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Abstract

Black Box Variational Inference is a promising framework in a succession of
recent efforts to make Variational Inference more “black box". However, in basic
version it either fails to converge due to instability or requires some fine-tuning of
the update steps prior to execution that hinder it from being completely general
purpose. We propose a method for regulating its parameter updates by reframing
stochastic gradient ascent as a multivariate estimation problem. We examine the
properties of the James-Stein estimator as a replacement for the arithmetic mean of
Monte Carlo estimates of the gradient of the evidence lower bound. The proposed
method provides relatively weaker variance reduction than Rao-Blackwellization,
but offers a tradeoff of being simpler and requiring no fine tuning on the part of
the analyst. Performance on benchmark datasets also demonstrate a consistent
performance at par or better than the Rao-Blackwellized approach in terms of
model fit and time to convergence.

1 Introduction

Black Box Variational Inference (BBVI) [1] presents a promising alternative to MCMC-based
techniques for fitting the posterior distribution in arbitrarily large Bayesian models. In line with the
general framework of Variational Inference (VI) [2], BBVI works around the tendency of MCMC
solutions to explode in computational complexity by providing an approximate, instead of an exact,
solution to the optimal parameters defining the model.

Where exact MCMC methods aim to produce random samples of the posterior distribution, VI works
by approximating the posterior with a family of tractable densities, indexed by free parameters known
as variational parameters. In this way, VI changes the problem from one of sampling (as in MCMC)
to one of optimization, to find the variational parameters that make the resulting density as close as
possible (in terms of Kullback-Leibler divergence) to the target posterior distribution [2].

However, the process of finding the correct optimization algorithm for the variational parameters can
lead to highly complex derivations that are prone to human error, still rendering the process of model
exploration quite slow [2]. The promise of BBVI is in removing the need for such derivations, by
providing a generalized algorithm for finding the variational parameters for models of any form and
size.

Our contribution lies primarily in our demonstration of the variance reduction properties of using
the James-Stein estimator in estimating noisy ELBO gradients in the BBVI Update Steps. Through
simulation studies, we are able to conclude that the James-Stein estimator yields tightly controlled
variance of the noisy ELBO gradients even as the complexity of the model grows.

The rest of this paper is organized as follows: section 2 presents the problem setting, introducing
the general algorithm for BBVI as well as its improved version via Rao-Blackwellization. We then
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present in section 3 our proposed improvement using the James-Stein estimator, casting BBVI (and
in general, stochastic gradient ascent problems) in the language of classical point estimation theory.
Finally, we provide empirical results in 4 through simulated and benchmark datasets involving finite
mixtures of Gaussians.

2 Preliminaries

We briefly introduce the general algorithm for BBVI. Suppose we have data y = {y1, y2, ..., yn}
with n observations for which we have posited some arbitrary model parameterized by θ, with prior
density p(θ). Bayesian data analysis primarily makes use of the posterior density,

p(θ|y) = p(y|θ)p(θ)/p(y)
where p(y|θ) denotes the model likelihood, and the marginal distribution p(y) is known as the
"evidence”.

For models arbitrarily large (or in the case of non-conjugacy), finding the form of p(θ|y) can be
exceedingly complex. In many cases, p(θ|y) may not even belong to a known family of densities,
and the complexity of the model makes applying exact MCMC inference too slow, consequently
inhibiting frequent and comprehensive model criticism and exploration. VI proceeds by finding an
approximating distribution q(θ|λ) that is much simpler in form, but analytically is nearly identical to
the posterior distribution. This is achieved by allowing the parameter λ to vary freely, and finding its
value such that the Kullback-Leibler divergence,

KL(q(θ|λ)||p(θ|y)) =
∫
θ

log

(
q(θ|λ)
p(θ|y)

q(θ|λ)
)
dθ (1)

is minimized.

Optimizing the KL-divergence directly can be intractable. Alternatively, one can make use of
a quantity referred to in VI and Expectation Propagation literature as the evidence lower-bound
(ELBO), maximizing on which is equivalent to minimizing the KL-divergence [1]. Via a common
decomposition [3] of (1), we can write the logarithm of the evidence p(y) as

log p(y) = L(λ) +KL(q(θ|λ)||p(θ|y))
where

L(λ) = Eq[log p(y, θ)− log q(θ|λ)] (2)

The form (2) is called the evidence lower-bound as log p(y) = L(λ) when q equals the posterior dis-
tribution exactly (i.e., KL(q(θ|λ)||p(θ|y)) = 0), and log p(y) > L(λ) otherwise. Thus, maximizing
L(λ) is equivalent to minimizing on KL(q(θ|λ)||p(θ|y)).

2.1 Black Box Variational Inference

Performing VI typically requires finding the appropriate coordinate ascent algorithm needed specific
to each model combination [2], but in BBVI this step is conveniently left out, opting instead of a
general algorithm that works for most cases. It is shown [1] that the gradient of L(λ) is given by

∇λL(λ) = Eq[∇λ log q(θ|λ)(log p(y, θ)− log q(θ|λ))] (3)

Which can now be used in a general gradient ascent algorithm. A sample of S draws θ ∼ q(θ|λ) can
be obtained and used to estimate the expectation using

∇̂λL =
1

S

S∑
s=1

∇λ log q(θ[s]|λ)(log p(y, θ[s])− log q(θ[s]|λ)) (4)

In simpler cases the gradient ∇λ log q(θ|λ), also known in classical statistical theory as the score
function, can be obtained analytically, but various autodifferentiation packages have become available
for most computational environments such that the algorithm can truly be approached in a black-box
manner. We can now present the “Naive” form of BBVI in terms of the stochastic gradient ascent
formulation in Algorithm 2 in our Supplementary Materials.
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2.2 Variance Control Using Rao-Blackwellization

However, this form of BBVI is noted for either failing to converge or find meaningful solutions within
reasonable time due to a high variance in its sampling distribution. This problem is addressed in the
original paper through Rao-Blackwellization [4]. First, we note that in most applications there will
be more than one parameter θ1, θ2, ..., θp in the posterior distribution, and generally each of them are
assigned their corresponding variational distribution λ1, λ2, ..., λp. The simplest and most commonly
used [2] variational family is the mean-field family, defined as follows.

Definition 1. Q is known as the mean-field variational family if for all q ∈ Q:

q(θ|λ) =
p∏

i=1

q(θi|λi) (5)

To be sure, the mean-field family is not the only one used when performing either BBVI or VI.
Other forms of VI have been proposed and explored in the literature for specific cases where the
mean-field assumption may be inappropriate [2]. For instance, structured variational inference [5, 6]
removes the independence assumption that is inherent in the mean-field flavor family by specifically
inducing dependencies between the variational parameters. Another approach is to expand the
mean-field family with the addition of latent variables that encode these relationships [7]. We follow
the mean-field assumption to facilitate a straightforward optimization problem in this paper, although
our proposed black box approach does not specifically require this factorization to hold.

In performing Rao-Blackwellization this factorization is exploited through the average (4), specifically
the difference between the log-joint distribution log p(y, θ[s]) and its approximation log q(θ[s]|λ),
being equal to

log p(y, θ[s])− log q(θ[s]|λ) =
p∑

j=1

(log p(y, θλj [s])− log q(θλj [s]|λj))

This grows linearly with the number of variational parameters p. Hence, the variance of the gradient
estimate ∇̂λL grows linearly as well. More importantly, we see that this growth in variance is mostly
unnecessary, as updating a particular parameter λj will be based on a gradient whose variance is
composed of those for other parameters λj′ , j′ ̸= j.

Using Rao-Blackwellization, the gradient is estimated for each λj parameter conditioned on current
values of the other variational parameters. That is, given q(θλj

|λj) as the terms of the approximation
that depend only on λj , and p(y, θλj

) as the terms of the joint distribution keeping only θλj
depending

on λj . Using an analogy from graphical models, these remaining terms are referred to as the Markov
Blanket [8] of λj . The update rule is modified in Algorithm 3 in our Supplementary Materials.

This results in best-in-class variance reduction for the algorithm. However, factorizing the joint and
variational distributions to obtain the corresponding update steps, while straightforward, requires
additional steps for the analyst before conducting BBVI, and can become unnecessarily tedious in the
case of large, highly-layered Bayesian models. This step is a significant hurdle in achieving a truly
black-box algorithm, and so in Section 3, we discuss an alternative that does not require finding the
appropriate factorization. We first conclude our discussion of preliminaries with a brief overview of
some related work and recent publications that have appeared since [1].

2.3 Related Work

BBVI has received increasing attention in the machine learning literature for its promise of a
general algorithm that can be applicable in a wide variety of settings. Recent work have explored
improvements to the algorithm by providing adaptive stopping criteria [9], as well as proving
convergence guarantees within common expected scenarios [10].

A related work worth mentioning [11] examines using the reparameterization trick [12, 13] to
reduce the variance of the gradient estimates used for the algorithm’s update step. However, the
reparametrization trick is not strictly a method for variance control in BBVI. Instead, it is a method for
changing the parameters of a learning parameter to remove constraints that might hinder computation.
This means that both Rao-Blackwellization and the James-Stein estimator can be used on the gradient
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estimators under reparametrization. We therefore focus primarily on Rao-Blackwellization as a
benchmark for our analysis.

Similarly, our proposed methodology remains sufficiently general such that it should be straightfor-
ward to combine with other emerging practices being proposed and tested in more recent works. For
instance, it is possible to apply our regularized ELBO gradient estimate with the automated stopping
and estimate correction logic proposed by [9]. In the following paper, we have returned to the basics
of BBVI to ensure that any variance reduction observed can confidently be attributed to our proposed
estimation method, and not as a side effect of competing layers in the algorithm.

Our proposal for the use of the James-Stein estimator is motivated by the logic of biasing the noisy
gradient estimate in stochastic gradient descent/ascent problems by preventing exploding gradients
from straying parameter updates into problematic regions. This is not a new idea in the deep
learning literature, where heuristics like gradient clipping [14, 3] are already established with proven
convergence guarantees. We explore this connection further in section 3.2.

3 Variance Control Using The James-Stein Estimator

We now propose our James-Stein BBVI with the objective of performing general variational inference
without requiring the analyst to find the necessary factorizations for BBVI-RB. This is achieved
through the James-Stein estimator. To better understand the motivation behind this proposal, we
recast the problem of gradient ascent in BBVI as an estimation problem.

3.1 Gradient Ascent As Estimation

In Algorithms 2 and 3, we perform gradient ascent of the form

λt = λt−1 + ρt∇̂λL(λt−1) (6)

where ∇̂λL(λt−1) is obtained via Monte Carlo samples as Equation (3) is intractable. The noise
in the ELBO estimate is due to this stochastic approach. Hence, we can consider this and the
general stochastic gradient ascent/descent problem as one of estimating a fixed but unknown gradient
µ = ∇λL. In consequence, it is feasible to borrow established techniques from statistical estimation
theory [15] for further constraining and regulating the behavior of (6).

We introduce the following necessary assumption, which is shared with the proof used by [11] to
demonstrate the variance reduction properties of the reparametrization trick.
Assumption 1. Given a sample zs, for s = 1, 2, ..., S, the sample average

µ̂ =
1

S

S∑
s=1

zs ∼ N (µ, σ2)

for

zs = ∇λ log q(θ[s]|λ)(log p(y, θ[s])− log q(θ[s]|λ))
and S → +∞.

Our confidence in the applicability of Assumption 1 rests in the Central Limit Theorem. We observe
that the estimator for the gradient is merely a simple average over independent, identically distributed
observations of zs. Thus, for S → ∞ sufficiently large, normality can reasonably be expected to
hold.

We see then that BBVI-Naive in Algorithm 2 can be recast as a maximum likelihood estimator,
µ̂MLE , as re-stated in the following theorem.
Theorem 1 (BBVI as MLE Estimator). BBVI-Naive, which we now denote as µ̂MLE is the Maximum
Likelihood estimator of µ = ∇λL, where

µ̂MLE =
1

S

S∑
s=1

zs (7)

for zs = ∇λ log q(θ[s]|λ)(log p(y, θ[s]) − log q(θ[s]|λ)). Furthermore, µ̂MLE is unbiased to the
true gradient µ.
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The proof immediately follows from Assumption 1. [1] supports the unbiasedness of this estimator,
showing that E(µ̂MLE) = µ. However, it is well known [15, 16] that for p > 2 dimensions, the
MLE estimator is dominated in mean square error (MSE) by the James-Stein estimator, specifically
the Positive Part James-Stein estimator.

Theorem 2 (Positive Part James-Stein Estimator). The Positive-Part James-Stein estimator µ̂JS+

given by

µ̂JS+ =

(
1− (p− 3)σ2

||z̄||2

)+

z̄

for z̄ = 1
S

∑
s zs and (g)+ = gI[0,+∞)(g) dominates µ̂MLE in MSE.

The proof for Theorem 2 is already a canonical result in estimation theory and can be obtained
from [15], while an Empirical Bayes approach can be found in [16]. The algorithm BBVI-JS+ is
summarized in Algorithm 1.

Algorithm 1: Positive-Part James-Stein BBVI (BBVI-JS+)
Input :Model, Monte Carlo Sample Size S, convergence threshold ε, learning rate ρt

Initialize λ0 randomly, set t = 0 and ∆ = ∞
while ∆ > ε do

t = t+ 1
// Draw S samples from q(θ|λt−1)
for s = 1 to S do

θ[s] ∼ q(θ|λt−1)
end
z̄ = 1

S

∑S
s=1 ∇λ log q(θ[s]|λt−1)(log p(y, θ[s])− log q(θ[s]|λt−1))

∇̂λL(λt−1) =

(
1− (p−3)σ2

||z̄||2

)+

z̄

λt = λt−1 + ρt∇̂λL(λt−1)

∆ = ||λt−λt−1||
||λt−1||

end

Having defined our proposed estimator, we can now make quantitative statements about its relationship
with both the Naive and Rao-Blackwellized versions of BBVI.

Theorem 3 (Variance Reduction of the James-Stein Estimator). Given the Naive BBVI/MLE Estimator
µ̂MLE and the Positive-Part James-Stein estimator µ̂JS+, then

V (µ̂JS+) < V (µ̂MLE)

Proof. Due to the MSE dominance of µ̂JS+ over µ̂MLE , and taking advantage of the Bias-Variance
decomposition of MSE, we have that

V (µ̂JS+) + Bias2(µ̂JS+) ≤ V (µ̂MLE)

as µ̂MLE is an unbiased estimator. From the above proof we find that the James-Stein estimator,
when applied to BBVI, should be able to control the sampling distribution of ∇̂L in Equation (6).
The shrinkage factor allows the parameter λt to move when the gradient is relatively small, but forces
it to remain near or at its previous value when the gradient explodes.

However, µ̂JS+ generally performs worse than Rao-Blackwellization µ̂RB as shown in the following
theorem.

Theorem 4. Given the Positive-Part James-Stein estimator µ̂JS+ and the Rao-Blackwellized BBVI
µ̂RB

V (µ̂RB) ≤ V (µ̂JS+)
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Proof. Under the factorized case (which is necessary anyway when using µ̂RB), we can split the
summation for some parameter λj

S∑
s=1

∇λ log q(θ[s]|λt−1)(log p(y, θ[s])− log q(θ[s]|λt−1)) =

S∑
s=1

∇λj log q(θλj [s]|λt−1
j )(log p(y, θλj [s])− log q(θλj [s]|λt−1

j ))

+

S∑
s=1

∇λ−j
log q(θ−λj

[s]|λt−1
−j )(log p(y, θλ−j

[s])− log q(θ−λj
[s]|λt−1

−j ))

We can think of the summation in the second term of the right-hand side as an anti-Markov blanket to
the parameter λj . Now, holding the norm ||z̄||2 constant,

V (µ̂JS+) = k × V (µ̂RB) + C

where

k =

[(
1− (p− 3)σ2

||z̄||2

)+]2
is a value constrained to [0, 1] and

C = k × V

(
1

S

S∑
s=1

∇λ−j
log q(θ−λj

[s]|λt−1
−j )(log p(y, θλ−j

[s])− log q(θ−λj
[s]|λt−1

−j ))

)
being the variance of the anti-Markov Blanket of λj approaches infinity with greater and greater
p. Hence, the theorem holds for C → +∞. Our proof has the interesting implication that it is, in
fact, possible for µ̂JS+ to outperform µ̂RB in variance, provided that C → 0. In practice this is only
possible when there are only very small number of variational parameters, and should be very rare (if
it ever occurs) in practice.

Also a consequence of this theorem is an interesting behavior that is achieved when applying the
positive-part James-Stein shrinkage factor to the Rao-Blackwellized estimator.

Corollary 1. Suppose we have a Positive-Part Rao-Blackwellized estimator µ̂RB+ given by

µ̂RB+ =

(
1− (p− 3)σ2

||µ̂RB ||2

)+

µ̂RB

Then its variance

V (µ̂RB+) ≤ V (µ̂RB)

Proof. We note that

V (µ̂RB+) = k × V (µ̂RB)

This means that a positive-component James Stein estimator applied on the Rao-Blackwellized
estimator further constricts the variance of the noisy ELBO gradient estimate.

3.2 Relationship to Gradient Clipping

The idea of regulating the path of estimated parameters in stochastic gradient ascent/descent problems
(6) directly through the gradient estimate is not new within the deep learning literature. In the
following section, we discuss the connection between the form we have proposed in Algorithm 1
with the method of gradient clipping in training deep neural networks.

Clipping mitigates the issue of exploding gradients, in which estimates of the gradients can become
very large during training, leading to instability and straying the parameter updates from convergence.
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Figure 1: Relationship between gradient clipping and the James-Stein estimator. Gradient clipping
Gc preserves values of the gradient only up to ||f ||2 ≤ c. The Positive Part James-Stein operator
JS+ penalizes ||f ||2 for being close to c and forces it towards zero.

The gradient estimate ∇̂L is effectively constricted by a pre-set radius c (which can be a learnable
parameter), such that ∇̂L can only take on values up to c. Formally, we can define a clipping function

Gc(f) = min

(
1,

c

||f ||

)
and modify Equation (6) to

λt = λt−1 + ρtGc(∇̂L(λt−1))∇̂L(λt−1)

The gradient used in each update step can only be a fraction c
||∇̂L(λt−1)|| of the actual gradient value

whenever ∇̂L(λt−1) > c. In better-behaved iterations when ∇̂L(λt−1) < c, the update step is
allowed to use the full value of the gradient. With this constraint, clipping prevents the gradients from
growing too large, thereby stabilizing the training process. In deep neural networks, clipping limits
the influence of any single training sample or layer on the overall parameter updates, leading to more
stable training.

We find that it is trivial to suppose a modified form given by

Gc(f) = min

(
1,

c

||f ||2

)
(8)

which simply means re-scaling the radius c to be in units of the squared norm of f . We now observe
the following relationship between clipping and our method.
Theorem 5. The Positive-Part James-Stein estimator µ̂JS+ represents a reversal of the modified
gradient clipping function (8). That is, the shrinkage operator,

JS(f) =

(
1− (p− 3)σ2

||f ||2

)+

= 1−Gc(f)

Proof. [16] show that the shrinkage operator(
1− (p− 3)σ2

||f ||2

)+

= 1−min

(
1, 1− (p− 3)σ2

||f ||2

)
which for c = ||f ||2 − (p− 3)σ2 satisfies the theorem.

This connection is illustrated in Figure 1. Gradient clipping is not a shrinkage method, as it does not
force the gradient to zero. Instead, clipping is concerned with keeping f within a region such that
its squared norm ||f ||2 ≤ c. On the other hand, the James Stein estimator is explicitly a shrinkage
method, and it forces the gradient to be as small as possible, imposing a penalty for being close to the
limit c.

We can then contrast our method from clipping by framing it within a developing framework within
the larger field of Bayesian Optimization [17] of keeping updates to stay as close as possible to
previous observations [18]. Whereas clipping is largely a heuristic to prevent exploding gradients,
application of the James-Stein estimator represents a prior belief that the correct update step is likely
to be small.
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3.3 Further Extensions

So far we have maintained ambiguity regarding the learning rate ρt. In practice, the exact value used
for this learning rate contributes significantly to the success of any stochastic gradient ascent/descent
problem. It is maintained [1] that BBVI will converge to its optimal values for a general class of
ρt, in fact requiring only that it follow the Robbins-Monro [19] conditions. In their extensions, it is
recommended that ρt can follow the AdaGrad algorithm [20, 3], as a way of adjusting the learning
rate of each parameter dynamically during training. This is achieved by scaling the learning rate for
each parameter based on the historical values of the gradient.

However, as a side effect of the biasing done by the James-Stein estimator on the gradient estimates,
we find that AdaGrad may be too aggressive in reducing the learning rate towards the latter runs of
the algorithm. As the biased gradient means that the algorithm is forced to consider smaller steps,
monotonically scaling down the learning rate too fast may prevent the algorithm from reaching an
optimal convergence point. Hence, we propose using RMSProp [3] instead, which adds an extra
parameter β that exponentially decreases the impact of the earlier iterations,

Gt = βGt−1 + (1− β)gt(gt)T

ρt = ηdiag(Gt + Iξ)−1/2

where gt represents the gradient estimate at the current step t, G0 = 0, and ξ is some small positive
number to prevent division by zero. The parameters β and η can both be considered as learnable
parameters, though in practice β = 0.9 or some similarly high number. This decay factor limits the
accumulation of historical gradients, and ensures that the learning rates do not become too small over
time.

4 Experiments

We perform experiments using simulated and benchmark datasets for finite Gaussian mixture models
to demonstrate the performance of our proposed algorithm. For demonstrating variance reduction
properties, we use simulated data following a univariate mixture of Gaussians and show that the
sampling distribution is constricted in BBVI-JS+. We also apply the algorithm to a set of benchmark
datasets for clustering tasks provided in the FCPS [21] package. All computations were performed on
R version 4.2.3 running under MacOS 14.4.1.

Figure 2: Resulting estimator variances from the Gaussian Mixture experiment with K = 2 to 10
components. BBVI-JS+ produces controlled variances in its sampling distribution for the ELBO
gradient compared to BBVI-Naive, but relative to BBVI-RB still grows with the number of parameters.
Interestingly, BBVI-RB+ provides even stricter variance control over BBVI-RB.

Simulated Data. We follow the formulation presented in [22] except the Dirichlet prior over the
mixture components as well as the Inverse-Gamma prior on the variance τ2. This model has been

8



selected as it permits mimicking the behavior of more complex models easily by adding more
components.

Figure 2 shows the resulting variances of the Naive, James-Stein (JS+), Rao-Blackwellized (RB) as
well as James-Stein applied on the Rao-Blackwellized (RB+) BBVI. We find that as the number of
components of the mixture distribution, the variance of BBVI-Naive increases linearly as expected.
On the other hand, the variance of both RB and RB+ versions remain controlled to several orders of
magnitude. Between these two bounds, we have BBVI-JS+ remaining within a level that is found
to be between 38 to 46% of BBVI-Naive in terms of relative efficiency. This confirms our result in
Theorems 3 and 4. Also in terms of relative efficiency, the performance of BBVI-RB is at around
0.00 to 0.04% of BBVI-Naive, while BBVI-RB+ is practically at 0.00%.

Benchmarks. Focusing now on the BBVI-JS+ and BBVI-RB algorithms, we make use of three
benchmark datasets found in the FCPS [21] package: EngyTime, Lsun3D, and Tetra. To accommodate
these datasets, we extend the univariate gaussian mixture model we used for our simulations to their
multivariate counterparts. The results for these benchmarks are provided in Table 1.

Table 1: Time to convergence and fit criteria of Rao-Blackwellized and James-Stein BBVI in three
benchmark datasets. For each run, we force the algorithm to take at least 100 iterations before
assessing convergence to allow ample warm-up. Due to the differing magnitudes of the gradients, the
parameter η for RMSProp between the Rao-Blackwellized and James-Stein have been adjusted.

Benchmark Method ηηη βββ K p
Fit

Iter Time ELBO LogLik DIC

EngyTime BBVI-RB 1.0 0.9 2 2 200 13.09 -2,268.88 -2,516.83 4,535.48
BBVI-JS+ 0.1 0.9 2 2 101 4.27 -2,231.65 -2,363.15 4,459.48

Lsun3D BBVI-RB 1.0 0.9 4 2 113 7.81 -1,921.70 -2,197.60 3,837.53
BBVI-JS+ 0.1 0.9 4 2 113 4.69 -1,859.93 -1,795.25 3,367.49

Tetra BBVI-RB 1.0 0.9 4 3 398 24.34 -3,197.82 -4,238.86 6,389.14
BBVI-JS+ 0.1 0.9 4 3 149 5.80 -2,470.81 -2,812.26 4,556.51

Results on the benchmark show that BBVI-JS+ combined with the RMSProp learning rate generally
reaches convergence faster than BBVI-RB even with its larger sampling distribution for the ELBO
gradient estimate. This performance is attributed to two key factors: because the ELBO gradients
are still computed as a whole, there is no need to cycle through the entire dataset for computing
the difference factor in Equation (3). Moreover, the shrinkage penalty in BBVI-JS+ appear to have
allowed the parameter to update slowly and with smaller steps per iteration, keeping the algorithm
from performing massive U-Turns in resulting ELBO. Also seen in Table 1 is that BBVI-JS+
consistently resulted in higher ELBO, and lower DIC than BBVI-RB, although the differences are
not very vast. At the very least, these results demonstrate that BBVI-JS+ is able to perform at least at
the level of BBVI-RB in coming up with optimal approximations to target posterior densities.

5 Conclusions

We have proposed a method of controlling for the variance of the noisy ELBO gradient estimates
in Black Box Variational Inference by first casting the stochastic gradient ascent problem as one of
estimating a true gradient at each iteration. Borrowing from an established property of multivariate
estimators, we proposed a shrinkage operator in the form of the Positive Part James-Stein estimator
to bias the gradients towards zero. The result is the inclusion of a prior belief at each iteration that
each parameter’s update step should be small. Theoretical and empirical results confirm that such a
behavior results in narrower sampling distributions for the estimated gradients, and in consequence
more stable paths towards optimal values of the variational parameters.
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A Algorithm Listings

In order to preserve space, we have left out the complete algorithm listing for two already known
variants of BBVI, particularly BBVI-Naive (Algorithm 2) and BBVI-RB (Algorithm 3).

Algorithm 2: Naive Black Box Variational Inference (BBVI-Naive) [1]
Input :Model, Monte Carlo Sample Size S, convergence threshold ε, learning rate ρt

Initialize λ0 randomly, set t = 0 and ∆ = ∞
while ∆ > ε do

t = t+ 1
// Draw S samples from q(θ|λt−1)
for s = 1 to S do

θ[s] ∼ q(θ|λt−1)
end
∇̂λL(λt−1) = 1

S

∑S
s=1 ∇λ log q(θ[s]|λt−1)(log p(y, θ[s])− log q(θ[s]|λt−1))

λt = λt−1 + ρt∇̂λL(λt−1)

∆ = ||λt−λt−1||
||λt−1||

end

Algorithm 3: Rao-Blackwellized BBVI (BBVI-RB) [1]
Input :Model, Monte Carlo Sample Size S, convergence threshold ε, learning rate ρt

Initialize λ0 randomly, set t = 0 and ∆ = ∞
while ∆ > ε do

t = t+ 1
// Draw S samples from q(θ|λt−1)
for s = 1 to S do

θ[s] ∼ q(θ|λt−1)
end
for j = 1 to p do

∇̂λj
L(λt−1

j ) = 1
S

∑S
s=1 ∇λj

log q(θλj
[s]|λt−1

j )(log p(y, θλj
[s])− log q(θλj

[s]|λt−1
j ))

λt
j = λt−1

j + ρt∇̂λj
L(λt−1

j )

end
∆ = ||λt−λt−1||

||λt−1||
end
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B Experimental Setup

All experiments reported in this paper were conducted on an M1 MacBook Air running R version
4.2.3 under MacOS 14.4.1.

Simulated Dataset. The simulated dataset for demonstrating variance reduction in BBVI-
JS+ was done by sampling a total of N = 200 observations from a finite mixture of Gaus-
sians with K = 2 to 10 components, means and variances deterministically set at µk =
{−5,−4,−3,−2,−1, 0,+1,+2,+3,+4} and common σ2 = 3, respectively. During Monte Carlo
estimation, a total sample size of S = 500 were drawn, and the sampling distributions reported are
based on bootstrap samples of size B = 100.

Our generative model is given by

µk ∼ N (0, τ2)

zi ∼ Categorical(1/K, ..., 1/K)

yi|zik = 1, µ, τ2 ∼ N (µk, σ
2)

We can propose mean-field variational approximations

q(µk|mk, s
2
k) = N (mk, s

2
k)

q(zi|ϕi) = Categorical(ϕi)

Benchmark Datasets. To demonstrate convergence and final model fit statistics resulting from using
BBVI-JS+, we use three datasets for clustering and Gaussian mixture model tasks provided in the
FCPS package [21] for R. Specific information regarding these datasets can be found in the package
documentation. A specific note is made for the EngyTime dataset, which originally contains 4,096
observations. To ease computation time, we use a random subset containing 400 randomly selected
observations. Scatterplots of the datasets used are in Figure 3.

Figure 3: Scatterplots of benchmark datasets from the FCPS package [21]. From left to right:
EngyTime, Lsun3D, and Tetra.

To prevent early convergence of the model at sub-optimal locations, we force the models to run for
at least 100 iterations before assessing convergence. This is due to an observed tendency of BBVI
in general to first oscillate within sub-optimal solutions, likely as a consequence of initializations,
before taking a more consistent trajectory towards maximum ELBO. We note that selection of proper
convergence criteria for BBVI is currently an active research problem [1, 9]. Nevertheless, if a model
has already reached convergence before 100 iterations, then it is expected that it should stop within
a few iterations after the warm-up. A convergence criterion of ε = 0.01 is used for the EngyTime
dataset, and ε = 0.1 for the Lsun3D and Tetra datasets. In each dataset, the convergence criterion
used for BBVI-JS+ and BBVI-RB are always the same.
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