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Intelligent Reflecting Surface Aided AirComp:
Multi-Timescale Design and Performance Analysis

Guangji Chen, Jun Li, Qingqing Wu, Meng Hua, Kaitao Meng, and Zhonghao Lyu

Abstract—The integration of intelligent reflecting surface (IRS)
into over-the-air computation (AirComp) is an effective solution
for reducing the computational mean squared error (MSE) via
its high passive beamforming gain. Prior works on IRS aided
AirComp generally rely on the full instantaneous channel state
information (I-CSI), which is not applicable to large-scale systems
due to its heavy signalling overhead. To address this issue, we
propose a novel multi-timescale transmission protocol. In partic-
ular, the receive beamforming at the access point (AP) is pre-
determined based on the static angle information and the IRS
phase-shifts are optimized relying on the long-term statistical
CSI. With the obtained AP receive beamforming and IRS phase-
shifts, the effective low-dimensional I-CSI is exploited to determine
devices’ transmit power in each coherence block, thus substantially
reducing the signalling overhead. Theoretical analysis unveils that
the achievable MSE scales on the order of O

(
K/

(
N2M

))
, where

M , N , and K are the number of AP antennas, IRS elements,
and devices, respectively. We also prove that the channel-inversion
power control is asymptotically optimal for large N , which reveals
that the full power transmission policy is not needed for lowering
the power consumption of energy-limited devices.

Index Terms—IRS, multi-timescale design, AirComp.
I. INTRODUCTION

Over the air computation (AirComp) is viewed as an in-
novative technology for fast wireless data aggregation over
distributed Internet of things (IoT) devices [1]. The basic idea
of AirComp is the exploitation of the waveform superposition
property of multiple access channels, which enables an access
point (AP) to directly receive a function of simultaneously
transmitted data from massive devices. By integrating the com-
putation and communication seamlessly, AirComp is particu-
larly appealing for various latency-critical applications which
require data aggregation [1], e.g., wireless control, distributed
sensing, and wireless federated learning [2]. Different from
the conventional rate-oriented communications, the mean-square
error (MSE) is widely adopted as a performance metric to
quantify the computation error of AirComp. To enable reliable
AirComp, several works dedicated on the transceiver design
(e.g., transmit power control, receive beamforming, and receive
denoising factor design) to minimize the MSE induced by the
wireless fading and receiver noise [3]–[5].

Despite theoretical progress, only relying on the transceiver
design may not guarantee the computation performance due to
the random wireless fading. To address this issue, intelligent
reflecting surface (IRS) has been envisioned as a promising
technology to create favorable channel conditions via tuning
the phase-shift of each reflecting element [6]. In addition to
exploiting the IRS to enhance conventional wireless communi-
cation/sensing [6]–[10], it is also highly appealing to leverage
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Fig. 1. Multi-timescale protocol for IRS aided AirComp.

the high passive beamforming gain of IRSs to suppress the
computation MSE of AirComp. To fully unleash the potential
of IRSs for AirComp, the joint optimization of IRS phase-
shifts, the power control, and the receive beamforming was
widely investigated in existing works [11]–[13]. Although the
designs in previous works can substantially reduce the MSE
of AirComp, some fundamental issues still remain unaddressed
in IRS aided AirComp. First, the joint optimization designs
[11]–[13] mainly rely on the full instantaneous CSI (I-CSI),
which incurs high channel estimation overhead especially for
large-scale AirComp systems with massive devices and IRS
elements. To cater for large-scale AirComp systems, it is crucial
for developing a novel protocol operating without reliance on the
full I-CSI. Second, only numerical algorithms were presented
in previous works [11]–[13], which may not provide concrete
insights into the impact of the IRS on the optimal power
control policy of AirComp. Under the given random channel,
the initial work [4] unveiled that the optimal power control of
AirComp is a combination of the full power transmission and
the channel-inversion power control. The favourable channel
created by the IRS for Aircomp has yet to be fully exploited,
bringing the question of whether full power transmission is
necessary by considering the effect of the IRS. This is an
essential consideration for reducing the power consumption in
energy-limited IoT devices.

Motivated by the above issues, we consider an IRS aided
AirComp, see Fig. 1, where an IRS is deployed near the AP
to assist data aggregation from multiple devices. To lower the
high channel estimation overhead, we develop a novel multi-
timescale protocol adapting to large-scale IRS aided AirComp
systems. To be specific, by exploiting the particular channel
structure, the receive beamforming at the AP is pre-determined
based on the static angle information and the IRS phase-shifts
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are optimized according to the long-term statistic CSI (S-CSI).
With the obtained receive beamforming and IRS phase-shifts,
the effective I-CSI of each device is reduced to a scalar, which
greatly reduces the amount of CSI required to be obtained. The
effective I-CSI is exploited in each channel coherence block to
determine power control. We theoretically unveil that the MSE
scales on the order of O

(
K/
(
N2M

))
, which indicates that

ultra-high reliable AirComp can be realized via the IRS. Then,
we prove that only performing channel-inversion power control
is asymptotically optimal for large N , which implies that the
full power transmission is not needed, thereby rendering IRS
aided AirComp a power-efficient architecture.

II. SYSTEM MODEL AND PROTOCOL DESIGN

A. System Model

As shown in Fig. 1, we investigate an IRS aided AirComp
system, which comprises a multi-antenna AP, an IRS, and K
single-antenna IoT devices. The AP and IRS are equipped
with M antennas and N reflecting elements, respectively. For
convenience, we denote K ∆

= {1, . . .K} and N ∆
= {1, . . . N}

as the sets of devices and IRS elements, respectively. Let sk
denote the data generated at device k, ∀k ∈ K. Without loss
of generality, it is assumed that E [sk] = 0, E

[
|sk|2

]
= 1, and

E
[
sks

∗
j

]
= 0, ∀k ̸= j. In an IRS aided AirComp system, the

AP is interested in obtaining an aggregation of the data from all
devices, rather than each device’s individual data. We assume
that the AP aims to estimate the summation of the data from all
devices, i.e., s =

∑K
k=1 sk, which is a typical target-function of

the data aggregation.
The baseband channels from device k to the AP, from device

k to the IRS, and from the IRS to the AP are denoted by
hd,k ∈ CM×1, hr,k ∈ CN×1, and G ∈ CM×N , respectively.
We consider that the IRS is deployed in the vicinity of the
AP and it is naturally assumed that the IRS-AP link is purely
line-of-sight (LoS). For notational simplicity, we assume that a
uniform linear array (ULA) is equipped at both the AP and the
IRS1. Let

aN (x) =
[
1, ei2π

d
λ sin x, . . . , ei2π

d
λ (N−1) sin x

]
(1)

denote the array response vector of an N -element ULA array,
where λ and d are wavelength and element spacing. By denoting
ρ1 as the large-scale path-loss of the IRS-AP link, we can now
express G =

√
ρ1aM (ϕr)a

H
N (φt), where ϕr and φt represent

the angle of arrival (AoA) and angle of departure (AoD) from
the IRS to the AP, respectively. Considering that the direct links
from devices to the AP may be easily blocked, the Rayleigh
fading model is used to characterize these direct links and thus
we have hd,k =

√
ρdh̃d,k, where ρd denotes the large-scale

path-loss and h̃d,k ∼ CN (0, IM ). Since the IRS is considered to
be placed near the AP, the distance between the IRS and devices
could be a bit large. Even through the IRS has certain height,
it may not guarantee that the devices-IRS links are purely LoS.
Hence, the Rician fading is employed to characterize devices-
IRS links as

hr,k =

√
ρr,kδ

δ + 1
h̄r,k +

√
ρr,k
δ + 1

h̃r,k,∀k ∈ K, (2)

1Note that the proposed design can be directly applicable to the uniform
planar array case.

where δ is the Rician factor and ρr,k denotes the path-loss of the
device k-IRS link. Note that h̄r,k = aN (νk) and h̃r,k represent
the LoS and non-LoS (NLoS) channel components, respectively,
where νk denotes the AoA of the device k-IRS link and h̃r,k ∼
CN (0, IN ). Note that

{
G, h̄r,k

}
is referred to S-CSI, which

depends on the location information, thereby changing slowly
especially in low-mobility scenarios.

Let Θ=diag
{
eiθ1 , . . . , eiθN

}
denote the reflection matrix

of the IRS, where θn denotes the phase-shift of the n-th
IRS element. For reducing the practical hardware cost, the
discrete phase-shift θn ∈ F ∆

= {0,∆θ, . . . , (L− 1)∆θ} is
considered, where ∆θ = 2π/L with L representing the number
of quantization levels. Under the given IRS reflection matrix,
the received signal at the AP can be expressed as

y =
∑

k∈K
hk (Θ)bksk + n, (3)

where hk (Θ) = hd,k+GΘhr,k denotes the equivalent channel
vector from device k to the AP, bk ∈ C is the transmit scalar
of device k, and n ∼ CN (0, IM ) represents the additive white
Gaussian noise at the AP. Note that all devices have a maximum
transmit power, denoted by Pmax, and thus we have |bk|2 ≤
Pmax. Then, the estimated value of

∑K
k=1 sk at the AP is

ŝ =
1
√
η
vHy =

1
√
η
vH
(∑

k∈K
hk (Θ)bksk + n

)
, (4)

where η and v satisfying ∥v∥ = 1 are the denoising factor and
the receive beamforming vector at the AP, respectively. Based
on (4), the MSE is employed to measure the distortion between
ŝ and s, which is given by

MSE (v,Θ, bk, η)=

K∑
k=1

∣∣∣∣vHhk (Θ) bk√
η

−1

∣∣∣∣2+ σ2∥v∥2

η
. (5)

It is observed from (5) that {Θ,v, bk, η} should be carefully
optimized to suppress the resulting MSE. Previous works [11]–
[13] focusing on optimizing {Θ,v, bk, η} mainly exploited
the alternating based semi-definite program technique, which
highly relies on the full CSI, i.e., {hd,k,hr,k,G}. Note that
the dimension of the full CSI is proportional to MNK. Hence,
both the channel estimation overhead and computational burden
of the optimization algorithm are heavy in large-scale networks,
where K and N are large sufficiently. To this end, a new scheme
with light channel estimation overhead and low complexity is
needed to adapt to large-scale IRS aided AirComp networks.

B. Protocol Design

In this subsection, we introduce the proposed multi-timescale
protocol in the IRS aided AirComp system to reduce the channel
estimation overhead incurred by massive IRS elements and
devices. It is obvious that the MSE in (5) is a decreasing function
with respect to

∣∣vHhk (Θ)
∣∣2,∀k ∈ K. By fully exploiting the

channel structure, we first obtain the following proposition to
shed light on the design of the receive beamforming vector.

Proposition 1: When hd,k = 0, the optimal v to minimize
the MSE is given by

v∗ = aM (ϕr) /
√
M. (6)

proof 1: For arbitrarily given Θ and hd,k = 0, the equivalent
channel vector for each device is given by

hk (Θ) =
√
ρ1ρr,kaM (ϕr)a

H
N (φt)Θhr,k,∀k. (7)
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Then,
∣∣vHhk (Θ)

∣∣2 can be expressed as∣∣vHhk (Θ)
∣∣2=ρ1ρr,k∣∣vHaM (ϕr)

∣∣2∣∣aHN (φt)Θhr,k

∣∣2,∀k. (8)

It is observed from (8) that maximizing
∣∣vHhk (Θ)

∣∣2 is
equivalent to maximizing

∣∣vHaM (ϕr)
∣∣2. By setting v =

aM (ϕr) /
√
M , all elements in

{∣∣vHhk (Θ)
∣∣2,∀k ∈ K

}
is

maximized simultaneously, which completes the proof.
For the case of hd,k = 0, Proposition 1 indicates that the

optimal receive beamforming vector v∗ corresponds to a simple
MRC towards the IRS, regardless of the IRS reflection matrix
Θ. Note that the condition hd,k = 0 is practically valid for the
IRS with large N , which leads to the result that the strength
of the direct device-AP channel is far smaller than that of the
reflected channel. Due to the fixed positions of the BS and the
IRS, the configuration of v is implemented offline without real-
time CSI and remains static. By setting v = v∗, Θ is determined
by the S-CSI and {bk, η} is optimized relying on the effective
I-CSI (v∗)

H
hk (Θ). The corresponding optimization problem

associated with the multi-timescale protocol can be written as

min
{Θ}

E

{
min
{bk},η

MSE (v∗,Θ, bk, η)

}
(9a)

s.t. |bk|2 ≤ Pmax, ∀k ∈ K, (9b)
η ≥ 0, (9c)
θn ∈ F . ∀n ∈ N . (9d)

In problem (9), the inner MSE-minimization problem is over
the short-term variables {bk, η} in each channel block for the
given Θ, while the outer MSE-minimization problem is over
the long term variable Θ. The expectation in (9a) is taken over
all random realizations of the I-CSI.

Problem (9) is challenging to be solved optimally since the
closed-form expression of the ergodic MSE under the optimal
{bk, η} is difficult to be derived in general. Nevertheless, we
propose a two-step algorithm to obtain its high-quality solution
with low-complexity.

1) Optimization of Θ: We first derive the expectation of the
effective channel power gain as

Γk
∆
= E

{∣∣∣(v∗)
H
hk (Θ)

∣∣∣2}
=

1

M
E
{∣∣aHM (ϕr) (hd,k +GΘhr,k)

∣∣2}
= ρd +

Mρ1ρ2
δ + 1

(
δ
∣∣aHN (φt)ΘaN (νk)

∣∣2 +N
)
. (10)

Motivated by the fact that the objective value of prob-

lem (9) decreases with respect to
∣∣∣(v∗)

H
hk (Θ)

∣∣∣2, we aim
to optimize Θ for balancing all elements in {Γk,∀k ∈ K}.
It is observed from (10) that maximizing Γk is equiva-
lent to maximizing

∣∣aHN (φt)ΘaN (νk)
∣∣2. To this end, we

introduce a set of auxiliary variables {Θk,∀k ∈ K} with
Θk= diag

{
eiθk,1 , . . . , eiθk,N

}
, where θk,n ∈ F . To maximize∣∣aHN (φt)ΘkaN (νk)

∣∣2, the solution of Θk is obtained by pro-
jecting the optimized continues phase-shifts to their nearest
discrete values in F , which is given by

θ∗k,n = arg min
θk,n∈F

∣∣∣∣θk,n − 2πdn

λ
(φt − νk)

∣∣∣∣ ,∀k, n. (11)

Based on the obtained θ∗k,n in (11), each phase-shift in the IRS
reflection matrix Θ∗ is constructed by using the majority voting
technique as

θ∗n = arg max
θn∈F

∑K

k=1
1
{
θn = θ∗k,n

}
,∀n. (12)

2) Optimization of {bk, η}: With the obtained Θ∗ and v∗,
the effective channel from device k to the AP reduces to a
scalar, which is denoted by γk = (v∗)

H
hk (Θ

∗). By letting
bk =

√
pkγ

H
k / |γk|, the MSE in (5) is rewritten as

MSE (pk, η) =
∑K

k=1

∣∣∣∣√pk |γk|√
η

− 1

∣∣∣∣2 + σ2

η
. (13)

Hence, the optimization of {bk, η} is reduced to the problem by
optimizing {pk, η}, which is written as

min
{pk},η

MSE (pk, η) s.t. 0 ≤ pk ≤ Pmax, (9c). (14)

Without loss of generality, it is assumed that |γ1|2 ≤ . . . ≤
|γK |2. Then, the optimal solution of problem (14) can be derived
similarly in [4], which is presented in the following proposition.

Proposition 2: The optimal denoising factor of problem (14)
is given by

η∗ = min
k

η̃k (15)

with

η̃k =

(
σ2 +

∑k
j=1 Pmax|γj |2∑k

j=1

√
Pmax |γj |

)2

,∀k ∈ K. (16)

With η∗, the optimal power control is

p∗k =

Pmax, ∀k ∈
{
1, . . . , k̃

}
,

η∗/|γk|2, ∀k ∈
{
k̃ + 1, . . . ,K

}
,

(17)

where k̃ = argmink∈K η̃k.
Remark 1: The implementation of the multi-timescale proto-

col for IRS aided AirComp is illustrated in Fig. 1. In particular,
v∗ is pre-determined based on (6), where the static angle
information between the BS and the IRS is used. Then, the long-
term S-CSI

{
h̄r,k

}
is acquired for determining Θ∗ according

to (12). With the configured v∗ and Θ∗, the effective channel
γk = (v∗)

H
hk (Θ

∗) is estimated in each coherence block,
based on which {bk, η} is obtained according to Proposition
2. The associated channel estimation overhead is O (K), which
is significantly lower than O (MNK) in existing works [11]–
[13]. Moreover, the proposed solutions are derived in closed-
form expressions without iterative algorithm and thereby the
computational complexity is low, which makes it more appealing
for large-scale systems with massive N and K.

III. THEORETICAL ANALYSIS

In this section, we provide the theoretical analysis to charac-
terize the performance of the proposed multi-timescale protocol
in the asymptotic region. To shed light on the ability of using
the IRS to suppress the computation MSE, we focus on the case
of hd,k = 0 and the purely LoS links, i.e., hr,k =

√
ρr,kh̄r,k.
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A. Scaling Law Analysis

The scaling law of the achieved MSE with respect to M , N ,
and K is theoretically derived in the following theorem.

Theorem 1: For the case of L = 2, the MSE is able to scale
on the order of O

(
K/
(
N2M

))
as N → ∞ and K → ∞.

proof 2: First, we divide all the IRS elements into the two
groups for each device as

N k
1 =

{
n ∈ N , θ∗n=θ∗k,n

}
,N k

2 =
{
n ∈ N , θ∗n ̸= θ∗k,n

}
. (18)

where θ∗k,n and θ∗n are defined in (11) and (12), respectively.
Under the given set N k

1 and N k
2 , we focus on characterizing

the array gain
∣∣aHN (φt)ΘaN (νk)

∣∣2, ∀k, as follows∣∣aHN (φt)ΘaN (νk)
∣∣2

=

∣∣∣∣∣∣
∑

n∈Nk
1

ej(θ
∗
n−αn+βn,k) +

∑
n∈Nk

2

ej(θ
∗
n−αn+βn,k)

∣∣∣∣∣∣
2

, (19)

where αn = arg ([aN (φt)]n) and βn,k = arg ([aN (νk)]n).
It naturally holds that (θ∗n − αn + βn,k) ∼ U (−π/2, π/2).
For the case of n ∈ N k

2 , it follows that (θ∗n − αn + βn,k) ∼
U (π/2, 3π/2). As

∣∣N k
1

∣∣→ ∞, by employing the strong law of
large numbers, we have

∑
n∈Nk

1

ej(θ
∗
n−αn+βn,k) =

∣∣N k
1

∣∣ 1∣∣N k
1

∣∣ ∑
n∈Nk

1

ej(θ
∗
n−αn+βn,k)


a.s.→
∣∣N k

1

∣∣E [ej(θ∗
n−αn+βn,k)

]
=
∣∣N k

1

∣∣ sinc (1/2) . (20)

Similarly, it is obtained that∑
n∈Nk

2

ej(θ
∗
n−αn+βn,k) a.s.→ −

∣∣N k
2

∣∣ sinc (1/2) , (21)

as
∣∣N k

2

∣∣→ ∞. Hence, we have∣∣aHN (φt)ΘaN (νk)
∣∣2 a.s.→

(∣∣N k
1

∣∣− ∣∣N k
2

∣∣)2sinc2 (1/2) (22)

as N → ∞. Next, we aim to provide the approximation for∣∣N k
1

∣∣− ∣∣N k
2

∣∣. We focus on the case that K is an odd number
and its opposite case can be analyzed similarly. For an arbitrary
n ∈ N , the probability of the event that n ∈ N k

1 can be derived
as

Pr
(
n ∈ N k

1

)
=
∑K−1

k=(K−1)/2

(
K − 1

k

)(
1

2

)K−1

∆
= λ1. (23)

Hence,
∣∣N k

1

∣∣ follows a binomial distribution B (N,λ1) and
∣∣N k

2

∣∣
follows B (N, 1− λ1). By using the law of large numbers, we
approximate

∣∣N k
1

∣∣− ∣∣N k
2

∣∣ as∣∣N k
1

∣∣− ∣∣N k
2

∣∣ ≈ E
[∣∣N k

1

∣∣− ∣∣N k
2

∣∣] = N (2λ1 − 1) . (24)

As K → ∞, we further have N (2λ1 − 1) ∼ 2/
√
2πK based

on the Stirling’s formula. Then,
∣∣aHN (φt)ΘaN (νk)

∣∣2 can be
approximated as∣∣aHN (φt)ΘaN (νk)

∣∣2 ∼=
2N2

πK
sinc2 (1/2) (25)

in the asymptotic region. Then, it can be obtained that

MSE
(a)

≤ σ2

Pmaxmink|γk|2
∼=

πKσ2

2Pmaxρminsinc2
(
1
2

)
MN2

, (26)

where ρmin = ρ1 (minkρr,k) and inequality (a) holds due to
the suboptimal power control, i.e., pk = Pmaxminj |γj |2/|γk|2
is adopted. Thus, the proof is completed.

Theorem 1 unveils a promising capability of using the IRS to
reduce the computation MSE. It is well-known that the power
scaling law of O

(
N2
)

is achieved in an IRS aided single-user
communication system [6]. Here, we prove that the MSE in an
IRS aided AirComp is able to decay with the order of 1/N2,
thereby rendering ultra-reliable AirComp via increasing N .

B. Is Full Power Transmission Needed?
As studied in [4], (17) in Proposition 2 indicates that the

optimal power control policy for AirComp is a combination of
the full power transmission and the channel-inversion power
control under the randomly given channel setup. Define MSEo

and MSEc are the resulting MSE under the optimal power
control and the channel-inversion power control, respectively.
By using the channel-inversion power control, the transmit
power is given by pk = ηc/|γk|2,∀k with ηc = Pmax|γ1|2.
Then, MSEo and MSEc are given by

MSEo =

k̃∑
k=1

(√
Pmax |γk|√

η∗
− 1

)2

+
σ2

η∗
, MSEc =

σ2

ηc
. (27)

To illustrate the impact of the IRS on the power control policy of
AirComp, we aim to quantify the performance gap between the
channel-inversion power control and the optimal power control
in an IRS aided AirComp system, which is provided in the
following theorem.

Theorem 2: For the case that large N and L = 2,
MSEo/MSEc ≥ ε holds provided

N ≥

√
πKε1/2σ2

2ρ1ρr,1MPmax

(
1− ε1/2

)
sinc2 (1/2)

, (28)

where 0 < ε < 1 is a given target value. Moreover, we have

lim
N→∞

(MSEo/MSEc) = 1. (29)

proof 3: First, a lower bound of MSEo can be derived as

MSEo

(a)

≥ σ2

η̃1
=

Pmaxσ
2|γ1|2(

σ2 + Pmax|γ1|2
)2 ∆

= MSElb
o , (30)

where (a) holds due to η∗ = minkη̃k and η̃k is given in (16).
Then, we have

MSEo

MSEc
≥ MSElb

o

MSEc
=

(
Pmax|γ1|2

σ2 + Pmax|γ1|2

)2

. (31)

As indicated in the proof of Theorem 1, we obtain

|γ1|2 ∼=
2ρ1ρr,1sinc

2 (1/2)

πK
MN2. (32)

By substituting (32) in (31) and solving the inequality
MSElb

o /MSEc ≥ ε, (28) serves as a sufficient condition for
MSEo/MSEc ≥ ε. Then, we obtain lim

N→∞

(
MSElb

o /MSEc

)
=

1, which directly leads to (29).
Theorem 2 implies that the MSE of the channel-inversion

power control is able to approach that of the optimal power
control as N increases, which demonstrates its asymptotical
optimality for large N . Note that performing channel-inversion
power control only requires the device with the worst channel
condition to transmit with its peak power, which is helpful for
reducing the power consumption of energy-limited IoT devices.
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IV. NUMERICAL RESULTS

In our simulations, the AP and IRS are respectively located at
(0, 0, 0) meter (m) and (0, 0, 10) m. The devices are uniformly
distributed in a circle within a radius of 20 m centered at
(200, 0, 0) m. The pathloss exponents for both the AP-IRS and
IRS-devices links are set to 2.2, while those for the direct AP-
devices links are set to 3.8. Furthermore, we set the Rician factor
and the signal attenuation at the reference distance of 1 m as
10 dB and 30 dB, respectively. Other system parameters are set
as follows: M = 10, Pmax = 20 dBm, and σ2 = −80 dBm.

To verify the scaling law of the MSE unveiled in Theorem
1, we first consider the special case that purely LoS channels
exist and the direct AP-device links are blocked. It is observed
from Fig. 2 that the closed-form expression (26) serves as an
upper bound of the MSE achieved by the proposed design.
Moreover, the upper bound becomes tighter as N increases
and thus validates the scaling law of the MSE as expected in
Theorem 1, which again emphasises the ability of using the IRS
to reduce the resulting MSE.

Then, we focus on the general Rician fading case to evaluate
the performance of the multi-timescale design. For illustra-
tion, the results are obtained by implementing Monte Carlo
simulations with 104 realizations. We consider the following
schemes for comparison: 1) ”Optimal PC w/ IRS“ where the
proposed design is conducted; 2) “Channel-inversion PC w/
IRS” where channel-inversion power control is performed under
the optimized IRS phase-shifts; 3) “Optimal PC w/o IRS” where
optimal power control is performed without IRS; 4) “Channel-
inversion PC w/o IRS” where channel-inversion power control
is performed without IRS; 5) “Fixed IRS phase-shifts” where
θn = 0,∀n, is set with the optimal power control.

In Fig. 3, we plot the MSE versus the number of IRS
elements. It is observed that the proposed schemes with op-
timized IRS phase-shifts significantly outperform other bench-
mark schemes and the performance gain becomes more pro-
nounced as N increases. Moreover, the optimal power control
considerably outperforms the channel-inversion power control in
the absence of the IRS, whereas the corresponding performance
loss becomes negligible with the deployed IRS especially for
a large N . It is expected since the passive beamforming gain
attained by the IRS helps compensate the wireless fading and
thus effectively creates a high signal-to-noise ratio (SNR) re-
gion, which verifies the asymptotical optimality of the channel-
inversion power control in Theorem 2.

We define k̃ in (17) as the critical number, which indicates
the number of devices to perform full power transmission. To
investigate the impact of the IRS on the power control policy,
we plot the critical number versus N in Fig. 4. One can observe

that the critical number of the optimal power control decreases
as N increases and approaches that of the channel-inversion
power control. It suggests that deploying the IRS into AirComp
introduces a favorable “double-gain” as it not only lowers the
MSE but also reduces the power consumption for devices.

V. CONCLUSION

This paper proposed a novel multi-timescale transmission
protocol for IRS aided AirComp to lower the signalling and
computational overhead. Theoretical analysis further unveiled
that the achieved MSE scales on the order of O

(
K/
(
N2M

))
and the asymptotical optimality of the channel-inversion power
control. Finally, simulation results verified the effectiveness of
the proposed design and also revealed the favorable “double-
gain” of the IRS to AirComp, thereby rendering IRS aided
AirComp an ultra-reliable and power-efficiency architecture.
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