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Abstract
This paper studies batched bandit learning problems for nondegenerate functions. Over a

compact doubling metric space (X ,D), a function f : X → R is called nondegenerate if there
exists L ≥ λ > 0 and q ≥ 1, such that

λ (D(x,x∗))
q ≤ f(x)− f(x∗) ≤ L (D(x,x∗))

q
, ∀x ∈ X ,

where x∗ = argminz∈X f(z) is the unique minimizer of f over X . In this paper, we introduce
an algorithm that solves the batched bandit problem for nondegenerate functions near-optimally.
More specifically, we introduce an algorithm, called Geometric Narrowing (GN), whose regret
bound is of order Õ

(
Ad

+

√
T
)
, where d is the doubling dimension of (X ,D), and A+ is a constant

independent of d and the time horizon T . In addition, GN only needs O(log log T ) batches to
achieve this regret. We also provide lower bound analysis for this problem. More specifically,
we prove that over some (compact) doubling metric space of doubling dimension d: 1. For any
policy π, there exists a problem instance on which π admits a regret of order Ω

(
Ad

−
√
T
)
, where

A− is a constant independent of d and T ; 2. No policy can achieve a regret of order Ad
−
√
T

over all problem instances, using less than Ω(log log T ) rounds of communications. Our lower
bound analysis shows that the GN algorithm achieves near optimal regret with minimal number
of batches.

1 Introduction
In batched stochastic bandit, an agent collects noisy rewards/losses in batches, and aims to find
the best option while exploring the space (Thompson, 1933; Robbins, 1952; Gittins, 1979; Lai and
Robbins, 1985; Auer et al., 2002a,b; Perchet et al., 2016; Gao et al., 2019). This setting reflects the
key attributes of crucial real-world applications. For example, in experimental design (Robbins, 1952;
Berry and Fristedt, 1985), the observations are often noisy and collected in batches (Perchet et al.,
2016; Gao et al., 2019). In this paper, we consider batched stochastic bandits for an important class
of functions, called “nondegenerate functions”.

1.1 Nondegenerate Functions
Over a compact doubling metric space (X ,D), a function f : X → R is called a nondegenerate function
if there exists L ≥ λ > 0 and q ≥ 1, such that

λ (D(x,x∗))
q ≤ f(x)− f(x∗) ≤ L (D(x,x∗))

q
, ∀x ∈ X , (1)

where x∗ = argminz∈X f(z) is the unique minimizer of f over X . Nondegenerate functions (Valko
et al., 2013; Zhang et al., 2017; Gemp et al., 2024) hold significance as they encompass various
important problems. Below we list some important nondegenerate functions.
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• (P0, warm-up example) Revenue curve as a function of price: As a warm-up example,
let the space (X ,D) be X = [0, 1] and D(x,y) = |x−y|. If x ∈ [0, 1] models price, then functions
satisfying (1) provide a natural model for revenue curve as a function of price, up to a flip of
sign (e.g., Chen and Wang, 2023; Perakis and Singhvi, 2023, and references therein).

• (P) Nonsmooth nonconvex objective over Riemannian manifolds: Our study introduces
a global bandit optimization method for a class of nonconvex functions on compact Riemannian
manifolds, where nontrivial convex functions do not exist (Yau, 1974). Let (X ,D) be a compact
finite-dimensional Riemannian manifold with the metric defined by the geodesic distance (e.g.,
Petersen, 2006). Then a smooth function with nondegenerate Taylor approximation satisfies (1)
near its global minimum x∗. More specifically, we can Taylor approximate the function f near
x∗ and get, for x = Expx∗(v) with some v ∈ Tx∗M, f(x) ≈

∑K
i=0

1
i!φ

(i)
v (∥v∥) where φ

(i)
v is the

i-th derivative of f ◦Expx∗ along the direction of v, and K ≥ 2 is some integer. Since x∗ is a local
minimum of f , we have φ

(1)
v = 0 (for all v), and thus f(x)− f(x∗) ≈ 1

q!φ
(q)
v (∥v∥) where q ≥ 2

is the smallest integer such that φ
(q)
v ̸= 0 (for some v). If φ(q)

v is nontrivial for all v ∈ Tx∗M,
that is, the leading nontrivial total derivative of f is nondegenerate, then the function f satisfies
(1) in a neighborhood of x∗. This justifies the name “nondegenerate”. In Figure 2, we provide
a specific example of a nondegenerate function over a Riemannian manifold. Over the entire
manifold, the objective is nonsmooth and nonconvex.

Also, it is worth emphasizing that nondegenerate functions can possess nonconvexity, nonsmooth-
ness, or discontinuity. As an illustration, consider the following nondegenerate function f(x) defined
over the interval [−2, 2], which exhibits discontinuity:

f(x) =


−x, if x ∈ [−2,−1)

x2, if x ∈ [−1, 1]

x+ 1, if x ∈ (1, 2].

(2)

A plot of the function (2) is in Figure 1, x2

2 (resp. 2x2) is a lower bound (resp. upper bound) for
f(x) over [−2, 2]. More generally, over a compact Riemannian manifold, with the metric D defined
by the geodesic distance, nondegenerate functions can still possess nonconvexity, nonsmoothness, or
discontinuity. A specific example is shown in Figure 2.

Given the aforementioned motivating examples, developing an efficient stochastic bandit/optimization
algorithm for nondegenerate functions is of great importance. In addition, we focus our study on the
batched feedback setting, which is also important.

1.2 The Batched Bandit Setting
In bandit learning, more specifically stochastic bandit learning, the agent is tasked with sequentially
making decisions based on noisy loss/reward samples associated with these decisions. The objective
of the agent is to identify the optimal choice while simultaneously learning the expected loss func-
tion across the decision space. The effectiveness of the agent’s policy is evaluated through regret,
which quantifies the difference in loss between the agent’s chosen decision and the optimal decision,
accumulated over time. More formally, the T -step regret of a policy π is defined as

Rπ(T ) :=

T∑
t=1

f(xt)− f(x∗), (3)

where xt ∈ X is the choice of policy π at step t, f is the expected loss function, and x∗ is the optimal
choice. Typically, the goal of a bandit algorithm is to achieve a regret rate that grows as slow as
possible.
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Figure 1: Plot of f(x) defined in (2). x2

2 (resp. 2x2) is a lower bound (resp. upper bound) for
f(x) over [−2, 2]. This plot shows that a nondegenerate function can be nonconvex, nonsmooth or
discountinuous.

Figure 2: Plot of a nondegenerate function f defined over the unit circle S1, and the metric is the arc
length along the circle. This function is not convex and not continuous, but satisfies the nondegenerate
condition.

Remark 1. For the rest of the paper, we will use a loss minimization formulation for the bandit
learning problem. With a flip of sign, we can easily phrase the problem in a reward-maximization
language.

In the context of batched bandit learning, the primary objective remains to be minimizing the
growth of regret. However, in this setting, the agent is unable to observe the loss sample immediately
after making her decision. Instead, she needs to wait until a communication point to collect the
loss samples in batches. To elaborate further, in batch bandit problems, the agent in a T -step game
dynamically selects a sequence of communication points denoted as T = {t0, · · · , tM}, where 0 = t0 <
t1 < · · · < tM = T and M ≪ T . In this setting, loss observations are only communicated to the
player at t1, · · · , tM . Consequently, for any given time t within the j-th batch (tj−1 < t ≤ tj), the
reward yt remains unobserved until time tj . The reward samples are corrupted by mean-zero, iid,
1-sub-Gaussian noise. The decision made at time t is solely influenced by the losses received up to time
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tj−1. The selection of the communication points T is adaptive, meaning that the player determines
each point tj ∈ T based on the previous operations and observations up to tj−1.

In batched bandit setting, the agent not only aims to minimize regret, but also seeks to minimize
the number of communications points required.

For simplicity, we use nondegenerate bandits to refer to stochastic bandit problem with nonde-
generate loss, and batched nondegenerate bandits to refer to batched stochastic bandit problem with
nondegenerate loss.

1.3 Our Results
In this paper, we introduce an algorithm, called Geometric Narrowing (GN), that solves batched
bandit learning problems for nondegenerate functions in a near-optimal way. The GN algorithm
operates by successively narrowing the search space, and satisfies the properties stated in Theorem 1.

Theorem 1. Let (X ,D) be a compact doubling metric space, and let f be a nondegenerate function
defined over (X ,D). Consider a stochastic bandit learning environment where all loss samples are
corrupted by iid sub-Gaussian mean-zero noise. For any T ∈ N+, with probability exceeding 1−2T−1,
the T -step total regret of Geometric Narrowing, written RGN (T ), satisfies

RGN (T ) ≤ K+A
d
+

√
T log T log log

T

log T
,

where d is the doubling dimension of (X ,D), and K+ and A+ are constants independent of d and
T . In addition, Geometric Narrowing only needs O (log log T ) communication points to achieve this
regret rate.

As a corollary of Theorem 1, we prove that the simple regret of GN is of order O
(√

log T
T log log T

)
.

This result is summarized in Corollary 1.

Corollary 1. Let (X ,D) be a compact doubling metric space. Let f be a nondegenerate function
defined over (X ,D). For any T ∈ N+, with probability exceeding 1− 2T−1, the GN algorithm finds a

point xout such that f(xout)− f(x∗) ≤ O
(√

log T
T log log T

)
. In addition, Geometric Narrowing only

needs O (log log T ) communication points to achieve this rate.

In addition, we prove that it is hard to outperform GN by establishing lower bound results in
Theorems 2, 3 and Corollary 2. Theorem 2 states that no algorithm can uniformly perform better
than Ω

(
Ad

−
√
T
)

for some A− independent of d and T .

Theorem 2. For any d ≥ 1 and T ∈ N+, there exists a compact doubling metric space (X0,D0)
that simultaneously satisfies the following: 1. The doubling dimension of (X0,D0) is ⌊d⌋. 2. For any
policy π, there exists a problem instance I defined over (X0,D0), such that the regret of running π on
I satisfies

E [Rπ(T )] ≥ K−A
⌊d⌋
−

√
T

where E is the expectation whose probability law is induced by running π (for T steps) on the instance
I, and K− and A− are numbers that do not depend on d or T .

Theorem 2 implies that the regret bound for GN is near-optimal. Also, we provide a lower bound
analysis for the communication lower bound of batched bandit for nondegenerate functions. This
result is stated below in Theorem 3.
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Theorem 3. Let M ∈ N+ be the total rounds of communications allowed. For any d ≥ 1 and
T ∈ N+ (T ≥ M), there exists a compact doubling metric space (X0,D0) that simultaneously satisfies
the following: 1. the doubling dimension of (X0,D0) is ⌊d⌋, and 2. for any policy π, there exists a
problem instance I defined over (X0,D0), such that the regret of running π on I for T steps satisfies

E [Rπ(T )] ≥ K−A
⌊d⌋
− · 1

M2
· T

1
2 ·

1

1−2−M ,

where K− and A− are numbers that do not depend on d, M or T .

By setting M to the order of log log T in Theorem 3, we have the following corollary.

Corollary 2. For any d ≥ 1 and T ∈ N+, there exists a compact doubling metric space (X0,D0) that
simultaneously satisfies the following: 1. The doubling dimension of (X0,D0) is ⌊d⌋; 2. If less than
Ω(log log T ) rounds of communications are allowed, no policy can achieve a regret of order A

⌊d⌋
−

√
T

over all nondegenerate bandit instances defined over (X0,D0), where A− is a number independent of
d and T .

Corollary 2 implies that the communication complexity of the GN algorithm is near-optimal, since
no algorithm can improve GN’s communication complexity without worsening the regret.

Note: In Theorem 2, Theoerm 3 and Corollary 2, the specific values of K− and A− may be different
at each occurrence.

Our results also suggest a curse-of-dimensionality phenomenon, discussed below in Remark 2.

Remark 2 (Curse of dimensionality). Our lower bounds (Theorems 2 and 3) grow exponentially in the
doubling dimension d. Therefore, no algorithm can uniformly improve this dependence on d, resulting
in a phenomenon commonly referred to as curse-of-dimensionality.

1.4 Implications of Our Results
Our results have several important implications. Firstly, our research gives a distinct method for the
stochastic convex optimization with bandit feedback(Shamir, 2013), especially for the strongly-convex
and smooth function which is a special kind of nondegenerate function. For the warm-up problem
discussed previously in (P0), our GN algorithm provides a solution to the online/dynamic pricing
problem (without inventory constraints) (e.g., Chen and Wang, 2023; Perakis and Singhvi, 2023,
and references therein). More importantly, our results yield intriguing implications on Riemannian
optimization, and offer a new perspective on stochastic Riemannian optimization problems.

(I) Implications on stochastic zeroth-order optimization over Riemmanian manifolds:
Our GN algorithm provides a solution for optimizing nondegenerate functions over compact finite-
dimensional Riemannian manifolds (with or without boundary). Our results imply that, the global
optimum of a large class of nonconvex and nonsmooth functions can be efficiently approximated. As
stated in Corollary 2, we show that GN finds the global optimum of the objective at rate Õ

(
1√
T

)
.

To our knowledge, for stochastic optimization problems, this is the first result that guarantees an
Õ
(

1√
T

)
convergence to the global optimum for nonconvex nonsmooth optimization over compact

finite-dimensional Riemannian manifolds. In addition, only O (log log T ) rounds of communication
are needed to achieve this rate.

1.5 Challenges and Our Approach
As the first work that focuses on batched bandit learning for nondegenerate functions, we face several
challenges throughout the analysis, especially in the lower bound proof. Unlike existing lower bound
analyses, the geometry of the underlying space imposes challenging constraints on the problem in-
stance construction. To further illustrate this challenge, we briefly review the lower bound instance
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construction for Lipschitz bandits (Kleinberg, 2005; Kleinberg et al., 2008; Bubeck et al., 2009, 2011a),
and explain why techniques for Lipschitz bandits do not carry through. Figures 3 illustrate some in-
stance constructions, showing an overall picture (left figure), three instances for Lipschitz bandits
lower bound (right top figure), and three instances of a “naive attempt” (right bottom figure). We
start with the instances for Lipschitz bandits lower bounds (solid blue line in left figure). In such cases,
as the “height” decreases with T , unfortunately the nondegenerate parameter λ also decreases with
T . Also, using the solid red line (left figure) instances as a “naive attempt” disrupts key properties of
Lipschitz bandit instances. Specifically: (1) As shown in the right top figure, except for in {Si}3i=1,
the values of f i

Lip are identical. In contrast, for the “naive attempt” {f i
naive}3i=1 in the right bottom

figure, the function values vary across the domain a.e. (2) From an information-theoretic perspective,
distinguishing between f1

Lip and f2
Lip is as difficult as differentiating f1

Lip from f3
Lip, regardless of the

distance between their optima. Conversely, telling apart f1
naive from f2

naive can be harder than dis-
tinguishing f1

naive from f3
naive, if the optima of f1

naive and f2
naive are closer than those of f1

naive and
f3
naive.

Figure 3: Explanation of the instance for nondegenerate bandits

This implies we cannot change the instances as freely as previously done in the literature, not
to mention that all of the lower bound arguments need to take the communication patterns into
consideration. To overcome this difficulty, we use a trick called bitten apple construction. This trick
overcomes the constraints imposed by the nondegenerate property, and is critical in proving a lower
bound that scales exponentially with the doubling dimension d. As a result, this trick is critical in
justifying the curse-of-dimensionality phenomenon in Remark 2.

For the algorithm design and analysis, we need to carefully utilize the properties of nondegenerate
functions to design an algorithm with regret upper bound Õ(

√
T ) and communication complexity

O(log log T ). We need to carefully integrate in the properties of the nondegenerate functions in both
the algorithm procedure and the communication pattern. In addition, we design the algorithm in a
succinct way, so that the GN algorithm has the following additional advantages.

Proposition 1. The space complexity of GN does not increase with the time horizon T .

1.6 Related Works
Compared to many modern machine learning problems, the stochastic Multi-Armed Bandit (MAB)
problem has a long history (Thompson, 1933; Robbins, 1952; Gittins, 1979; Lai and Robbins, 1985;
Auer et al., 2002a,b). Throughout the years, many solvers for this problem has been invented, in-
cluding Thompson sampling (Thompson, 1933; Agrawal and Goyal, 2012), the UCB algorithm (Lai
and Robbins, 1985; Auer et al., 2002a), exponential weights (Auer et al., 2002b; Arora et al., 2012),
and many more; See e.g., (Bubeck and Cesa-Bianchi, 2012; Slivkins, 2019; Lattimore and Szepesvári,
2020) for an exposition.
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Throughout the years, multiple variations of the stochastic MAB problems have been intensively
investigated, including linear bandits (Auer, 2002; Dani et al., 2007; Chu et al., 2011; Abbasi-Yadkori
et al., 2011), Gaussian process bandits (Srinivas et al., 2012; Contal et al., 2014), bandits in metric
spaces (Kleinberg, 2005; Kleinberg et al., 2008; Bubeck et al., 2009, 2011a; Podimata and Slivkins,
2021), just to name a few. Among enormous arts on bandit learning, bandits in metric spaces are
particularly related to our work. In its early stage, bandits in metric spaces primarily focus on bandit
learning over [0, 1] (Agrawal, 1995; Kleinberg, 2005; Auer et al., 2007; Cope, 2009). Afterwards,
algorithms for bandits over more general metric spaces were developed (Kleinberg et al., 2008; Bubeck
et al., 2009, 2011a,b; Magureanu et al., 2014; Lu et al., 2019; Krishnamurthy et al., 2020; Majzoubi
et al., 2020; Feng et al., 2023). In particular, the Zooming bandit algorithm Kleinberg et al. (2008);
Slivkins (2014) and the Hierarchical Optimistic Optimization (HOO) algorithm Bubeck et al. (2009,
2011a) were the first algorithms that optimally solve the Lipschitz bandit problem (up to logarithmic
factors). Subsequently, Valko et al. (2013) considered an early version of nondegenerate functions, and
built its connection to Lipschitz bandits (Kleinberg et al., 2008; Bubeck et al., 2009, 2011a). Valko
et al. (2013) proposed StoSOO algorithm for pure exploration of function that is locally smooth with
respect to some semi-metric. But, to our knowledge, bandit problems with such functions have not
been explored.

In recent years, urged by the rising need for distributed computing and large-scale field experiments
(e.g., Berry and Fristedt, 1985; Cesa-Bianchi et al., 2013), the setting of batched feedback has gained
attention. Perchet et al. (2016) initiated the study of batched bandit problem, and Gao et al. (2019)
settled several important problems in batched multi-armed bandits. Over the last few years, many
researchers have contributed to the batched bandit learning problem (Jun et al., 2016; Agarwal et al.,
2017; Tao et al., 2019; Han et al., 2020; Karpov et al., 2020; Esfandiari et al., 2021; Ruan et al.,
2021; Li and Scarlett, 2022; Agarwal et al., 2022). For example, Han et al. (2020) and Ruan et al.
(2021) provide solutions for batched contextual linear bandits. Li and Scarlett (2022) studies batched
Gaussian process bandits.

Despite all these works on stochastic bandits and batched stochastic bandits, no existing work
focuses on batched bandit learning for nondegenerate functions.

1.6.1 Additional related works from stochastic zeroth-order Riemannian optimization

Since our work has some implications on stochastic zeroth-order Riemannian optimization, we also
briefly survey some related works from there; See (Absil et al., 2008; Boumal, 2023) for modern
expositions on general Riemannian optimization.

In modern terms, Li et al. (2023a) provided the first oracle complexity analysis for zeroth-order
stochastic Riemannian optimization. Afterwards, Li et al. (2023b) introduced a new stochastic zeroth-
order algorithm that leverages moving average techniques. In addition to works specific to stochastic
zeroth-order Riemannian optimization, numerous researchers have contributed to the field of Rieman-
nian optimization, including (Huang et al., 2015; Gao et al., 2018; Sato et al., 2019; Chen et al., 2020;
Gao et al., 2021; Ruszczyński, 2021), just to name a few.

Yet to the best of our knowledge, no prior art from (stochastic zeroth-order) Riemannian optimiza-
tion literature focuses on approximating the global optimum over a compact Riemannian manifold for
functions that can have discontinuities in its domain. Therefore, our results might be of independent
interest to the Rimannian optimization community.

Paper Organization. The rest of the paper is organized as follows. In Section 2, we list several
basic concepts and conventions for the problem. In Section 3, we introduce the Geometric Narrowing
(GN) algorithm. In Section 4, we provide lower bound analysis for batched bandits for nondegenerate
functions.
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2 Preliminaries
Perhaps we shall begin with the formal definition of doubling metric spaces, since it underpins the
entire problem.

Definition 1 (Doubling metric space). The doubling constant of a metric space (X ,D) is the minimal
N such that for all x ∈ X , for all r > 0, the ball B(x, r) := {z ∈ X : D(z,x) ≤ r} can be covered by
N balls of radius r

2 . A metric space is called doubling if N < ∞. The doubling dimension of X is
d = log2(N) where N is the doubling constant of X .

An immediate consequence of the definition of doubling metric spaces is the following proposition.

Proposition 2. Let (X ,D) be a doubling metric space. For each x ∈ X and r ∈ (0,∞), the ball
B (x, r) can be covered by 2kd balls of radius r · 2−k for any k ∈ N, where d is the doubling dimension
of (X ,D).

On the basis of doubling metric spaces, we formally define nondegenerate functions.

Definition 2 (Nondegenerate functions). Let (X ,D) be a doubling metric space. A function f : X →
R is called nondegenerate if the followings hold:

• infx∈X f(x) > −∞ and f attains its unique minimum at x∗ ∈ X .

• There exist L ≥ λ > 0 and q ≥ 1, such that λ (D(x,x∗))
q ≤ f(x) − f(x∗) ≤ L (D(x,x∗))

q
, for

all x ∈ X .

The constants L, λ, q are referred to as nondegenerate parameters of function f .

Before proceeding further, we introduce the following notations and conventions for convenience.

• For two set S, S′ ⊂ X , define

D(S, S′) := sup
x∈S,x′∈S′

D(x,x′). (4)

• For any z > 0, define [z]2 := 2⌈log2 z⌉.

• Throughout the paper, all numbers except for the time horizon T , doubling dimension d, and
rounds of communications M , are regarded as constants.

3 The Geometric Narrowing Algorithm
Our algorithm for solving batched nondegenerate bandits is called Geometric Narrowing (GN). As
the name suggests, the GN algorithm progressively narrows down the search space, and eventually
lands in a small neighborhood of x∗. To achieve this, we need to identify the specific regions of the
space that should be eliminated. Additionally, we want to achieve a near-optimal regret rate using
only approximately log log T batches.

Perhaps the best way to illustrate the idea of the algorithm is through visuals. In Figure 4, we
provide an example of how function evaluations and nondegenerate properties jointly narrow down
the search space. Yet a naive utilization of the observations in Figure 4 is insufficient to design an
efficient algorithm. Indeed, the computational cost grows quickly as the number of function value
samples accumulates, even for the toy example shown in Figure 4. To overcome this, we succinctly
summarize the observations illustrated in Figure 4 as an algorithmic procedure.

In addition to the narrowing procedure shown in Figure 4, we also need to determine the batching
mechanism, in order to achieve the O(log log T ) communication bound. This communication scheme
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Figure 4: Illustration of the execution procedure of the GN algorithm over an interval. The function
values at x1 and x2 jointly narrow down the range of x∗. To ensure the function values at x1 and
x2 fall between the upper and lower bounds for the nondegenerate function, the minimum of the
function has to reside in a certain range. In this figure, the solid lines show a pair of legitimate bound,
implying that the underlying functions may take its minimum at z1; the dashed lines show a pair of
legitimate bound, implying that the underlying functions cannot take its minimum at z2, neither in
a neighborhood of z2.

is described through a radius sequence in Definition 3. The procedure of GN is in Algorithm 1. In
Figure 5, we demonstrate an example run of the GN algorithm.

Figure 5: An example run of the GN algorithm. The surface shows the expected loss function, and
the scattered points are loss samples over the current domain. These two plots describe the delete
and split operations between adjacent batches of a GN run.

Definition 3. For d > 0 and q ≥ 1, we define ĉ1 = 1
2(2q+d) log 2 log

T
log T and ĉi+1 = η̂ĉi for i = 1, 2 . . . ,

where η̂ = q+d
2q+d . Then we define a sequence {r̂m}m by r̂m = 2−

∑m
i=1 ĉi for m = 1, 2 . . . . On the basis

9



Algorithm 1 Geometric Narrowing (GN) for Nondegenerate Functions

1: Input. Space (X ,D); time horizon T ; Number of batches 2M .
/* Without loss of generality, let the diameter of X be 1: Dim (X ) = 1. */

2: Initialization. Rounded Radius sequence {r̄m}2Mm=1 defined in Definition 3; The first communi-
cation point t0 = 0; Cover X by r̄1-balls, and define Apre

1 as the collection of these balls.
3: Compute nm = 16 log T

λ2r̄2qm
for m = 1, · · · , 2M .

4: for m = 1, 2, · · · , 2M do
5: If r̄m > r̄m−1, then continue. /* Skip the rest of the steps in the current iteration, and enter

the next iteration. */
6: For each ball B ∈ Apre

m , play arms xB,1, · · · ,xB,nm
, all located at the region of B.

7: Collect the loss samples yB,1, · · · , yB,nm
associated with xB,1, · · · ,xB,nm

. Compute the average
loss for each B, f̂m(B) :=

∑nm
i=1 yB,i

nm
for each ball B ∈ Apre

m . Find f̂min
m = minB∈Am

f̂m(B). Let
Bmin

m be the ball where f̂min
m is obtained.

8: Define

Am :=

{
B ∈ Apre

m : D(B,Bmin
m ) ≤

(
2 +

(
λ+ L

λ

) 1
q

)
r̄m

}
.

9: For each ball B ∈ Am, use (r̄m/r̄m+1)
d balls of radius r̄m+1 to cover B, and define Apre

m+1 as
the collection of these balls.
/* Due to Definition 1, we can cover B ∈ Am by (r̄m/r̄m+1)

d balls of radius r̄m+1. */
10: Compute tm+1 = tm + (r̄m/r̄m+1)

d · |Am| · nm+1. If tm+1 ≥ T then break.
11: end for
12: Cleanup: Pick a point in the region that is not eliminated, and play this point. Repeat this

operation until all T steps are used.
13: Output (optional): Arbitrarily pick xout ∈ ∪B∈A2M

B as an approximate for x∗. /* This output
step is optional, and only used for best arm identification or stochastic optimization tasks. */

of {ĉm}m, we define l̂m = ⌊
∑m

i=1 ĉi⌋ and ûm = ⌈
∑m

i=1 ĉi⌉. Then we define Rounded Radius (RR)
Sequence: r̄m, m = 1, . . . , 2M :

r̄m =

{
r̄2k−1 = 2−l̂k = 2−⌊

∑k
i=1 ĉi⌋ if m = 2k − 1, k = 1, . . . ,M

r̄2k = 2−ûk = 2−⌈
∑k

i=1 ĉi⌉ if m = 2k, k = 1, . . . ,M.

From the above definition, we have r̄2k ≤ r̂k ≤ r̄2k−1 for k = 1, . . . ,M .

3.1 Analysis of the GN Algorithm
We start with the following simple concentration lemma.

Lemma 1. Under Theorem 1’s assumption, define

E :=

{∣∣∣f̂m(B)− E
[
f̂m(B)

]∣∣∣ ≤√4 log T

nm
, ∀1 ≤ m ≤ 2M, ∀B ∈ Apre

m

}
.

It holds that P (E) ≥ 1− 2T−1.

Proof of Lemma 1. Fix a ball B ∈ Apre
m . Recall the average loss of B ∈ Apre

m is defined as

f̂m(B) =

∑nm

i=1 yB,i

nm
.

10



We also have

E
[
f̂m(B)

]
=

∑nm

i=1 f(xB,i)

nm
.

Since f̂m(B)−E
[
f̂m(B)

]
is centered at zero, and is 1

nm
-sub-Gaussian (e.g., Section 2.3 in Boucheron

et al., 2013), applying the Chernoff bound gives

P

(∣∣∣f̂m(B)− E
[
f̂m(B)

]∣∣∣ ≥√4 log T

nm

)
≤ 2

T 2
.

Apparently, there are no more than T balls that contain observations. Thus a union bound over
these balls finishes the proof.

Next in Lemma 2, we show that under event E , the GN algorithm has nice properties.

Lemma 2. Under event E (defined in Lemma 1), the following properties hold:

• The optimal point x∗ is not removed;

• For any B ∈ Am, D(x,x∗) ≤
(
2 + 2

(
λ+L
λ

) 1
q

)
r̄m for all x ∈ ∪B∈AmB.

Proof. For each m, let B∗
m denote the ball in Am such that B∗

m ∋ x∗. For each m and B ∈ Am, we
use xm(B) to denote the center of the ball B. Let E be true. We know

0 ≥ f̂m(Bmin
m )− f̂m(B∗

m)

= f̂m(Bmin
m )− f(xm(Bmin

m ))︸ ︷︷ ︸
1○

+ f(xm(Bmin
m ))− f(x∗)︸ ︷︷ ︸

2○

+ f(x∗)− f(xm(B∗
m))︸ ︷︷ ︸

3○

+ f(xm(B∗
m))− f̂m(B∗

m)︸ ︷︷ ︸
4○

≥ − 4

√
log T

nm
+ λ

(
D
(
xm(Bmin

m ),x∗))q − Lr̄qm,

where for 1○ and 4○ we use Lemma 1, for 3○ we use property of the nondegenerate function, and 2○
is evidently nonnegative.

Since 4
√

log T
nm

= λr̄qm, we know that with high probability

D
(
xm(Bmin

m ),x∗) ≤ (λ+ L

λ

)1/q

· r̄m.

Let B∗
m be the cube in Apre

m that contains x∗. This implies that D(B∗
m, Bmin

m ) ≤
(
2 +

(
λ+L
λ

)1/q)
r̄m,

and thus the optimal arm is not eliminated. Since (1) the optimal arm is not eliminated, and (2) the
diameter of ∪B∈Am

B is no larger than
(
2 + 2

(
λ+L
λ

)1/q)
r̄m, we have also proved the second item.

With Lemmas 1 and 2 in place, we are ready to prove Theorem 1.

Proof of Theorem 1. For each m, we introduce Sm := ∪B∈Am
B to simplify notation. By the algorithm

procedure, the diameter of Sm is bounded by
(
3 + 2

(
λ+L
λ

)1/q)
r̄m. By Proposition 2, we have

|Am| ≤

[
3 + 2

(
λ+ L

λ

)1/q
]d
2

,
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which gives

|Apre
m | ≤

(
r̄m−1

r̄m

)d
[
3 + 2

(
λ+ L

λ

)1/q
]d
2

. (5)

Note that the m-th batch incurs no regret if it is skipped. Thus it suffices to consider the case
where the m-th batch is not skipped. For m = 2k − 1, we can bound the regret in the (2k − 1)-th
batch (denoted by R2k−1) by

R2k−1 ≤ |Apre
2k−1| · n2k−1 · L ·

(
2 + 2

(
λ+ L

λ

) 1
q

)q

r̄q2k−2

≤
(
r̄m−1

r̄m

)d
[
3 + 2

(
λ+ L

λ

)1/q
]d
2

· n2k−1 · L ·

(
2 + 2

(
λ+ L

λ

) 1
q

)q

r̄q2k−2,

where the first line uses Lemma 2. Plugging n2k−1 = 16 log T

λ2r̄2q2k−1

into the above inequality gives

R2k−1 ≤
(
r̄m−1

r̄m

)d
[
3 + 2

(
λ+ L

λ

)1/q
]d
2

· 16 log T
λ2r̄2q2k−1

· L ·

(
2 +

(
λ+ L

λ

) 1
q

)q

r̄q2k−2

≤ L

(
2 + 2

(
λ+ L

λ

) 1
q

)q [
3 + 2

(
λ+ L

λ

) 1
q

]d
2

16 log T

λ2
r̄q+d
2k−2r̄

−2q−d
2k−1

≤ L

(
2 + 2

(
λ+ L

λ

) 1
q

)q [
3 + 2

(
λ+ L

λ

) 1
q

]d
2

16 log T

λ2
r̂q+d
k−1r̂

−2q−d
k ,

where the last inequality follows from the definitions of r̂m and r̄m.
By definition of the sequence {r̂m}, we have, for any m, r̂q+d

m−1r̂
−2q−d
m = 2−(q+d)

∑m−1
i=1 ĉi+(2q+d)

∑m
i=1 ĉi =

2(2q+d)ĉm+q
∑m−1

i=1 ĉi = 2(2q+d)ĉ1 . Thus we can upper bound R2k−1 by

R2k−1 ≤ L

(
2 +

(
λ+ L

λ

) 1
q

)q [
3 + 2

(
λ+ L

λ

) 1
q

]d
2

· 16
λ2

·
√

T log T . (6)

For m = 2k, the regret in batch 2k (written R2k) is bounded by

R2k ≤ |Apre
2k | · n2k · L ·

(
2 +

(
λ+ L

λ

)1/q
)q

r̄q2k.

Bringing (5) and definition of n2k into the above inequality, and noticing r̄m−1

r̄m
≤ 2 (for even m) gives

R2k ≤ L2d

(
2 + 2

(
λ+ L

λ

) 1
q

)q [
3 + 2

(
λ+ L

λ

) 1
q

]d
2

16 log T

λ2
r̄−q
2k

≤ L2d+q

(
2 + 2

(
λ+ L

λ

) 1
q

)q [
3 + 2

(
λ+ L

λ

) 1
q

]d
2

16 log T

λ2
r̂−q
k ,

where for the last inequality, we use definitions of r̄m and r̂m to get r̄−1
2k ≤ 2 · r̂−1

k . Again by definition
of r̂m, we have r̂−1

m ≤ 2ĉ1
1

1−η̂ , and thus the regret in batch 2k is at most

R2k ≤ L2d+q

(
2 + 2

(
λ+ L

λ

) 1
q

)q [
3 + 2

(
λ+ L

λ

) 1
q

]d
2

16

λ2

√
T log T . (7)
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For the cleanup phase, the regret (written R2B+1) is bounded by

R2M+1 ≤ L

(
2 + 2

(
λ+ L

λ

) 1
q

)q

r̄q2MT

≤ L

(
2 + 2

(
λ+ L

λ

) 1
q

)q√
T log T

(
T

log T

) 1
2 η̂

M

. (8)

Let there be in total 2M + 1 batches. Collecting terms from (6), (7) and (8) gives

RGN (T ) ≤ L

(
2 + 2

(
λ+ L

λ

) 1
q

)q [
3 + 2

(
λ+ L

λ

) 1
q

]d
2

16

λ2

√
T log T ·M

+ L2d+q

(
2 + 2

(
λ+ L

λ

) 1
q

)q [
3 + 2

(
λ+ L

λ

) 1
q

]d
2

16

λ2

√
T log T ·M

+ L

(
2 + 2

(
λ+ L

λ

) 1
q

)q√
T log T

(
T

log T

) 1
2 η̂

M

Now choose M = M̂∗ =
log log T

log T

log 1
η̂

, we have η̂M̂
∗
=
(
log T

log T

)−1

, then

RGN (T ) ≤ L(2d+q + 1)

(
2 + 2

(
λ+ L

λ

) 1
q

)q

·

16

λ2

[
3 + 2

(
λ+ L

λ

) 1
q

]d
2

log log T
log T

log(2q + d)− log(q + d)
+ e

1
2

√T log T .

With this choice of M , only O (log log T ) batches are needed. Q.E.D.

Following the proof of Theorem 1, we can readily prove Corollary 1.

Proof of Corollary 1. Let the event E be true. From Definition 3, we know

r̄q2M ≤ 2−qĉ1
1−η̂M

1−η̂

= 2−
q

2(2q+d) log 2
log T

log T · 1−η̂M

1−η̂

=

(
T

log T

)− q
2(2q+d)

·
1−( q+d

2q+d )
M

q
2q+d

=

(
T

log T

)− 1
2

(
1−( q+d

2q+d )
M

)

=

√
log T

T
·
(

T

log T

) 1
2 η̂

M

.

Let M =
log log T

log T

log 1
η̂

, we have η̂M =
(
log T

log T

)−1

, and thus

r̄q2M ≤ e
1
2

√
log T

T
.

13



By Lemma 2, we know, under event E ,

f(xout)− f(x∗) ≤ LD (xout,x
∗)

q ≤ L

(
2 + 2

(
λ+ L

λ

) 1
q

)q

r̄q2M ≤ e
1
2L

(
2 + 2

(
λ+ L

λ

) 1
q

)q√
log T

T

We conclude the proof by noticing that the E holds true with probability exceeding 1− 2
T .

4 Lower Bound Analysis
First of all, we need to identify a particular doubling metric space to work with. Hinted by the
celebrated Assouad’s embedding theorem, we turn to the Euclidean space with a specific metric. For
any d, the doubling metric space we choose is (R⌊d⌋, ∥ · ∥∞). One important reason for this choice
is that the doubling dimension of this space equal its dimension as a vector space. Throughout the
rest of this paper, without loss of generality, we let d be an integer, and consider the metric space
(Rd, ∥ · ∥∞).

Remark 3. By Assouad’s embedding theorem, one can embed a separable metric space (X ,D) with
doubling number N into a Euclidean space with some distortion, hence our research works in general
doubling metric space.

After settling the metric space to work with, we still need to overcome previously unencountered
challenges. To further illustrate these challenges, let us review the lower bound strategy for Lipschitz
bandits. In proving the lower bound for Lipschitz bandits (Kleinberg, 2005; Kleinberg et al., 2008;
Bubeck et al., 2011a), one essentially use the packing/covering number for the underlying space, and
this packing number essentially serves as number of arms in the lower bound proof. For our problem,
however, the lower bound argument for Lipschitz does not carry through. The reasons are:

• First and foremost, a nondegenerate function may be discontinuous. Restriction to Lipschitz
bandit instances rules out a large class of problem instances.

• More importantly, in the lower bound argument for Lipschitz bandits, one construct instances
with small “peaks” in the domain. We then let the height of the peak to decrease with the total
time horizon T , so that no algorithm can quickly find the peaks for all instances. However, for
nondegenerate functions, the nondegenerate parameters do not depend on T . Therefore, we are
not allowed to tweak the landscape of the instances as freely as previously done for Lipschitz
bandits.

On top of the above challenges, we need to incorporate the communication pattern into the entire
analysis. To tackle all these difficulties, we use a bitten-apple trick in the instance construction.
Specific examples of bitten-apple instances are shown in Figures 6 and 7.

4.1 The instances
To formally define the instances, we first-of-all partition the space Rd into 2d orthants O1, O2, · · · , O2d .
We represent the natural numbers 1, 2, · · · , 2d by a sequence of +/− signs. That is, for any k =
1, 2, · · · , 2d, we use

(
sk1 , · · · , skd

)
∈ {−1,+1}d to represent k. This representation is equivalent to

writing k as a base-two number. For k = 1, 2, · · · , 2d and a number ϵ ∈ (0, 1), we define x∗
k,ϵ =(

sk1ϵ, s
k
2ϵ, · · · , skdϵ

)
. Clearly, ∥x∗

k,ϵ∥∞ = ϵ for k = 1, 2, · · · , 2d. As a convention, we let O1 be the
orthant associated with (+,+, · · · ,+).

Firstly, we introduce a sequence of reference communication points Tr = {T1, · · · , TM} and the
corresponding gaps {ϵq1, · · · , ϵ

q
M}, defined as

Tj = ⌊T
1−2−j

1−2−M ⌋, ϵqj =
1

4
·
√
2

2
·
√
2d − 1

2q + 2
· 1

M
· T− 1

2 ·
1−21−j

1−2−M , j ∈ [M ] . (9)
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Then we construct collections of instances I1, · · · , IM . Each instance is defined by a mean loss
function f and a noise distribution. For our purpose, we let the noise be standard Gaussian. That is,
the observed loss samples at x are iid from the Gaussian distribution N (f(x), 1). For 1 ≤ j ≤ M − 1,
we let Ij = {Ij,k}2

d−1
k=1 and the expected loss function of Ij,k is defined as

f
ϵj
j,k(x) =


∥x− x∗

k,ϵj
∥q∞ − ∥x∗

k,ϵj
∥q∞, if x ∈ B(x∗

k,ϵj
, ϵj)\B(0, ϵj

2 ),

∥x− x∗
2d,

ϵM
3

∥q∞ − ∥x∗
2d,

ϵM
3

∥q∞, if x ∈ B(x∗
2d,

ϵM
3

, ϵM
3 )\B(0, ϵM

6 ),

∥x∥q∞, otherwise.

(10)

For j = M , we let IM = {IM} and the expected loss function of IM is defined as

f ϵM
M,k(x) =

{
∥x− x∗

2d,
ϵM
3

∥q∞ − ∥x∗
2d,

ϵM
3

∥q∞, if x ∈ B(x∗
2d,

ϵM
3

, ϵM
3 )\B(0, ϵM

6 ),

∥x∥q∞, otherwise.
(11)

Note that f ϵM
M,k(x) is independent of k. Here we keep the subscript k for notational consistency.

Figures 6 and 7 plot examples of f ϵj
j,k and f ϵM

M,k.

Figure 6: Example plot of f ϵM
M,k(x) with d = q = 2. The two graphs come from different views of the

same function.

On the basis of {fj,k}j∈[M ],k∈[2d−1], we construct another series of problem instances {Ij,k,l}j∈[M ],k∈[2d−1],l∈[2d]:

• For j < M , l ̸= k and l < 2d, the loss function of problems instance Ij,k,l is defined as

f
ϵj
j,k,l(x) =


∥x− x∗

k,ϵj
∥q∞ − ∥x∗

k,ϵj
∥q∞, if x ∈ B(x∗

k,ϵj
, ϵj)\B(0, ϵj

2 ),

∥x− 2
1
q · x∗

l,ϵj
∥q∞ − ∥2

1
q · x∗

l,ϵj
∥q∞, if x ∈ B(2

1
q · x∗

l,ϵj
, 2

1
q · ϵj)\B(0, 2

1
q ·ϵj
2 ),

∥x− x∗
2d,

ϵM
3

∥q∞ − ∥x∗
2d,

ϵM
3

∥q∞, if x ∈ B(x∗
2d,

ϵM
3

, ϵM
3 )\B(0, ϵM

6 ),

∥x∥q∞, otherwise.

• For j < M , l = k < 2d, we let f
ϵj
j,k,l(x) := f

ϵj
j,k(x), which is defined in (10).

• For j < M , k < 2d, and l = 2d, we define

f
ϵj
j,k,2d

(x) =


∥x− x∗

k,ϵj
∥q∞ − ∥x∗

k,ϵj
∥q∞, if x ∈ B(x∗

k,ϵj
, ϵj)\B(0, ϵj

2 ),

∥x− 2
1
q · x∗

2d,ϵj
∥q∞ − ∥2

1
q · x∗

2d,ϵj
∥q∞, if x ∈ B(2

1
q · x∗

2d,ϵj
, 2

1
q · ϵj)\B(0, 2

1
q ·ϵj
2 ),

∥x∥q∞, otherwise.
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(a) f
ϵj
j,1(x) (b) f

ϵj
j,2(x) (c) f

ϵj
j,3(x)

Figure 7: Example instance f
ϵj
j,k(x) with d = q = 2 for 1 ≤ j ≤ M − 1. The above three graphs from

left to right show f
ϵj
j,k for k = 1, 2, 3.

• For j = M , k < 2d, and l < 2d, the corresponding loss function is defined as

f ϵM
M,k,l(x) =


∥x− 2

1
q · x∗

l,
ϵM
3

∥q∞ − ∥2
1
q · x∗

l,
ϵM
3

∥q∞, if x ∈ B(2
1
q · x∗

l,
ϵM
3

, 2
1
q · ϵM

3 )\B(0, 2
1
q ·ϵM
6 ),

∥x− x∗
2d,

ϵM
3

∥q∞ − ∥x∗
2d,

ϵM
3

∥q∞, if x ∈ B(x∗
2d,

ϵM
3

, ϵM
3 )\B(0, ϵM

6 ),

∥x∥q∞, otherwise.

• For j = M , k < 2d and l = 2d, we define f ϵM
M,k,2d

(x) := f ϵM
M,k(x). For the case where j = M , we

keep the subscript k for the same reason as in (11).

Figure 8 depicts the partitioning of space for the function f
ϵj
j,k,l (j < M, l < 2d, l ̸= k). In orthant

Ok, Ol and O2d , the function f
ϵj
j,k,l differs from ∥x∥q∞ in a region of a bitten-apple shape.

First of all, we verify that these functions are nondegenerate functions.

Proposition 3. The functions {f ϵj
j,k}j∈[M ],k∈[2d−1] are nondegenerate with parameters independent of

time horizon T , the doubling dimension d, and rounds of communications M .

Proof of Proposition 3. We first consider f
ϵj
j,k. Note that the minimum of f ϵj

j,k is obtained at x∗
k,ϵj

.
The lower bound:
For x ∈ B(x∗

k,ϵj
, ϵj)\B(0, ϵj

2 ), we have f
ϵj
j,k(x) − f

ϵj
j,k(x

∗
k,ϵj

) = ∥x − x∗
k,ϵj

∥q∞, which clearly satisfies
the nondegenerate condition.

For x ∈ B(x∗
2d,

ϵM
3

, ϵM
3 )\B(0, ϵM

6 ), since ϵM ≤ ϵj for all j = 1, 2, · · · ,M , we have,

∥x− x∗
k,ϵj∥

q
∞ ≤

(
2∥x∗

2d,
ϵM
3
∥∞ + ∥x∗

k,ϵj∥∞
)q

≤ 3q∥x∗
k,ϵj∥

q
∞

≤ 3q · 3q
(
∥x∗

k,ϵj∥∞ − ∥x∗
2d,

ϵM
3
∥∞
)q

≤ 9q
(
∥x∗

k,ϵj∥
q
∞ − ∥x∗

2d,
ϵM
3
∥q∞
)

≤ 9q
(
∥x∗

k,ϵj∥
q
∞ − ∥x∗

2d,
ϵM
3
∥q∞ + ∥x− x∗

2d,
ϵM
3
∥q∞
)
= 9q

(
f
ϵj
j,k(x)− f

ϵj
j,k(x

∗
k,ϵj )

)
.

For x in other parts of the domain, we have

f
ϵj
j,k(x)− f

ϵj
j,k(x

∗
k,ϵj ) = ∥x∥q∞ + ∥x∗

k,ϵj∥
q
∞ ≥ 1

2q−1
∥x− x∗

k,ϵj∥
q
∞,

where the last inequality uses convexity of ∥ · ∥q∞ and Jensen’s inequality.

16



Figure 8: An illustration of how the space is partitioned for function f
ϵj
j,k,l. In some particular orthant,

the function f
ϵj
j,k,l differs from ∥x∥q∞ in regions that resemble a bitten-apple shape. Such regions are

illustrated as shaded areas in the figure.

The upper bound:
For x ∈ B(x∗

k,ϵj
, ϵj)\B(0, ϵj

2 ), the nondegenerate condition holds true.
For x ∈ B(x∗

2d,
ϵM
3

, ϵM
3 )\B(0, ϵM

6 ),

f
ϵj
j,k(x)− f

ϵj
j,k(x

∗
k,ϵj ) = ∥x− x∗

2d,ϵM
∥q∞ + ϵqj −

(ϵM
3

)q
≤ 2q−1

(
∥x− x∗

k,ϵj∥
q
∞ + ∥x∗

k,ϵj − x∗
2d,

ϵM
3
∥q∞
)
+ ϵqj

= 2q−1∥x− x∗
k,ϵj∥

q
∞ + 2q−1

(
ϵj +

ϵM
3

)q
+ ϵqj ≤ (2q + 1)

2 ∥x− x∗
k,ϵj∥

q
∞,

where the inequality on the first line uses convexity of ∥ · ∥q∞ and Jensen’s inequality.
For x in other parts of the domain, we have

f
ϵj
j,k(x)− f

ϵj
j,k(x

∗
k,ϵj ) = ∥x∥q∞ + ∥x∗

k,ϵj∥
q
∞ ≤ 2q−1

(
∥x− x∗

k,ϵj∥
q
∞ + ∥x∗

k,ϵj∥
q
∞

)
+ ∥x∗

k,ϵj∥
q
∞.

Since ∥x∗
k,ϵj

∥∞ ≤ 2∥x−x∗
k,ϵj

∥∞ for x /∈
(
B(x∗

k,ϵj
, ϵj)\B(0, ϵj

2 )
)
, we continue from the above inequality

and get

f
ϵj
j,k(x)− f

ϵj
j,k(x

∗
k,ϵj ) ≤ (2q + 1)

2 ∥x− x∗
k,ϵj∥

q
∞.

Following the same procedure, we can check that the nondegenerate condition holds true for the
function f ϵM

M,k.

Proposition 4. The functions {f ϵj
j,k,l}j∈[M ],k∈[2d−1],l∈[2d] are nondegenerate with parameters indepen-

dent of time horizon T , the doubling dimension d, and rounds of communications M .

Proof of Proposition 4. For j ≤ M − 1, first, consider l < 2d. For x ∈ B(x∗
k,ϵj

, ϵj)\B(0, ϵj
2 ), we have

f
ϵj
j,k,l(x)− f

ϵj
j,k,l(2

1/q · x∗
l,ϵj ) = ∥x− x∗

k,ϵj∥
q
∞ − ∥x∗

k,ϵj∥
q
∞ + ∥21/q · x∗

l,ϵj∥
q
∞

≥ ∥x∗
l,ϵj∥

q
∞ ≥

(
1

6
∥x− 21/q · x∗

l,ϵj∥∞
)q

,
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and

f
ϵj
j,k,l(x)− f

ϵj
j,k,l(2

1/q · x∗
l,ϵj ) = ∥x− x∗

k,ϵj∥
q
∞ − ∥x∗

k,ϵj∥
q
∞ + ∥21/q · x∗

l,ϵj∥
q
∞

≤ 2q−1∥x− 21/q · x∗
l,ϵj∥

q
∞ + 2q−1∥x∗

k,ϵj − 21/q · x∗
l,ϵj∥

q
∞ − ∥x∗

k,ϵj∥
q
∞ + ∥21/q · x∗

l,ϵj∥
q
∞

≤ 2q−1∥x− 21/qx∗
l,ϵj∥

q
∞ + 2q−1 · 3qϵqj − ϵqj + 2ϵqj ≤ (3q + 1)

2 ∥x− 21/qx∗
l,ϵj∥

q
∞,

where the last inequality uses that ϵj ≤ ∥x− 21/q · x∗
l,ϵj

∥∞.
For x in other parts of the domain, we use Proposition 3. For the case where l = 2d, we also apply

Proposition 3.
For j = M , the proof follows analogously.

In addition, we prove that the loss functions we construct satisfy the following properties.

Proposition 5. For any j = 1, 2, · · · ,M − 1 and k = 1, 2, · · · , 2d − 1, it holds that∣∣∣f ϵj
j,k(x)− f ϵM

M,k (x)
∣∣∣ ≤ {(2q + 2)ϵqj , if x ∈ B(x∗

k,ϵj
, ϵj)\B(0, ϵj

2 ),

0, otherwise.

Proof. For x ∈ B(x∗
k,ϵj

, ϵj)\B(0, ϵj
2 ), it holds that∣∣∣f ϵj

j,k(x)− f ϵM
M,k (x)

∣∣∣ = ∣∣∣∥x− x∗
k,ϵj∥

q
∞ − ∥x∗

k,ϵj∥
q
∞ − ∥x∥q∞

∣∣∣ ≤ ϵqj + ϵqj + 2qϵqj = (2q + 2)ϵqj .

For x /∈ B(x∗
k,ϵj

, ϵj)\B(0, ϵj
2 ), f

ϵj
j,k(x) is identical to f ϵM

M,k (x). This concludes the proof.

Now for simplicity, we introduce the following notation: For k = 1, 2, · · · , 2d, define

Sϵ
k := B(x∗

k,ϵ, ϵ).

Proposition 6. It holds that

• If j < M , k < 2d and l ̸= k

|f ϵj
j,k,l(x)− f

ϵj
j,k,k(x)| ≤

{
2(2q + 2)ϵqj , if x ∈ S

21/qϵj
l

0, otherwise.

• Also, if k < 2d and l < 2d,

|f ϵM
M,k,l(x)− f ϵM

M,k,2d
(x)| ≤

{
2(2q + 2)ϵqM , if x ∈ S21/qϵM

l

0, otherwise.

• On instance Ij,k,l (j ∈ [M ], k ∈ [2d − 1], l ∈ [2d]), pulling an arm that is not in S
21/qϵj
l incurs a

regret no smaller than
ϵqj
3q .

Proof. The first item.

Case I: j < M and l < 2d. For x ∈ B(2
1
q · x∗

l,ϵj
, 2

1
q · ϵj)\B(0, 2

1
q ·ϵj
2 ) ⊆ S

21/qϵj
l , it holds that∣∣∣f ϵj

j,k,l(x)− f
ϵj
j,k,k (x)

∣∣∣ = ∣∣∣∥x− 2
1
q · x∗

l,ϵj∥
q
∞ − ∥2

1
q · x∗

l,ϵj∥
q
∞ − ∥x∥q∞

∣∣∣ ≤ 2 (2q + 2) ϵqj .

For x /∈ S
21/qϵj
l = B

(
21/q · x∗

l,ϵj
, 21/q · ϵj

)
, f ϵj

j,k,l(x) is identical to f
ϵj
j,k,k (x).

18



Case II: j < M and l = 2d. For x ∈ B(2
1
q · x∗

2d,ϵj
, 2

1
q · ϵj), it holds that∣∣∣f ϵj

j,k,l(x)− f
ϵj
j,k,k (x)

∣∣∣
≤ max



∣∣∥x− 2
1
q · x∗

2d,ϵj
∥q∞ − ∥2

1
q · x∗

2d,ϵj
∥q∞ − ∥x∥q∞

∣∣, if 1○;∣∣∥x− 2
1
q · x∗

2d,ϵj
∥q∞ − ∥2

1
q · x∗

2d,ϵj
∥q∞ − ∥x− x∗

2d,
ϵM
3

∥q∞ + ∥x∗
2d,

ϵM
3

∥q∞
∣∣, if 2○;∣∣∥x∥q∞ − ∥x− x∗

2d,
ϵM
3

∥q∞ + ∥x∗
2d,

ϵM
3

∥q∞
∣∣ if 3○;

0, if 4○

≤ 2 (2q + 2) ϵqj ,

where 1○ stands for x ∈ B
(
21/q · x∗

2d,ϵj
, 21/q · ϵj

)
\B
(
0, 2ϵM

3

)
, 2○ stands for

x ∈ B
(
x∗
2d,

ϵM
3
,
ϵM
3

)
\B
(
0,

21/qϵj
2

)
,

3○ stands for

x ∈ B
(
x∗

2d,
21/q·ϵj

4

,
21/qϵj

4

)
\B
(
0,

ϵM
6

)
,

and 4○ stands for x in other parts of B
(
21/q · x∗

2d,ϵj
, 21/q · ϵj

)
, and the last inequality uses that

ϵM ≤ ϵj for j ≤ M . The above derivation is valid even if some of 1○– 4○ are empty.
Outside of B(21/q · x∗

2d,ϵj
, 21/q · ϵj), f

ϵj
j,k,2d

is identical to f
ϵj
j,k,k.

The second item. For x ∈ B
(
2

1
q · x∗

l,
ϵM
3

, 2
1
q · ϵM

3

)
,

|f ϵM
M,k,l(x)− f ϵM

M,k,2d
(x)| =

∣∣∣∥x− 2
1
q · x∗

l,
ϵM
3
∥q∞ − ∥2

1
q · x∗

l,
ϵM
3
∥q∞ − ∥x∥q∞

∣∣∣
≤ 2ϵqM +

2 · 2q

3q
ϵqM ≤ 2(2q + 2)ϵqM .

Outside of B
(
2

1
q · x∗

l,
ϵM
3

, 2
1
q · ϵM

3

)
, f ϵM

M,k,l(x) is identical to f ϵM
M,k,2d

(x).

The third item. For this part, we detail a proof for the case where j < M , l < 2d and l ̸= k.
The other cases are proved using similar arguments.

Case I: j < M , l < 2d, and l ̸= k. When x /∈ S
2

1
q ϵj

l , it holds that

f
ϵj
j,k,l(x)− f

ϵj
j,k,l(2

1
q · x∗

l,ϵj ) = f
ϵj
j,k,l(x) + ∥2

1
q · x∗

l,ϵj∥
q
∞

≥ min


2∥x∗

l,ϵj
∥q∞ − ∥x∗

k,ϵj
∥q∞, if x ∈ B

(
x∗
k,ϵj

, ϵj

)
\B
(
0,

ϵj
2

)
2∥x∗

l,ϵj
∥q∞ − ∥x∗

2d,
ϵM
3

∥q∞, if x ∈ B
(
x∗
2d,

ϵM
3

, ϵM
3

)
\B
(
0, ϵM

6

)
2∥x∗

l,ϵj
∥q∞, if x is in other parts of Rd\B

(
2

1
q · x∗

l,ϵj
, 2

1
q ϵj

)
.

≥ ϵqj ≥
ϵqj
3q

.

Case II: j = M and l < 2d. Recall that the instance does not depend on k in this case. When

x /∈ S
2

1
q ϵj

l , it holds that

f ϵM
M,k,l(x)− f ϵM

M,k,l(2
1
q · x∗

l,
ϵM
3
) = f ϵM

M,k,l(x) + ∥2
1
q · x∗

l,
ϵM
3
∥q∞

≥ min
{
2∥x∗

l,
ϵM
3
∥q∞ − ∥x∗

2d,
ϵM
3
∥q∞, 2∥x∗

l,
ϵM
3
∥q∞
}
≥

ϵqj
3q

.
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Case III: j < M , l = 2d, (and k < 2d). For this case, when x /∈ S
2

1
q ϵj

2d
, it holds that

f
ϵj
j,k,2d

(x)− f
ϵj
j,k,2d

(2
1
q · x∗

2d,ϵj
) = f

ϵj
j,k,2d

(x) + ∥2
1
q · x∗

2d,ϵj
∥q∞

≥ min
{
2∥x∗

2d,ϵj
∥q∞ − ∥x∗

k,ϵj∥
q
∞, 2∥x∗

2d,ϵj
∥q∞
}
≥ ϵqj ≥

ϵqj
3q

.

There are some other cases. They are Case IV: j < M , l < 2d, and k = l; and Case V: j = M ,
l = 2d, (and k < 2d). The proof for Cases IV-V uses the same argument as that for the previous
cases. Now we combine all cases to conclude the proof.

4.2 The information-theoretical argument
First of all, we state below a classic result of Bretagnolle and Huber (Bretagnolle and Huber, 1978);
See (e.g., Lattimore and Szepesvári, 2020) for a modern reference.

Lemma 3 (Bretagnolle–Huber). For two distributions P,Q over the same probability space, it holds
that

DTV (P,Q) ≤
√
1− e−Dkl(P∥Q) ≤ 1− 1

2
exp (−Dkl(P ∥ Q)) .

The proof consists of two major steps. In the first step, we prove that for any policy π, there exists
a long batch with high chance. In the second step, on the basis of existence of a long batch, we prove
that there exists a bitten-apple instance (defined in Section 4.1) on which no policy performs better
the lower bound in Theorem 3. Next we focus on proving the first step.

For a policy π that communicates at t0 ≤ t1 ≤ t2 ≤ · · · ≤ tM , we consider a set of events

Aj := {tj−1 < Tj−1 and tj ≥ Tj}, (12)

where Tj is the reference communication point defined in (9). Whenever the event Aj is true, the
j-th batch is large. Next we prove that some of Aj occurs under some instances, thus proving the
existence of a long batch. Before proceeding, we introduce the following notation for simplicity.

For any policy π, we define

pj :=
1

2d − 1

2d−1∑
k=1

Pj,k(Aj), j = 1, 2, · · · ,M. (13)

where Pj,k(Aj) denotes the probability of the event Aj under the instance Ij,k and policy π. Next in
Lemma 4, we show that with constant chance, there is a long batch.

Lemma 4. For any policy π that adaptively determines the communications points, it holds that∑M
j=1 pj ≥

7
8 , where pj is defined in (13).

Proof of Lemma 4. Fix an arbitrary policy π. For each t, let Pt
j,k (resp. Pt

M,k) be the probability of
(xt, yt) governed by running π in environment f ϵj

j,k (resp. f ϵM
M,k), i.e. Pt

j,k = Pt
j,k

(
x1, y1,x2, y2, · · · ,xtj−1

, ytj−1

)
.

The event Aj is determined by the observations up to time Tj−1, since communication point tj is de-
termined given the previous time grid {t1, t2, · · · , tj−1} under a fixed policy π. To further illustrate
this fact, we first notice that the event A′

j := {tj−1 < Tj−1} is fully determined by observations up
to Tj−1. If tj−1 ≥ Tj−1, then the failure of A′

j , thus the failure of Aj , is known by time Tj−1. If
tj−1 < Tj−1, then based on observations up to time tj−1 < Tj−1, the policy π determines tj , thus
Aj . In both cases, the success of Aj is fully determined by observations up to time Tj−1. It is also
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worth emphasizing that the policy π does not communicate at {Tj}j∈[M ]. We use {Tj}j∈[M ] only as
a reference. With the above argument, we get

|PM,k(Aj)− Pj,k(Aj)| = |PTj−1

M,k (Aj)− PTj−1

j,k (Aj)| ≤ DTV

(
PTj−1

M,k ,PTj−1

j,k

)
. (14)

By Lemma 3,

1

2d − 1

2d−1∑
k=1

DTV

(
PTj−1

M,k ,PTj−1

j,k

)
≤ 1

2d − 1

2d−1∑
k=1

√
1− exp

(
−Dkl

(
PTj−1

M,k ∥PTj−1

j,k

))
. (15)

Note that f
ϵj
j,k differs from f ϵM

M,k only in B(x∗
k,ϵj

, ϵj)\B(0, ϵj
2 ). Hence the chain rule for KL-divergence

gives, for any t ∈ [Tj−1, Tj),

Dkl

(
Pt
M,k∥Pt

j,k

)
= Dkl

(
Pt
M,k

(
x1, y1,x2, y2, · · · ,xTj−1

, yTj−1

)
∥Pt

j,k

(
x1, y1,x2, y2, · · · ,xTj−1

, yTj−1

))
= Dkl

(
Pt
M,k

(
x1, y1,x2, y2, · · · ,xTj−1−1, yTj−1−1

)
∥Pt

j,k

(
x1, y1,x2, y2, · · · ,xTj−1−1, yTj−1−1

))
+ EPt

M,k

[
Dkl

(
N
(
f ϵM
M,k(xTj−1), 1

)
∥N

(
f
ϵj
j,k(xTj−1), 1

))]
+Dkl

(
Pt
M,k

(
xTj−1

|x1, y1, · · · ,xTj−1−1, yTj−1−1

)
∥Pt

j,k

(
xTj−1

|x1, y1, · · · ,xTj−1−1, yTj−1−1

))
(16)

where N (µ, 1) is the Gaussian random variable of mean µ and variance 1. Under the fixed policy π,
xTj−1

is fully determined by choices and observations before it. Thus

Dkl

(
Pt
M,k

(
xTj−1 |x1, y1, · · · ,xTj−1−1, yTj−1−1

)
∥Pt

j,k

(
xTj−1 |x1, y1, · · · ,xTj−1−1, yTj−1−1

))
= 0.

By Proposition 5,

Dkl

(
N
(
f ϵM
M,k(xTj−1), 1

)
∥N

(
f
ϵj
j,k(xTj−1), 1

))
=

1

2

(
f ϵM
M,k(xTj−1

)− f
ϵj
j,k(xTj−1

)
)2

≤ (2q + 2)2

2
ϵ2qj I{xTj−1

∈S
ϵj
k }.

We plug the above results into (16) and get, for any k ≥ 2,

Dkl

(
Pt
M,k∥Pt

j,k

)
= Dkl

(
Pt
M,k

(
x1, y1,x2, y2, · · · ,xTj−1−1, yTj−1−1

)
∥Pt

j,k

(
x1, y1,x2, y2, · · · ,xTj−1−1, yTj−1−1

))
+ EPt

M,k

[
1

2

(
f ϵM
M,k(xTj−1

)− f
ϵj
j,k(xTj−1

)
)2]

≤ Dkl

(
Pt
M,k

(
x1, y1,x2, y2, · · · ,xTj−1−1, yTj−1−1

)
∥Pt

j,k

(
x1, y1,x2, y2, · · · ,xTj−1−1, yTj−1−1

))
+

(2q + 2)2

2
EPt

M,k

[
ϵ2qj I{xTj−1

∈S
ϵj
k }
]

= Dkl

(
Pt
M,k

(
x1, y1,x2, y2, · · · ,xTj−1−1, yTj−1−1

)
∥Pt

j,k

(
x1, y1,x2, y2, · · · ,xTj−1−1, yTj−1−1

))
+

(2q + 2)2ϵ2qj
2

Pt
M,k

(
xTj−1 ∈ S

ϵj
k

)
.

We can then recursively apply chain rule and the above calculation, and obtain

Dkl

(
Pt
M,k∥Pt

j,k

)
≤

(2q + 2)2ϵ2qj
2

∑
s≤Tj−1

Pt
M,k

(
xs ∈ S

ϵj
k

)
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for each t : Tj−1 ≤ t < Tj . Therefore, we have

Dkl

(
PTj−1

M,k ∥PTj−1

j,k

)
≤

(2q + 2)2ϵ2qj
2

∑
s≤Tj−1

PTj−1

M,k

(
xs ∈ S

ϵj
k

)
, (17)

Combining the above inequalities (15) and (17) yields that

1

2d − 1

2d−1∑
k=1

DTV

(
PTj−1

M,k ,PTj−1

j,k

)
≤ 1

2d − 1

2d−1∑
k=1

√
1− exp

(
−Dkl

(
PTj−1

M,k ∥PTj−1

j,k

))

≤ 1

2d − 1

2d−1∑
k=1

√√√√√1− exp

−
(2q + 2)2ϵ2qj

2

∑
s≤Tj−1

PTj−1

M,k

(
xs ∈ S

ϵj
k

)

≤

√√√√√1− exp

−
(2q + 2)2ϵ2qj
2(2d − 1)

2d−1∑
k=1

∑
s≤Tj−1

PTj−1

M,k

(
xs ∈ S

ϵj
k

), (18)

where the last inequality follows from Jensen. Since
∑2d−1

k=1 PTj−1
M,k

(
xs ∈ S

ϵj
k

)
≤ 1 (Sϵj

k are disjoint),
we continue from (18) and get√√√√√1− exp

−
(2q + 2)2ϵ2qj
2(2d − 1)

2d−1∑
k=1

∑
s≤Tj−1

PTj−1

M,k

(
xs ∈ S

ϵj
k

)
≤

√√√√1− exp

(
−
(2q + 2)2ϵ2qj Tj−1

2(2d − 1)

)
(i)

≤

√
1− exp

(
− 1

64
· 1

M2

)
(ii)

≤ 1

8
· 1

M
, (19)

where (i) uses definitions of ϵj and Tj (9), (ii) uses a basic property of the exponential function:
exp(−x) ≥ 1− x for each x ∈ R. Combining (14) and (19) gives that, for each j = 1, 2, · · · ,M ,

|PM,k(Aj)− pj | ≤
1

2d − 1

2d−1∑
k=1

|PM,k(Aj)− Pj,k(Aj)| ≤
1

8M
,

and thus

M∑
j=1

pj ≥
M∑
j=1

PM,k(Aj)−
1

8
≥ PM,k(∪M

j=1Aj)−
1

8
≥ 7

8
,

where the last inequality holds since at least one of {A1, A2, · · · , AM} must be true.

Now that Lemma 4 is in place, we can prove the existence of a bad bitten-apple instance, which
concludes the proof of Theorem 3.

Proof of Theorem 3. Fix any policy π. Let Pj,k,l be the probability of running π on f
ϵj
j,k,l. Let Pt

j,k,l be
the probability of (x1, y1,x2, y2, · · · ,xt, yt) governed by running π in environment f

ϵj
j,k,l, Proposition
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6 gives that

sup
I∈{Ij,k,l}j∈[M],k<2d,l∈[2d]

E [Rπ(T )] ≥ 1

M

M∑
j=1

ϵqj
3q

T∑
t=1

1

2d − 1
· 1

2d

2d−1∑
k=1

2d∑
l=1

Pt
j,k,l

(
xt /∈ S

2
1
q ·ϵj

l

)

=
1

3q
· 1

M

M∑
j=1

ϵqj

T∑
t=1

1

2d − 1
· 1

2d

2d−1∑
k=1

2d∑
l=1

(
1− Pt

j,k,l

(
xt ∈ S

2
1
q ·ϵj

l

))

≥ 1

3q
· 1

M

M−1∑
j=1

ϵqj

T∑
t=1

1

2d − 1
· 1

2d

2d−1∑
k=1

2d∑
l=1

(
1− Pt

j,k,k

(
xt ∈ S

2
1
q ·ϵj

l

)
−DTV

(
Pt
j,k,l,Pt

j,k,k

))

+ϵqM

T∑
t=1

1

2d − 1
· 1

2d

2d−1∑
k=1

2d∑
l=1

(
1− Pt

M,k,2d

(
xt ∈ S2

1
q ·ϵM

l

)
−DTV

(
Pt
M,k,l,Pt

M,k,2d

)) , (20)

where the last inequality follows from definition of total-variation distance

DTV

(
Pt
j,k,l,Pt

j,k,k

)
≥ Pt

j,k,l

(
xt ∈ S

2
1
q ·ϵj

l

)
− Pt

j,k,k

(
xt ∈ S

2
1
q ·ϵj

l

)
and

DTV

(
Pt
M,k,l,Pt

M,k,2d

)
≥ Pt

M,k,l

(
xt ∈ S2

1
q ·ϵM

l

)
− Pt

M,k,2d

(
xt ∈ S2

1
q ·ϵM

l

)
.

For the first term on the right side of 20, delete negative number −Pt
j,k,k (·) and bring into the

equation DTV (P,Q) = 1
2

∫
|dP− dQ|, we get

ϵqj

T∑
t=1

1

2d

2d∑
l=1

(
1− Pt

j,k,k

(
xt ∈ S

2
1
q ·ϵj

l

)
−DTV

(
Pt
j,k,l,Pt

j,k,k

))

≥ ϵqj

T∑
t=1

1

2d

∑
l ̸=k

(
1− 1

2

∫ ∣∣dPt
j,k,k − dPt

j,k,l

∣∣)

≥ ϵqj

Tj∑
t=1

1

2d

∑
l ̸=k

(
1− 1

2

∫ ∣∣dPt
j,k,k − dPt

j,k,l

∣∣)

≥ ϵqjTj
1

2d

∑
l ̸=k

(
1− 1

2

∫ ∣∣∣dPTj

j,k,k − dPTj

j,k,l

∣∣∣) (21)

= ϵqjTj
1

2d

∑
l ̸=k

1

2

(∫
dPTj

j,k,k + dPTj

j,k,l −
∣∣∣dPTj

j,k,k − dPTj

j,k,l

∣∣∣)

≥ ϵqjTj
1

2d

∑
l ̸=k

1

2

(∫
Aj

dPTj

j,k,k + dPTj

j,k,l −
∣∣∣dPTj

j,k,k − dPTj

j,k,l

∣∣∣)

= ϵqjTj
1

2d

∑
l ̸=k

1

2

(∫
Aj

dPTj−1

j,k,k + dPTj−1

j,k,l −
∣∣∣dPTj−1

j,k,k − dPTj−1

j,k,l

∣∣∣) , (22)

where (21) follows for data processing inequality of total variation distance, and the last equation (22)
holds because the observations at time Tj are the same as those at time Tj−1 under event Aj and the
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fixed policy π. Further more, we have

1

2

(∫
Aj

dPTj−1

j,k,k + dPTj−1

j,k,l −
∣∣∣dPTj−1

j,k,k − dPTj−1

j,k,l

∣∣∣)

=
PTj−1

j,k,k(Aj) + PTj−1

j,k,l (Aj)

2
− 1

2

∫
Aj

∣∣∣dPTj−1

j,k,k − dPTj−1

j,k,l

∣∣∣
≥
(
PTj−1

j,k,k(Aj)−
1

2
DTV

(
PTj−1

j,k,k ,P
Tj−1

j,k,l

))
−DTV

(
PTj−1

j,k,k ,P
Tj−1

j,k,l

)
(23)

= Pj,k(Aj)−
3

2
DTV

(
PTj−1

j,k,k ,P
Tj−1

j,k,l

)
, (24)

where (23) follows from |P(A) − Q(A)| ≤ DTV (P,Q), and (24) is attributed to the fact that Aj is
determined by the observations up to time Tj−1.
Similar to the argument for (17)-(19), we have, for each fixed k

1

2d

∑
l ̸=k

DTV

(
PTj−1

j,k,k ,P
Tj−1

j,k,l

)
≤ 1

2d

∑
l ̸=k

√
1− exp

(
−Dkl

(
PTj−1

j,k,k∥P
Tj−1

j,k,l

))

≤ 1

2d

∑
l ̸=k

√√√√√√1− exp

−
(2q + 2)2

(
2

1
q · ϵj

)2q
2

∑
s≤Tj−1

PTj−1

j,k,k

(
xs ∈ S

2
1
q ·ϵj

l

)

≤ 2d − 1

2d

√√√√√√1− exp

−
(2q + 2)2

(
2

1
q · ϵj

)2q
2(2d − 1)

∑
l ̸=k

∑
s≤Tj−1

PTj−1

j,k,k

(
xs ∈ S

2
1
q ·ϵj

l

)

=
2d − 1

2d

√√√√√√1− exp

−
(2q + 2)2

(
2

1
q · ϵj

)2q
2(2d − 1)

∑
s≤Tj−1

∑
l ̸=k

PTj−1

j,k,k

(
xs ∈ S

2
1
q ·ϵj

l

)
≤ 2d − 1

2d

√√√√1− exp

(
−
2(2q + 2)2ϵ2qj Tj−1

2d − 1

)

≤ 2d − 1

2d

√
1− exp

(
1

16
· 1

M2

)
≤ 1

4
· 1

M
· 2

d − 1

2d
. (25)

For the second term on the right side of (20), we have the same inequality by subtituting Pt
j,k,l (resp.

Pt
j,k,k) with Pt

M,k,l (resp. Pt
M,k,2d).
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Combining (20), (22), (24) and (25), we have

sup
I∈{Ij,k,l}j∈[M],k<2d,l∈[2d]

E [Rπ(T )]

≥ 1

3q
· 1

M

M−1∑
j=1

ϵqjTj
1

2d − 1
· 1

2d

2d−1∑
k=1

∑
l ̸=k

(
Pj,k(Aj)−

3

2
DTV

(
PTj−1

j,k,k ,P
Tj−1

j,k,l

))

+ϵqMTM
1

2d − 1
· 1

2d

2d−1∑
k=1

∑
l ̸=2d

(
PM,k(AM )− 3

2
DTV

(
PTM−1

M,k,2d
,PTM−1

M,k,l

))
=

1

3q
· 1

M

M−1∑
j=1

ϵqjTj
1

2d − 1

2d−1∑
k=1

 1

2d

∑
l ̸=k

Pj,k(Aj)−
3

2
· 1

2d

∑
l ̸=k

DTV

(
PTj−1

j,k,k ,P
Tj−1

j,k,l

)
+ϵqMTM

1

2d − 1

2d−1∑
k=1

 1

2d

∑
l ̸=2d

PM,k(AM )− 3

2
· 1

2d

∑
l ̸=2d

DTV

(
PTM−1

M,k,2d
,PTM−1

M,k,l

)
≥ 1

3q
· 1

M

M∑
j=1

ϵqjTj

 1

2d − 1

2d−1∑
k=1

Pj,k (Aj)−
3

2
· 1
4
· 1

M

 · 2
d − 1

2d

=
1

3q
· 1

M
· 2

d − 1

2d

M∑
j=1

ϵqjTj

(
pj −

3

8
· 1

M

)
.

By definition of ϵj and Tj in (9), we have ϵqjTj =
√
2
8 ·

√
2d−1

2q+2 · 1
M · T

1
2 ·

1

1−2−M for all j ∈ [M ].
Therefore, we continue from the above inequalities and get

sup
I∈{Ij,k,l}j∈[B],k<2d,l∈[2d]

E [Rπ(T )]

≥ 1

3q
· 1

M2
·
√
2

8
· 1

2q + 2
· (2

d − 1)
3
2

2d
· T

1
2 ·

1

1−2−M

 M∑
j=1

pj −
3

8


≥

√
2

16
· 1

M2
· 1

3q(2q + 2)
· (2

d − 1)
3
2

2d
· T

1
2 ·

1

1−2−M

where the last inequality uses Lemma 4.

Proof of Corollary 2. From Theorem 3, the expected regret is lower bounded by

E [RT (π)] ≥
√
2

16
· 1

M2
· 1

3q(2q + 2)
· (2

d − 1)
3
2

2d
· T

1
2 ·

1

1−2−M .

Here we seek for the minimum M such that

1
M2 · T

1
2 ·

1

1−2−M

√
T

≤ e. (26)

Calculation shows that

1
M2 · T

1
2 ·

1

1−2−M

√
T

=
1

M2
T

1
2 ·

1

2M−1 . (27)
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Substituting (27) to (26) and taking log on both sides yield that

1

2
· 1

2M − 1
log T ≤ log(M2e)

and thus

M ≥ log2

(
1 +

log T

2 log(M2e)

)
. (28)

We use Mmin to denote the minimum M such that inequality (28) holds. Calculation shows that (28)
holds for

M∗ := log2

(
1 +

log T

2

)
,

so we have Mmin ≤ M∗. Then since the RHS of (28) decreases with M , we have

Mmin ≥ log2

(
1 +

log T

2 log(M2
mine)

)
≥ log2

(
1 +

log T

2 log(M2
∗ e)

)
.

Therefore, Ω(log log T ) rounds of communications are necessary for any algorithm to achieve a regret
rate of order K−A

d
−
√
T , where K− depends only on q and A− is an absolute constant.

4.3 Lower bound for nondegenerate bandits without communication con-
straints

Having established the lower bound with communication constraints in the previous section, it is
worth noting that the existing literature lacks a standard lower bound result specifically tailored for
nondegenerate bandits. To this end, we proceed to fill this gap by presenting a lower bound that does
not incorporate any communication constraints.

To prove this result, we need a different set of problem instances, which we introduce now. For
any fixed ϵ, we partition the space Rd again into 2d disjoint parts U ϵ

1 , U
ϵ
2 , · · · , U ϵ

2d . For k = 1, we
define U ϵ

1 = O1 ∪ B(0, ϵ
2 ). For k = 2, · · · , 2d , we define U ϵ

k = Ok\B
(
0, ϵ

2

)
.

For any k = 2, · · · , 2d, and ϵ > 0, define

f ϵ
k(x) =

{
∥x− x∗

k,ϵ∥q∞ − ∥x∗
k,ϵ∥q∞, if x ∈ B(x∗

k,ϵ, ϵ)\B(0, ϵ
2 ),

∥x∥q∞, otherwise.
(29)

In addition, we define the function f ϵ
1 as

f ϵ
1(x) = ∥x∥q∞, (30)

and slightly overload the notations to define x∗
1,ϵ := 0. Note that f ϵ

1(x) and x∗
1,ϵ do not depend on ϵ.

We keep the ϵ superscript for notational consistency.
Firstly, we observe that instances specified by {f ϵ

k}k∈[2d] satisfy the properties stated in Proposition
7.

Proposition 7. The functions f ϵ
k satisfies

1. For each k = 1, 2, · · · , 2d, 1
2q−1 ∥x− x∗

k,ϵ∥q∞ ≤ f ϵ
k(x)− f ϵ

k(x
∗
k,ϵ), for all x ∈ Rd.

2. For each k = 2, 3, · · · , 2d, {
|f ϵ

k(x)− f ϵ
1(x)| ≤ (2q + 2)ϵq, ∀x ∈ U ϵ

k,

|f ϵ
k(x)− f ϵ

1(x)| = 0, ∀x /∈ U ϵ
k.
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3. For each k = 1, 2, · · · , 2d, f ϵ
k(x)− f ϵ

k(x
∗
k,ϵ) ≤ 3q+1∥x− x∗

k,ϵ∥q∞, for all x ∈ Rd.

Proof. Item 1 is clearly true when x ∈ U ϵ
k, it remains to consider x /∈ U ϵ

k. For item 1, we use Jensen’s
inequality to get ∥∥∥∥x− y

2

∥∥∥∥q
∞

≤ ∥x∥q∞ + ∥y∥q∞
2

, ∀q ≥ 1,∀x,y ∈ Rd.

Rearranging terms, and substituting y = x∗
k,ϵ in the above inequality gives that, for any x /∈ U ϵ

k,

1

2q−1
∥x− x∗

k,ϵ∥q∞ ≤ ∥x∥q∞ + ∥x∗
k,ϵ∥q = f(x)− f(x∗

k,ϵ).

For item 2, we have, for each k and x ∈ B(x∗
k,ϵ, ϵ)\B(0, ϵ

2 ),

|f ϵ
k(x)− f ϵ

1(x)| = |∥x− x∗∥q∞ − ∥x∗∥q∞ − ∥x∥q∞|
≤ϵq + ϵq + (2ϵ)q = (2q + 2)ϵq

where the last inequality uses ∥x∥∞ ≤ 2ϵ for all x ∈ B(x∗
k,ϵ, ϵ).

Next we proof item 3. Fix any r ∈ ( ϵ2 ,∞). For any x ∈ S(x∗
k,ϵ, r), we have ∥x∥∞ ≤ r+ ϵ, and thus

3q∥x− x∗
k,ϵ∥q∞ = 3qrq ≥ (r + ϵ)

q ≥ ∥x∥q∞.

The above inequality gives,

3q+1∥x− x∗
k,ϵ∥q∞ ≥ (2q + 3q)∥x− x∗

k,ϵ∥q∞ ≥ ∥x∥q∞ + ∥x∗
k,ϵ∥q∞ = f(x)− f(x∗), ∀x /∈ B(x∗

k,ϵ, ϵ)\B(0,
ϵ

2
).

We conclude the proof by noticing that item 3 is clearly true when x ∈ B(x∗
k,ϵ, ϵ)\B(0, ϵ

2 ).

Proof of Theorem 2. Fix any policy π. Let Pk,ϵ be the probability of running π on f ϵ
k. Let Ek,ϵ be

the expectation with respect to Pk,ϵ.
Firstly, we note that {xt /∈ U ϵ

k} =⇒ {f ϵ
k(xt)− f ϵ

k(x
∗
k) ≥ 2−2q+1ϵq}. Thus we have

1

2d

2d∑
k=1

Ek,ϵ [RT (π)] ≥
1

2d

2d∑
k=1

T∑
t=1

Et
k,ϵ

[
f ϵ
k(xt)− f ϵ

k(x
∗
k,ϵ)
]

≥ 2−2q+1ϵq

2d

2d∑
k=1

T∑
t=1

Pk,ϵ

(
f ϵ
k(xt)− f ϵ

k(x
∗
k,ϵ) ≥ 2−2q+1ϵq

)
≥ 2−2q+1ϵq

2d

2d∑
k=1

T∑
t=1

Pk,ϵ (xt /∈ U ϵ
k) . (31)
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We continue the above derivation, and obtain

2−2q+1ϵq

2d

2d∑
k=1

T∑
t=1

Pk,ϵ (xt /∈ U ϵ
k)

≥ 2−2q+1ϵq
1

2d

2d∑
k=1

T∑
t=1

(1− Pk,ϵ (xt ∈ U ϵ
k))

≥ 2−2q+1ϵq
1

2d

2d∑
k=1

T∑
t=1

(
1− Pt

1,ϵ (xt ∈ U ϵ
k)−DTV (P1,ϵ,Pk,ϵ)

)
= 2−2q+1ϵq

(
1− 1

2d

)
T − 2−2q+1ϵq

1

2d

2d∑
k=2

T∑
t=1

DTV (P1,ϵ,Pk,ϵ)

≥ 2−2q+1ϵq
(
1− 1

2d

)
T − 2−2q+1ϵq

1

2d

2d∑
k=2

T∑
t=1

(
1− 1

2
exp

(
−Dkl

(
Pt
1,ϵ∥Pk,ϵ

)))

= 2−2q ϵ
q

2d

2d∑
k=2

T∑
t=1

exp
(
−Dkl

(
Pt
1,ϵ∥Pk,ϵ

))
≥ 2−2q 2

d − 1

2d

T∑
t=1

ϵq exp

− 1

2d − 1

2d∑
k=2

Dkl

(
P1,ϵ∥Pt

k,ϵ

) , (32)

where the fourth line uses
∑2d

k=1 P1,ϵ (xt ∈ U ϵ
k) = 1, the fifth line uses Lemma 3, and the last line uses

Jensen’s inequality.
By the chain rule of KL-divergence, we have

Dkl (P1,ϵ∥Pk,ϵ)

= Dkl (P1,ϵ (x1, y1,x2, y2, · · · ,xT , yT ) ∥Pk,ϵ (x1, y1,x2, y2, · · · ,xT , yT ))

= Dkl (P1,ϵ (x1, y1,x2, y2, · · · ,xT−1, yT−1) ∥Pk,ϵ (x1, y1,x2, y2, · · · ,xT−1, yT−1))

+ EP1,ϵ
[Dkl (N (f ϵ

1(xT ), 1) ∥N (f ϵ
k(xT ), 1))]

+Dkl (P1,ϵ (xT |x1, y1,x2, y2, · · · ,xT−1, yT−1) ∥Pk,ϵ (xT |x1, y1,x2, y2, · · · ,xT−1, yT−1)) (33)

where N (µ, 1) is the Gaussian random variable of mean µ and variance 1. Under the fixed policy π,
xT is fully determined by choices and observations before it. Thus

Dkl (P1,ϵ (xT |x1, y1,x2, y2, · · · ,xT−1, yT−1) ∥Pk,ϵ (xT |x1, y1,x2, y2, · · · ,xT−1, yT−1)) = 0.

Also, Dkl (N (f ϵ
1(xT ), 1) ∥N (f ϵ

k(xT ), 1)) =
1
2 (f

ϵ
1(xT )− f ϵ

k(xT ))
2. We plug the above results into (33)

and get, for any k ≥ 2,

Dkl (P1,ϵ∥Pk,ϵ) = Dkl (P1,ϵ (x1, y1,x2, y2, · · · ,xT−1, yT−1) ∥Pk,ϵ (x1, y1,x2, y2, · · · ,xT−1, yT−1))

+ EPt
1,ϵ

[
1

2
(f ϵ

1(xT )− f ϵ
k(xT ))

2

]
≤ Dkl (P1,ϵ (x1, y1,x2, y2, · · · ,xT−1, yT−1) ∥Pk,ϵ (x1, y1,x2, y2, · · · ,xT−1, yT−1))

+
(2q + 2)2

2
EP1,ϵ

[
ϵ2qI{xT∈Uϵ

k}
]

= Dkl (P1,ϵ (x1, y1,x2, y2, · · · ,xT−1, yT−1) ∥Pk,ϵ (x1, y1,x2, y2, · · · ,xT−1, yT−1))

+
(2q + 2)2ϵ2q

2
P1,ϵ (xT ∈ U ϵ

k) .
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We can then recursively apply chain rule and the above calculation, and obtain

Dkl (P1,ϵ∥Pk,ϵ) ≤
(2q + 2)2ϵ2q

2

T∑
s=1

P1,ϵ (xs ∈ U ϵ
k) .

Combining the above inequality with (31) and (32) gives

1

2d

2d∑
k=1

Ek,ϵ [RT (π)] ≥ 2−2q 2
d − 1

2d

T∑
t=1

ϵq exp

− 1

2d − 1

2d∑
k=2

Dkl (P1,ϵ∥Pk,ϵ)


≥ 2−2q 2

d − 1

2d

T∑
t=1

ϵq exp

− 1

2d − 1

2d∑
k=2

(2q + 2)2ϵ2q

2

T∑
s=1

P1,ϵ (xs ∈ U ϵ
k)


≥ 2−2q 2

d − 1

2d

T∑
j=1

ϵq exp

(
− 1

2d − 1
· (2

q + 2)2ϵ2q

2
T

)
,

where the last line uses
∑2d

k=2 P1,ϵ (xs ∈ U ϵ
k) ≤ 1, since U ϵ

k are disjoint.

By picking ϵq =

√
2(2d−1)

2q+2 ·
√

1
T , we have

1

2d

2d∑
k=1

Ek,ϵ [RT (π)] ≥
2d − 1

2d
·
√
2(2d − 1)

(2q + 2)22q
e−1

√
T .

5 Conclusion
This paper studies the nondegenerate bandit problem with communication constraints. The nonde-
generate bandit problem is important in that it encapsulates important problem classes, ranging from
dynamic pricing to Riemannian optimization. We introduce the Geometric Narrowing (GN) algorithm
that solves such problems in a near-optimal way. We establish that, when compared to GN, there is
little room for improvement in terms of regret order or communication complexity.
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