
ar
X

iv
:2

40
5.

05
67

0v
2

 [
cs

.L
O

]
 1

3
M

ay
 2

02
4

BETWEEN PROOF CONSTRUCTION AND SAT-SOLVING

ALEKSY SCHUBERT, PAWEŁ URZYCZYN, AND KONRAD ZDANOWSKI

Abstract. The classical satisfiability problem (SAT) is used as a natural and general tool to express and solve

combinatorial problems that are in NP. We postulate that provability for implicational intuitionistic proposi-

tional logic (IIPC) can serve as a similar natural tool to express problems in Pspace. We demonstrate it by

proving two essential results concerning the system. One is that provability in full IPC (with all connectives)

can be reduced to provability of implicational formulas of order three. Another result is a convenient interpre-

tation in terms of simple alternating automata. Additionally, we distinguish some natural subclasses of IIPC

corresponding to the complexity classes NP and co-NP.

§1. Introduction. Everyone knows that classical propositional calculus (CPC) is a natural lan-
guage to represent combinatorial problems (see e.g. [14, 25]). Various decision problems can be
easily encoded as instances of the formula satisfiability problem (SAT) and efficiently solved [1, 22].

In this paper we would like to turn the reader’s attention to the so far unexploited fact that intu-
itionistic implicational propositional calculus (IIPC) [16] is an interesting propositional formalism
which is equally natural and simple in its nature as CPC, yet stronger in its expressive power.
Indeed, while SAT and ASP [5] can express NP-complete problems, the decision problem for IIPC
is complete for Pspace. Thus IIPC can accommodate a larger class of problems that may be
encoded as formulas and solved using automated or interactive proof-search. In particular, the
Sokoban puzzle [6, 10, 13] cannot be solved by means of SAT solving, but could be encoded in
IIPC and examined by an interactive prover.

Of course the Pspace complexity is enormous, but the general case of NP is infeasible anyway.
And not every polynomial space computation requires exponential time. We may only solve “easy”
cases of hard problems, and then the increased expressiveness of the language can be useful rather
than harmful. For example, since Pspace is closed under complements one can simultaneously
attempt to prove a proposition and to disprove it by proving a dual one [35].

What is also important, this approach to Pspace avoids adding new syntactical forms such as
Boolean quantification of QBF [31]. Moreover, we can syntactically distinguish subclasses of IIPC
for which the decision problem is complete for P, NP and co-NP.

The strength of CPC and SAT-solving is in its conceptual simplicity – a propositional formula
provides a specification of a configuration of interest while a solution provides a particular con-
figuration that meets the specification. In the case of IIPC, as illustrated below, we are able to
achieve the same goal. In addition, we obtain one more dimension of expressiveness: the proof we
build represents the process of constructing the solution. For instance, a sequence of moves in the
Sokoban game, or a computation of a machine corresponds to a sequence of proof steps (in the
order of which the proof is being constructed).

Indeed, interestingly enough, IIPC offers not only the formalism to describe relationships, but
also has a procedural view in the form of proof-search process. Moreover, the proof-search in
IIPC does not have to be less convenient than processing SAT instances or computing in ASP-
based paradigm [5]: normal proof search (Ben-Yelles algorithm) is intuitive and straightforward,
especially because one can restrict attention to formulas of order at most three.

Key words and phrases. satisfiability, provability, simply typed lambda calculus, propositional logic.
The work was partly supported by IDUB POB 3 programme at the University of Warsaw.

1

http://arxiv.org/abs/2405.05670v2

2 ALEKSY SCHUBERT, PAWEŁ URZYCZYN, AND KONRAD ZDANOWSKI

The proof-search computational paradigm brings here an interesting, not always clearly expressed,
facet to the Curry-Howard isomorphism. The Curry-Howard isomorphism states that systems of
formal logic and computational calculi are in direct correspondence. The two most commonly
recognised facets of the correspondence are expressed by the slogans “formulas as types” and “proofs
into programs”. The third facet of the isomorphism brings in the observation that normalisation of
a proof is the same as the computation of the corresponding program. The fourth and frequently
overlooked side of Curry-Howard is the computational content of proof construction. Virtually any
algorithm can be expressed as a formula of some constructive logic in such a way that every proof
of the formula is but an execution of the algorithm. Yet differently: finding a proof of a formula
(or equivalently an inhabitant of a type) is the same as executing a program. This way we have
a close relationship between proof search in the realm of logic or program synthesis [17, 24] in the
realm of programming.

A simple illustration of the paradigm “proof construction as computation” is reading a logical
consequence Γ ⊢ τ as a configuration of a machine (a monotonic automaton). Under this reading
the proof goal is the internal state, the assumptions Γ represent the memory. Variants of such
monotonic automata were used in [26, 27]; in the present paper we make this automata-theoretic
semantics of (I)IPC very clear-cut.

We begin our presentation with Section 2 where we fix notation and recall some basic definitions.
Then we enter the discussion of expressibility of IIPC, focusing mainly on the fact that the whole
expressive strength is in formulas of order at most three. In Section 3 we demonstrate the natural
equivalence between proof-search and computation: the monotonic automata directly implement
the Wajsberg/Ben-Yelles inhabitation algorithm for the full IPC (with all connectives). After
showing that the halting problem for monotonic automata is Pspace-complete, we reduce it to
provability in IIPC. This yields a polynomial reduction of the decision problem for the full IPC
to IIPC formulas of order at most three. It follows from Section 4 however, that the translation
does not preserve the equivalence of formulas. Still our reduction plays a similar role as that of
the whole SAT to 3-CNF-SAT.

In Section 5 we define two subclasses of low-order IIPC corresponding to the complexity classes
NP and co-NP.

We conclude in Section 6 with a few final comments.

§2. Preliminaries. To make the paper self-contained, we introduce here the necessary definitions
and fix the basic notation. This section may be to large extent skipped and used as a reference.
A more detailed account of the relevant notions can be found for instance in [29].

Propositional formulas. We assume an infinite set X of propositional variables, usually written as
p, q, r, . . . , possibly with indices. Propositional variables and the constant ⊥ are called atoms.

The formulas of the full intuitionistic propositional logic, IPC, are generated by the grammar:

ϕ, ψ ::= p | ⊥ | ϕ→ ψ | ϕ ∧ ψ | ϕ ∨ ψ,

where p ∈ X . As usual, we use ¬ϕ as a shorthand for ϕ→ ⊥.

For clarity we do not include parentheses in the grammar. We adopt standard conventions
that parentheses can be used anywhere to disambiguate understanding of the formula structure.
Additionally, we assume that → is right-associative so that ϕ1 → ϕ2 → ϕ3 is equivalent to
ϕ1 → (ϕ2 → ϕ3).

We use the notation ϕ[p := ψ] for substitution. If Γ = {ϕ1, . . . , ϕn} then we write Γ → p for the
formula ϕ1 → · · · → ϕn → p.

A literal is either a propositional variable or a negated variable. Literals are written in typewriter
font: p, q, r, . . . If p is a literal, then p is its dual literal,i.e. p = ¬p and ¬p = p.

Proof terms. According to the Curry-Howard correspondence, formulas can be seen as types as-
signed to proof terms. In this view, IIPC is exactly the ordinary simply typed lambda-calculus.

BETWEEN PROOF CONSTRUCTION AND SAT-SOLVING 3

For the full IPC we need an extended calculus and we now define the syntax of it. We assume an
infinite set Υ of proof variables, usually written as x, y, z, . . . with possible annotations. A context
is a finite set of pairs x : ϕ, where x is a proof variable and ϕ is a formula, such that no proof
variable occurs twice. Contexts are traditionally denoted by Γ,∆, etc. If this does not lead to
confusion we identify contexts with sets of formulas (forgetting the proof variables).

We define the Church style (raw) terms of intuitionistic propositional logic as follows:

M,N ::= x |M [ϕ] | λx :ϕ.M | MN | 〈M,N 〉 |Mπ1 | Mπ2
| in1M | in2M |M [x1 :ϕ.N1; x2 :ψ.N2]

where x, x1, x2 ∈ Υ and ϕ, ψ ∈ F. The set of λ-terms generated in this way is written Λp. Again
we do not include parentheses in the grammar, but they can be used anywhere to disambiguate
parsing. As a shorthand for λx1 :σ1 . . . λxn :σn.M we write λx1 :σ1 . . . xn :σn.M . In case this
does not lead to confusion, we omit type annotations from terms and write for example λx.M
instead of λx :ϕ.M or M [x1. N1; x2. N2] for M [x1 :ϕ.N1; x2 :ψ.N2]. We also use the common
convention that application is left-associative: MNP stands for (MN)P . We often write e.g. ME

not only for application of N to a term E but also for any elimination: E can be a projection π1
or π2, or a ∨-eliminator [x :ϕ. P ; y :ψ.Q] or a ⊥-eliminator [ϕ].

The set of free variables in a term is defined as

• FV(x) = {x},
• FV(λx :ϕ.M) = FV(M)\{x},
• FV(MN) = FV(〈M,N 〉) = FV(M) ∪ FV(N),
• FV(Mπi) = FV(iniM) = FV(M [ϕ]) = FV(M) for i = 1, 2,
• FV(M [x :ϕ.N1; y :ψ.N2]) = FV(M) ∪ (FV(N1)\{x}) ∪ (FV(N2)\{y}).

As usual the terms are tacitly considered up to α-conversion so that the names of non-free variables
are not relevant. Closed terms are terms that have no occurrences of free variables. We use the
notation M [x := N] for capture-free substitution of N for the free occurrences of x in M .

The natural deduction inference rules of IPC are presented in Figure 1 in the form of type-
assignment system deriving judgements of the form Γ ⊢ M : ϕ (read: “M has type ϕ in Γ” or
“M proves ϕ in Γ”), where Γ is a context and M is a proof term. From time to time we use the
simplified notation Γ ⊢ σ to state that Γ ⊢ M : σ holds for some M . If Γ is known, implicit, or
irrelevant we can simplify the statement Γ ⊢M : τ to M : τ (read “M has type τ ”).

Reductions. An introduction-elimination pair constitutes a beta-redex , and we have the following
set of beta-reduction rules for all the logical connectives except ⊥:

(λx :σ.M)N ⇒β M [x := N],
〈M,N 〉π1 ⇒β M,

〈M,N 〉π2 ⇒β N,

(in1M)[x :ϕ.N1; y :ψ.N2] ⇒β N1[x :=M],
(in2M)[x :ϕ.N1; y :ψ.N2] ⇒β N2[y :=M].

Other redexes represent elimination steps applied to a conclusion of a ∨- or ⊥-elimination. The
following rules, called permutations (aka commuting conversions), permute the “bad” elimination
upwards. For the disjunction there is the following general scheme:

M [x :ϕ.N1; y :ψ.N2]E ⇒p M [x :ϕ.N1E; y :ψ.N2E],

where E is any eliminator, i.e., E ∈ Λp, or E ∈ {π1, π2}, E = [ϑ], or E = [z :ϑ.N ; v :̺.Q].

Permutations for M [ϕ] follow the pattern

M [ϕ]E ⇒p M [ψ],

where ψ is the type of M [ϕ]E. For example:

M [ϕ⇒ ψ]N ⇒p M [ψ].

4 ALEKSY SCHUBERT, PAWEŁ URZYCZYN, AND KONRAD ZDANOWSKI

Γ, x :ϕ ⊢ x : ϕ
(var)

Γ, x :ϕ ⊢M : ψ

Γ ⊢ λx :ϕ.M : ϕ→ ψ
(→ I)

Γ ⊢M1 : ϕ→ ψ Γ ⊢M2 : ϕ

Γ ⊢M1M2 : ψ
(→ E)

Γ ⊢M : ϕ Γ ⊢ N : ψ

Γ ⊢ 〈M,N 〉 : ϕ ∧ ψ
(∧I)

Γ ⊢M : ϕ ∧ ψ

Γ ⊢Mπ1 : ϕ
(∧E1)

Γ ⊢M : ϕ ∧ ψ

Γ ⊢Mπ2 : ψ
(∧E2)

Γ ⊢M : ϕ

Γ ⊢ in1M : ϕ ∨ ψ
(∨I1)

Γ ⊢M : ψ

Γ ⊢ in2M : ϕ ∨ ψ
(∨I2)

Γ ⊢M : ϕ ∨ ψ Γ, x :ϕ ⊢ N1 : ρ Γ, y :ψ ⊢ N2 : ρ

Γ ⊢M [x :ϕ.N1; y :ψ.N2] : ρ
(∨E)

Γ ⊢M : ⊥
Γ ⊢M [ϕ] : ϕ

(⊥E)

Figure 1. Proof assignment in IPC.

The relation → is the contextual closure of rules ⇒β and ⇒p, and ։ stands for the reflexive-
transitive closure of →.

The system Λp has a number of important consistency features.

Theorem 1. The system Λp has the following properties:

1. Subject reduction: if Γ ⊢M : σ and M ։ N then Γ ⊢ N : σ.
2. Church-Rosser property: if M ։ N and M ։ P then there is a term Q such that N ։ Q

and P ։ Q.
3. Strong normalisation: every reduction M1 →M2 → · · · is finite.

Proof. Part 1 can be easily verified by observing that every reduction rule preserves typing.
Part 2 follows from general results on higher-order rewriting [32, Chapter 11.6], because the rules
are left-linear and non-overlapping. For part 3, see [9]. ⊣

A type τ is inhabited iff there is a closed term M such that ⊢M : τ (an inhabitant).

Long normal forms. It follows from Theorem 1(3) that every inhabited type has a normal inhabi-
tant. To organize and narrow proof search it is convenient to use a stricter notion of long normal
form (lnf). In the lambda-calculus (or equivalently: in natural deduction) long normal forms play
a role similar to focusing [20, 18] in sequent calculus.

We say that a term M such that Γ ⊢M : ϕ is in long normal form when one of the following cases
holds:

• M is a constructor λx.N , 〈N1, N2 〉, in1N , or in2N , where terms N,N1, and N2 are lnf.

BETWEEN PROOF CONSTRUCTION AND SAT-SOLVING 5

• M = xE1 . . . En, where E1, . . . , En are projections or terms in long normal form, and ϕ is
an atom.

• M = xE1 . . . EnE, where E1, . . . , En are projections or terms in long normal form, and E is
a ∨- or ⊥-eliminator, and ϕ is either an atom or a disjunction.

For example, let

Γ = {x :α→ p, y :α, z :α → β ∨ γ, u1 :β → p, u2 :γ → p},

where p is an atom. Then λw :α. xw is an lnf of type α→ p, and zy[v1 :β. u1v1; v2 :γ. u2v2] is an
lnf of type p. Also zy[v1 :β. in1v1; v2 :γ. in2v2] is an lnf of type β ∨ γ, while the mere application
zy is not.

Lemma 2 ([34]). If Γ ⊢ ϕ, then Γ ⊢M : ϕ, for some long normal form M .

Kripke semantics. A Kripke model is a triple of the form

C = 〈C,≤, 〉

where C is a non-empty set, the elements of which are called states, ≤ is a partial order in C and
 is a binary relation between elements of C and propositional variables. The relation , read as
forces, obeys the standard monotonicity condition: if c ≤ c′ and c p then c′ p. Without loss
of generality we may assume that C is finite, cf. [28], [7, Section 3].

Kripke semantics for IPC is defined as follows. If C = 〈C,≤, 〉 is a Kripke model then

• c ϕ ∨ ψ if and only if c ϕ or c ψ,
• c ϕ ∧ ψ if and only if c ϕ and c ψ,
• c ϕ→ ψ if and only if for all c′ ≥ c if c′ ϕ then c′ ψ,
• c ⊥ does not hold.

We write c Γ, when c forces all formulas in Γ. And Γ ϕ means that c Γ implies c ϕ for
each Kripke model 〈C,≤, 〉 and each c ∈ C.

The following completeness theorem holds (see e.g. [11]):

Theorem 3. For each Γ and ϕ, it holds that Γ ⊢ ϕ if and only if Γ ϕ.

The implicational fragment. In this paper we are mostly interested in the implicational fragment
IIPC of IPC. The formulas of IIPC (also known as simple types) are defined by the grammar

σ, τ ::= p | σ → τ,

where p ∈ X .

Any formula in IIPC can be written as σ = σ1 → · · · → σn → p, where n ≥ 0, and p is a type atom.
Types σ1, . . . , σn are the arguments , and the atom p is called the target of σ, written p = tg(σ).

The order r(σ) of an implicational formula is defined as follows: an atom is of order 0, and the
order of σ → τ is the maximum of r(τ) and r(σ) + 1. In other words, if p is an atom, then

r(σ1 → · · · → σk → p) = 1 +max
i
r(σi).

The restricted set Λ→ of IIPC proof-terms is defined by the pseudo-grammar:

M,N ::= x | λx :σ.M |MN.

The relevant rules in Figure 1 are (var), (→ I), and (→ E), i.e., the type-assignment rules of the
ordinary simply typed lambda-calculus.

6 ALEKSY SCHUBERT, PAWEŁ URZYCZYN, AND KONRAD ZDANOWSKI

§3. Automata for logic. It follows from Lemma 2 that every provable formula has a long normal
proof. This yields a simple proof-search algorithm, which is essentially implicit in [36], and hence
called the Wajsberg algorithm (WA).1

To present the algorithm we first define the set TG(ϕ) of targets of ϕ. Targets are always atoms
or disjunctions.

• TG(a) = {a}, when a is an atom (a propositional variable or ⊥).
• TG(τ → σ) = TG(σ).
• TG(τ ∨ σ) = {τ ∨ σ}.
• TG(τ ∧ σ) = TG(τ) ∪ TG(σ).

Clearly, TG(ϕ) = {tg(ϕ)}, when ϕ is an implicational formula.

We define the family tr(α, ϕ) of traces to α in ϕ. Each trace is a set of formulas.

• tr(α, ϕ) = ∅ if α 6∈ TG(ϕ).
• tr(α, α) = {∅}.
• tr(α, τ → σ) = {{τ} ∪ T | T ∈ tr(α, σ)}.
• tr(α, τ ∧ σ) = tr(α, τ) ∪ tr(α, σ).

For example, tr(p, r → (p ∧ (q → p) ∧ (s→ p ∨ q)) = {{r}, {r, q}}.

Lemma 4. Let (x :ψ) ∈ Γ and T ∈ tr(α, ψ). If Γ ⊢ ρ, for all ρ ∈ T , then Γ ⊢ xE1 . . . En : α,
where n ≥ 0 and E1, . . . , En are some terms or projections.

Proof. Induction with respect to ψ. For example, assume ψ = ψ1 ∧ ψ2, and let T ∈ tr(α, ψ1).
Given that we apply the induction hypothesis to obtain Γ, y :ψ1 ⊢ yE1 . . . En : α, where n ≥ 0, so
Γ ⊢ xπ1E1 . . . En : α. ⊣

Lemma 5. Assume that (x :ψ) ∈ Γ and Γ ⊢ xE1 . . . Em : ϕ, where E1, . . . , Em are terms or
projections and ϕ is an atom or a disjunction. Let J = {j | Ej is a term} and let Γ ⊢ Ej : σj, for
all j ∈ J . Define T = {σj | j ∈ J}. Then ϕ ∈ TG(ψ), and T ∈ tr(ϕ, ψ).

Proof. Induction with respect to m. For example, if ψ = ψ1 → ψ2, then we apply the induction
hypothesis to Γ, y :ψ1 ⊢ yE2 . . . Em : ϕ. This implies T ′ = {σj | j ∈ J ∧ j > 1} ∈ tr(ϕ, ψ2), and
consequently T = T ′ ∪ {ψ1} ∈ tr(ϕ, ψ). ⊣

For a given judgement Γ ⊢ ϕ, the Wajsberg algorithm (WA) attempts (implicitly) to construct
a long normal proof term. It proceeds as follows:

1. If ϕ = τ ∧ σ, call Γ ⊢ τ and Γ ⊢ σ.
2. If ϕ = τ → σ, call Γ, τ ⊢ σ.
3. If ϕ is an atom or a disjunction, choose ψ ∈ Γ and α ∈ TG(ψ) such that either α is a dis-

junction, or α = ⊥, or α is a propositional variable and α = ϕ. Then choose T ∈ tr(α, ψ),
and:
• Call Γ ⊢ ρ, for every ρ ∈ T ;
• If α = β ∨ γ, call Γ, β ⊢ ϕ and Γ, γ ⊢ ϕ in addition.

The procedure accepts in case (3), when ϕ is an atom in Γ, as there is nothing to call.

With respect to IIPC case (1) disappears and case (3) simplifies to

3’. If ϕ is an atom then choose ρ1 → · · · → ρn → ϕ ∈ Γ and call Γ ⊢ ρi, for all i = 1, . . . , n.

We thus obtain the algorithm for inhabitation in the simply typed lambda-calculus known as the
Ben-Yelles algorithm [2].

The most important properties of WA are the following.

Lemma 6.

1. The algorithm WA accepts an IPC judgement if and only if it is provable.

1See [3] for a correction of the proof in [36].

BETWEEN PROOF CONSTRUCTION AND SAT-SOLVING 7

2. All formulas occurring in any run of the algorithm are subformulas of the formulas occurring
in the initial judgement.

Proof. (1) We prove that a judgement Γ ⊢ ϕ is accepted if and only if there exists a long normal
form of type ϕ in Γ. From left to right we proceed by induction with respect to the definition of
the algorithm, using Lemma 4. In cases (1) and (2) the term M is a constructor, in case (3) it is an
eliminator with a head variable x of type ψ. For example, if ϕ = τ ∨ σ and ψ = γ1 → γ2 → α ∨ β
then M = xN1N2[z :α. P ; v :β.Q], where N1, N2, P,Q are long normal forms obtained in the four
recursive (or parallel) calls.

From right to left we work by induction with respect to the size of the lnf using Lemma 5. For
example, in the case of the term xE1 . . . Em[u :α. P ; v :β.Q], types of E1, . . . , Em make a trace T
to α ∨ β in ψ, and we can use induction for Γ, u :α ⊢ P : ϕ and Γ, v :α ⊢ Q : ϕ.

(2) In each of the steps of WA each new formula must be a subformula of either the present proof
goal or one of the assumptions. ⊣

Monotonic automata. We define here a natural notion of automaton used as operational semantics
of IPC. This notion is a simplification of the automata introduced by Barendregt, Dekkers and
Schubert [26] and of those used in [27] (but differs significantly from the notion introduced by
Tzevelekos [33]).

The idea is simple. If we read a proof task Γ ⊢ ϕ as a configuration of a machine, then any
action taken by WA results in expanding the memory Γ and proceeding to a new internal state,
yielding a new task (or a new configuration) Γ′ ⊢ ϕ′. For example, if an assumption of the form
(p → q) → r ∈ Γ is used to derive Γ ⊢ r, then the next task Γ, p ⊢ q is a result of executing
an instruction that can be written as r : check (p → q) → r; set p; jmp q (“in state r check the
presence of (p→ q) → r in memory, add p to the storage and go to state q”).

A monotonic automaton is therefore defined as M = 〈Q,R, f, I 〉, where

• Q is a finite set of states, with f ∈ Q as the final state.
• R is a finite set of registers;
• I is a finite set of instructions of the form:

(1) q : check S1; set S2; jmp p, or
(2) q : jmp p1 and p2,
where q, p, p1, p2 ∈ Q and S1, S2 ⊆ R.

We define a configuration of M as a pair 〈 q, S 〉, where q ∈ Q and S ⊆ R. Let I ∈ I. The
transition relation 〈 q, S 〉 →I 〈 p, S′ 〉 holds

• for I of type (1), when S1 ⊆ S, S′ = S ∪ S2;
• for I of type (2), when S = S′, and p = p1 or p = p2.

A configuration 〈 q, S 〉 is accepting when either q = f , or

• 〈 q, S 〉 →I 〈 p, S′ 〉, where I is of type (1), and 〈 p, S′ 〉 is accepting, or
• 〈 q, S 〉 →I 〈 p1, S 〉 and 〈 q, S 〉 →I 〈 p2, S 〉, where I is of type (2), and both 〈 p1, S 〉 and
〈 p2, S 〉 are accepting.

Observe that a monotonic automaton is an alternating machine. Instructions of type (2) introduce
universal branching, and nondeterminism occurs when more than one instruction is applicable in
a state.2 The name “monotonic” is justified by the memory usage: registers are write-once devices,
once raised (set to 1) they cannot be reset to zero. Note also that all tests are positive: the machine
cannot see that a register is off. A nondeterministic automaton is one without universal branching
(cf. Section 5.2).

It should be clear that our definition is motivated by proof search. Indeed, the algorithm WA is
almost immediately implemented as an automaton.

2But states themselves are not classified as existential or universal.

8 ALEKSY SCHUBERT, PAWEŁ URZYCZYN, AND KONRAD ZDANOWSKI

Proposition 7. Given a formula Φ in IPC, one can construct (in logspace) a monotonic automa-
ton MΦ and state q so that ⊢ Φ if and only if the configuration 〈 q,∅ 〉 of MΦ is accepting.

Proof. (Sketch) Let S be the set of all subformulas of Φ. Define M = 〈Q,R, f, I 〉, where

• R = S is the set of registers.
• The set of states Q contains S and some auxiliary states.

Under this definition, a judgement Γ ⊢ ϕ corresponds directly to a configuration 〈ϕ,Γ 〉 of M.
The instructions of the automaton now implement cases (1–3) of WA. Of course the following
instructions are in I:

1. ϕ : jmp τ and σ, for each ϕ = τ ∧ σ ∈ S;

2. ϕ : check ∅; set τ ; jmp σ, for each ϕ = τ → σ ∈ S;

Case (3) of WA splits into three subcases handled with help of auxiliary states, and depending on
a choice of a formula ψ ∈ S.

If ϕ is an atom, ϕ ∈ TG(ψ), for some ψ ∈ S, and {ρ1, . . . , ρm} ∈ tr(ϕ, ψ), then I contains
a sequence of instructions (using m− 2 brand new states) abbreviated as:

3a. ϕ : check ψ; set ∅; jmp ρ1, . . . , ρm .

If ϕ is an atom or a disjunction, and ⊥ ∈ TG(ψ), for some ψ ∈ S, and {ρ1, . . . , ρm} ∈ tr(⊥, ψ),
then I also contains similar instructions:

3b. ϕ : check ψ; set ∅; jmp ρ1, . . . , ρm .

If ϕ is an atom or a disjunction, α∨ β ∈ TG(ψ), for some ψ ∈ S, and {ρ1, . . . , ρm} ∈ tr(α∨ β, ψ),
then I contains instructions (using m auxiliary states including s1 and s2):

3c. ϕ : check ψ; set ∅; jmp ρ1, . . . , ρm, s1, s2;

s1 : check ∅; set α; jmp ϕ;

s2 : check ∅; set β; jmp ϕ.

For example, if ψ = α → β ∨γ ∈ Γ, and ϕ ∈ S is an atom, then the following instructions are in I
(where p1, p2, p3, p4 are fresh auxiliary states):

ϕ : check ψ; set ∅; jmp p1 ;

p1 : jmp α and p2 ;

p2 : jmp p3 and p4 ;

p3 : check ∅; set β; jmp ϕ ;

p4 : check ∅; set γ; jmp ϕ .

By straightforward induction one proves that a configuration of the form 〈ϕ,Γ 〉 is accepting if and
only if Γ ⊢ M : ϕ for some lnf M . It remains to define q as Φ, and observe that by Lemma 6(2)
the automaton can be computed in logspace. ⊣

Complexity. The halting problem for monotonic automata is

“Given M, q, S, is 〈 q, S 〉 an accepting configuration of M?”

In the remainder of this section we show that this problem is Pspace-complete. The upper bound
is routine.

Lemma 8. It is decidable in polynomial space if a given configuration of a monotone automaton
is accepting. For nondeterministic automata (with no universal branching) the problem is in NP.

Proof. An accepting computation of an alternating automaton can be seen as a tree. Every
branch of the tree is a (finite or infinite) sequence 〈 q0, S0 〉, 〈 q1, S1 〉, 〈 q2, S2 〉, . . . of configurations,
where S0 ⊆ S1 ⊆ S2 ⊆ · · · . If the number of states and the number of registers are bounded by n
then a configuration must necessarily be repeated after at most n2 steps. An alternating Turing
Machine working in time n3 can therefore verify if a given configuration is accepting, and our

BETWEEN PROOF CONSTRUCTION AND SAT-SOLVING 9

halting problem is in APtime ⊆ Pspace, cf. [21, Ch. 19]. In case of no universal branching,
a nondeterministic Turing Machine suffices. ⊣

The next example hints on the technique used to show the lower bound.

Example 9. Consider a finite automaton A, with states {0, . . . , k}, the initial state 0, and the
final state k. Given a string w = a1 . . . an, we define a monotonic M such that A accepts w if and
only if the initial configuration 〈 q0, r00 〉 of M is accepting.3

States of M are q0, q1, . . . , qn, f where q0 is initial and f is final. Registers are rti , for t ≤ n and
i ≤ k. For all t = 0, . . . , n− 1, we have an instruction

qt : check rti ; set r
t+1
j ; jmp qt+1,

whenever A, reading at+1 in state i, can enter state j. For t = n, we take at last

qn : check rnk ; set ∅; jmp f .

Then an accepting computation of the automaton A, consisting of states 0, i1, i2, . . . , in = k, is
represented by a computation of M, ending in 〈 f, r00 , r

1
i1
, . . . , rnin 〉. Note that the instructions of

M are all of type (1), i.e., there is no alternation.

Correctness : By induction with respect to n − t one shows that a configuration of the form
〈 qt, r00 , . . . , r

t
it
〉 is accepting if and only if A accepts the suffix at+1 . . . an of w from state it.

In order to simplify the proof of Pspace-hardness, let us begin with the following observa-
tion. Every language L ∈ Pspace reduces in logarithmic space to some context-sensitive lan-
guage L′, recognizable by a linear bounded automaton (LBA), cf. [15, Ch. 9.3]. Indeed, for any

L ∈ Dspace(nk), take L′ = {w$n
k

| w ∈ L∧|w| = n}, where |w| denotes the length of the word w.
Hence it suffices to reduce the halting problem for LBA (aka In-place Acceptance problem,
cf. [21, Ch. 19]) to the halting problem of monotonic automata. This retains the essence of Pspace

but reduces the amount of bookkeeping.

Given a linear bounded automaton A and an input string w = x1 . . . xn, we construct a monotonic
automaton M and an initial configuration C0 such that

A accepts w if and only if C0 is an accepting configuration of M.

Let p be a polynomial such that A works in time 2p(n). The alternating automaton M simulates
A by splitting the 2p(n) steps of computation recursively into halves and executing the obtained
fractions concurrently. The “history” of each branch of the computation tree of M is recorded
in its registers. For every d = 0, . . . , p(n), there are three groups of registers (marked B,E,H)
representing A’s configurations at the beginning (B) and at the end (E) of a computation segment
of up to 2d steps, and halfway (H) through that segment. That is, for any i = 1, . . . , n, d =
0, . . . , p(n), for any state q of A, and for any tape symbol a of A, the automaton M has the
following registers:

• s(B, d, q), s(H, d, q), s(E, d, q) – “the current state of A is q”;

• c(B, d, i, a), c(H, d, i, a), c(E, d, i, a) – “the symbol at position i is a”;

• h(B, d, i), h(H, d, i), h(E, d, i) – “the machine head scans position i”.

By Bd, Hd, Ed we denote the sets of all registers indexed by d and, respectively, by B,H,E. A set
of registers S ⊆ Xd is an X, d-code of a configuration of A, when S contains exactly one register
of the form s(X, d, q), exactly one h(X, d, j), and, for every i, exactly one c(X, d, i, a).

The initial configuration of M is C0 = 〈 0, S0 〉, where S0 is the B, p(n)-code of the initial config-
uration of A, that is,

– S = { s(B, p(n), q0), c(B, p(n), 1, x1), . . . , c(B, p(n), n, xn), h(B, p(n), 1) }.

The machine M works as follows:

3We write sets without { } whenever it is convenient.

10 ALEKSY SCHUBERT, PAWEŁ URZYCZYN, AND KONRAD ZDANOWSKI

In the initial phase (commencing in state 0) it guesses the final configuration of A, and sets the
appropriate registers in Ep(n) to obtain the E, p(n)-code of that final configuration. Then M
enters state Qp(n).

Assume now that the machine is in configuration 〈Qd, S 〉, where d > 0, and S contains:

– a B, d-code of some configuration Cb of A;

– an E, d-code of some configuration Ce of A.

The following steps are now executed:

(1) An intermediate configuration Ch is guessed, i.e., registers in Hd are nondeterministically set
to obtain an H, d-code of Ch. The machine selects an adequate sequence of instructions from the
set below (where q′, a, and j are arbitrary):

Qd : check ∅; set s(H, d, q′); jmp Q1
d;

Qi
d : check ∅; set c(H, d, i, a); jmp Qi+1

d , for i = 1, . . . , n;

Qn+1
d : check ∅; set h(H, d, j); jmp Q′

d.

(2) The machine makes a universal split into states QB
d and QE

d .

(3) In state QB
d registers in S ∩Bd are copied to corresponding registers in Bd−1. This has to be

done nondeterministically, by guessing which registers in S ∩Bd are set. The relevant instructions
are:

QB
d : check s(B, d, q); set s(B, d− 1, q); jmp QB,1

d ;

Q
B,i
d : check c(B, d, i, a); set c(B, d− 1, i, a); jmp QB,i+1

d , for i = 1, . . . , n;

Q
B,n+1
d : check h(B, d, j); set h(B, d− 1, j); jmp QBE

d .

Then registers in S ∩ Hd are copied to Ed−1 in a similar way. In short, this can be informally
written as Bd−1 := Bd;Ed−1 := Hd. Then the machine enters state Qd−1.

(4) In state QE
d , the operations follow a similar scheme, that can be written in short as

Bd−1 := Hd;Ed−1 := Ed; jmp Qd−1.

The above iteration splits the computation of M into 2p(n) branches, each eventually entering
state Q0. At this point we verify the correctness. The sets S ∩B0 and S ∩E0 should now encode
some configurations Cb and Ce of A such that either Cb = Ce, or Ce is obtained from Cb in one
step. This can be nondeterministically verified, and afterwards M enters its final state.

This last phase uses, in case Cb = Ce, the supply of instructions below (the other variant can be
handled similarly).

Q0 : check s(B, d, q); set ∅; jmp Qs
d(q);

Qs
d(q) : check s(E, d, q); set ∅; jmp Qc,1

d ;

Q
c,i
d : check c(B, d, i, a); set ∅; jmp Qc,i

d (a);

Q
c,i+1
d (a) : check c(E, d, i, a); set ∅; jmp Qc,i+1

d ;

Q
c,n+1
d : check h(B, d, j); set ∅; jmp Qh

d(j);

Qh
d(j) : check h(E, d, j); set ∅; jmp f.

The main property of the above construction is the following.

Lemma 10. Let S be a set of registers such that:

– S ∩Bd is a B, d-code of some configuration Cb of A;

– S ∩ Ed is an E, d-code of some configuration Ce of A.

In addition, assume that S ∩Hd = ∅, as well as S ∩ (Be ∪He ∪Ee) = ∅, for all e < d. Then the
following are equivalent:

BETWEEN PROOF CONSTRUCTION AND SAT-SOLVING 11

1. 〈Qd, S 〉 is an accepting configuration of M;
2. Ce is reachable from Cb in at most 2d steps of A.

Proof. (1) ⇒ (2): Induction with respect to the definition of acceptance.

(2) ⇒ (1): Induction with respect to d. ⊣

Theorem 11. The halting problem for monotonic automata is Pspace-complete.

Proof. Lemma 8 implies that the problem belongs to Pspace. The hardness part is a conse-
quence of Lemma 10 applied for d = p(n) with Cb and Ce being, respectively, the initial and final
configuration of A. ⊣

Automata to formulas. In order to finish our reduction of provability in IPC to provability in
IIPC we need to prove a specific converse of Proposition 7. Consider a monotonic automaton
M = 〈Q,R, f, I 〉, and an ID of the form C0 = 〈 q0, S0 〉. Without loss of generality we can assume
that Q ∩R = ∅. Using states and registers of M as propositional atoms, we define a set of axioms
Γ so that Γ ⊢ q0 if and only if C0 is accepting. The set Γ contains the atoms S0 ∪ {f}; other
axioms in Γ represent instructions of M.

An axiom for q : check S1; set S2; jmp p, where S1 = {s11, . . . , s
k
1} and S2 = {s12, . . . , s

ℓ
2}, is:

(1) s11 → · · · → sk1 → (s12 → · · · → sℓ2 → p) → q.

And for every instruction q : jmp p1 and p2, there is an axiom

(2) p1 → p2 → q.

Observe that all the above axioms are of order at most two, hence the formula Γ → q0 has order
at most three.

Lemma 12. Given the above definitions, the configuration 〈 q0, S0 〉 is accepting if and only if Γ ⊢ q0
holds.

Proof. For every S ⊆ R and q ∈ Q, we prove that Γ, S ⊢ q if and only if C = 〈 q, S ∪ S0 〉 is
accepting. We think of Γ as of a type environment where each axiom is a declaration of a variable.

(⇐) Induction with respect to long normal proofs. With → as the only connective, any normal
proof T of an atom q must be a variable or an application, say T = xN1 . . . Nm, The case of x :f
(i.e., q = f) is obvious; otherwise the type of x corresponds to an instruction. There are two
possibilities:

(1) If x :s11 → · · · → sk1 → (s12 → · · · → sℓ2 → p) → q,

then actually we obtain that T = xD1 . . . Dk(λu1 :s
1
2 . . . λuℓ :s

ℓ
2. P). Terms D1, . . . , Dk are, re-

spectively, of types s11, . . . , s
k
1 , and they must be variables declared in S, as there are no other

assumptions with targets s11, . . . , s
k
1 . Hence the instruction corresponding to x is applicable at

C = 〈 q, S 〉 and yields C′ = 〈 p, S ∪ S′ 〉, where S′ = S ∪ {s12, . . . , s
ℓ
2}. In addition we have

Γ, S ∪ S′ ⊢ P : p, whence C′ is accepting by the induction hypothesis.

(2) If x has type p1 → p2 → q, where p1, p2 ∈ Q,

then T = xT1T2. The appropriate universal instruction leads to two IDs: C1 = 〈 p1, S 〉 and
C2 = 〈 p2, S 〉. The judgements Γ, S ⊢ T1 : p1 and Γ, S ⊢ T2 : p2 obey the induction hypothesis.
Thus C1, C2 are accepting and so is C.

(⇒) Induction with respect to the definition of acceptance. ⊣

Proposition 13. The halting problem for monotonic automata reduces to the provability problem
for formulas in IIPC of order at most three.

Putting together Propositions 7 and 13 and Theorem 11 we obtain a number of consequences.

Theorem 14. Provability in IPC and IIPC are Pspace-complete.

While the statement of Theorem 14 is well-known [30], the present automata-theoretic proof
directly exhibits the computational capability of proof-search: polynomial space Turing Machines

12 ALEKSY SCHUBERT, PAWEŁ URZYCZYN, AND KONRAD ZDANOWSKI

are encoded almost directly into propositional formulas (the automaton being merely a technically
convenient way to manipulate them).

Without loss of generality we can interpret problems in Pspace as reachability questions con-
cerning some objects or configurations of polynomial size. The construction used in the proof of
Theorem 11 (the simulation of LBA) reflects a natural, possibly interactive, approach to solve such
questions: split the reachability task into two, by choosing some intermediate configuration. An
example that comes to mind is the Sokoban game: the set of winning positions is a context-sensitive
language and one can try to solve the puzzle by determining some milestone states.

Another consequence of our development is that the computational power of IPC is fully contained
in IIPC, and in an apparently small fragment.

Theorem 15. For every formula ϕ of full IPC one can construct (in logspace) an implicational
formula ψ of order at most three such that ψ is provable iff so is ϕ.

§4. An intuitionistic order hierarchy. In Section 3, we observed that provability in the whole
IPC is faithfully reflected by provability for formulas of IIPC of that have order at most three.
Proving any formula is therefore at most as difficult as proving some formula of order three. But
is every formula equivalent to one of order three? The answer is negative: in the case of IPC we
have a strict order hierarchy of formulas. Define by induction ϕ1 = p1 and ϕk+1 = ϕk → pk+1.
That is,

ϕk = (· · · ((p1 → p2) → p3) → · · · → pk−1) → pk.

Lemma 16. Every proof of ϕk → ϕk is βη-convertible to the identity combinator λx.x.

Proof. We prove the following generalized statement by induction with respect to the num-
ber k. Let tg(γ) 6∈ {p1, . . . , pk}, for all γ ∈ Γ, and let Γ, X :ϕk ⊢ M : ϕk, where M is in
normal form. Then M =βη X . Indeed, first note that X is the only assumption with tar-
get pk, hence for k = 1 the claim follows immediately. Otherwise either M = X or M = λY.M ′

with a derivation Γ, X :ϕk, Y :ϕk−1 ⊢ M ′ : pk. This is only possible when M ′ = XM ′′, where
Γ, X :ϕk, Y :ϕk−1 ⊢M ′′ : ϕk−1. By the induction hypothesis for Γ′ = Γ ∪ {x : ϕk} and Y : ϕk−1,
we have M ′′ =βη Y , hence M = λY.XM ′′ =βη λY.XY =βη X . ⊣

Theorem 17. For every k, no implicational formula of order less than k is intuitionistically equiv-
alent to ϕk.

Proof. If ⊢ ϕk ↔ α then there are closed terms T : ϕk → α and N : ϕk → α. The composition
λx.N(Tx) is a combinator of type ϕk → ϕk, and by Lemma 16 it must be βη-equivalent to
identity. That is, ϕk is a retract of α, in the sense of [23]. It thus follows from [23, Prop. 4.5]
that α must be of order at least k. ⊣

Interestingly enough, Theorem 17 stays in contrast with the situation in classical logic. Every
propositional formula is classically equivalent to a formula in conjunctive normal form (CNF). If
implication is the only connective then we have a similar property.

Proposition 18. Every implicational formula is classically equivalent to a formula of order at
most three.

Proof. Given a formula of the form ϕ = α1 → · · · → αn → p, we first translate the conjunction
α1 ∧ · · · ∧ αn into a conjunctive normal form β1 ∧ · · · ∧ βm, so that ϕ is equivalent to a formula
ψ = β1 → · · · → βm → p. Each βi is a disjunction of literals. For every i, there are two
possibilities:

Case 1: At least one component of βi is a variable, say βi = ¬q1 ∨ · · · ∨ ¬qr ∨ r1 ∨ · · · ∨ rk ∨ s. We
replace βi in ψ by the formula β′

i = q1 → · · · → qr → (r1 → p) → · · · → (rk → p) → s.

Case 2: All components of the formula βi are negated variables, i.e., βi = ¬q1 ∨ · · · ∨ ¬qr. Then
we replace such βi by the formula q1 → · · · → qr → p.

BETWEEN PROOF CONSTRUCTION AND SAT-SOLVING 13

For example, if ψ = (s ∨ q ∨ ¬r) → (¬q ∨ ¬r ∨ ¬s) → p then we rewrite ψ as the formula
(r → (q → p) → s) → (q → r → s → p) → p. It is a routine exercise to see that the final result
is a formula of rank at most 3 which is classically equivalent to the initial formula ϕ (note that if
a Boolean valuation falsifies p then it satisfies p↔ ⊥). ⊣

Example 19. The formula ϕ5 = (((p1 → p2) → p3) → p4) → p5 is classically equivalent to this
“normal form”:

(p1 → (p2 → p5) → p4) → (p3 → p4) → p5.

Remark 20. Despite the contrast between the classical CNF collapse and order hierarchy in in-
tuitionistic logic, there is still a strong analogy between CNF and order three fragment of IIPC.
The CNF formulas do indeed exhaust the whole expressive power of classical propositional logic,
but for a heavy price. The value-preserving translation of a formula to conjunctive normal form
is exponential, hence useless with respect to NP-completeness of CNF-SAT. That requires a poly-
nomial satisfiability-preserving translation, very much like our provability-preserving reduction of
the full IPC to order three IIPC.

§5. Below order three. In this section we identify fragments of IIPC corresponding to the
complexity classes P, NP and co-NP.

5.1. Formulas of order two: deterministic polynomial time. Implicational formulas of
rank 1 are the same as propositional clauses in logic programming. Therefore decision problem for
rank 2 formulas (no matter, classical or intuitionistic) amounts to propositional logic programming,
known to be P-complete [8] with respect to logspace reductions.

5.2. Order three minus: class NP. We define here a subclass of IIPC for which the provability
problem is NP-complete.

We split the set X of propositional variables into two disjoint infinite subsets X0,X1 ⊆ X , called
respectively data and control variables. The role of control variables is to occur as targets, the
data variables only occur as arguments. The set of formulas T3− is defined by the grammar:

T3− ::= X1 | T2− → T3− | X0 → T3−

T2− ::= X1 | X0 → T2− | T1− → T1−

T1− ::= X1 | X0 → T1−

Formulas in T1− are of the form p1 → · · · → pn → q, where pi ∈ X0 and q ∈ X1. The set T2−

consists of formulas of order at most two, with an X1 target, and with at most one argument
in T1−, and all other arguments being variables in X0. Finally the T3− formulas are of shape
σ1 → σ2 → · · · → σn → q, where q ∈ X1 and σi ∈ T2− ∪ X0, for i = 1, . . . , n.

Lemma 21. Proof search for formulas in T3− is in NP.

Proof. Proving an implicational formula amounts to proving its target in the context consisting
of all its arguments. In the case of T3− we are interested in contexts built from atoms in X0 and
formulas in T2− (some of those can be atoms in X1). Such contexts are called NP-contexts . If Γ
is an NP-context, and Γ ⊢ M : q, with M an lnf, then M is either a variable or it has the form
M = XY1Y2 . . . Yk(λV1 . . . Vm. N)Z1 . . . Zℓ, where:

– the type of X is a T2− formula of the form

p1 → p2 → · · · → pk → α → p′1 → · · · → p′ℓ → q;

– Y1 :p1, Y2 :p2, . . . , Yk :pk, Z1 :p
′

1, . . . , Zℓ :p
′

ℓ are declared in Γ;

– the term λV1 . . . Vm. N has a T1− type α = s1 → · · · → sm → q′.

We then have Γ, V1 :s1, . . . , Vm :sm ⊢ N : q′, with s1, . . . , sm ∈ X0 and q′ ∈ X1, and the context
Γ, V1 :s1, . . . , Vm :sm is an NP-context. In terms of a monotonic automaton this proof construction
step amounts to executing this instruction:

q : check p1, . . . , pk, p
′

1, . . . , p
′

ℓ; set s1, . . . , sm; jmp q′

14 ALEKSY SCHUBERT, PAWEŁ URZYCZYN, AND KONRAD ZDANOWSKI

No other actions need to be performed by the automaton except a final step, which takes up the
form q : check q; set ∅; jmp f , where f is a final state (this corresponds to the case of M = X).

It follows that T3− proof search can be handled by a nondeterministic automaton (with no universal
branching). By Lemma 8 provability in T3− belongs to NP. ⊣

Remark 22. To exclude universal branching, only one argument in a T2− formula can be non-
atomic. Note however that formulas used in the proof of Proposition 13 satisfy a similar restriction.
Hence the separation between “data atoms” X0 and “control atoms” in X1 is essential too.

Similarly, sole separation between “data atoms” and “control atoms” does not reduce the complexity
either, as it directly corresponds to separation between registers and states of automata.

Lemma 23. Provability in T3− is NP-hard.

Proof. We reduce the 3-CNF-SAT problem to provability in T3−. For every 3-CNF formula

Ψ = (r11 ∨ r12 ∨ r13) ∧ · · · ∧ (rk1 ∨ rk2 ∨ rk3), (∗)

where rij are literals, we construct a T3− formula ψ so that Ψ is classically satisfiable if and only
if ψ has a proof. Assume that {p1, . . . , pn} are all propositional variables occurring in Ψ, and that
p1, . . . , pn, p

′

1, . . . , p
′

n ∈ X0. Other atoms of the formula ψ are q1, . . . , qn, c1, . . . , ck ∈ X1.

Define ρij = pℓ when rij = pℓ, and ρij = p′ℓ when rij = ¬pℓ. The formula ψ has the form Γ → q1,
where Γ consists of the following axioms:

1. (pi → qi+1) → qi and (p′i → qi+1) → qi, for i = 1, . . . , n− 1;
2. (pn → c1) → qn and (p′n → c1) → qn;
3. ρi1 → ci+1 → ci, ρi2 → ci+1 → ci, and ρi3 → ci+1 → ci, for i = 1, . . . , k − 1;
4. ρk1 → ck, ρk2 → ck, and ρk3 → ck.

For a binary valuation v, let ∆v be such that pi ∈ ∆v when v(pi) = 1 and p′i ∈ ∆v otherwise.
Suppose that Ψ is satisfied by some v. Then, for every i there is j with ρij ∈ ∆v and one can
readily see that Γ,∆v ⊢ c1 using axioms (4) and (3).

Let ∆i
v = ∆v ∩ ({pj | j < i} ∪ {p′j | j < i}). Since Γ,∆v ⊢ c1 we obtain Γ,∆n

v ⊢ qn using (2), and

then we use (1) to prove Γ,∆i
v ⊢ qi by induction, for n− 1 ≥ i ≥ 1. Since ∆1

v = ∅, we eventually
get Γ ⊢ q1.

For the converse, a proof of Γ ⊢ q1 in long normal form must begin with a head variable of type
(p1 → q2) → q1 or (p′1 → q2) → q1 applied to an abstraction λx.N with N of type q2. The shape
of N is also determined by axioms (1–2), and it must inevitably contain a proof of Γ,∆v ⊢ c1 for
some v. Such a proof is only possible if each of the k clauses is satisfied by v. The fun of checking
the details is left to the reader. ⊣

We can put together Lemma 21 and Lemma 23 to obtain the conclusion of this section: a very
limited fragment of IIPC is of the same expressive power as SAT.

Theorem 24. Proof search for T3− formulas is NP-complete.

5.3. Order two plus. We distinguish another natural class of formulas of low order for which
the provability problem is co-NP-complete. We consider here implicational formulas built from
literals, and we restrict attention to formulas of order two, where all literals are counted as of
order zero. We call this fragment order two plus . Note that if we use the standard definition of
order, these formulas are of order three.

It is convenient and illustrative to work with literals (using negation), but formulas of order two
plus make in fact a fragment of IIPC. Indeed, ¬p = p→ ⊥ by definition, and in all our proofs below
the constant ⊥ can be understood merely as a distinguished atom with no particular meaning. In
other words, the ex falso rule, i.e., ⊥-elimination is not involved.

Lemma 25. Formulas of order two plus have the linear size model property: if 0ϕ then there is
a Kripke model of depth at most 2 and of cardinality not exceeding the length of ϕ.

BETWEEN PROOF CONSTRUCTION AND SAT-SOLVING 15

Proof. Let ϕ = ξ1 → · · · → ξn → p, where ξi = q1i → · · · → q
ni

i → ri. Without loss of generality
we may assume that literals p, r1, . . . , rn are all either propositional variables or ⊥. Suppose that
0 ϕ. Then there exists a finite Kripke model C and a state c0 of C such that C, c0 1 ϕ. That is,
C, c0 ξi, for all i = 1, . . . , n, and C, c0 1 p. For every i = 1, . . . , n we now select a final state ci
of C as follows. Since C, c0 ξi, there are two possibilities: either C, c0 ri, or C, c0 1 q

j
i, for

some j. The important case is when C, c0 1 qj and qj = ¬s, for some propositional variable s.
Then there is a successor state c′ of c0 with C, c′ s, hence there also exists a final state forcing s.
We define ci as one of such final states. In other cases the choice of ci is irrelevant and we can
choose any final state.

Now define a new model C′ with the set of states {c0} ∪ {c1, . . . , cn} and the relation inherited
from C, i.e., C′, c s iff C, c s, for any state c of C′ and any propositional variable s. Note that
so defined C′ has depth at most 2.

We claim that C′, c0 1 ϕ. Clearly C′, c0 1 p, so we should prove that all states in C′ force all
formulas ξi. Forcing in any state only depends on its successor states, hence if we had C, ci ξi
then we still have C′, ci ξi, for all i = 1, . . . , n, because nothing has changed at the final states.
But also nothing has changed at c0 with respect to ξi. Indeed, if C, c0 ri then C′, c0 ri, and
if C, c0 1 q

j
i for some j, where q

j
i is a propositional variable, then C′, c0 1 q

j
i as well. Otherwise,

for some s, j, we have ¬s = q
j
i and C′, ci s, so C′, c0 1 q

j
i. ⊣

Example 26. Lemma 25 cannot be improved to 2-state models: the formula

(¬p → q) → (¬r → q) → (p → ¬r) → q

requires a countermodel with at least 3 states.

Theorem 27. Order two plus fragment of IPC is co-NP-complete.

Proof. That the problem is in co-NP follows from Lemma 25: the small countermodel can be
guessed and verified in polynomial time.

The co-NP-hardness of order two plus is shown by a reduction from non-3-CNF-SAT. Let us begin
with a formula in 3-CNF:

Ψ = (r11 ∨ r12 ∨ r13) ∧ · · · ∧ (rk1 ∨ rk2 ∨ rk3),

where rij are literals. Assume that {p1, . . . , pn} are all propositional variables in Ψ. We define a set
ΓΨ of formulas using propositional variables p1, . . . , pn, p

′

1 . . . , p
′

n. For any literal rjm occurring
in Ψ we write r′jm to denote:

– the variable p′i, when rjm = pi;

– the variable pi, when rjm = ¬pi.

Members of ΓΨ are as follows (for all i = 1, . . . , n and j = 1, . . . , k):

– Xi :¬pi → ¬p′i → ⊥;

– Yj :r
′

j1 → r′j2 → r′j3 → ⊥.

For example, if the first component of Ψ was (p ∨ ¬q ∨ ¬s) then Y1 : p′ → q → s → ⊥. We shall
prove that:

Ψ is classically unsatisfiable if and only if ΓΨ ⊢ ⊥.

(⇒) Let m ≤ n and let v be a Boolean valuation of variables p1, . . . , pm. Define an environment
Γv = ΓΨ ∪ {x1 :p

v
1, . . . xm :pvm}, where

pvi =

{

pi, if v(pi) = 1;
p′i, otherwise.

By a reverse induction with respect to m we prove that Γv ⊢ ⊥, for every such v. We begin with
m = n. Then v is defined on all variables in Ψ and does not satisfy Ψ. Therefore the value under
v of at least one clause rj1 ∨ rj2 ∨ rj3 is zero, in which case we have r′j1, r

′

j2, r
′

j3 ∈ Γv, hence

16 ALEKSY SCHUBERT, PAWEŁ URZYCZYN, AND KONRAD ZDANOWSKI

⊥ is derivable using the assumption Yj . (For example, if the unsatisfied component of Ψ were
(p ∨ ¬q ∨ ¬s) then we would have pv = p′, qv = q, sv = s.)

For the induction step assume the claim holds for some m ≤ n, and let v be a valuation of
p1, . . . , pm−1. For b = 0, 1, define vb as v extended by vb(pm) = b. By the induction hypothesis
there are proofs Γv0 ⊢M0 : ⊥ and Γv1 ⊢M1 : ⊥. Then one proves ⊥ from Γv using the assumption
Xm; the lambda term in question has the form Xm(λxm :pm.M1)(λxm :p′m.M0).

(⇐) By contraposition suppose that v satisfies Ψ. We extend it to primed propositional variables
by letting v(p′) = 1− v(p). Since v satisfies all the clauses r11 ∨ r12 ∨ r13 of Ψ, it satisfies all the
formulas in ΓΨ. Consequently, Γ 6⊢ ⊥ even in classical logic.

For any given Boolean valuation v of p1, . . . , pn, we prove that v does not satisfy Ψ. Let again
Γv = ΓΨ ∪ {x1 :p

v
1, . . . , xn :p

v
n}. Since ΓΨ ⊢ ⊥, also Γv ⊢ ⊥, so let M be the shortest possible

normal lambda-term such that Γv ⊢M : ⊥. The proof must begin with either some Xi or some Yj .
In the first case it must be of the formM = Xi(λyi :pi.M1)(λyi :p

′

i.M0), where Γv, yi : , pi ⊢M1 : ⊥
and Γv, yi :p

′

i ⊢ M0 : ⊥. But in Γv we have either xi :pi or xi :p
′

i. Thus either M1[yi := xi] or
M0[yi := xi] makes a proof of ⊥ shorter than M .

It follows that the shortest proof of ⊥ is of the form M = YjN1N2N3, where Γv ⊢ N1 : r′j1,
Γv ⊢ N2 : r′j2, and Γv ⊢ N3 : r′j3. Then N1, N2, N3 must be variables declared in Γv which is only
possible when the literals rj1, rj2, rj3 are zero-valued under v. ⊣

§6. Conclusions and further research. We have demonstrated the strength of implicational
intuitionistic propositional logic (IIPC) as a reasonable language to express problems solvable in
Pspace. Moreover, some natural subclasses of IIPC, called order three minus and order two plus ,
correspond respectively to complexity classes NP and co-NP (Section 5).

The situation in IIPC can be related to the one in modal logic S4 through the standard embedding
[19] (see [4] for a modern account of the embedding). Each subsequent order corresponds through
this embedding to one application of the modal operator. In particular, formulas of order three in
IIPC translate to formulas of modal depth four. Interestingly enough, satisfiability for S4 formulas
already of modal depth k ≥ 2 is Pspace-complete [12, Theorem 4.2].

REFERENCES

[1] Sahel Alouneh, Sa’ed Abed, Mohammad H. Al Shayeji, and Raed Mesleh, A comprehensive study
and analysis on SAT-solvers: advances, usages and achievements, Artificial Intelligence Review, vol. 52 (2019),
no. 4, pp. 2575–2601.

[2] Choukri-Bey Ben-Yelles, Type-assignment in the lambda-calculus; syntax and semantics, Ph.D. thesis,
Mathematics Department, University of Wales, Swansea, UK, 1979.

[3] M. N. Bezhanishvili, Notes on Wajsberg’s proof of the separation theorem, Initiatives in Logic (Jan
Srzednicki, editor), Springer Netherlands, Dordrecht, 1987, pp. 116–127.

[4] Félix Bou, Complexity of strict implication, Advances in Modal Logic 5, papers from the fifth

conference on "Advances in Modal Logic," held in Manchester, UK, 9-11 September 2004 (Renate A.
Schmidt, Ian Pratt-Hartmann, Mark Reynolds, and Heinrich Wansing, editors), King’s College Publications, 2004,
pp. 1–16.

[5] Gerhard Brewka, Thomas Eiter, and Mirosław Truszczyński, Answer set programming at a glance,
Commun. ACM, vol. 54 (2011), no. 12, pp. 92–103.

[6] Joseph C. Culberson, Sokoban is pspace-complete, Technical Report TR 97-02, Department of Com-
puting Science, The University of Alberta, Edmonton, Alberta, Canada, 1997.

[7] Dirk van Dalen, Intuitionistic logic, Handbook of Philosophical Logic: Volume III: Alternatives

in Classical Logic (D. Gabbay and F. Guenthner, editors), Springer Netherlands, Dordrecht, 1986, pp. 225–339.
[8] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov, Complexity and expressive

power of logic programming, ACM Comput. Surv., vol. 33 (2001), no. 3, pp. 374–425.
[9] Philippe de Groote, On the strong normalisation of intuitionistic natural deduction with permutation-

conversions, Inf. Comput., vol. 178 (2002), no. 2, pp. 441–464.
[10] Dorit Dor and Uri Zwick, SOKOBAN and other motion planning problems, Comput. Geom., vol. 13

(1999), no. 4, pp. 215–228.

BETWEEN PROOF CONSTRUCTION AND SAT-SOLVING 17

[11] M. Fitting, Intuitionistic logic, model theory and forcing, Studies in Logic and the Foundations of
Mathematics, North-Holland, 1969.

[12] Joseph Y. Halpern, The effect of bounding the number of primitive propositions and the depth of nesting
on the complexity of modal logic, Artificial Intelligence, vol. 75 (1995), no. 2, pp. 361–372.

[13] Robert A. Hearn and Erik D. Demaine, Pspace-completeness of sliding-block puzzles and other prob-
lems through the nondeterministic constraint logic model of computation, Theor. Comput. Sci., vol. 343 (2005),
no. 1-2, pp. 72–96.

[14] Holger H. Hoos and Thomas Stützle, Stochastic Local Search. Foundations and Applications,
Elsevier, 2005.

[15] John E. Hopcroft and Jeffrey D. Ullman, Introduction to automata theory, languages, and

computation, Addison-Wesley Publishing Company, 1979.
[16] Ingebrigt Johansson, Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus, Compositio

Mathematica, vol. 4 (1936), pp. 119–136.
[17] Orna Kupferman and Moshe Y. Vardi, Church’s problem revisited, The Bulletin of Symbolic Logic,

vol. 5 (1999), no. 2, pp. 245–263.
[18] Chuck Liang and Dale Miller, Focusing and polarization in linear, intuitionistic, and classical logics,

Theoretical Computer Science, vol. 410 (2009), no. 46, pp. 4747–4768, Abstract Interpretation and Logic
Programming: In honor of professor Giorgio Levi.

[19] J. C. C. McKinsey and Alfred Tarski, Some theorems about the sentential calculi of Lewis and Heyting,
The Journal of Symbolic Logic, vol. 13 (1948), no. 1, pp. 1–15.

[20] Dale Miller, Gopalan Nadathur, Frank Pfenning, and Andre Scedrov, Uniform proofs as a
foundation for logic programming, Annals of Pure and Applied Logic, vol. 51 (1991), no. 1, pp. 125–157.

[21] Christos H. Papadimitriou, Computational Complexity, Addison-Wesley Publishing Company, Inc.,
1995.

[22] Mukul R. Prasad, Armin Biere, and Aarti Gupta, A survey of recent advances in SAT-based formal
verification, International Journal on Software Tools for Technology Transfer, vol. 7 (2005), no. 2,
pp. 156–173.

[23] Laurent Regnier and Paweł Urzyczyn, Retractions of types with many atoms, CoRR,
vol. cs.LO/0212005 (2002).

[24] Jakob Rehof and Moshe Y. Vardi, Design and Synthesis from Components (Dagstuhl Seminar 14232),
Dagstuhl Reports, vol. 4 (2014), no. 6, pp. 29–47.

[25] Ignasi Abío Roig, Solving hard industrial combinatorial problems with SAT, Ph.D. thesis, Universitat
Politècnica de Catalunya, Software Department, 2013.

[26] Aleksy Schubert, Wil Dekkers, and Hendrik Pieter Barendregt, Automata theoretic account of
proof search, 24th EACSL Annual Conference on Computer Science Logic, CSL 2015, September 7-

10, 2015, Berlin, Germany (Stephan Kreutzer, editor), LIPIcs, vol. 41, Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2015, pp. 128–143.

[27] Aleksy Schubert, Paweł Urzyczyn, and Daria Walukiewicz-Chrząszcz, How hard is positive quan-
tification?, ACM Trans. Comput. Log., vol. 17 (2016), no. 4, pp. 30:1–30:29.

[28] Craig Alan Smoryński, Investigation of intuitionistic formal systems by means of Kripke models, Ph.D.

thesis, University of Illinois, 1973.
[29] Morten Heine Sørensen and Paweł Urzyczyn, Lectures on the Curry-Howard Isomorphism,

Studies in Logic and the Foundations of Mathematics, vol. 149, Elsevier Science Inc., New York, NY, USA, 2006.
[30] R. Statman, Intuitionistic propositional logic is polynomial-space complete, Theoretical Computer Sci-

ence, vol. 9 (1979), no. 1, pp. 67–72.
[31] L. J. Stockmeyer and A. R. Meyer, Word problems requiring exponential time (preliminary report),

Proceedings of the Fifth Annual ACM Symposium on Theory of Computing (New York, NY, USA),
STOC ’73, Association for Computing Machinery, 1973, p. 1–9.

[32] Terese, Term rewriting systems, Cambridge University Press, 2003.
[33] Nikos Tzevelekos, Fresh-register automata, Proceedings of the 38th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, POPL 2011, Austin, TX, USA, January

26-28, 2011 (Thomas Ball and Mooly Sagiv, editors), ACM, 2011, pp. 295–306.
[34] Paweł Urzyczyn, Intuitionistic games: Determinacy, completeness, and normalization, Studia Logica,

vol. 104 (2016), no. 5, pp. 957–1001.
[35] , Duality in intuitionistic propositional logic, 26th International Conference on Types for

Proofs and Programs, TYPES 2020, March 2-5, 2020, University of Turin, Italy (Ugo de’Liguoro,
Stefano Berardi, and Thorsten Altenkirch, editors), LIPIcs, vol. 188, Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2020, pp. 11:1–11:10.

[36] Mordchaj Wajsberg, Untersuchungen über den Aussagenkalkül von A. Heyting, Wiadomości Mate-

matyczne, vol. 46 (1938), pp. 45–101, English translation: On A. Heyting’s propositional calculus, in Mordchaj
Wajsberg, Logical Works (S. J. Surma, editor), Ossolineum, Wrocław, 1977, pages 132–171.

18 ALEKSY SCHUBERT, PAWEŁ URZYCZYN, AND KONRAD ZDANOWSKI

FACULTY OF MATHEMATICS, INFORMATICS AND MECHANICS

UNIVERSITY OF WARSAW

UL. STEFANA BANACHA 2

02-097 WARSAW

POLAND

E-mail : alx@mimuw.edu.pl

FACULTY OF MATHEMATICS, INFORMATICS AND MECHANICS

UNIVERSITY OF WARSAW

UL. STEFANA BANACHA 2

02-097 WARSAW

POLAND

E-mail : urzy@mimuw.edu.pl

CARDINAL STEFAN WYSZYńSKI UNIVERSITY IN WARSAW

UL. DEWAJTIS 5

01-815 WARSAW

POLAND

E-mail : k.zdanowski@uksw.edu.pl

	1. Introduction
	2. Preliminaries
	3. Automata for logic
	4. An intuitionistic order hierarchy
	5. Below order three
	5.1. Formulas of order two: deterministic polynomial time
	5.2. Order three minus: class NP
	5.3. Order two plus

	6. Conclusions and further research

