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Local minima in Newton’s aerodynamical problem

and inequalities between norms of partial derivatives
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Abstract

The problem considered first by I.Newton (1687) consists in finding a surface
of the minimal frontal resistance in a parallel flow of non-interacting point parti-
cles. The standard formulation assumes that the surface is convex with a given
convex base Ω and a bounded altitude. Newton found the solution for surfaces of
revolution. Without this assumption the problem is still unsolved, although many
important results have been obtained in the last decades. We consider the problem
to characterize the domains Ω for which the flat surface gives a local minimum. We
show that this problem can be reduced to an inequality between L2-norms of partial
derivatives for bivariate concave functions on a convex domain that vanish on the
boundary. Can the ratio between those norms be arbitrarily large? The answer
depends on the geometry of the domain. A complete criterion is derived, which also
solves the local minimality problem.

Mathematics subject classifications: 26D10, 49K21, 52A15

Key words and phrases: problems of minimal resistance, L2 norm, inequalities

between derivatives, concave functions, convex surfaces

1 Introduction

1.1 Newton’s problem of minimal resistance

We answer one question in Newton’s minimal resistance problem by means of an inequality
between norms of partial derivatives. The inequality deals with L2-norms of derivatives ux
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and uy of a concave bivariate function u(x, y) which is given on a convex domain and
vanishes on its boundary. We derive a geometrical criterion on the domain that ensures
that the ratio ‖ux‖2/‖uy‖2 can be arbitrarily large. Then using this result we decide when
a flat surface gives a local minimum in the Newton problem. We begin with notation and
statements of the problems.

Given a continuous function f : R2 → R, a bounded convex set with nonempty
interior Ω, and M > 0,

minimize F (u) =

∫

Ω

f(∇u(x, y)) dx dy (1)

in the class of continuous concave functions u : Ω → R satisfying 0 ≤ u ≤M .

This problem goes back to Isaac Newton and has a simple mechanical interpretation.
Namely, consider a convex body in Euclidean space R

3 with the coordinates x, y, z
and a homogeneous flow composed of point particles moving downward with the velocity
(0, 0,−1). The flow is so rare that the particles do not interact with each other; they hit
the body’s surface and are reflected in accordance with a certain scattering law, and then
go away. The scattering law can be understood as a family of probability measures in
S2 × S2 (the set of pairs (velocity of incidence, velocity after reflection) ) parameterized
by vectors from S2 (outward normal to the body at the point of reflection). As a result
of particle-body interaction, the drag force is created.

Let the front (exposed to the flow) part of the body’s boundary be the graph of a
concave function u, with the domain Ω of the function being the projection of the body
on the xy-plane; then the z-component of the drag force (usually called the resistance)
equals 2ρF (u), where F is defined according to (1), ρ is the density of the flow, and the
function f is determined by the scattering law. Thus, problem (1) is to find the body
having the minimal resistance among all convex bodies with the fixed projection Ω on the
xy-plane and with the fixed projection [0, M ] on the z-axis.

In particular, if the particles are reflected in the perfectly elastic (billiard) manner, f
is equal to

f(ξ1, ξ2) =
1

1 + ξ21 + ξ22
, (2)

and the (normalized) resistance equals

F (u) =

∫

Ω

1

1 + |∇u(x, y)|2
dx dy. (3)

Newton himself considered the problem of least resistance, in the case of elastic re-
flections, in the narrower class of convex rotationally symmetric bodies. Then the set
Ω is a circle with the radius, say, equal to L, the function u is radially symmetric,

2



u(x, y) = ϕ(
√

x2 + y2), and the functional (3) takes the form 2π
∫ L

0
1

1+ϕ′2(r)
r dr. Thus,

the problem amounts to minimizing the integral

∫ L

0

1

1 + ϕ′2(r)
r dr

in the class of concave monotone non-increasing functions ϕ : [0, L] → R satisfying
0 ≤ ϕ ≤ M . Newton provided the solution in geometric terms and without proof. Here
is how it looks when M/L ≈ 2 (see Fig. 1).

Figure 1: A solution of Newton’s problem.

The interest to Newton’s problem revived in the early 1990s starting from the seminal
paper [2] by Buttazzo and Kawohl. They posed the problem of minimizing (3), without the
symmetry condition, and conjectured that the solution does not coincide with Newton’s
one. Since then a significant work on the problem has been made (see, e.g., [3, 4, 5, 6,
7, 8, 9]). Some of the obtained results hold true also for the more general problem (1).
It was proved that the solution u always exists [2] and does not coincide with Newton’s
one [3]; that is, by relaxing the symmetry condition one can find bodies that are more
streamlined than Newton’s one. Further, |∇u| 6∈ (0, 1) [4], and if |∇u| takes the zero
value then it takes values arbitrarily close to 1 [5]. Additionally, it was proved that any
optimal body (that is, the set (x, y) ∈ Ω, 0 ≤ z ≤ u(x, y) with u optimal) is the convex
hull of the closure of the set of its singular points [6].

In [8] and [9] the problem is studied in several narrower classes of convex bodies. The
bodies in these classes are convex hulls of two curves, where the former curve is the fixed
circumference ∂Ω× {0} and the latter curve is to be optimized. In [8] the latter curve is
a convex closed curve in the horizontal plane z = M , while in [9] it is a convex curve in
a vertical plane situated between the planes z = 0 and z =M with the endpoints at two
opposite points of the circumference ∂Ω × {0}.

Sometimes the zero function u ≡ 0 is a solution of problem (1). For example, the
maximum of Newtonian resistance when f is given by (2) (or, equivalently, the minimum
of F with the integrand equal to −f) is attained at the zero function. Besides, it is proved
in [7] that, under quite mild conditions on Ω and f , the solution u of problem (1) satisfies
u⌋∂Ω = 0. In the present paper we are interested in the question, if the zero function is a
local minimum of the problem. (Note that in this setting the value of M does not make
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difference.) In the next section 1.2 we formulate the minimization problem, in a slightly
modified form as compared with the problem of minimal resistance, and state the main
results, Theorems 1 and 2. These theorems are proved in sections 2, 3, and 4.

1.2 Formulation of the problem and main results

Consider a convex bounded set with nonempty interior Ω on the plane R
2 with the co-

ordinates x, y. Denote by UΩ the set of continuous concave functions u : Ω → R with
bounded gradient such that u⌋∂Ω = 0.

Consider a tangent cone to Ω with the vertex at a singular point of ∂Ω. A straight
line that intersects the tangent cone through its vertex is called an angular support line.

In Fig 2, examples illustrating the notion of angular line are given.

Ω

(a)

Ω

(b)

Figure 2: In figure (a), both vertical lines of support to Ω are angular, while in figure (b),
both lines are not angular: the left line is tangent, and the right one is half-tangent to Ω.

The main results of this article are formulated in the following Theorems 1 and 2.

Theorem 1. (a) If at least one vertical (that is, parallel to the y-axis) line of support is
not angular then

sup
u∈UΩ

u 6≡0

∫

Ω
u2x dx dy

∫

Ω
u2y dx dy

= ∞.

(b) If both vertical lines of support are angular then

sup
u∈UΩ

u 6≡0

∫

Ω
u2x dx dy

∫

Ω
u2y dx dy

=: K <∞.

Remark 1. Note that without the concavity condition on the function u in Theorem 1,

the supremum of the ratio

∫

Ω
u2x dx dy

∫

Ω
u2y dx dy

is infinite for every convex domain Ω. To see this
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it suffices to take an arbitrary nonzero C1 function u0(x, y) that vanishes on ∂Ω and
multiply it by a highly oscillating function ϕ(x), for example, by ϕN(x) = sin Nx. Then
the ratio of norms of partial derivatives for the function u0(x, y)ϕN(x) tends to infinity
as N → ∞.

Remark 2. Theorem 1 can be attributed to the so-called inequalities between derivatives,
which is an important branch of the approximation theory known from the classical results
of Bernstein, Kolmogorov, Landau, Nikolsky, Calderon, Zygmund, etc. Such inequalities
involve norms of derivatives of various orders in different functional spaces. See [11] – [14]
for an extensive bibliography. We, however, have not meet special inequalities for concave
functions on convex domains. To the best of our knowledge, the result of Theorem 1 is
new.

Now we apply Theorem 1 to the following problem of minimal resistance: given a
continuous function f : R2 → R, find

inf
u∈UΩ

F (u), where F (u) =

∫

Ω

f(∇u(x, y)) dx dy. (4)

Note that in general a function u ∈ UΩ is not a C1 function; however, it is differentiable
almost everywhere. We define the C1 norm in the linear space of continuous and almost
everywhere differentiable functions u with the bounded gradient on Ω as follows:

‖u‖C1 = sup
(x,y)∈Ω

|u(x, y)|+ sup
(x,y)∈Ω

|ux(x, y)|+ sup
(x,y)∈Ω

|uy(x, y)|, (5)

the suprema in the second and third terms being taken over the points (x, y) where the
derivative ux and uy, respectively, exists.

Here we consider the question, if the zero function u ≡ 0 is a local minimum of problem
(4) in the C1 norm. Theorem 2 gives the answer to this question.

Theorem 2. Let f be twice differentiable at (0, 0).
(a) If the quadratic form f ′′(0, 0) is positive definite then u ≡ 0 is a local minimum of

problem (4).
(b) If f ′′(0, 0) is negative definite then u ≡ 0 is not a local minimum.
(c) Let f ′′(0, 0) be indefinite. Denote by −a < 0 < b its eigenvalues. Here one should

consider two cases.
(i) If at least one line of support parallel to the positive eigendirection (that is,

the eigendirection corresponding to the positive eigenvalue) of f ′′(0, 0) is not angular, then
u ≡ 0 is not a local minimum.

(ii) If both lines of support parallel to the positive eigendirection are angular then
for b/a < K, u ≡ 0 is not a local minimum and for b/a > K, u ≡ 0 is a local minimum,
where the value K > 0 is defined in claim (b) of Theorem 1.
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Remark 3. Note that K depends only on the domain Ω and on the positive and negative
eigendirections of f ′′(0, 0).

Claim (c) is of course the most important in Theorem 2. The case when f ′′(0, 0) is
semidefinite remains open.

The following statement is a direct consequence of Theorem 2

Corollary 1. If f ′′(0, 0) is indefinite and ∂Ω contains at most one singular point then
u ≡ 0 is not a local minimum of problem (4).

2 Proof of Theorem 1: claim (a)

Denote by lα the line of support with the outward normal (cosα, sinα), −π < α ≤ π,
and by Πα the closed half-plane bounded by lα and containing Ω. By the hypothesis, one
of the lines l0, lπ is not angular; let it be l0. Fix a value 0 < ϕ < π/2 and let

Ω′ = Ω′
ϕ = ∩|α|≥ϕΠα;

see Fig. 3. Since l0 is not angular, there is an open arc of ∂Ω contained in the interior of
Ω′. All lines of support at points of this arc correspond to angles in (−ϕ, ϕ).

Choose a regular point ξ on the arc, and let lθ, −ϕ < θ < ϕ, be the (unique) line of
support at this point.

Denote r = dist(ξ, ∂Ω′) > 0. Take ε > 0 and draw the line lθ,ε contained in the half-
plane Πθ (and therefore, parallel to lθ) at the distance ε from lθ. For ε sufficiently small,
the intersection of lθ,ε with Ω is a nonempty line segment with the length λ(ε) satisfying
λ(ε)/ε→ ∞ as ε → 0. Choose two interior points of the segment A = Aε and B = Bε so
as the segment AB belongs to the (r/2)-neighborhood of ξ and its length satisfies

|AεBε|

ε
→ ∞ as ε→ 0. (6)

See Fig. 3.
Take the convex hull of the sets Ω× {0} and AB × {1} in R

3. The upper part of its
boundary is the graph of a concave function u = uϕ,ε (the lower part is Ω× {0}).

The graph of u is the union of segments with the former endpoint on the boundary of
Ω and the latter one on the segment AB. Consider the natural projection (under the map
(x, y, z) 7→ (x, y)) of any such segment on the xy-plane. Let Ω1 = Ω1(ϕ, ε) be the union
of projections of segments with the former endpoint on ∂Ω ∩ ∂Ω′, and Ω2 = Ω2(ϕ, ε) be
the union of projections of segments with the former endpoint on ∂Ω \ ∂Ω′.

Note that Ω is the union of projections of segments with the latter endpoint at A or at
B and of two trapezoids (which may degenerate to triangles). One base of each trapezoid
coincides with AB, and the other one is the intersection of ∂Ω with lθ or of ∂Ω with lθ+π
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b

lθ

b

bΩ
ξ

A

B

Figure 3: Here Ω is the upper half-circle, and Ω′ contains Ω and is bounded by the dashed
broken line on the right hand side.

(each one of the intersections can degenerate to a point, the point ξ in the former case.)
Note also that the former trapezoid lies in Ω2.

We have Ω1 ∪ Ω2 = Ω and Ω1 ∩ Ω2 = [A,B]. Correspondingly,

∫

Ω

|∇u|2 dxdy = I1 + I2,

where

Ij = Ij(ϕ, ε) =

∫

Ωj

|∇u|2 dxdy, j = 1, 2.

For regular points of Ω1 one has |∇u| ≤
1

r/2
, hence

I1 ≤ |Ω|(2/r)2.

Here and in what follows, |Ω| means the area of Ω.
Further, taking into account that the triangle ABξ belongs to Ω2, its area equals

1
2
ε|AB|, and |∇u| = 1/ε at all points of the triangle, and using (6) one obtains

I2 ≥

∫

△AεBεξ

|∇u|2 dxdy =
1

2
ε|AεBε| · (1/ε)

2 → ∞ as ε→ 0.

On the other hand, at each regular point of Ω2 one has |uy| ≤ tanϕ |ux|, hence

|∇u|2 = u2x + u2y ≤ (1 + tan2 ϕ)u2x =
1

cos2 ϕ
u2x,
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and
∫

Ω2

u2x dxdy ≥ cos2 ϕ

∫

Ω2

|∇u|2 dxdy = cos2 ϕ I2 =⇒

∫

Ω2

u2y dxdy ≤ sin2 ϕ I2.

Fix ϕ (and therefore, r) and let ε → 0; the integral I2 goes to infinity, and I1 is
bounded, and therefore, I1x =

∫

Ω1
u2x dxdy and I1y =

∫

Ω1
u2y dxdy are also bounded. It

follows that
∫

Ω
u2x dx dy

∫

Ω
u2y dx dy

=

∫

Ω1
u2x dx dy +

∫

Ω2
u2x dx dy

∫

Ω1
u2y dx dy +

∫

Ω2
u2y dx dy

≥
I1x + cos2 ϕ I2
I1y + sin2 ϕ I2

,

hence the lower partial limit of the ratio satisfies

lim inf
ε→∞

∫

Ω
u2x dx dy

∫

Ω
u2y dx dy

≥ cot2 ϕ.

Since ϕ can be made arbitrarily small, the limit of the ratio is +∞. This proves claim
(a) of Theorem 1.

3 Proof of Theorem 1: claim (b)

Here we give two proofs of claim (b).
First proof

The intersections of vertical lines of support with Ω are points. They will be called
the left corner and the right corner.

For a certain 0 < α ≤ π/4, the domain Ω is contained between two rays with the
vertices at the left corner and the director vectors (sinα, cosα) and (sinα,− cosα) (the
rays OA and OB in Fig. 5).

Consider a nonzero function u ∈ UΩ. Without loss of generality assume that maxu =
1. Fix a value 0 < ϕ < α and denote

Ωu,ϕ = {(x, y) ∈ Ω : |uy| ≤ tanϕ |ux|}.

Observe that
∫

Ω

u2y dx dy ≥

∫

Ω\Ωu,ϕ

u2y dx dy ≥ tan2 ϕ

∫

Ω\Ωu,ϕ

u2x dx dy. (7)

We are going to prove that there exist values c1 and c2 depending only on Ω and ϕ
such that

∫

Ωu,ϕ

|∇u|2 dx dy ≤ c1 (8)
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and
∫

Ω

u2y dx dy ≥ c2. (9)

It will then follow from (8), (9), and (7) that

∫

Ω
u2x dx dy

∫

Ω
u2y dx dy

≤

∫

Ωu,ϕ
|∇u|2 dx dy

∫

Ω
u2y dx dy

+

∫

Ω\Ωu,ϕ
u2x dx dy

∫

Ω
u2y dx dy

≤
c1
c2

+ cot2 ϕ,

and the proof of claim (b) of Theorem 1 will be finished.

Proof of (8). We have Ωu,ϕ = Ω−− ∪ Ω+− ∪ Ω−+ ∪ Ω++, where

Ωε1ε2 = Ωu,ϕ
ε1ε2

= {(x, y) ∈ Ω : ε1ux ≥ 0, ε2uy ≥ 0, |uy| ≤ tanϕ |ux|}, with ε1, ε2 ∈ {+,−}.

It suffices to prove that there exists c > 0 depending only on Ω and ϕ such that
∫

Ω++

|∇u|2 dx dy ≤ c;

the proofs for the domains Ω+−, Ω−+, Ω−− are similar.

b

Ωu,ϕ
++

Figure 4: Several level curves of u and a set Ωu,ϕ
++ are shown.

Consider a system of coordinates t, s in Ω, where t = u(x, y) and s is a natural
parameter along level curves of u; see Fig. 4. One has

dt ds = |∇u| dx dy. (10)

We are going to obtain estimates from above for |∇u| and for the lengths of level
curves u(x, y) = t in Ω++.

Take a level curve u(x, y) = t in Ω++ and denote by d = d(t) the maximum distance
between a point of the curve and the left vertical line of support. (Note that the maximum
is attained at the lower point of the curve.) Let O be the left corner and AB be the vertical
segment at the distance d from the left vertical support line with the endpoints on the
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two rays with the vertex at O and the director vectors (sinα, cosα) and (sinα,− cosα);
see Fig. 5. The length l = l(t) of the level curve satisfies the inequality

l ≤ |AB| = 2d cotα. (11)

Indeed, draw the straight lines parallel to the upper ray through the points of the
segment AB (dotted lines in Fig. 5). They form the angle α with the segment and the
angles ψ + α with the level curve, with 0 ≤ ψ ≤ ϕ. The condition 0 < ϕ < α ≤ π/2− α
implies that the angles formed with the level curve lie in the interval [α, π/2]. This means
that the length of the arc of the curve between two infinitesimally close dotted lines is
not greater than the length of the part of the segment AB contained between the same
lines. Summing up over all infinitesimal arcs, one concludes that l ≤ |AB|.

α

ϕ

A

B

O

l′

ψψ

b

b

P

d

C

Figure 5: The domain Ω is contained in the angle AOB. The part of the level curve
u(x, y) = t contained in in Ω++ passes through P .

Let us now estimate the modulus of the gradient at a regular point, say P , of this
curve. Denote by ψ, 0 ≤ ψ ≤ ϕ, the angle between the tangent line to the curve at P
and the vertical. Draw the line l′ through O parallel to the tangent line and denote by
h(P ) the distance between these lines. Now consider the tangent plane to the graph of u
at the point (P, t). The intersection of this plane with the horizontal plane R

2 × {0} is a
line parallel to the tangent line (and therefore, to l′) and disjoint with the interior of Ω.
It follows that the distance between the line of intersection and the tangent line through
P is ≥ h(P ). This implies that

|∇u(P )| ≤ t/h(P ).

Draw the line through A with the director vector (− sinϕ, cosϕ) (dotted line in Fig. 5),
and let C be the point of its intersection with OB. Since P is contained in the triangle
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ACB, the distance h(P ) between P and l′ is greater than or equal to the distance between
△ACB and l′. Using geometric argument, one easily finds that the infimum of the latter

distance over ψ is attained at ψ = 0 and is equal to d
sin(α− ϕ)

sin(α + ϕ)
. Thus,

h(P ) ≥ d
sin(α− ϕ)

sin(α + ϕ)
,

and therefore, the gradient of u at P satisfies

|∇u| ≤
t sin(α + ϕ)

d sin(α− ϕ)
. (12)

Using (10), (11), and (12), one obtains

∫

Ω++

|∇u|2 dx dy =

∫ 1

0

∫ l(t)

0

|∇u| ds dt

≤

∫ 1

0

(

∫ l(t)

0

t sin(α + ϕ)

d(t) sin(α− ϕ)
ds
)

dt ≤

∫ 1

0

2t sin(α + ϕ)

sin(α− ϕ)
cotα dt =

sin(α + ϕ)

sin(α− ϕ)
cotα.

Inequality (8) is proved.

Proof of (9). Let the function u attain its maximum at ξ0 = (x0, y0), that is,
u(x0, y0) = 1. Let ũ be the smallest function from UΩ satisfying ũ(x0, y0) = 1. Clearly,
the graph of ũ is composed of line segments with one endpoint at (ξ0, 1) and the other
one on ∂Ω × {0}, and ũ ≤ u.

Theorem 1 jointly with generalization 3 of Section 2 in the paper [10] imply that if
a function f : R2 → R is convex and two convex functions u1 and u2 satisfy u2 ≤ u1 in
Ω and u1 = u2 on ∂Ω, then

∫

Ω
f(∇u2) dx dy ≥

∫

Ω
f(∇u1) dx dy. Now taking the convex

functions u1 = −ũ and u2 = −u and using that the function g(ζ) = f(−ζ) is also convex,
one gets

∫

Ω

g(∇u) dx dy ≥

∫

Ω

g(∇ũ) dx dy.

Taking g(ζ1, ζ2) = ζ22 , one obtains

∫

Ω

u2y dx dy ≥

∫

Ω

ũ2y dx dy. (13)

Let h be the maximum distance between a point of Ω and a line of support to Ω. The
modulus of gradient at each regular point of ũ satisfies |∇ũ| ≥ 1/h.

Recall that a point ξ ∈ ∂Ω is regular if and only if the line of support at ξ is unique,
and in this case the line is called the tangent line at ξ. Since both vertical lines of support
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are angular, there exists 0 < β < π/2 such that each tangent line forms an angle ≥ β
with the vertical.

Let a point ξ ∈ ∂Ω be regular, and let the tangent line at ξ form an angle ϕ with the
vertical, β ≤ ϕ ≤ π/2. Then each point (x, y) on the open interval with the endpoints ξ0
and ξ is a regular point of ũ, and |ũy| = sinϕ |∇ũ| ≥ sin β |∇ũ|. It follows that

∫

Ω

ũ2y dx dy ≥
sin2 β

h2
|Ω|. (14)

Inequalities (13) and (14) imply (9) with c2 =
sin2 β

h2
|Ω|.

Second proof

We need to prove that there is a constant M such that, for every continuous con-
cave function u with bounded gradient, which vanishes on the boundary of Ω, we have
∫

Ω
u2x dx dy ≤ M

∫

Ω
u2y dx dy .

Without loss of generality it may be assumed that Ω has the extreme left point O at
the origin and the projection of Ω to the x-axis is the segment [0, 2], i.e., its extreme right
point has coordinates (2, c).

Furthermore, after the linear change of variables x = x̃ , y = c
2
x̃ + ỹ the do-

main (x, y) ∈ Ω is mapped to a domain (x̃, ỹ) ∈ Ω̃ with the extreme right point D = (2, 0).
The Jacobian of this transform is equal to one and uy = uỹ, ux = ux̃ − c

2
uỹ. Therefore,

∫

Ω

u2y dx dy =

∫

Ω̃

u2ỹ dx̃ dỹ ;

∫

Ω

u2x dx dy =

∫

Ω̃

(

ux̃ −
c

2
uỹ

)2

dx̃ dỹ .

The inequality (a+ b)2 ≤ 2a2 + 2b2 implies that
∫

Ω

u2x dx dy ≤ 2

∫

Ω̃

u2x̃ dx̃ dỹ + 2

∫

Ω̃

( c

2
uỹ

)2

dx̃ dỹ .

Therefore, if the ratio

∫

Ω̃
u2x̃ dx̃dỹ

∫

Ω̃
u2ỹ dx̃dỹ

does not exceed a constant M̃ , then

∫

Ω
u2x dx dy

∫

Ω
u2y dx dx

does

not exceed M = 2M̃ + c2

2
. Thus, it suffices to prove the theorem for the domain Ω̃. To

simplify the notation we will assume that the original domain Ω has the extreme right
point D = (2, 0), so we shall not use tildes.

Let Ω be bounded below and above by the graphs of functions ϕ1(x) and ϕ2(x) re-
spectively. So, ϕ1 is convex, ϕ2 is concave on the segment [0, 2] and both those functions
vanish at its ends.

It suffices to prove the inequality for the the left part 1
2
Ω =

{

(x, y) ∈ Ω : 0 ≤ y ≤ 1
}

,
then the same argument can be applied to the right part. Denote

Ix =

∫ 1

0

dx

∫ ϕ2(x)

ϕ1(x)

u2x dy ; Iy =

∫ 1

0

dx

∫ ϕ2(x)

ϕ1(x)

u2y dy

12



We need to show that Ix ≤ M Iy.

Lemma 1. At every point (x, y) ∈ 1
2
Ω, we have

∣

∣ux
∣

∣≤ 1
x

(

u − y uy
)

.

Proof. Denote by L(x, y) the tangent plane to the graph of the function u at a regular
point (x, y) ∈ Ω; see Fig. 6. The equation of this plane in R

3 is

(x′, y′, z′) ∈ L(x, y) ⇔ z′ − z = (x′ − x) ux(x, y) + (y′ − y) uy(x, y) ,

where z = u(x, y). Since u is concave, it follows that L(x, y) is located above the
graph. i.e., z′ ≥ u(x′, y′). At the point O = (0, 0), we have u = 0 and therefore, z′ ≥ 0.
Substituting the point (0, 0, z′) to the equation of the plane, we get z+(−x)ux+(−y)uy =
z′ ≥ 0. Thus, u − xux − y uy ≥ 0 and so, ux ≤ 1

x

(

u − y uy
)

. This proves the lemma
in the case ux(x, y) ≥ 0.

If ux(x, y) < 0, then we apply the same argument to the point D = (2, 0), where we
also have z′ ≥ 0. Substituting the point (2, 0, z′) to the equation of L(x, y), we obtain
z + (2 − x)ux + (−y)uy ≥ 0, which implies ux ≥ 1

2−x

(

−u + y uy
)

. Consequently,

|ux| = −ux ≤ 1
2−x

(

u − y uy
)

. The right hand side must be positive, and since x ≤ 1,

we have 2− x ≥ x, which implies |ux| ≤
1
x

(

u − y uy
)

. This completes the proof of the
lemma.

b

b

b

b

(0, 0, z′)

(2, 0, z′)

Ω
(x, y)

D (2, 0)O

(x, y, z)L(x
, y)

u(x, y)

y = ϕ
1 (x)

y = ϕ2(x)

Figure 6: The tangent plane to the graph of u.

�

Now we continue the proof of the inequality. Applying Lemma 1 and the inequality
(a+ b)2 ≤ 2a2 + 2b2, we get Ix =

∫ 1

0

dx

∫ ϕ2(x)

ϕ1(x)

u2x dy ≤

∫ 1

0

dx

x2

∫ ϕ2(x)

ϕ1(x)

(

u− y uy
)2
dy ≤

∫ 1

0

dx

x2

∫ ϕ2(x)

ϕ1(x)

(

2u2+2y2 u2y
)

dy =

13



2

∫ 1

0

dx

x2

∫ ϕ2(x)

ϕ1(x)

u2 dy + 2

∫ 1

0

dx

∫ ϕ2(x)

ϕ1(x)

(y

x

)2

u2y dy . (15)

The convex domain Ω lies between two its tangents at the point O. Consequently, for

every (x, y) ∈ Ω, we have ϕ′
1(0) ≤

y

x
≤ ϕ′

2(0). In the notation m = max{|ϕ′
1(0)| , |ϕ

′
2(0)|},

we get
(y

x

)2

≤ m2 and therefore, the second integral in the sum (15) does not exceed
∫ 1

0
dx

∫ ϕ1(x)

ϕ1(x)
m2 u2y dy = m2 Iy. To estimate the first integral in (15), we use the

Wirninger inequality (see, e.g., Section 7.7 of the book [11]): for an absolutely continuous
function v on [0, 1] with a derivative from L2 and with v(0) = v(1) = 0, we have

∫ 1

0

v2(t) dt ≤
1

π2

∫ 1

0

v̇2(t) dt

(the equality is attained for v(t) = sin(πt)). After the change of variables y = (1 −
t)ϕ1(x) + tϕ2(x), we obtain

∫ ϕ2(x)

ϕ1(x)

v2(y) dy ≤

(

ϕ2(x)− ϕ1(x)

π

)2 ∫ ϕ2(x)

ϕ1(x)

v̇2(y) dy .

Now substitute this inequality to the first integral in (15):

∫ 1

0

dx

x2

∫ ϕ2(x)

ϕ1(x)

u2 dy ≤

∫ 1

0

dx

π2

(

ϕ2(x)− ϕ1(x)

x

)2 ∫ ϕ2(x)

ϕ1(x)

u2y dy

Note that
ϕ2(x)− ϕ1(x)

x
≤ ϕ′

2(0)− ϕ′
1(0) ≤ 2m. Therefore, the latter integral does not

exceed
4m2

π2

∫ 1

0

dx

∫ ϕ2(x)

ϕ1(x)

u2y dy =
4m2

π2
Iy .

Combining those estimates, we conclude that Ix ≤ 2m2
(

1+ 4
π2

)

Iy, which completes the
proof.

4 Proof of Theorem 2

Take an ortonormal coordinate system x, y so as the eigendirections of the form f ′′(0, 0)
coincide with the x-axis and the y-axis. In this coordinate system the Taylor decomposi-
tion of f at the origin up to the quadratic term takes the form f(ζ) = f(0, 0)+αζ1+βζ2+
λ1ζ

2
1+λ2ζ

2
2+o(|ζ |

2) as |ζ | → 0, where ζ = (ζ1, ζ2). The contribution of the linear part

14



f(0, 0)+αζ1+βζ2 to the integral is a constant,
∫

Ω
(f(0, 0)+αux+βuy) dx dy = f(0, 0)|Ω|,

therefore one can assume without loss of generality that f(0, 0) = α = β = 0, and write

f(ζ) = λ1ζ
2
1 + λ2ζ

2
2 + o(|ζ |2) as |ζ | → 0. (16)

Recall that the C1 norm of u is defined by (5). Note that at any regular point of Ω one
has

|∇u| =
√

u2x + u2y ≤ |ux|+ |uy| ≤ ‖u‖C1. (17)

Proof of claim (a). Let f ′′(0, 0) be positive definite; then λ1 > 0 and λ2 > 0. Choose

0 < ε < min{λ1, λ2}. There exists δ > 0 such that if |ζ | < δ then the function o(|ζ |2) in
(16) satisfies |o(|ζ |2)| ≤ ε|ζ |2. It follows that if ‖u‖C1 < δ then, by (17), at any regular
point of Ω one has |∇u| < δ, hence f(∇u) ≥ (λ1 − ε)u2x + (λ2 − ε)u2y ≥ 0. This implies
that F (u) ≥ 0 for all u in the δ-neighborhood of zero, that is, u ≡ 0 is a local minimum
of F .

Proof of claim (b). Let f ′′(0, 0) be negative definite, and so, λ1 < 0 and λ2 < 0.
Similarly to (a), choose 0 < ε < min{−λ1, −λ2}. Again, there exists δ > 0 such that
if |ζ | < δ then o(|ζ |2) in (16) satisfies |o(|ζ |2)| ≤ ε|ζ |2. Thus, if ‖u‖C1 < δ then at any
regular point of Ω one has |∇u| < δ, hence f(∇u) < (λ1 + ε)u2x + (λ2 + ε)u2y ≤ 0. If,
additionally, u 6≡ 0 and hence, |∇u| 6= 0 at a certain point, then f(∇u) < 0 at this point.
This implies that F (u) < 0 for all u 6≡ 0 in the δ-neighborhood of the zero function, that
is, u ≡ 0 is not a local minimum of F .

Proof of claim (c). Let f ′′(0, 0) be indefinite; then λ1 and λ2 have different signs. Let,
say, λ1 = −a and λ2 = b with a and b positive. Denote

Fε(u) =

∫

Ω

(

(−a + ε)u2x + (b+ ε)u2y
)

dx dy.

The lines of support parallel to the positive eigendirection are vertical.
(i) Suppose that at least one vertical line of support is not angular. Take 0 < ε < a.

By claim (a) of Theorem 1, there is a nonzero ũ ∈ UΩ such that

∫

Ω

ũ2x dx dy >
b+ ε

a− ε

∫

Ω

ũ2y dx dy,

and so, Fε(ũ) < 0. There exists δ > 0 such that if |ζ | < δ then the function o(|ζ |2) in
(16) satisfies |o(|ζ |2)| ≤ ε|ζ |2. Thus, if ‖u‖C1 < δ then f(∇u) ≤ (−a+ ε)u2x+ (b+ ε)u2y at

any regular point of Ω, and therefore, F (u) ≤ Fε(u). It follows that for 0 < t <
δ

‖ũ‖C1

,

F (tũ) ≤ Fε(tũ) = t2Fε(ũ) < 0. Thus, u ≡ 0 is not a local minimum of F .
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(ii) Suppose now that both vertical lines of support are angular. Then by claim (b) of
Theorem 1,

sup
u∈UΩ

u 6≡0

∫

Ω
u2x dx dy

∫

Ω
u2y dx dy

= K, (18)

where K = K(Ω) > 0 is a real value.
Let b/a < K. Choose ε > 0 sufficiently small such that

b+ ε

a− ε
< K. (19)

Repeating the above argument, one concludes that for an appropriate δ > 0, if ‖u‖C1 < δ
then f(∇u) ≤ (−a + ε)u2x + (b+ ε)u2y at any regular point, and hence, F (u) ≤ Fε(u). In
view of (18) and (19), there exists ũ ∈ UΩ such that

∫

Ω

ũ2x dx dy >
b+ ε

a− ε

∫

Ω

ũ2y dx dy,

and so, Fε(ũ) < 0. It follows that for 0 < t <
δ

‖ũ‖C1

, F (tũ) ≤ Fε(tũ) = t2F (ũ) < 0.

Thus, u ≡ 0 is not a local minimum of F .
Let now b/a > K. Choose ε > 0 sufficiently small such that (b− ε)/(a+ ε) > K. By

(18), all nonzero functions u ∈ UΩ satisfy

∫

Ω

u2x dx dy <
b− ε

a + ε

∫

Ω

u2y dx dy.

whence F−ε(u) > 0. For an appropriate δ > 0, if ‖u‖C1 < δ and u 6≡ 0 then f(∇u) ≥
(−a−ε)u2x+(b−ε)u2y, hence F (u) ≥ F−ε(u) > 0. It follows that u ≡ 0 is a local minimum
of F .
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