a valley of the form a(a−1)ℓa with ℓ ≥ 1.
Let symv(w) denote the number of symmetric valleys in the word w. In order to count
flattened Catalan words according to the length and the number of symmetric valleys, we
introduce the following bivariate generating function generating function

S(x, y) =
∑

w∈Flat(C+)

x|w|ysymv(w) =
∑

n≥1

x|w|
∑

w∈Flat(Cn)

ysymv(w),

where the coefficient of xnyk in S(x, y) is the number of nonempty flattened Catalan words
of length n with k symmetric ℓ-valleys.

In Theorem 4.8, we give an expression for this generating function.

Theorem 4.8. The generating function of the nonempty flattened Catalan words with
respect to the length and the number of symmetric valleys is

S(x, y) =
x(1 − 2x)(1− 2x+ 2x2 − x2y)

(1− x)(1− 5x+ 8x2 − 5x3 − x2y + 2x3y)
.

http://oeis.org/A005183
http://oeis.org/A212337
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Proof. Let w be a nonempty flattened Catalan word, and let w = 0(w′ + 1)w′′ be the first
return decomposition, with w′, w′′ ∈ C. If w′ = w′′ = ǫ, then w = 0, and its generating
function is x. If w′ 6= ǫ and w′′ = ǫ, then w = 0(w′ + 1), and its generating function is
xS(x, y). Similarly, if w′ = ǫ and w′′ 6= ǫ, then w = 0w′′, and its generating function is
xS(x, y). Finally, if w′ 6= ǫ and w′′ 6= ǫ, then w = 0(w′ + 1)w′′, we consider three cases.

(1) If w′ = 0
k and w′′ has a nonzero entry, then its generating function is

(

x2

1− x

)

y

(

S(x, y)−
x

1− x

)

.

(2) If w′ is a weakly increasing flattened Catalan word different than 0
k, and w′′ has a

nonzero entry, then its generating function is

x

(

x

1− 2x
−

x

1− x

)(

S(x, y)−
x

1− x

)

.

(3) If w′ is a weakly increasing flattened Catalan word and w′′ = 0
k, then its generating

function is
x3

(1− x)(1− 2x)
.

Therefore, we have the functional equation

S(x, y) = x+ 2xS(x, y) +

(

x2

1− x

)

y

(

S(x, y)−
x

1− x

)

+

x

(

x

1− 2x
−

x

1− x

)(

S(x, y)−
x

1− x

)

+
x3

(1− x)(1− 2x)
.

Solving the obtained functional equation yields the desired result. �

Let s(n, k) denote the number of flattened Catalan words of length n with exactly k
symmetric valleys, that is s(n, k) = [xnyk]S(x, y), which denotes the coefficient of xnyk in
S(x, y). The first few values of this arrays are

S = [s(n, k)]n≥1,k≥0 =

























1 0 0 0 0
2 0 0 0 0
5 0 0 0 0
13 1 0 0 0

34 7 0 0 0
90 31 1 0 0
242 113 10 0 0
659 375 59 1 0

























.

For example, s(5, 1) = 7, the entry boxed in S above, and the corresponding flattened
Catalan words of length 5 with 1 symmetric valley are given in Figure 8. The array S does
not appear in the OEIS.
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01010 01011

01012

00101 01001

01101 01212

Figure 8. Flattened Catalan words of length 5 with one symmetric valley.
In red we mark the location of the symmetric valley.

Let s(n) be the sum of all symmetric valleys in the set of flattened Catalan words of
length n.

Corollary 4.9. The generating function of the sequence s(n) is

∑

n≥0

s(n)xn =
x4(1 + 2x)

(1− 3x)2(1− x)3
.

Moreover, for n ≥ 4, we have

s(n) =
1

144

(

3n(2n− 5)− 18n2 + 54n− 27
)

.

The first few values of the sequence s(n) (n ≥ 4) are

1, 7, 33, 133, 496, 1770, 6142, 20902, 70107, 232489, . . . .

This sequence does not appear in the OEIS.

5. The Distribution of Peaks

5.1. Peaks. In order to count flattened Catalan words according to the length and the
number of ℓ-peaks, we introduce the following bivariate generating function

Pℓ(x, y) =
∑

w∈Flat(C+)

x|w|yℓ-peak(w) =
∑

n≥1

x|w|
∑

w∈Flat(Cn)

yℓ-peak(w),

where ℓ-peak(w) denotes the number of occurrences of subwords of the form a(a+1)ℓb, and
a ≥ b, in w. The coefficient of xnyk in Pℓ(x, y) is the number of flattened Catalan words
of length n with k ℓ-peaks.

In Theorem 5.1, we give an expression for this generating function.

Theorem 5.1. The generating function for nonempty flattened Catalan words with respect
to the length and the number of ℓ-peaks is

Pℓ(x, y) =
x(1− 2x)

(1− x)(1− 3x+ xℓ+1(1− y))
.
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Proof. Let w be a nonempty flattened Catalan word, and let w = 0(w′ + 1)w′′ be the first
return decomposition, with w′, w′′ ∈ C. If w′ = w′′ = ǫ, then w = 0, and its generating
function is x. If w′ 6= ǫ and w′′ = ǫ, then w = 0(w′ + 1), and its generating function is
xPℓ(x, y). Similarly, if w′ = ǫ and w′′ 6= ǫ, then w = 0w′′, and its generating function is
xPℓ(x, y). Finally, if w

′ 6= ǫ and w′′ 6= ǫ, then w = 0(w′ + 1)w′′, its generating function is

x

(

x

1− 2x
− xℓ −

xℓ+1

1− 2x

)

Pℓ(x, y) + xy

(

xℓ +
xℓ+1

1− 2x

)

Pℓ(x, y).

Therefore, we have the functional equation

Pℓ(x, y) = x+ 2xPℓ(x, y) + x

(

x

1− 2x
− xℓ −

xℓ+1

1− 2x

)

Pℓ(x, y)

+ xy

(

xℓ +
xℓ+1

1− 2x

)

Pℓ(x, y).

Solving the obtained functional equation yields the desired results. �

Let pℓ(n) be the sum of all ℓ-peaks in the set of flattened Catalan words of length n.

Corollary 5.2. The generating function of the sequence pℓ(n) is

∑

n≥1

pℓ(n)x
n =

xℓ+2(1− 2x)

(1− 3x)2(1− x)
.

Moreover, for n ≥ 1 we have

pℓ(n) =
1

4

(

(3n−ℓ−2(2n+ 1− 2ℓ))− 1
)

.

Taking ℓ = 1 in Theorem 5.1, establishes that the generating function for flattened
Catalan words with respect to the length and the number of short peaks is

P1(x, y) =
x(1− 2x)

(1− x)(1− 3x+ x2(1− y))
.

Let p1(n, k) denote the number of flattened Catalan words of length n with exactly k short
peaks, that is p1(n, k) = [xnyk]P1(x, y), which denotes the coefficient of xnyk in P1(x, y).
The first few values of this array are

P1 = [p1(n, k)]n≥1,k≥0 =



























1 0 0 0 0
2 0 0 0 0
4 1 0 0 0
9 5 0 0 0
22 18 1 0 0

56 58 8 0 0
145 178 41 1 0
378 532 173 11 0
988 1563 656 73 1



























.
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For example, p1(6, 2) = 8, the entry boxed in S above, and the corresponding flattened
Catalan words of length 6 with 2 short peaks are

001010, 010100, 010101, 010010, 010120, 010121, 012010, 012121.

While the full array P1 does not appear in the OEIS, for n ≥ 1 we have p1(n, 0) =
F2(n−1) + 1, where Fm is the mth Fibonacci number with initial values F1 = F2 = 1. For
n ≥ 1, the sequence p1(n, 0) corresponds to the OEIS entry [19, A055588].

Using a similar proof as for Theorem 5.1, we generalize the result in order to obtain the
following generating function for the number of flattened Catalan words of length n with
respect to the number of peaks (we consider all ℓ-peaks for ℓ ≥ 1).

Theorem 5.3. The generating function for flattened Catalan words with respect to the
length and the number of peaks is

P (x, y) =
x(1− 2x)

1− 4x+ 4x2 − x2y
.

Let p(n, k) denote the number of flattened Catalan words of length n with exactly k
peaks, that is p(n, k) = [xnyk]P (x, y), which denotes the coefficient of xnyk in P (x, y). The
first few values of this arrays are

P = [p(n, k)]n≥1,k≥0 =



























1 0 0 0 0
2 0 0 0 0
4 1 0 0 0

8 6 0 0 0
16 24 1 0 0
32 80 10 0 0
64 240 60 1 0
128 672 280 14 0
256 1792 1120 112 1



























.

For example, p(4, 1) = 6, the entry boxed in P above, and the corresponding flattened
Catalan words of length 4 with 1 peaks are

0010, 0100, 0110, 0101, 0120, 0121.

The array P does not appear in the OEIS.
Let p(n) be the sum of all peaks in the set of flattened Catalan words of length n.

Corollary 5.4. The generating function of the sequence p(n) is

∑

n≥0

p(n)xn =
(1− 2x)x3

(1− 4x+ 3x2)2
.

Moreover, for n ≥ 3, we have

p(n) =
1

4
(3n−2 − 1)(n− 1).

http://oeis.org/A055588
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The first few values of the sequence p(n) (n ≥ 3) are

1, 6, 26, 100, 363, 1274, 4372, 14760, 14760, 49205, . . . .

This sequence corresponds to the OEIS entry [19, A261064]. Our combinatorial interpre-
tation is new.

5.2. Symmetric Peaks. A symmetric peak is a peak of the form a(a + 1)ℓa with ℓ ≥ 1.
Let symp(w) denote the number of the symmetric peaks of the word w. In order to count
flattened Catalan words according to the length and the number symmetric peaks, we
introduce the following bivariate generating function

T (x, y) =
∑

w∈Flat(C+)

x|w|ysymp(w) =
∑

n≥1

x|w|
∑

w∈Flat(Cn)

ysymp(w),

where the coefficient of xnyk in T (x, y) is the number of flattened Catalan words of length n
with k symmetric peaks.

Theorem 5.5, we give an expression for this generating function.

Theorem 5.5. The generating function of the nonempty flattened Catalan words with
respect to the length and the number of symmetric peaks is

T (x, y) =
x(1− x)(1− 2x)

1− 5x+ 8x2 − 5x3 − x2y + 2x3y
.

Proof. Let w be a nonempty flattened Catalan word, and let w = 0(w′ + 1)w′′ be the
first return decomposition, with w′, w′′ ∈ Flat(C). If w′ = w′′ = ǫ, then w = 0, and its
generating function is x. If w′ 6= ǫ and w′′ = ǫ, then w = 0(w′ + 1), and its generating
function is xT (x, y). Similarly, if w′ = ǫ and w′′ 6= ǫ, then w = 0w′′, and its generating
function is xT (x, y).

Finally, if w′ 6= ǫ and w′′ 6= ǫ, then w = 0(w′ + 1)w′′, and we have two cases to consider.

(1) If w′ is all 0’s, its generating function is

x2y

1− x
T (x, y).

(2) Otherwise, the generating function is

x

(

x

1− 2x
−

x

1− x

)

T (x, y).

Therefore, we have the functional equation is

T (x, y) = x+ 2xT (x, y) +
x2y

1− x
T (x, y) + x

(

x

1− 2x
−

x

1− x

)

T (x, y).

Solving this equation yields the desired result. �

http://oeis.org/A261064
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Let t(n, k) denote the number of flattened Catalan words of length n with exactly k
symmetric peaks, that is t(n, k) = [xnyk]T (x, y), which denotes the coefficient of xnyk in
T (x, y). The first few values of this arrays are

T = [t(n, k)]n≥1,k≥0 =

























1 0 0 0 0
2 0 0 0 0
4 1 0 0 0

9 5 0 0 0
23 17 1 0 0
63 51 8 0 0
176 149 39 1 0
491 439 153 11 0

























.

For example, t(4, 1) = 5, the entry boxed in T above, and the corresponding flattened
Catalan words of length 4 with 1 symmetric peak (and lattice diagrams) are shown in
Figure 9.

0100 0101 0010 01210110

Figure 9. Flattened Catalan words of length 4 with 1 symmetric peak. In
red we mark the location of the symmetric peak.

The first and second column of the array T coincides with OEIS entries [19, A369328,
A290900]. The full array T does not appear in the OEIS.

Let t(n) be the sum of all symmetric peaks in the set of flattened Catalan words of
length n.

Corollary 5.6. The generating function of the sequence t(n) is

∑

n≥0

t(n)xn =
(1− 2x)2x3

(1− 3x)2(1− x)3
.

Moreover, for n ≥ 3, we have

t(n) =
1

144

(

63 + 3n + 2(−45 + 3n)n + 18n2)
)

.

For n ≥ 3, the first few values of the sequence t(n) are

1, 5, 19, 67, 230, 778, 2602, 8618, 28303, 92275, . . . .

This sequence does not appear in the OEIS.
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Cedex, France

Email address : barjl@u-bourgogne.fr

(P. E. Harris)Department of Mathematical Sciences, University of Wisconsin-Milwaukee,

Milwaukee, WI 53211 United States

Email address : peharris@uwm.edu
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