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Abstract

Longitudinal Modified Treatment Policies (LMTPs) provide a framework for defining a
broad class of causal target parameters for continuous and categorical exposures. We propose
Local LMTPs, a generalization of LMTPs to settings where the target parameter is condi-
tional on subsets of units defined by the treatment or exposure. Such parameters have wide
scientific relevance, with well-known parameters such as the Average Treatment Effect on the
Treated (ATT) falling within the class. We provide a formal causal identification result that ex-
presses the Local LMTP parameter in terms of sequential regressions, and derive the efficient
influence function of the parameter which defines its semi-parametric and local asymptotic
minimax efficiency bound. Efficient semi-parametric inference of Local LMTP parameters re-
quires estimating the ratios of functions of complex conditional probabilities (or densities). We
propose an estimator for Local LMTP parameters that directly estimates these required ratios
via empirical loss minimization, drawing on the theory of Riesz representers. The estimator
is implemented using a combination of ensemble machine learning algorithms and deep neu-
ral networks, and evaluated via simulation studies. We illustrate in simulation that estimation
of the density ratios using Riesz representation might provide more stable estimators in finite
samples in the presence of empirical violations of the overlap/positivity assumption.

1 Introduction
Many causal estimands of scientific interest are defined in terms of contrasts of the marginal means
of counterfactual outcomes under different interventions averaged over a population. In many
cases, it is also of interest to understand the effect of an intervention only among those who received
it (Heckman et al., 2001). For instance, in cross-sectional settings with a binary treatment the well-
known Average Treatment Effect (ATE) is the expected difference in counterfactual outcomes
under treatment and control averaged over the entire population, and the Average Treatment Effect
on the Treated (ATT) averages only over the subpopulation that received the treatment.

As causal effects analogous to the ATE can be defined in more complex data structures and for
more complex interventions, so can the ATT be generalized. In particular, we work within the
framework of Longitudinal Modified Treatment Policies (LMTPs), which cover a broad class of
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causal effects for continuous, binary, and time to event outcomes (Dı́az and van der Laan, 2012;
Haneuse and Rotnitzky, 2013; Dı́az et al., 2023; Hoffman et al., 2023; Dı́az et al., 2024). LMTPs
are defined as the population expected counterfactual outcome under an intervention defined as a
modified treatment policy (MTP). An MTP intervention changes the natural value of the exposure
(Young et al., 2014) (that is, the exposure an individual would have received under no intervention)
according to a fixed function. For example, an MTP for a continuous exposure could be defined
as a function that shifts the natural value of the exposure upwards by a fixed amount. The novelty
of MTPs compared to dynamic treatment rules, which define treatment as a function of time-
varying covariates and prior treatment status, is that MTPs are allowed to depend on the natural
value of the exposure. LMTPs can handle continuous, categorical, multivariate, and time-to-event
exposures in both cross-sectional and longitudinal data structures. We propose a novel causal
parameter, referred to as a Local LMTP, defined as the expected counterfactual outcome under an
MTP intervention among any subset of the population defined in terms of exposure status.

To illustrate the difference between LMTP and Local LMTP parameters, suppose we wish to
estimate the effect of exercise on health outcomes in an observational study. The exposure is
defined as the number of hours spent per week engaging in aerobic exercise, measured weekly
over a 3 month period. The outcome is blood pressure measured at the end of the study period.
The intervention is defined as an MTP in which 30 additional minutes of exercise are added to each
individuals weekly exercise total. The LMTP causal estimand is defined as the population average
blood pressure under the counterfactual of all individuals following the MTP. However, it may
be of significant scientific interest to understand how the MTP affects individuals who otherwise
would not have exercised at all. As such, a Local LMTP parameter could be defined as the average
blood pressure under the MTP among the subpopulation who did not exercise.

We show that the Local LMTP parameter is causally identifiable under similar conditions as the
LMTP parameter. The result expresses the extended g-formula in terms of sequential regressions,
similar to the result for the LMTP parameter (Dı́az et al., 2023) and for the ATE of a binary
treatment (Luedtke et al., 2017; Bang and Robins, 2005).

We propose several estimators of the Local LMTP parameter. Substitution and inverse proba-
bility weighted (IPW) estimators can be used, however their performance depends on consistent
estimation of the corresponding nuisance parameters, and their sampling distribution is generally
unknown when data-adaptive methods (e.g., model selection) are used for estimating the nuisance
parameters. As such, we also propose a multiply-robust estimator using Targeted Minimum Loss-
Based Estimation (TMLE). The development of the TMLE estimator is based on deriving the
Efficient Influence Function (EIF) of the target parameter, which not only allows us to construct an
estimator that can accommodate data-adaptive regression methods, but also defines the efficiency
bound for estimating the parameter in a non-parametric model.

The IPW and TMLE estimators require estimates of cumulated inverse probability (or inverse
probability density) weights, which can be challenging to estimate in practice if the exposure is
continuous, and can lead to empirical positivity violations if the exposure is continuous or cate-
gorical. One common approach to estimating inverse probability weights is to first estimate the
required conditional probability (density) and then invert them to form weights. However, this can
lead to significant instability in the resulting estimators, especially for high-dimensional or con-
tinuous treatments and in longitudinal data structures where inverse probabilities (densities) are
cumulated. Dı́az et al. (2023) used an approach based on a procedure for estimating density ratios,
but this approach does not neatly generalize to Local LMTPs and can also suffer from instability
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in the resulting estimators. As an alternative, we propose a strategy based on the Riesz represen-
ters that estimates the weights directly through empirical loss minimization (Chernozhukov et al.,
2022a). This approach avoids the instabilities inherent when weights are formed by inverting and
multiplying probabilities (densities). Furthermore, we demonstrate how ensemble learning can be
applied such that a variety of flexible machine learning methods can be used to directly estimate
the weights. The good performance of this approach is of wider general interest beyond estimating
LMTPs and applies to any estimator that requires inverse probability weights, and especially to
longitudinal settings where estimators require cumulating many inverse probabilities.

The main contributions of this work are twofold. First, we define the novel Local LMTP param-
eter, establish causal identification results, and propose a semi-parametric efficient estimator based
on TMLE. Second, we estimate the inverse probability weights using empirical loss minimization
based on Riesz representers, and show that these weight estimators can lead to improved finite sam-
ple performance of the TMLE. The rest of the manuscript unfolds as follows: in the remainder of
the introduction we discuss related prior work. In Section 2 we rigorously define the Local LMTP
parameter within a causal structural equation model and provide the causal identification result. In
Section 3 we analyze the Local LMTP statistical parameter in the framework of semi-parametric
efficiency theory and derive its EIF. In Section 4 we present an estimation strategy based on TMLE
and direct estimation of the cumulated probability weights. The performance of the methods are
investigated via simulation studies in Section 5.

1.1 Prior Work
The cross-sectional ATT has been extensively studied in the case of binary exposures (Heckman,
1995; Hahn, 1998; Shpitser and Pearl, 2009; Leacy and Stuart, 2014; Wang et al., 2017; Matsouaka
et al., 2023). Doubly-robust estimators have been proposed based on TMLE (Hubbard et al.,
2011) and augmented inverse probability weighting (Moodie et al., 2018). The ATT has also been
extended to the case of categorical exposures (VanderWeele and Hernan, 2013). In the longitudinal
setting, parameters analogous to the ATT have been studied in the context of instrumental variable
designs (Tchetgen Tchetgen and Vansteelandt, 2013; Liu et al., 2015) and in a more general setting
using Marginal Structural Models (Schomaker and Baumann, 2023).

LMTPs grew out of earlier work on defining and estimating causal effects in longitudinal set-
tings and with complex interventions and non-binary exposures. Dı́az and van der Laan (2012)
proposed doubly robust estimators for causal effects defined via shift interventions for single time
points. This work was further developed by (Haneuse and Rotnitzky, 2013), who introduced the
term modified treatment policy. From another angle, there was research on dynamic treatment
regimes in longitudinal settings (Robins et al., 2004; Richardson and Robins, 2013; Young et al.,
2014), which also accommodates interventions that depend on the natural value of treatment or are
stochastic. LMTPs synthesize these lines of research into a general framework for defining and
estimating longitudinal causal effects based on MTPs (Dı́az et al., 2023).

The goal of the present work is to bridge together the above strands of literature, proposing an
end-to-end methodology for the definition, identification, and estimation of the effects of modified
treatment policies within strata of the population defined by values of the exposure.

The definition of our causal parameters relies on the structural causal models of Pearl (2009), but
analogous definitions could have been achieved under a potential outcome framework (Richard-
son and Robins, 2013). The analysis of the properties of the statistical identification formula, as
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well as the development of estimators, builds on a long line of research in general semi-parametric
efficiency theory (Bickel, 1982; van der Vaart and Wellner, 1996), and more recent results for
longitudinal settings (Luedtke et al., 2017; Rotnitzky et al., 2017). The TMLE framework for con-
structing efficient estimators of parameters within non-parametric models is described thoroughly
in van der Laan and Rubin (2006); van der Laan and Rose (2011). Our approach for estimating cu-
mulated inverse probabilities is inspired by a recent research related to the use of Riesz representers
in statistical estimation (Chernozhukov et al., 2021, 2022a,b, 2023).

2 Causal Effects
The longitudinal data structure for Local LMTPs is the same as for LMTPs (Dı́az et al., 2023),
which we now review. Let Z = (L1, A1, L2, A2, . . . , Lτ , Aτ , Y ) be a random variable where, for
t ∈ {1, . . . , τ}, Lt is a vector of time-varying covariates, At a vector of categorical, multivariate, or
continuous exposure variables, and Y a binary or continuous outcome. Suppose we have a sample
Z1, . . . , Zn of of i.i.d. draws Z ∼ P0, where P0 falls in a non-parametric statistical model M.
Denote the history and future of a random variable as X̄t = (X1, . . . , Xt) and X t = (Xt, . . . , Xτ ).
For succinctness, we will write X̄ and X to denote the complete history and future of a random
variable (X̄τ and Xτ , respectively). Let Ht = (Āt−1, L̄t) be the history of all variables until At.
Let gt(at, ht) be the probability density or probability mass function of At conditional on Ht = ht,
evaluated at at. We use supp{· | B} to denote the support of a random variable conditional on the
set B.

The causal model is formalized via a non-parametric structural equation model (Pearl, 2009).
We assume the observed data are generated according to the following deterministic functions, for
{1, . . . , τ}:

Lt = fLt
(At−1, Ht−1, UL,t),

At = fAt
(Ht, UA,t),

Y = fY (Aτ , Hτ , UY ),

where U =
(
UL,t, UA,t, UY : t ∈ {1, . . . , τ}

)
is a set of exogenous variables. Note that the model

implies a particular time-ordering of the variables: each Lt happens before the corresponding
At, and Y occurs last. Interventions are defined by replacing At with a new random variable
Ad

t (we will give examples of the construction of this random variable in what follows). An
intervention Ād

t−1 on all exposures from time 1 to time t − 1 induces counterfactual variables
Lt(Ā

d
t−1) = fLt

(Ad
t−1, Ht−1(Ā

d
t−2, UL,t) and At(Ā

d
t−1) = fAt

(Ht(Ā
d
t−1), UA,t), with counterfac-

tual history defined as Ht(Ā
d
t−1) = (Ād

t−1, L̄t(Ā
d
t−1)). The counterfactual variable At(Ā

d
t−1) =

fAt
(Ht(Ā

d
t−1), UA,t) is referred to as the natural value of treatment (Young et al., 2014), and is

interpreted as the value treatment would have taken had the intervention been implemented but
discontinued right after time t. Intervening on all treatment variables up to time t = τ induces
the counterfactual outcome Y (Ād) = fY (A

d
τ , Hτ (Ā

d
τ−1), UY ). LMTPs are a particular type of in-

tervention in which Ad
t is defined as a function of the natural value of treatment at time t and the

complete counterfactual history.

Definition 1. (Dı́az et al., 2023, Definition 1) The intervention Ad
t is an LMTP if it has a represen-

tation Ad
t = d(At(Ā

d
t−1), Ht(Ā

d
t−1)) for an arbitrary function d.
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Shift interventions, described below, are a popular example of an LMTP originally proposed in
Dı́az and van der Laan (2012) and discussed further in Dı́az and van der Laan (2018), Haneuse and
Rotnitzky (2013), and Hoffman et al. (2023).

Example 1 (Shift LMTP). Suppose there exists some ut such that P (At > ut|Ht = ht) = 1 for
all t ∈ {1, . . . , τ}. For some fixed δ, define the intervention as

d(at, ht) =

{
at + δ, if at ≤ ut(ht) + δ,

at, if at > ut(ht)− δ.

The literature on MTPs has so far only considered identification and estimation of parameters of
the type E[Y (Ād)] which average counterfactual outcomes for all units in the population. In what
follows, we present identification and estimation theory for parameters that condition on a subset
of the treatment space, together with motivating examples where such parameters are of scientific
relevance.

2.1 Definition of Causal Effects
In this section we formalize the causal effect associated with an LMTP conditional on exposure
status. Let B̄ ⊂ Ā be a subset of the space of all possible longitudinal treatment assignments.
Define the counterfactual Local LMTP outcome average as

θ∗ = E
{
Y (Ād) | Ā ∈ B̄

}
.

Note that the parameter reduces to the traditional LMTP parameter if B̄ = Ā (that is, if the pa-
rameter conditions on the space of all possible treatment assignments). Next, we give examples of
cross-sectional and longitudinal Local LMTP parameters of scientific interest.

Example 2 (Cross-sectional average treatment effect on the treated (ATT)). Assume the treatment
A is binary, such as a medication. It is often of interest to estimate the average treatment effect
on the treated, given by E[Y (1) − Y (0) | A = 1]. The average outcome under treatment for the
treated population, E[Y (1) | A = 1] = E[Y | A = 1], can be easily identified and estimated. The
average outcome under control for the treated population, E[Y (0) | A = 1], is a true counterfactual
quantity and requires extra work. In the form of a local LMTP, letting d(A,W ) = 0 and B = {1},
this quantity is given by θ∗ = E[Y (d) | A ∈ B].
Example 3 (Longitudinal policy-relevant effects). For continuous or numerical treatments, it is of-
ten of scientific interest to investigate what would have been the outcome in a counterfactual world
where treatment would have been increased by some user-given amount. For example, let A denote
the particulate matter PM2.5 that a given individual is exposed to. The Environmental Protection
Agency sets the National Ambient Air Quality Standards for Particulate Matter to “protect millions
of Americans from harmful and costly health impacts, such as heart attacks and premature death”
Environmental Protection Agency (2023). Current standards set the PM2.5 limit to 9 micrograms
per cubic meter. Thus, any policy-relevant causal effect would have to take into account this stan-
dard. For instance, one can be interested in the effect of reducing PM2.5 on health outcomes by
10% for geographical areas which are non-compliant with the standard at time t, i.e., one may be
interested in estimating θ∗ = E[Y (d) | Ā ∈ B̄], where Bt = {At : At > b}, d(at, ht) = δ× at with
b = 9, δ = 0.9, and Y is a health outcome of interest, for example myocardial infarction.
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2.2 Causal Identification
Causal identification of the Local LMTP parameter θ∗ can be achieved under the following two
assumptions:

A1 (Positivity). For all t ∈ {1, . . . , τ}, if (at, ht) ∈ supp{At, Ht | At ∈ Bt} then (d(at, ht), ht) ∈
supp{At, Ht}.

A2 (Strong sequential randomization). For all t ∈ {1, . . . , τ}, UA,t⊥⊥(UL,t+1, UA,t+1)|Ht.

Positivity assumptions such as A1 are a standard requirement for many causal parameters (Pe-
tersen et al., 2012; van der Laan and Rose, 2011). Assumption A1 is weaker than that required for
population-averaged LMTP outcomes, as here positivity is only required conditional on B. This
has important implications in applications, as different choices of the set B can lead to assumptions
with varying degrees of plausibility (e.g., see Example 2 below for the ATT). The strong sequential
randomization assumption requires that At, Lt+1, and At+1 are unconfounded (that is, all common
causes of At, Lt+1, and At+1 are included in Ht). This is a stronger assumption that what is re-
quired to identify dynamic treatment rules that do not depend on the natural value of treatment. See
Dı́az et al. (2023) for an in-depth discussion of these identification assumptions, and Richardson
and Robins (2013); Young et al. (2014) for equivalent assumptions in alternative causal models.
Below we explain the identification assumptions for each of the running examples.

Example 2 (continued). Assumption A1 requires that for any covariate value l such that P (A =
1 | L = l) > 0, then it must hold that P (A = 0 | L = l) > 0. This is weaker than the positivity
assumption required for identification of the ATE, which states that for any covariate value l such
that P (L = l) > 0, then it must hold that 0 < P (A = 1 | L = l) < 1. Assumption A2 requires
that UA⊥⊥UY |L; that is, there are no unmeasured common causes of A and Y .

Example 3 (continued). Assumption A1 requires that for all time points, for any history ht such
that P (At = a∗ | Ht = ht, At > b) > 0, then it must hold that P (At = δa∗ | Ht = ht) > 0.
That is, at all time points if a geographical area has a positive probability of having a PM2.5 value
of a∗ falling above the threshold given its longitudinal history, then it must also have a positive
probability of having a PM2.5 value of δa∗. Assumption A2 requires that at each t, the longitudinal
history Ht includes all common causes of At (above threshold PM2.5 at time t) and (As, Ls), s > t
(above threshold PM2.5 after time t and covariates and outcome after time t).

Under these assumptions, we establish an identification result for the Local LMTP parameter in
terms of sequential regressions.

Theorem 1. Let mτ+1 = Y , Aτ+1 = 1,Bτ+1 = {1}. In a slight abuse of notation, let Ad
t =

d(At, Ht). Recursively define for t = τ, . . . , 1 the parameters

mt : (at, ht) 7→ E
[
mt+1(A

d
t+1, Ht+1)|At = at, Ht = ht, At+1 ∈ Bt+1

]
,

and let θt = E
[
mt(A

d
t , Lt)|At ∈ Bt

]
. Under A1 and A2, the Local LMTP parameter is identified

as θ1 = E
[
m1(A

d
1, L1)|Ā ∈ B̄

]
.
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For convenience, we will write θ = θ1. While the parameters θt for t > 1 are not immediately
relevant in terms of defining the main causal effect, they play an important role later in estimation.
In the cross-sectional setting the identification result simplifies greatly, as shown in the running
example for the ATT.

Example 2 (continued). Recall the counterfactual causal parameter is given by θ∗ = E[Y (0) | A =
1]. The identification result implies this parameter is identified by θ = E[E[Y | W,A = 0] | A = 1].

Example 3 (continued). First, define recursively the parameters

mt : (at, ht) 7→ E[mt+1(δAt+1, Ht+1)|At = at, Ht = ht, At+1 ∈ Bt+1],

and recalling that mτ+1 = Y . The identification result implies that θ = E[m1(δA1, L1) | A1 > b].

While we will discuss estimation in depth later, to gain intuition about the identification re-
sult for longitudinal settings note that it implies a simple estimation strategy based on sequential
regressions. In particular, mτ can be estimated as a regression of Y on Aτ and Hτ . This re-
gression can then be used to obtain predictions under the hypothetical modified treatment policy
Ad

τ = d(Aτ , Hτ ), which can in turn be regressed on Aτ−1, Hτ−1 among individuals with Āτ ∈ Bτ

to yield an estimate of mτ−1. This procedure can be iterated to t = 1, which is averaged over
individuals with Ā ∈ B to yield an point estimate of θ.

The parameter θ also admits an inverse probability weighted representation for a subset of MTPs
that are sufficiently smooth, as stated in the following assumption.

A3 (Piecewise smooth invertibility for continuous exposures (Dı́az et al., 2023)). For all t ∈
{1, . . . , τ}, and for all ht, assume that the support of At conditional on Ht = ht is partition-
able into subintervals It,j : j = 1, . . . Jt(ht) such that d(at, ht) is equal to some dj(at, ht) and
dj(·, ht) has an inverse function that is differentiable with respect to at.

Next, define

gdt,B̄(a, h) =

∫
Bd
t (a,h)

gt(a
′, h)dν(a′),

where Bd
t (a, h) = {a′ ∈ Bt : a = d(a′, h)} and letting gdt,∅(a, h) = 0. Next, define the density ratio

at time t as

rt(at, ht) =
gdt,B̄(at, ht)

gt(at, ht)
.

Finally, let αt(āt, h̄t) =
∏t

k=1 rk(ak, hk) be the cumulative density ratios up to time t.

Theorem 2. Under A1, A2, and A3 the Local LMTP parameter is identified as

θ =
1

P (Ā ∈ B̄)
E
[
ατ (Āτ , H̄τ )Y

]
.

This alternative identification result implies a simple inverse probability weighting estimator
of θ by taking the mean of the observed outcomes weighted by the estimated cumulative density
ratios ατ . In the cross-sectional case for the ATT, the weighting simplifies as seen below.
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Example 2 (continued). The inverse probability weighted representation of the ATT parameter is
given by

θ =
1

P (A = 1)
E

[
I[A = 0]P (A = 1|L)

P (A = 0|L)
Y

]
.

3 Non-parametric Efficiency Theory
In this section we investigate the semi-parametric properties of the Local LMTP parameter θ.
These results draw on a long literature in semi-parametric efficiency theory; see Begun et al.
(1983); Bickel et al. (1997); van der Vaart (1998), among many others. Kennedy (2016) provides
a useful review of the relevant theory specialized to causal inference applications. Our main result
is to derive the efficient influence function (EIF) of θ, a key object in the semi-parametric analysis
of the parameter for several reasons. First, the variance of the EIF defines the efficiency bound
for estimating θ in the non-parametric model M (Bickel et al., 1997). Second, knowledge of the
EIF is also crucial for developing non-parametric estimators of θ and deriving important properties
such as their asymptotic sampling distribution. Developing estimators using the EIF flows from
the following expansion, sometimes referred to as the von-Mises expansion (Robins et al., 2009;
von Mises, 1947): for any P ∈ M,

θ(P ) = θ(P0)− EP0
{D(O;P )}+R(P, P0), (1)

where R(P, P0) is a second-order term of products of differences between functionals of P and P0.
Plugging in an estimate P̂ for P0, and assuming that the second order estimation error R(P̂, P0) is
small enough, one then obtains an approximation to the bias of a plug-in estimator θ(P̂ ), namely
θ(P̂ ) − θ(P0) ≈ −EP0

{D(O; P̂ )}. A biased corrected estimator may then be constructed by
subtracting an estimate of this bias from the plug-in estimator (i.e., the so-called one-step estimator)
(Pfanzagl and Wefelmeyer, 1985; Emery et al., 2000), or constructing an estimator P̂ such that this
bias converges to zero (i.e., targeted minimum loss-based estimation) (van der Laan and Rose,
2011).

The EIF and von-Mises expansion can also be used to derive important properties of non-
parametric estimators. The form of the EIF may imply multiple-robustness properties in which
only combinations of the nuisance parameters need to be estimated consistently for the estimator
of θ to be consistent. In addition, careful analysis of the form of the remainder term R(P, P0)
can reveal additional useful properties of non-parametric estimators of θ. For common parameters
of interest such as the Average Treatment Effect, the remainder term has a product structure that
implies nuisance parameters can be estimated at slow n−1/4 rates, allowing for the use of flexible
machine-learning algorithms in estimation.

Theorem 3 (Efficient influence function). Assume that d does not depend on P0. Let

ϕt : z 7→
τ∑

s=t

(
s∏

k=t

rk(ak, hk)

)
1[at+1 ∈ Bt+1]

{
ms+1(a

d
s+1, hs+1)−ms(as, hs)

}
+ 1 [at ∈ Bt]mt(a

d
t , ht).
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The parameter θ1 is pathwise differentiable and its EIF is given by

D(Z;P ) =
1

P (Ā ∈ B̄)
[
ϕ1(Z)− 1[Ā ∈ B̄]θ1

]
.

The EIF of the Local LMTP parameter simplifes to the EIF of the LMTP parameter when B̄ is
set to the space of all possible longitudinal treatments. The non-parametric efficiency bound for
estimators of θ is defined as the variance of the EIF: EP0

[D(Z;P0)
2].

Next, we apply Theorem 3 to derive the EIFs of the parameters in the running examples.

Example 1 (continued). The efficient influence function for the ATT parameter θ is

D(Z;P) =
1{A = 0}
P(A = 1)

g(1 | W )

g(0 | W )
{Y −m(A,W )}+ 1{A = 1}

P(A = 1)
{m(0,W )− θ(P)} ,

which coincides with the efficient influence function given by Hubbard et al. (2011) for the ATT.

Example 2 (continued). The efficient influence function is given by

D(Z;P) =
1

P (Ā ∈ B̄)

[
τ∑

t=1

(
t∏

s=1

1{As > δb}
P(As > b)

gs(δ
−1As | Hs)

g(A | W )

)
{mt+1(δAt+1, Ht+1)−ms(At, Ht)}

+1{Ā ∈ B̄}{m1(δA,H1)− θ(P)}

]
.

To complete the analysis, we give the form of the remainder term R(P, P0) of the von-Mises
expansion (1). For all t ∈ {1, . . . , τ} let r′t, m

′
t be the density ratios and outcome regressions

corresponding to P and rt, mt the equivalent under P0. Let

C ′
t,s =

s−1∏
r=t

r′r(Ar, Hr).

Then using results from Appendix A.3, the remainder term R(P, P0) is given by

R(P, P0) =
τ∑

t=1

EP0

[
C ′

1,t1[At+1 ∈ Bt+1]

×
{
r′t(At, Ht)− rt(At, Ht)

}{
m′

t(At, Ht)−mt(At, Ht)
}
|At = at, Ht = Ht, At+1 ∈ Bt+1

]

The form of the second-order remainder term suggests the possibility of forming multiply-robust
estimators of θ.
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4 Estimation
As foreshadowed in the previous section, the von-Mises expansion (1) suggests strategies for es-
timating θ based on forming an estimate P̂ of P0 that ensures the bias term EP0

[D(O;P )] and the
second-order remainder term R(P̂, P0) go to zero. Fortunately, estimating the entirety of P0 is not
necessary: it suffices to estimate only the parts of P0 relevant to θ and its EIF D. In our case,
the relevant parts are the regression parameters mt and the cumulative ratios αt. Collectively we
refer to these nuisance parameters as η = (mt, αt : t ∈ {1, . . . τ}). We first discuss strategies
for estimating the nuisance parameters mt and αt, and then show how they can be used to form
estimators of θ.

The parameter mt(at, ht) can be estimated using flexible regression techniques from the ma-
chine learning literature. However, estimation of the cumulative ratio αt is more challenging. A
first option is to estimate directly the densities gt(at | ht) and plug in that estimate into the defini-
tion of αt . While that option may be feasible for categorical At and for few time points, implement-
ing for continuous or multivariate At would require estimation of conditional densities and com-
putation of numerical integrals which may be challenging and computationally intensive. As an
alternative, we estimate the cumulated density ratios directly via empirical loss minimization. Our
approach is based on the theory of Riesz representers. Note that θt(Z) = E[mt(A

d
t , Lt) | At ∈ Bt]

is a linear functional of mt. Therefore, by the Riesz representation theorem, there exists a square-
integrable function αt such that, for all f with E[f(At, Ht)

2] < ∞,

E[f(Ad
t , Ht)] = E[αt(At, Ht)f(At, Ht)]. (2)

The function αt is referred to as a “Riesz representer”. For the Local LMTP parameter, the Riesz
representer is precisely the cumulative product of density ratios αt, which can be written as the
solution to an optimization problem over a candidate space A:

αt = argmin
α
∗∈A

E
[
(α∗(At, Ht)− αt(At, Ht))

2
]

= argmin
α
∗∈A

E
[
α∗(At, Ht)

2 − 2α∗(At, Ht)αt(At, Ht) + αt(At, Ht)
2
]

= argmin
α
∗∈A

E
[
α∗(At, Ht)

2 − 2α∗(At, Ht)αt(At, Ht)
]

= argmin
α
∗∈A

E
[
α∗(At, Ht)

2 − 2α∗(Ad
t , Ht)

]
by (2)

To estimate αt we can solve the corresponding empirical minimization problem:

α̂t = argmin
α
∗∈A

En

[
α∗(At, Ht)

2 − 2α∗(Ad
t , Ht)

]
. (3)

Crucially, estimating αt in this manner avoids cumulating inverse probabities (or densities) as is
necessary for the the plug-in estimator. The choice of candidate space A implies different op-
tions for practically solving the optimization problem. Methods based on flexible splines, random
forests, or neural networks allow for rich candidate spaces A Following (Chernozhukov et al.,
2022a), we use a deep neural network to estimate αt. Contrary to (Chernozhukov et al., 2022a)
we chose to use cross-fitting when estimating αt. Without cross-fitting, technical conditions are
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required to control the complexity of the estimators, such as Donsker (van der Laan and Rose,
2011) or critical radius assumptions (Chernozhukov et al., 2021; Wainwright, 2019). Cross-fitting
is a commonly used method that obviates the need for such assumptions (Zheng and van der Laan,
2011; Chernozhukov et al., 2018). Therefore, with cross-fitting our method can be applied with
any empirical loss minimization method used to estimate αt.

With strategies in hand for estimating mt and αt, we now turn to forming estimators of θ.

4.1 Substitution and Inverse probability weighted estimators
A substitution estimator can be formed via the following algorithm:

1. Initialize m̂τ+1,i(A
d
τ+1,i, Hτ+1,i) = Yi.

2. For t = τ, . . . , 1:

• Using any regression method, regress m̂t+1(A
d
t+1,i, Ht+1, i) on (At, Ht) for all i ∈

{1, . . . , n} such that Āτ+1,i ∈ B̄t+1.

• Use the regression model to form predictions m̂t,i(A
d
t,i, Ht,i) for all i ∈ {1, . . . , n}.

3. Form the substitution estimator as

θ̂sub =
1∑n

i=1 1[Āi ∈ B̄]

n∑
i=1

1[Āi ∈ B̄]m̂1(A
d
1,i, L1,i).

Similarly, if we have an estimator α̂τ of ατ , for example via (3), an IPW estimator of θ1 is given
by

θ̂ipw =

(
1

n

n∑
i=1

1[Āi ∈ B̄]

)−1
1

n

n∑
i=1

α̂τ (Aτ,i, Hτ,i)Yi.

The substitution estimator will be consistent if all of the regressions m̂t are consistent. The IPW
estimator is consistent if α̂τ is estimated consistently.

4.2 Targeted minimum loss-based estimator
Targeted Minimum Loss-Based Estimation (TMLE) is a framework for constructing asymptoti-
cally efficient non-parametric plug-in estimators (van der Laan and Rose, 2011). The core idea
is to solve the EIF estimating equation by carefully fluctuating initial estimates of the parts of P0

relevant to the parameter of interest. The TMLE estimator for Local LMTPs is similar to the one
given in Dı́az et al. (2023) for LMTPs with modifications to incorporate the conditional structure
of the Local LMTP parameter. Following their work, we use cross-fitting in order to avoid tech-
nical conditions on the complexity of the nuisance estimators (Klaassen, 1987; Zheng and van der
Laan, 2011). Randomly partition the indexes {1, . . . , n} into J validation sets V1, . . . ,VJ . For
each j ∈ J , the training sample is given by Jj = {1, . . . , n}\Vj . Let j(i) be the validation set
containing index i.

11



The goal of the TMLE algorithm is to form a set of updated estimates m̃t,j(i) such that the
empirical EIF estimating equation is solved. Inspection of the form of the EIF shows that this will
be the case when

En

[
τ∑

t=1

α̂t1[At+1 ∈ Bt+1]
{
m̃t+1(A

d
t+1, Ht+1)− m̃t(At, Ht)

}]
≈ 0. (4)

TMLE ensures this is the case by fluctuating an initial estimate m̂t via a carefully chosen para-
metric submodel indexed by a parameter ϵ ∈ R and loss function to form updated estimates m̃t.
The parametric submodel is chosen such that the gradient of the loss with respect to ϵ equals (4).
When the parameter ϵ is estimated by minimizing the loss function, this ensures that at the min-
imizer the empirical mean of the gradient is approximately zero. As such, the updated estimates
approximately solve the empirical EIF (4). For Local LMTPs, the fluctuation model is chosen to
be a weighted generalized linear model with canonical link, an intercept parameter ϵ, and offset set
to the initial estimates m̂t. The TMLE algorithm is as follows:

1. Initialize η̃ = η̂ and m̃τ+1,j(i)(A
d
τ+1,i, Hτ+1,i) = Yi.

2. For s = 1, . . . , τ compute weights

ωs,i = 1[At+1 ∈ Bt+1]α̂s,i.

3. For t = τ, . . . , 1:

• Find the maximum likelihood estimate ϵ̂ of ϵ under the model

link(m̃ϵ
t(A

d
t,i, Ht,i) = ϵ+ link(m̃t,j(i)(At,i, Ht,i)).

with weights

• Update m̃ as

link(m̃ϵ̂
t(At,i, Ht,i) = ϵ̂+ link(m̃t,j(i)(At,i, Ht,i)),

link(m̃ϵ̂
t(A

d
t,i, Ht,i) = ϵ̂+ link(m̃t,j(i)(A

d
t,i, Ht,i)).

4. Form the TMLE estimate as

θ̂tmle =
1

n

n∑
i=1

m̃1,j(i)(A
d
1,i, L1,i).

The TMLE algorithm for Local LMTP parameters is similar to the TMLE for LMTPs Dı́az et al.
(2023). The key difference between the algorithms is in Step 2, where for Local LMTPs the
weights are multiplied by an indicator of the future treatment assignment lying in the conditioning
set. The statistical properties of TMLE flow from the fact that after this iterative procedure, (4) is
satisfied. Using this, it is possible to show that the TMLE estimator is asymptotically normal and
efficient.
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Theorem 4. Assume that

∥α̂1 − α1∥∥m̃1 −m1∥+
τ∑

t=2

∥∥∥∥ α̂t

α̂t−1

− αt

αt−1

∥∥∥∥ ∥m̃t −mt∥ = oP (n
−1/2).

Assume there exists some c < ∞ such that P (αt < c) = 1 and P (α̂t < c) = 1. Then
√
n(θ̂tmle − θ)⇝ N(0, σ2),

where σ2 = VarP0
(D(Z;P0)).

Satisfying the assumptions of Theorem 4 requires that all the nuisance parameters are estimated
at sufficiently fast rates. Consistency of θ̂tmle, however, can be achieved even if some of the
nuisance parameters are not estimated consistently, as shown in the following theorem.

Lemma 1 (τ +1 multiply robust consistency of TMLE). Assume there exists a k ∈ {1, . . . , τ − 1}
such that ∥m̃t −mt∥ = op(1) for all t > k, ∥α̂1 − α1∥ = op(1), and ∥ α̂t

α̂t−1
− αt

αt−1
∥ = op(1) for all

1 < t ≤ k. Then θ̂tmle − θ = op(1).

It is also theoretically possible to construct estimator with stronger multiple robustness proper-
ties, similar to the sequentially double robust (SDR) estimator proposed for LMTPs (Dı́az et al.,
2023). This estimator would require cumulative density ratios of the form

∏k
t=s rs for all combi-

nations of 1 ≤ t < τ and t < s ≤ τ . For the LMTP SDR estimator, these ratios were estimated by
plugging in estimates of rt for t ∈ {1, . . . , τ}. It would also be possible to apply the Riesz Repre-
senter approach to estimate the cumulative ratios directly, although in practice it is computationally
prohibitive for large τ as it requires solving (3) a total of (τ)(τ − 1)/2 times. In comparison, for
the TMLE algorithm requires solving (3) only τ times.

5 Simulation studies
We investigate the finite-sample performance of the proposed estimators for the Local LMTP pa-
rameter through three simulation studies, each probing the estimators from a different angle. Sim-
ulation study 1 looks at the robustness of the TMLE estimator inconsistent nuisance parameter
estimation. Simulation study 2 compares how the Riesz Representer estimation strategy compares
to estimating individual density ratios. Simulation study 3 investigates how Riesz Representer
approach fares under extreme practical positivity violations.

5.1 Simulation study 1
In the first simulation study we investigate the performance of the TMLE estimator for a Local
LMTP parameter defined for a categorical exposure. The setup is adapted from the simulation
study presented in Dı́az et al. (2023). The data generating process is given by

L1 ∼ Categorical(0.5, 0.25, 0.25),

A1|L1 ∼ Binomial(5, logit−1(−0.3L1)),
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Lt|(Āt−1, L̄t−1) ∼ Bernoulli(logit−1(−0.3Lt−1 + 0.5At−1)) for t ∈ {2, 3, 4},
At|(Āt−1, L̄t) ∼ Binomial(5, logit−1(−2.5 + At−1 + 0.5Lt)) for t ∈ {2, 3, 4},
Y |(Ā4, L̄4) ∼ Bernoulli(logit−1(−1 + 0.5A4 − L4)).

The LMTP is defined as

d(at, ht) =

{
at − 1 if at ≥ 1,

at if at < 1.

We define two Local LMTP parameters conditional on the final treatment assignment. That is, we
set Ba = {a} for a ∈ {0, 1, . . . , 5}. 100 datasets for each sample size N = {250, 500, 1000} were
created by independently sampling from the data generating process. The nuisance estimators were
estimated differently in four scenarios:

1. all nuisance parameters estimated consistently.

2. mt estimated consistently for t > 2 and inconsistently otherwise; αt consistently for t ≤ 2
and inconsistently otherwise.

3. mt estimated consistently for t < 4 and inconsistently for t = 4; αt estimated consistently
for t = 4 and inconsistently otherwise.

4. all nuisance parameters estimated inconsistently.

Consistent estimation of mt was achieved by Super Learning with SL.mean and SL.glm learners,
where the generalized linear model was correctly specified. For αt, we assume that the neural
network algorithm was consistent for this DGP. For the inconsistent cases, only SL.mean was used
for estimating mt and αt was estimated using only an intercept term and no covariates or treatment
variables.

A subset of the results are shown in Table 1; complete results are available in the Appendix
as Table 4. The TMLE estimator achieved near optimal coverage and near zero mean error and
mean absolute error for nearly all combinations of sample size and conditioning sets in scenario
(1), where all nuisance parameters are estimated consistently. In scenario (2), IPW appears to
be inconsistent, as expected because α4 is estimated inconsistently. As expected based on the
τ + 1 robustness result (Theorem 1), TMLE has good performance in terms of error metrics.
Surprisingly, the substitution estimator also has good performance in this example. In scenario (3),
TMLE also has good performance both in terms of empirical coverage and error metrics, which
is unexpected as the scenario does not fulfill the requirements of Theorem 1. We hypothesize that
estimating α4 correctly, which is the cumulative densities from t = 1 to t = 4, allows TMLE
to correct for the inconsistent estimation of m4. Finally, in scenario (4) all estimators have poor
performance due to the inconsistent estimation of all nuisance parameters.

5.2 Simulation study 2
The second simulation study investigates how the Riesz representation approach for estimating the
cumulated densities αt compares to estimating each ratio rt and then cumulating them to form
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95% Coverage MAE × 100 ME × 100
Ba Scenario N TMLE IPW Sub TMLE IPW Sub TMLE

{ 0 } 1 250 96.0% 7.53 6.05 6.30 -3.26 -4.71 -0.77
500 98.0% 4.55 3.31 3.83 -2.53 -2.26 -1.06

1000 95.0% 3.14 2.65 2.72 -1.97 -1.39 -1.15
2 250 56.0% 23.48 6.10 6.20 -23.48 -4.82 -4.92

500 74.0% 22.84 3.20 3.19 -22.84 -2.29 -2.21
1000 69.0% 23.13 2.56 2.54 -23.13 -1.36 -1.39

3 250 96.0% 7.54 23.50 6.35 -3.27 -23.50 -0.90
500 98.0% 4.48 22.86 4.00 -2.38 -22.86 -1.09

1000 94.0% 3.10 23.19 2.79 -1.97 -23.19 -1.26
4 250 0.0% 23.54 23.50 23.69 -23.54 -23.50 -23.69

500 0.0% 22.83 22.86 22.92 -22.83 -22.86 -22.92
1000 0.0% 23.13 23.19 23.24 -23.13 -23.19 -23.24

Table 1: Results of Simulation Study 1 showing empirical coverage of the 95% confidence inter-
vals, Mean Absolute Error (MAE), and Mean Error (ME) for the inverse probability weighted es-
timator (IPW), substitution estimator (Sub), and Targeted minimum loss-based estimator (TMLE).

estimates of αt. As such, we consider a relatively simple longitudinal data generating process
and modified treatment policy because the main variable of interest in this simulation study is the
number of time points. The data generating process is given by

L1 ∼ Uniform(0, 1),

A1|L1 ∼ Bernoulli(0.5),

Lt|(Āt−1, L̄t−1) ∼ Normal(−0.5Lt−1 + At−1, 0.5
2) for t ∈ {2, . . . , τ},

At|Lt ∼ Bernoulli(logit−1(0.5 + 0.1Lt)),

Y |Aτ , Lτ ∼ Normal(Aτ + Lτ , σ
2).

The modified treatment policy was defined as d(at, ht) = 1. The LMTP parameter was not condi-
tioned on treatment (or, equivalently, Bt = {0, 1} for all t). The outcome regression models were
estimated using properly specified generalized linear models. The estimators of rt were based on
correctly specified logistic regressions which were then cumulated to form estimates of αt (we
refer to this as the “plugin” method, as estimates r̂t are plugged in to the definition of αt).

Simulation results are shown in Table 3 and Figure 1. For sample sizes N = 500 and N = 1000,
the RR estimator maintains near optimal empirical coverage for all τ , while the performance of
the Plug-in estimator suffers as τ increases. A similar pattern is seen for the mean absolute error.
The instability of the Plug-in estimator can be seen via the standard deviation of the estimated
cumulated weights α̂τ which are larger for the Plug-in estimator than the RR estimator.

5.3 Simulation study 3
The third simulation study investigates how the proposed estimation approach based on Riesz
Representers performs under practical positivity violations. The data generating process for a

15



95% Coverage MAE × 100 sd(α̂τ )
N τ RR Plugin RR Plugin RR Plugin

100 2 92% 95% 1.90 1.48 1.82 1.56
4 79% 98% 3.18 2.36 2.79 2.99
6 84% 86% 3.00 4.22 2.97 5.32
8 78% 81% 3.20 5.05 2.67 8.37

10 81% 72% 3.14 5.40 2.39 15.35
12 80% 70% 2.99 5.11 2.06 18.62

500 2 97% 96% 0.66 0.66 1.79 1.49
4 92% 93% 1.39 1.06 3.17 2.69
6 90% 95% 1.69 1.50 4.12 4.52
8 94% 94% 1.85 2.64 4.59 7.47

10 92% 85% 1.84 4.11 4.50 11.54
12 94% 75% 1.52 4.61 4.47 18.41

1000 2 97% 97% 0.45 0.40 1.76 1.48
4 96% 98% 0.76 0.57 3.17 2.64
6 93% 98% 1.17 1.02 4.35 4.38
8 94% 96% 1.25 1.58 4.94 7.10

10 89% 92% 1.55 2.68 5.20 11.50
12 93% 78% 1.43 4.19 5.15 17.42

Table 2: Results of Simulation Study 2 comparing the performance of the TMLE estimator with
Riesz representers αt estimated using empirical loss minimization (RR) and via plug-in estimation
(Plug-in). The estimators are compared by their empirical 95% confidence interval coverage, mean
absolute error (MAE), and the mean standard deviation of the Riesz representers at time τ (sd(α̂τ )).
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Figure 1: Results of Simulation Study 2.
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95% Coverage MAE × 100 sd(α̂1)
β N RR Plug-in RR Plug-in RR Plug-in
0 500 97% 97% 2.64 2.62 0.99 1.00

1000 98% 97% 1.89 1.89 0.98 1.00
5000 95% 95% 0.94 0.94 0.97 1.00

1 500 99% 98% 3.24 2.90 1.34 1.16
1000 96% 96% 2.37 2.27 1.26 1.14
5000 96% 95% 1.02 0.99 1.24 1.14

2 500 85% 92% 6.69 3.26 2.67 1.22
1000 93% 96% 3.67 2.41 2.30 1.22
5000 94% 94% 1.36 1.05 2.00 1.21

3 500 77% 94% 12.70 3.31 4.30 1.17
1000 62% 93% 10.59 2.58 3.89 1.16
5000 59% 93% 4.23 1.10 3.25 1.16

Table 3: Results of Simulation Study 3 comparing the performance of the TMLE estimator with
Riesz representers αt estimated using empirical loss minimization (RR) and via plug-in estimation
(Plug-in). The estimators are compared by their empirical 95% confidence interval coverage, mean
absolute error (MAE), and the mean standard deviation of the Riesz representers (sd(α̂1)).

generic observation (L,A, Y ) is given by

L ∼ Normal(0, 1),

A ∼ Binomial
(
logit−1(βL)

)
,

Y ∼ Normal(0.5L+ A, 0.52).

The parameter β controls the degree of covariate overlap between treatment (A = 1) and control
(A = 0) groups. For example, when β = 0 then A is randomly assigned with probability 0.5, repre-
senting an experimental design. As β increases, the probability of treatment becomes increasingly
associated with higher covariate values. The Local LMTP parameter is defined setting B = {0, 1},
such that it reduces to the LMTP parameter.

100 simulation datasets were drawn from the data generating process for sample sizes N ∈
{500, 1000, 5000}. The TMLE estimator was applied twice to each simulation dataset, using alter-
natively the plugin and Riesz Representer strategies for estimating αt. Nuisance parameters were
estimated using well-specified generalized linear models. Thus, we note that the plugin TMLE
has an advantage in that the density ratios rt are estimated using well-specified models, while the
Riesz Representer approach estimates the cumulated ratios directly using flexible neural networks.

This simulation study illustrates that the computational strategy of estimating the Riesz Rep-
resenters directly cannot overcome extreme positivity violations by itself. This should not be
surprising, as we have not introduced any additional structure to handle extrapolating the density
ratios and outcome regression into regions where there is little or no overlap between treatment and
control groups. The better performance of the TMLE based on plugin estimation of the cumulated
densities is because it is based on well-specified parametric regressions which allows it to more
accurately “fill-in” information in the low-overlap regions.
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A Appendix

A.1 Proof of Theorem 1
Proof The proof follows closely that of (Dı́az et al., 2023, Theorem 1). Let At+1(āt) and Lt+1(āt)
be the counterfactual variables at time t + 1 when the exposure is set to Āt = āt. Fix a time point
t arbitrarily. For s = 1, let

Ad,†
t+s(āt, l̄t) = d

{
āt, At+s(āt), l̄t, Lt+s(āt)

}
,

and for s > 1 define Ad,†
t+s as

Ad,†
t+s(āt, l̄t) = d{āt, At+1(āt), At+2(āt, A

d,†
t+1(āt)), . . . , At+s(āt, A

d,†
t+1(āt), . . . , A

d,†
t+s−1(āt)),

l̄t, Lt+1(āt), Lt+2(āt, A
d,†
t+1(āt)), . . . , Lt+s(āt, A

d,†
t+1(āt), . . . , A

d,†
t+s−1(āt))}.

In words, Ad,†
t+s is the modified outcome at time t+ s when the MTP was applied up to time t, and

then from t+ 1 to t+ s− 1 the treatment is set to the natural value of treatment. Similarly let

L†
t+s(āt) = Lt+s(āt, A

d,†
t+s(āt), . . . , A

d,†
t+s(ā2))

and

Zt(āt, l̄t) = fY (āt, A
d,†
t+1(āt, l̄t), l̄t, L

†
t+1(āt), UY ).

Begin by rewriting the conditional expectation:

E
[
Y (Ād) | Ā ∈ B̄

]
= E

[
1

P (Ā ∈ B̄)
Y (Ād)1[Ā ∈ B̄]

]
= E

[
1

P (A1 ∈ B1)P (A2 ∈ B2)
Y (Ād)1[A1 ∈ B1]1[A2 ∈ B2]

]
.

Next, apply the law of iterated expectations and simplify:

=

∫
A1,L1

1

P (A1 ∈ B1)P (A2 ∈ B2)
E
[
Z1(a

d
1, l1)1[A2 ∈ B2] | A1 = a1, L1 = l1

]
1[A1 ∈ B1]dP (a1, l1)

=

∫
A1,L1

1

P (A2 ∈ B2)
E
[
Z1(a

d
1, l1)1[A2 ∈ B2] | A1 = a1, L1 = l1

]
dP (a1, l1 | a1 ∈ B1).

By Lemma 1 (below) and Assumptions A1 and A2,

=

∫
A1,L1

1

P (A2 ∈ B2)
E
[
Z1(a

d
1, l1)1[A2 ∈ B2] | A1 = ad1, L1 = l1

]
dP (a1, l1 | a1 ∈ B1)

=

∫
A1,L1

E
[
Z1(a

d
1, l1) | A1 = ad1, L1 = l1, A2 ∈ B2

]
dP (a1, l1 | a1 ∈ B1)
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Continue by applying the same steps to the inner expectation:

=

∫
Ā2,L̄2

E
[
Z1(a

d
1, l1) | A2 = a2, L2 = l2, A1 = ad1, L1 = l1, A2 ∈ B2

]
dP (a2, l2 | a2 ∈ B2)dP (a1, l1 | a1 ∈ B1)

In the event At+1 = at+1, Ht+1 = hd
t+1, At ∈ Bt then Zt(ā

d
t , l̄t) = Zt+1(ā

d
t+1, l̄t+1). Therefore:

=

∫
Ā2,L̄2

E
[
Z2(a

d
2, l2) | A2 = a2, L2 = l2, A1 = ad1, L1 = l1, A2 ∈ B2

]
dP (a2, l2 | a2 ∈ B2)dP (a1, l1 | a1 ∈ B1)

Continue applying the previous steps until arriving at

=

∫
Āτ ,L̄τ

E
[
Zτ (ā

d
τ , l̄τ ) | Aτ = adτ , Hτ = hd

τ , Aτ+1 ∈ Bτ+1

] τ∏
k=1

dP (ak, lk | aτk−1h
d
k−1, ak ∈ Bk),

Finally, by applying the definition of Zt:

=

∫
Āτ ,L̄τ

E
[
Y | Aτ = adτ , Hτ = hd

τ , Aτ+1 ∈ Bτ+1

] τ∏
k=1

dP (ak, lk | aτk−1h
d
k−1, ak ∈ Bk), (5)

Next, recursively apply the following starting with t = τ to arrive at the stated result:∫
At,Lt

mt(a
d
t , h

d
t )dP (at, lt | adt−1, h

d
t−1, at ∈ Bt) = E

[
m(Ad

t , Ht) | At−1 = adt−1, Ht−1 = hd
t−1, At ∈ Bt

]

= mt−1(a
d
t−1, h

d
t−1).

Lemma 2. Given Assumption A2, for all t it follows that Zt(at, lt)1[At+1 ∈ Bt+1]⊥⊥At | Ht.

Proof Under the assumed structural causal model, Zt(āt, l̄t)1[At+1 ∈ Bt+1] is a deterministic
function of (UL,t+1, UA,t+1).

A.2 Proof of Theorem 2
Proof Write

E[rt(At, Ht)mt(At, Ht) | At+1 ∈ Bt+1]

= E

[
gdt,B̄(At, Ht)

gt(At, Ht)
mt(At, Ht) | At+1 ∈ Bt+1

]
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= E

[∫
Bd
t (At,Ht)

gt(a
′, Ht)dν(a

′)

gt(At, Ht)
mt(At, Ht) | At+1 ∈ Bt+1

]

= E

[∫
1[At = d(a′, Ht), a

′ ∈ Bt]gt(a
′, Ht)dν(a

′)

gt(At, Ht)
mt(At, Ht) | At+1 ∈ Bt+1

]
= E

[∫ ∫
1[a = d(a′, Ht), a

′ ∈ Bt]gt(a
′, Ht)dν(a

′)

gt(a,Ht)
mt(a,Ht)gt(a,Ht)dν(a) | At+1 ∈ Bt+1

]
= E

[∫ ∫
1[a = d(a′, Ht), a

′ ∈ Bt]gt(a
′, Ht)dν(a

′)mt(d(a
′, Ht), Ht)dν(a) | At+1 ∈ Bt+1

]
= E

[
mt(A

d
t , Ht)dν(a) | At+1 ∈ Bt+1

]
.

Applying this recursively for t = τ, . . . , 1 to (5) yields the result.

A.3 First-order expansion
Let η′ = (r′1,m

′
1, . . . , r

′
τ ,m

′
τ ). Let

C ′
t,s =

s−1∏
r=t

r′r(Ar, Hr).

Define the second order term for t = {0, . . . , τ − 1} as

Remt(at, ht; η
′) = (6)

τ∑
s=t+1

(
E[C ′

t,s1[As+1 ∈ Bs+1]

×
{
r′s(As, Hs)− rs(As, Hs)

}{
m′

s(As, Hs)−ms(As, Hs)
}
| At = at, Ht = Ht, As+1 ∈ Bs+1]

)
.

For t = 0 the remainder term is conditioned on Ā ∈ B̄. When t = τ , let Remt(at, ht; η
′) = 0.

Theorem 5. For all t ∈ {1, . . . , τ},

mt(at, ht) =E
[
ϕt+1(Z, η

′) | At = at, Ht = ht, At+1 ∈ Bt+1

]
+Remt(at, ht; η

′).

Proof The proof is similar to that of (Dı́az et al., 2023, Lemma 1) with adjustments to handle
the conditional structure of the Local LMTP parameter. First, note the identity

E [ms(As, Hs) | As−1, Hs−1, As ∈ Bs] = E
[
rs(As, Hs)ms(A

d
s, Hs) | As−1, Hs−1, As ∈ Bs

]
.
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By this identity and the tower rule, the following recursive relationship holds:

E[m′
s(A

d
s, Hs)−ms(A

d
s, Hs) | As−1, Hs−1, As ∈ Bs]

= −E
{
1[As+1 ∈ Bs+1][m

′
s+1(A

d
s, Hs)−ms(A

d
s, Hs)] | As−1, Hs−1, As ∈ Bs

}
+ E

{
1[As+1 ∈ Bs+1]

[
rs(As, Hs)− r′s(As, Hs)

] [
m′(As, Hs)−ms(As, Hs)

]
| As−1, Hs−1, As ∈ Bs

}
+ E

{
1[As+1 ∈ Bs+1]r

′
s(As, Hs)E

[
m′

s+1(A
d
s+1, Hs+1)−ms+1(A

d
s+1, Hs+1) | As−1, Hs−1, As ∈ Bs

]}
.

Recursively applying the above relation from s = t+ 1, . . . , τ yields the stated result.

A.4 Proof of Theorem 3
Proof The proof follows that of (Dı́az et al., 2023, Theorem 2), therefore we focus on the parts
where the proof differs from theirs. The strategy of the proof is to first derive a putative EIF
assuming the data are discrete, and then show that this is indeed the correct EIF in the general
setting.

Let {Pϵ : ϵ ∈ R} be a parametric submodel satisfying P0 = P . The functional θ(P ) is pathwise
differentiable with EIF D(Z;P ) if

d

dϵ
Θ(Pϵ)

∣∣∣∣
ϵ=0

= EP [D(Z;P )s(Z)], (7)

where the score s(Z) is given by

s(Z) =
dPϵ

dϵ

∣∣∣∣
ϵ=0

.

We derive the EIF for discrete data using the functional Delta method (van der Laan and Rose,
2011), which states that for a substitution estimator Θ̂ that can be written as Θ̂∗(Pnf : f ∈ F for a
set of functions F , then the influence function of Θ̂(Pn) can be written as

∑
f∈F

dΘ̂∗(P )

dPf
{f(O)− Pf} .

Begin by writing the non-parametric MLE of the target parameter assuming all data are discrete:

Θ(Pn) =
∑

āτ ,l̄τ+1

lτ+1

1[āτ ∈ B̄τ ]

Pnfāτ+1

Pnflτ+1,aτ ,hτ

τ∏
k=1

Pnfdk,hk

Pnfak,hk

,

where

fāτ = 1(Āτ ∈ B̄τ ),
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flτ+1,aτ ,hτ
(Z) = 1(Lτ+1 = lτ+1, Aτ = aτ , Hτ = hτ , Āτ ∈ B̄τ ),

fdk,hk
= 1[d(A) = a,W = w],

fak,hk
= 1[A = a,W = w].

Let F = {fāτ , flτ+1,aτ ,hτ
, fdk,hk

, fak,hk
}. The derivatives of Θ(P ) with respect to each f ∈ F are

given by

dΘ(P )

dP āτ
= −

∑
āτ ,l̄τ+1

lτ+1

1[āτ ∈ B̄τ ]

(Pfāτ+1
)2

Pflτ+1,aτ ,hτ

τ∏
k=1

r(ak, hk),

dΘ(P )

dPflτ+1,aτ ,hτ

= lτ+1

1[āτ ∈ B̄τ ]

Pfāτ+1

τ∏
k=1

r(ak, hk),

dΘ(P )

dPfds,hs

=
1[as+1 ∈ Bs+1]

Pfāτ+1

ms(as, hs)
s−1∏
k=1

r(ak, hk)

dΘ(P )

dPfas,hs

= −
1[as+1 ∈ Bs+1]

Pfāτ+1

ms(as, hs)
s∏

k=1

r(ak, hk).

Note that ∑
f∈F

dΘ(P )

dPf
Pf = 0.

The conjectured EIF is therefore given by∑
f∈F

dΘ(P )

dPf
f(O).

Using the derivatives above and summing over s yields the stated EIF.
The functional Θ(Pϵ) can be expanded as

Θ(Pϵ) = Θ(P ) +

∫
D(Z, P )dPϵ − Rem0(ηϵ, η),

where Rem0(ηϵ, η) is defined as in (6). Next, we evaluate the derivative in (7)

d

dϵ
Θ(Pϵ)

∣∣∣∣
ϵ=0

=

∫
D(Z;P )

(
dPϵ

dϵ

) ∣∣∣∣
ϵ=0

− d

dϵ
Rem0(ηϵ, η)

∣∣∣∣
ϵ=0

,

=

∫
D(Z;P )s(Z)

∣∣∣∣
ϵ=0

− d

dϵ
Rem0(ηϵ, η)

∣∣∣∣
ϵ=0

.

Note that due to the product structure of Rem0(ηϵ, η) and the fact that ηϵ
∣∣
ϵ=0

= η, it follows that

d

dϵ
Rem0(ηϵ, η)

∣∣∣∣
ϵ=0

= 0.

This completes the proof.
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A.5 Additional Simulation Results

95% Coverage MAE × 100 ME × 100
Ba Scenario N TMLE IPW Sub TMLE IPW Sub TMLE

{ 1 } 1 250 97.0% 9.03 4.58 5.10 -6.46 -3.50 -0.50
500 96.0% 4.80 2.72 4.31 -1.70 -1.58 0.63

1000 93.0% 3.25 2.12 2.84 -1.62 -1.27 -0.17
2 250 76.0% 15.91 4.49 4.72 -15.91 -3.48 -3.71

500 84.0% 15.25 2.56 2.62 -15.25 -1.54 -1.57
1000 83.0% 15.56 2.10 2.08 -15.56 -1.28 -1.29

3 250 97.0% 8.63 15.92 5.34 -6.56 -15.92 -0.56
500 96.0% 4.98 15.28 4.47 -2.18 -15.28 0.68

1000 93.0% 3.16 15.61 2.84 -1.59 -15.61 -0.26
4 250 0.0% 15.94 15.92 16.03 -15.94 -15.92 -16.03

500 0.0% 15.23 15.28 15.35 -15.23 -15.28 -15.35
1000 0.0% 15.56 15.61 15.66 -15.56 -15.61 -15.66

{ 2 } 1 250 98.0% 17.92 4.55 6.72 -15.61 -2.60 0.98
500 97.0% 7.47 2.56 5.17 -5.35 -0.73 1.89

1000 96.0% 4.15 1.88 3.52 -2.16 -0.05 1.28
2 250 74.0% 16.91 4.88 4.91 -16.91 -2.47 -2.60

500 85.0% 16.25 2.58 2.48 -16.25 -0.78 -0.82
1000 87.0% 16.58 1.86 1.81 -16.58 -0.08 -0.08

3 250 96.0% 18.96 16.94 7.11 -17.38 -16.94 0.98
500 99.0% 7.46 16.30 4.93 -4.71 -16.30 2.12

1000 95.0% 3.74 16.63 3.42 -1.96 -16.63 1.28
4 250 0.0% 16.98 16.94 16.95 -16.98 -16.94 -16.95

500 0.0% 16.23 16.30 16.33 -16.23 -16.30 -16.33
1000 0.0% 16.58 16.63 16.64 -16.58 -16.63 -16.64

{ 3 } 1 250 99.0% 21.12 3.39 8.84 -19.23 -1.05 1.86
500 96.0% 9.04 2.25 5.66 -6.56 0.49 3.32

1000 89.0% 4.15 1.70 4.52 -1.14 0.71 2.82
2 250 83.0% 8.06 3.85 3.87 -8.06 -0.89 -1.02

500 92.0% 7.41 2.21 2.16 -7.41 0.49 0.50
1000 90.0% 7.74 1.65 1.73 -7.74 0.54 0.54

3 250 96.0% 21.89 8.12 8.25 -20.32 -8.12 2.99
500 94.0% 8.26 7.48 5.81 -5.64 -7.48 3.59

1000 93.0% 4.42 7.81 4.30 -1.29 -7.81 2.96
4 250 25.0% 8.03 8.12 8.12 -8.02 -8.12 -8.12

500 7.0% 7.43 7.48 7.49 -7.43 -7.48 -7.49
1000 0.0% 7.75 7.81 7.81 -7.75 -7.81 -7.81

{ 4 } 1 250 100.0% 15.15 3.16 6.56 -12.62 0.49 1.48
500 97.0% 6.51 2.68 5.35 -2.76 1.13 2.72

1000 91.0% 4.17 1.77 4.25 1.23 0.83 2.68
2 250 87.0% 2.52 3.29 3.35 1.18 0.74 0.50
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500 80.0% 2.41 2.63 2.60 1.80 1.33 1.18
1000 83.0% 1.71 1.59 1.70 1.46 0.72 0.73

3 250 96.0% 14.89 2.52 6.80 -13.47 1.07 3.17
500 92.0% 6.67 2.35 5.65 -2.49 1.71 3.86

1000 89.0% 4.25 1.65 4.34 1.12 1.38 3.71
4 250 94.0% 2.54 2.52 2.59 1.20 1.07 1.18

500 88.0% 2.44 2.35 2.36 1.84 1.71 1.75
1000 86.0% 1.70 1.65 1.66 1.46 1.38 1.40

{ 5 } 1 250 95.0% 6.73 4.36 6.05 -3.87 3.22 2.12
500 91.0% 4.80 3.98 4.16 -0.88 3.15 2.12

1000 91.0% 3.18 2.86 2.98 1.15 2.37 1.89
2 250 75.0% 11.69 4.66 4.58 11.69 3.56 3.20

500 53.0% 12.25 4.19 4.12 12.25 3.38 3.36
1000 58.0% 11.90 2.70 2.83 11.90 2.27 2.22

3 250 94.0% 7.12 11.50 6.28 -3.85 11.50 2.96
500 92.0% 4.30 12.14 3.97 -0.62 12.14 2.36

1000 91.0% 3.02 11.81 3.23 0.94 11.81 2.51
4 250 2.0% 11.67 11.50 11.71 11.67 11.50 11.71

500 0.0% 12.27 12.14 12.22 12.27 12.14 12.22
1000 0.0% 11.91 11.81 11.86 11.91 11.81 11.86

Table 4: Results of Simulation Study 1 showing empirical coverage of the 95% confidence inter-
vals, Mean Absolute Error (MAE), and Mean Error (ME) for the inverse probability weighted es-
timator (IPW), substitution estimator (Sub), and Targeted minimum loss-based estimator (TMLE).
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