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ALGEBRAIC INTEGERS WITH CONTINUED FRACTION

EXPANSIONS CONTAINING PALINDROMES AND SQUARE

ROOTS WITH PRESCRIBED PERIODS

STEFANO BARBERO, UMBERTO CERRUTI, NADIR MURRU, AND GIULIA SALVATORI

Abstract. We prove that there exist infinitely many algebraic integers with
continued fraction expansion of the kind [a0, a1, . . . , an, s] where (a1, . . . , an) is
a palindrome and s ∈ N≥1, characterizing all the algebraic integers with such
expansions. We also provide an explicit method for finding s and determining
the corresponding algebraic integer. Moreover, we deal with the particular case
(a1, . . . , an) = (m, . . . ,m) describing the corresponding algebraic integers in terms
of Fibonacci polynomials. We exploit these results for obtaining expansions of
square roots of integers with prescribed periods and we also write explicitly the
fundamental solutions of the corresponding Pell’s equations.

1. Introduction

Given D ∈ N not a square, it is well known that the continued fraction expansion
of

√
D is

(1)
√
D = [a0, a1, . . . , an, 2a0]

where (a1, . . . , an) is a palindrome. Given any positive integer n, there exist infinitely

many integers D such that
√
D has a periodic expansion with period of length n+1.

Friesen [2] proved a more general result, providing a sufficient and necessary

condition on the palindromic sequence (a1, . . . , an) in order that there exists
√
D

having the expansion (1) and in this case there are infinitely many of such square
roots of integers. Mc Laughlin [7] provided an analogue characterization and used
these results for addressing also the problem of solving the corresponding Pell’s
equation with multivariate polynomials.

Many other authors studied similar problems involving the length of the period of√
D, the shape of the palindromic sequence and the construction of infinitely many√
D with a prescribed period. For instance, Pletser [12] focused on the special case

where (a1, . . . , an) = (m, . . . ,m), for any positive integers m, n and studied D ∈ N

such that
√
D = [a0,m, . . . ,m, 2a0], obtaining D in terms of Fibonacci polynomials.

Then he exploited this result for writing explicit expressions of the fundamental
solutions of the associated Pell’s equation. Das et al. [1] studied the expansion of√
pq, with p, q primes, giving some information on the length of the period and on

the parity of the central term in the palindromic sequence. Gawron and Kobos [3]
proved that there exist infinitely many k ∈ N such that there exist infinitely many
n for which the length of the period of n

√
D is k. Rada and Starosta [13] found

upper and lower bounds for the length of the period of the Mobius transform of
√
D,

while Kala and Miska [5] found an upper bound when D factorizes in some family of
polynomials with integral coefficients. Moreover, they proved that for each positive
integer a there exist only finitely many prime numbers p such that a appears an odd
number of times in the period of continued fraction of

√
p or

√
2p, with p prime.

Further results can be found in [4, 6, 9, 15].
In this paper, we firstly address similar problems for algebraic integers α such

that 0 < α < 1. In particular we prove the following results.
1
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Theorem A.

(a) Given a finite palindromic sequence (a1, . . . , an) there exist infinitely many
algebraic integers α of degree two such that 0 < α < 1 and α = [0, a1, . . . , an, s]

(b) Given α = [0,m, . . . ,m, s] there exist infinitely many values of s such that α
is an algebraic integer

Part (a) deals with the analogue problem solved by Friesen [2] and Mc Laughlin
[7]. The proof is given in Section 2 (Theorem 1) where we also provide explicitly
the minimal polynomial of such algebraic integers and we give explicit conditions
for obtaining all the possible values of s. Furthermore, Corollary 1 points out that
Theorem 1 characterizes also the algebraic integers α 6∈ (0, 1) with such expansions.
Part (b) considers the analogue situation studied in [12] for square roots. The proof
is given in Section 3 (Theorem 8) where the minimal polynomial of such algebraic
integers is described in terms of Fibonacci polynomials. Finally, we find infinitely
many families of square roots of integers with prescribed periods (Theorems 9 and
10, Remark 11) as well as providing explicit forms for the fundamental solutions of
the corresponding Pell’s equations (Section 4).

2. Algebraic integers with palindromic sequences in their continued
fraction expansion

In the following theorem, we prove that for any palindromic sequence there exist
infinitely many algebraic integers containing such sequence in the period of the
continued fraction expansion. Moreover, in the proof, we explicitly provide the
minimal polynomial of these algebraic integers so that they are effectively given.

Theorem 1. Given a finite palindromic sequence (a1, a2, . . . , an), with n ≥ 1, there
exist infinitely many algebraic integers α of degree 2 such that 0 < α < 1 and

α = [0, a1, a2, . . . , an, w + zk]

for all k ≥ k1, where k1 is a constant depending on the sequence (a1, a2, . . . , an) and
w, z are constants depending on the sequence (a1, a2, . . . , an) and k.

Proof. Let us consider the finite sequences

(A0, A1, . . . , An), (B0, B1, . . . , Bn)

defined by

A0 = 1, A1 = a1, B0 = 0, B1 = 1

and

Ah = ahAh−1 +Ah−2, Bh = ahBh−1 +Bh−2

for all 2 ≤ h ≤ n. Remembering that
(
a1 1
1 0

)

· · ·
(
ah 1
1 0

)

=

(
Ah Ah−1

Bh Bh−1

)

since the sequence (a1, a2, . . . , an) is a palindrome, we have An−1 = Bn.
Considering now α = [0, a1, . . . , an, s], we have α = [0, a1, . . . , an, s + α] from

which

α =
(s+ α)Bn +Bn−1

(s+ α)An +An−1

and then

Anα
2 + sAnα− sBn −Bn−1 = 0.

Thus, α is an algebraic integer if and only if −sBn − Bn−1 ≡ 0 (mod An). Since
gcd(An, An−1) = 1 and AnBn−1 − BnAn−1 = (−1)n, the previous congruence is
equivalent to

(−1)ns ≡ An−1Bn−1 (mod An).
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Thus, considering

s = (−1)nAn−1Bn−1 + kAn,

with k ∈ Z, we also have

−sBn−Bn−1 = (−1)n−1An−1Bn−1Bn−kAnBn−Bn−1 = An((−1)n−1B2
n−1−kBn),

from which the minimal polynomial of α is

x2 + sx+ t,

where

t = (−1)n−1B2
n−1 − kBn.

Clearly, in order to have α = [0, a1, . . . , an, s] we must require s > 0 and this is
verified if k ≥ k1, where

k1 =

⌈
(−1)n−1An−1Bn−1

An

⌉

�

The following corollary completes Theorem 1 for the case α /∈ (0, 1).

Corollary 1. Given a finite palindromic sequence (a1, a2, . . . , an) and a0 ∈ Z, with
n ≥ 1, there exist infinitely many algebraic integers α of degree 2 such that

α = [a0, a1, a2, . . . , an, w + zk],

where k, w and z, which do not depend on a0, are the constants given by Theorem
1 associated with {α} = [0, a1, a2, . . . , an, w + zk], the fractional part of α.

Proof. The ring of integers of a quadratic number field is an ring containing Z.
This implies that α is an algebraic integer if and only if its fractional part {α} =
α−a0 = [0, a1, a2, . . . , an, s] is an algebraic integer. The proof follows from Theorem
1. We point out the fact that, if x2 + sx + t is the minimal polynomial of {α},
with s and t given in the proof of Theorem 1, then (x − a0)

2 + s(x − a0) + t =
x2 + (s− 2a0)x+ a20 − sa0 + t is the minimal polynomial of α. �

Clearly, given a0 ∈ Z, a palindromic sequence (a1, . . . , an) and an integer s, there
exists always a quadratic irrational α such that α = [a0, a1, . . . , an, s], but in general
α is not an algebraic integer. Theorem 1 and Corollary 1 provide a method for
finding all and only the positive integers s such that α = [a0, a1, . . . , an, s] is an
algebraic integer.

Remark 2. Thanks to Theorem 1 and Corollary 1 it is possible to give sufficient
and necessary conditions on the palindromic sequence (a1, . . . , an) in order that there

exists
√
D having the expansion (1), which are equivalent to those found by Friesen

in [2]. There exists D such that
√
D = [a0, a1, a2, . . . , an, 2a0] if and only if

(2) 2a0 ≡ (−1)nAn−1Bn−1 (mod An).

If An ≡ 1 (mod 2) then it is always possible to find values of a0 satisfying (2). If
An ≡ 0 (mod 2), then An−1 ≡ 1 (mod 2) and so the condition of the existence of
a0s is equivalent to Bn−1 ≡ 0 (mod 2). Therefore, if Bn−1 ≡ 0 (mod 2) it is always
possible to find such a0s. If Bn−1 ≡ 1 (mod 2) there exist such a0s if and only if
An ≡ 1 (mod 2). In this case, An ≡ 1+B2

n (mod 2), and so An ≡ 1 (mod 2) if and
only if Bn ≡ 0 (mod 2). In conclusion, given a palindromic sequence (a1, . . . , an),

there exists D such that
√
D = [a0, a1, a2, . . . , an, 2a0] if and only if one of the

following two conditions holds

(1) Bn−1 ≡ 0 (mod 2);
(2) Bn−1 ≡ 1 (mod 2) and Bn ≡ 0 (mod 2).
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Remark 3. Depending on the chosen value of k and consequently s, the period
of the continued fraction expansion of α = [a0, a1, . . . , an, s] can be smaller than
n+1, as shown in Example 7. Choosing s = (−1)nAn−1Bn−1+kAn, using the same
notation of Theorem 1, with k such that s > max{a1, . . . , an}, we have that the
continued fraction expansion of α has period n+ 1.

Example 4. Consider the palindromic sequence (2, 5, 5, 2). The sequences (An)
4
n=0

and (Bn)
4
n=0 defined in the proof of Theorem 1 are

(1, 2, 11, 57, 125), (0, 1, 5, 26, 57),

respectively. Thus, considering

k ≥
⌈
(−1)3A3B3

A4

⌉

= −11

we get infinitely many algebraic integers with expansion [0, 2, 5, 5, 2, s]. For instance,
considering k = −11, we obtain

s = (−1)4A3B3 − 11A4 = 107, t = (−1)3B2
3 + 11B4 = −49,

i.e., α = [0, 2, 5, 5, 2, 107] where α = −107+
√
11645

2 is the algebraic integer with mini-

mal polynomial x2+107x−49 and 0 < α < 1. Choosing s = 74, then (−1)4s 6≡ A3B3

(mod A4) and α = [0, 2, 5, 5, 2, 74] = −925+
√
876845

25 is not an algebraic integer.

Example 5. Let a and b two positive distinct integers, we define the sequences Sn,
for n ≥ 0 as follows:







S0 = (a)

S1 = (a, b)

Sn = Sn−1‖Sn−2, for n ≥ 2

where ‖ denotes the string concatenation. These sequences are used to define the
Fibonacci word (see [16]). It is easy to prove that, for n ≥ 3 the following are
palindromic sequences

{

Ŝn = (a, b)‖Sn, if n ≡ 0 (mod 2)

Ŝn = (b, a)‖Sn, if n ≡ 1 (mod 2).

We have that |Ŝn| = Fn+2 + 2, where Fn is the n-th element of the Fibonacci

sequence. For n = 3, Ŝ3 = (b, a, a, b, a, a, b) is a palindromic sequence of F5 + 2 = 7
elements. The sequences (An)

7
n=0 and (Bn)

7
n=0 defined in the proof of Theorem 1

are

(1, b, ab+ 1, a2b+ a+ b, a2b2 + 2ab+ b2 + 1, a3b2 + 3a2b+ ab2 + 2a+ b,

a4b2 + 3a3b+ 2a2b2 + 3ab+ 2a2 + b2 + 1,

a4b3 + 4a3b2 + 2a2b3 + 4ab2 + 5a2b+ b3 + 2a+ 2b),

and

(0, 1, a, a2 + 1, a2b+ a+ b, a3b+ 2a2 + ab+ 1, a4b+ 2a3 + 2a2b+ 2a+ b,

a4b2 + 3a3b+ 2a2b2 + 3ab+ 2a2 + b2 + 1),

respectively. Thus, considering

k ≥ k1 =

⌈
(−1)6A6B6

A7

⌉

we get infinitely many algebraic integers with expansion [0, b, a, a, b, a, a, b, s], and
minimal polynomial x2 + sx+ t, where

s = (−1)7A6B6 + kA7 and t = (−1)6B2
6 − kB7.
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For example, setting a = 1 and b = 2, we obtain k ≥ 5. In the case k = 5 we obtain
s = 28, t = −724 and α = [0, 2, 1, 1, 2, 1, 1, 2, 28] = −14 +

√
207, with minimal

polynomial equal to x2 + 28x− 724.

Example 6. Consider the palindromic sequences (1, 1, 2m, 1, 1), for m ∈ N not
zero. The sequences (An)

5
n=0 and (Bn)

5
n=0 defined in the proof of Theorem 1 are

(1, 1, 2, 4m + 1, 4m + 3, 8m+ 4), (0, 1, 1, 2m + 1, 2m + 2, 4m+ 3)

and

k1 =

⌈
(m+ 1)(4m + 3)

4m+ 2

⌉

= m+ 2.

Indeed,

(m+ 1)(4m+ 3) = (m+ 1)(4m + 2) +m+ 1

and since 0 < m+ 1 < 4m+ 2 we have
⌊
(m+ 1)(4m + 3)

4m+ 2

⌋

= m+ 1.

Thus, taking k = k1, we have s = 6m+ 2 and we obtain

−3m− 1 +
√

9m2 + 9m+ 3 = [0, 1, 1, 2m, 1, 1, 6m + 2]

whose minimal polynomial is x2 + (6m + 2)x − 3m − 2. For instance, we have the
following expansion of algebraic integers:

−4 +
√
21 = [0, 1, 1, 2, 1, 1, 8], −7 +

√
57 = [0, 1, 1, 4, 1, 1, 14],

−13 +
√
183 = [0, 1, 1, 6, 1, 1, 20], −16 +

√
273 = [0, 1, 1, 8, 1, 1, 26],

and so on.

Example 7. Consider the palindromic sequences (1, 1, 2m + 1, 1, 1), for m ∈ N.
The sequences (An)

5
n=0 and (Bn)

5
n=0 defined in the proof of Theorem 1 are

(1, 1, 2, 4m + 3, 4m + 5, 8m+ 8), (0, 1, 1, 2m + 2, 2m + 3, 4m+ 5)

and

k1 =

⌈
(2m+ 3)(4m + 5)

8m+ 8

⌉

= m+ 2.

Indeed,

(2m+ 3)(4m+ 5) = (m+ 1)(8m + 8) + 6m+ 7

and since 0 < 6m+ 7 < 8m+ 8 we have
⌊
(2m+ 3)(4m + 5)

8m+ 8

⌋

= m+ 1.

Taking k = k1, we have s = 2m+ 1 and we obtain

α = [0, 1, 1, 2m + 1, 1, 1, 2m + 1] = [0, 1, 1, 2m + 1].

3. Algebraic integers with periodic continued fractions having all
terms but last equal and expansions of associated square roots

We define the sequence of Fibonacci polynomials (fh(m))h≥0 (as defined, e.g., in
[12]) by

{

f0(m) = 0, f1(m) = 1

fh(m) = mfh−1(m) + fh−2(m), ∀h ≥ 2
,

where m is a fixed integer. They can be defined for negative indices by

f−h(m) = (−1)h−1fh(m), ∀h ≥ 1.
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Theorem 8. Consider the periodic continued fraction α = [0,m, . . . ,m, s], whose
period has length n + 1, then there exist infinitely many values of s (depending on
m,n) such that α is an algebraic integer and its minimal polynomial is x2 + sx+ t,
where

s = (−1)nfn(m)fn−1(m) + kfn+1(m), t = (−1)n−1f2
n−1(m)− kfn(m)

for all k ≥ (−1)n−1fn−2(m) + 1.

Proof. Considering the finite continued fraction [m, . . . ,m] and numerators and de-
nominators of its convergents (as defined also in the proof of Theorem 1) we have
Ah = fh+1(m) and Bh = fh(m), for all 0 ≤ h ≤ n. Thus, by Theorem 1, it follows
that α is an algebraic integer whose minimal polynomial is x2 + sx+ t, where

s = (−1)nfn(m)fn−1(m) + kfn+1(m), t = (−1)n−1f2
n−1(m)− kfn(m)

for k ∈ Z. In this case, for obtaining s > 0, we exploit that

fj−1(m)fi(m) + fj(m)fi+1(m) = fi+j(m) ∀i, j ∈ Z,

from which we obtain

(−1)nfn−1(m)fn(m) + (−1)n−1fn−2(m)fn+1(m) = f2(m) = m.

Considering

k0 =
(−1)n−1fn(m)fn−1(m)

fn+1(m)
= (−1)n−1fn−2(m)− m

fn+1(m)
,

if we take k = ⌈k0⌉, we get s = m. Thus, we must have k ≥ (−1)n−1fn−2(m) + 1 in
order to have the period length equal to n+ 1. �

In the following, we focus on the continued fraction expansion (and the corre-

sponding Pell’s equations) of β(n,m, k) :=
√

s(n,m, k)2 − 4t(n,m, k), where s and
t are given as in Theorem 8 (where, when necessary, we highlight the dependence
on n,m, k).

Lemma 1 ([14]). Given the matrices

R =

(
1 1
0 1

)

, L =

(
1 0
1 1

)

, J =

(
0 1
1 0

)

we have (
a 1
1 0

)

= RaJ = JLa

and
∞∏

i=0

(
ai 1
1 0

)

=

∞∏

i=0

Ra2iLa2i+1 .

Lemma 2. Given the matrices

M =

(
2 0
0 1

)

, N =

(
1 0
0 2

)

, P =

(
2 0
1 1

)

, Q =

(
1 1
0 2

)

and any positive integer e, we have

• MRe = R2eM , NLe = L2eN ;

• PRe = RLR
e−2

2 Q, QLe = LRL
e−2

2 P , NRe = R
e

2N , MLe = L
e

2M , if e is
even;

• PRe = RLR
e−1

2 N , QLe = LRL
e−1

2 M , NRe = R
e−1

2 Q, MLe = L
e−1

2 P , if e
is odd.

Proof. The proof is straightforward. �

Lemma 3. Consider α(n,m, k) = 1
2(
√
s2 − 4t − s), with k ≥ (−1)n−1fn−2(m) + 1,

we have 1 < 2α(n, 1, k) < 2 and 0 < 2α(n,m, k) < 1 for all m ≥ 2.
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Proof. We have that α(n,m, k) < 1
2 if and only if 2s + 4t + 1 > 0. We can observe

that

2s+ 4t+ 1 = 2k(fn+1 − 2fn) + 2(−1)nfnfn−1 + 4(−1)n−1f2
n−1 + 1 > −4fn−1

fn+1
+ 1,

where we omit the dependence on m for the seek of simplicity. Moreover, using the
Cassini identity, we obtain

fn+1(m)− 4fn−1(m) = (m2 − 3)fn−1(m) +mfn−2(m)

which is greater than 0 if and only if m ≥ 2.
In the case m = 1, we can prove that

2s(n, 1, k) + 4t(n, 1, k) + 1 < 0.

Indeed, since −k ≤ (−1)nfn−2 − 1, where here fn’s are the Fibonacci numbers, we
have

2s(n, 1, k) + 4t(n, 1, k) + 1 = −2kfn−2 − (−1)n2fn−3fn−1 + 1

< 2(−1)nf2
n−2 − 2fn−2 − (−1)n2fn−3fn−1 + 1 = −2fn−2 − 1 < 0.

�

By Lemma 3, for m ≥ 2, we know that 0 < 2α(n,m, k) < 1 and ⌊β(n,m, k)⌋ = s,
since β(n,m, k) = s + 2α(n,m, k). Thus, it is sufficient to study the continued
fraction expansion of 2α(n,m, k) in order to know the structure of the period for
the expansion of β(n,m, k). Similarly, when m = 1, it will be sufficient to focus on
2α(n, 1, k) − 1, since we have ⌊β(n, 1, k)⌋ = s+ 1.

Theorem 9. Given m,n > 0 even integers, let v(m) = (m2 , 2m, m2 , 2m, . . . , m2 , 2m)

be a finite sequence of length n and let v(m)R be the sequence v(m) reversed. Con-
sider also u(m) = (1, 1, m−2

2 , 1, 1, m−2
2 , . . . , 1, 1, m−2

2 ) of length 3n. Then,

(1) β(n,m, k) = [s,v(m), s
2 ,v(m)R, 2s], when k is even;

(2) β(n,m, k) = [s,v(m), s−1
2 ,u(m), 1, 1, s−1

2 ,v(m)R, 2s], when k is odd and
m > 2;

(3) β(n, 2, k) = [s,v(2), s−1
2 , 1,2, 1, s−1

2 ,v(2)R, 2s], when k is odd, where 2 is a
finite sequence of all 2 of length n.

Proof. When k is even, since also m,n are even, we have s even. By Lemma 1, the
continued fraction expansion of α(n,m, k) can be represented also by the infinite
product of the matrices A, where

A = LmRm · · ·LmRm
︸ ︷︷ ︸

n

LsRmLm · · ·RmLm
︸ ︷︷ ︸

n

Rs

By Lemma 2, we know that

MRe = R2eM, MLe = Le/2M,

when the exponent e is even. Thus,

MA = Lm/2R2m · · ·Lm/2R2m
︸ ︷︷ ︸

n

Ls/2R2mLm/2 · · ·R2mLm/2
︸ ︷︷ ︸

n

R2sM = B,

i.e., the continued fraction expansion of 2α(n,m, k) can be represented by the infinite
product of matrices B and consequently

β(n,m, k) = [s,v(m),
s

2
,v(m)R, 2s].

When k is odd (consequently also s is odd) and m ≥ 4, for evaluating MA, we also
need the following identities from Lemma 2:

PRe = RLR
e−2

2 Q, QLe = LRL
e−2

2 P
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for e even and
MLe = L

e−1

2 P

for e odd. Now,

MA =Lm/2R2m · · ·Lm/2R2m
︸ ︷︷ ︸

n

L(s−1)/2 RLR(m−2)/2LRL(m−2)/2 · · ·RLR(m−2)/2LRL(m−2)/2
︸ ︷︷ ︸

3n

·

·RLR(s−1)/2N,

then exploiting also
NLe = L2eN, NRe = Re/2N

for e even, we can evaluate NA and finally obtaining

β(n,m, k) = [s,v(m),
s− 1

2
,u(m), 1, 1,

s− 1

2
,v(m)R, 2s]

where the period has length 5n+ 5. For the final case k odd and m = 2, exploiting

PR2L2 = RL2RP, NL2R2 = L4RN,

it is possible to conclude the proof. �

Theorem 10. Given m,n > 0 integers, with m even and n odd, then

β(n,m, k) = [s,w(m), 2s],

with k ≥ fn−2(m) + 1, where w(m) = (m2 , 2m, m2 , 2m, . . . , m2 , 2m, m2 ) has length n.

Proof. Since m is even and n odd, s is even (independently from the parity of k).
By Lemma 1, the continued fraction expansion of α(n,m, k) can be represented also
by the product

∏
A, where

A = LmRm · · ·LmRmLm
︸ ︷︷ ︸

n

Rs,

since n is odd. Now,

MA = Lm/2R2m · · ·Lm/2R2mLm/2
︸ ︷︷ ︸

n

R2s,

i.e.,

2α(n,m, k) = [0,
m

2
, 2m, . . . ,

m

2
, 2m,

m

2
, 2s]

where the period has length n+1 and the continued fraction expansion of β(n,m, k)
follows. �

Remark 11. The remaining cases for the expansion of β(n,m, k) can be proved
similarly to Theorems 9 and 10 and the resulting expansions are slightly different.
Observe that it is convenient to consider the different cases m = 1 and m ≥ 3 odd
combined with the possible values of n modulo 6. This is due to the fact that the
parity of s and k changes depending on these values for m and n.

Example 12. In [10], the authors introduce two families of quadratic irrationals.
The first are the creepers which are sets of quadratic irrationals {αn}n∈N such that
the length of the period of the continued fraction expansion of αn is an + b, where
a, b ∈ N. Using what proved far above, it is possible to construct some particular
families of creepers. The following is a family of creepers for a = 4, b = 2 and m a
positive even integer

{αn = β(2n,m, 2)}n∈N.
The second family introduced in [10] are the sleepers: sets of quadratic irrationals

{γn}n∈N having a continued fraction expansion whose length of the period is con-
stant. The authors also constructed some particular families of sleepers. Further
ones can be found in [8, 11].
Thanks to the previous results, we are able to provide new families of sleepers. For
instance, fixed the values of n and k, we have that {β(n, 2x, k) : x ∈ N≥1} are fami-
lies of sleepers, with k satisfying the conditions of Theorem 8.
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Let us consider n = 2 and k = 2, in this case β(2, 2x, 2) = [s, x, 4x, s2 , 4x, x, 2s], for
all x ∈ N≥1 and we obtain the following sleepers:

β(2, 2, 2) = 2
√
41 = [12, 1, 4, 6, 4, 1, 24]

β(2, 4, 2) = 2
√
370 = [38, 2, 8, 19, 8, 2, 76]

β(2, 6, 2) = 2
√
1613 = [80, 3, 12, 40, 12, 3, 160]

β(2, 8, 2) = 2
√
4778 = [138, 4, 16, 69, 16, 4, 276]

β(2, 10, 2) = 2
√
11257 = [212, 5, 20, 106, 20, 5, 424], . . .

β(2, 100, 2) = 2
√
101022802 = [20102, 50, 200, 10051, 200, 50, 40204], . . .

We can observe that also β(2, 2x, 2y) = [s, x, 4x, s
2 , 4x, x, 2s], i.e., we can construct

families of sleepers depending on two variables. Varying n, we obtain different
lengths of the periods. In particular β(n, 2x, 2y), for all x, y ∈ N≥1, has period of
length 4n+ 2.

4. Fundamental solutions of some Pell’s equations

In this section, we explicitly exhibit the fundamental (minimal) solution of the
Pell’s equations X2 − DY 2 = ±1 in terms of Fibonacci polynomials, when D =
s2(n,m, k)− 4t(n,m, k).

Lemma 4. Let D ∈ N be not square and D 6≡ 0 (mod 4), if (u, v) is the minimal
solution of the Diophantine equation X2 −DY 2 = −4, then

(u

2
,
v

2

)

or

(
1

2
(u3 + 3u),

1

2
(u2 + 1)v

)

is the minimal solution of the negative Pell’s equation X2 −DY 2 = −1.

Proof. Let N (·) be the norm of the quadratic field Q(
√
D), by hypothesis N (u +

v
√
D) = −4 and consequently

N
(
1

2
(u+ v

√
D)

)

= −1, N
(
1

8
(u+ v

√
D)3

)

= −1.

Exploiting that v2D = u2 + 4, we have

u3 + 3uv2D

8
=

u3 + 3u

2

and
3u2v + v3D

8
=

(u2 + 1)v

2
.

Thus, if u, v are both even, then
(
1
2u,

1
2v

)
is the minimal solution of the negative

Pell’s equation. If u is odd, then
(
1
2(u

3 + 3u), 12 (u
2 + 1)v

)
is the minimal solution

of the negative Pell’s equation. Moreover, we can observe that we can not have
the situation where u is even and v is odd, because this situation implies D ≡ 0
(mod 4). �

Theorem 13. Consider D = s2(n,m, k) − 4t(n,m, k) with n even and k odd and
define Tn := fn+1s + 2fn, for all n ≥ 0. If (x, y) is the minimal solution of the
negative Pell’s equation X2 −DY 2 = −1, then

a) If m is even, then

x =
(T 2

n + 3)Tn

2
, y =

(T 2
n + 1)fn+1

2
.

b) If m is odd and n ≡ 0, 4 (mod 6), then

x =
(T 2

n + 3)Tn

2
, y =

(T 2
n + 1)fn+1

2
.
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c) If m is odd and n ≡ 2 (mod 6), then

x =
Tn

2
, y =

fn+1

2
.

Proof. Let us observe that supposing n even the negative Pell’s equation has solu-
tions, since the length of the period of the expansion of

√
D is odd. Moreover, k odd

is equivalent to s odd and consequently D 6≡ 0 (mod 4). Remembering that, for n
even, we have

s(n,m, k) = fn+1(m)k + fn(m)fn−1(m), t(n,m, k) = −f2
n−1(m)− kfn(m),

we obtain

D =
f2
n+1s

2 + 4fnf
2
n+1k + 4f2

n−1f
2
n+1

f2
n+1

=

=
f2
n+1s

2 + 4fnfn+1(fn+1k + fnfn−1) + 4fn−1fn+1(fn−1fn+1 − f2
n)

f2
n+1

=

=
f2
n+1s

2 + 4fnfn+1s+ 4fn−1fn+1

f2
n+1

=
(fn+1s+ 2fn)

2 + 4

f2
n+1

=
T 2
n + 4

f2
n+1

,

from which (Tn, fn+1) is the minimal solution of X2 −DY 2 = −4.
When m is even, we have fh ≡ fh−2 (mod 2), thus fn+1 and Tn are odd and by

Lemma 4, the minimal solution of the negative Pell’s equation is

x =
1

2
(T 2

n + 3)Tn, y =
1

2
(T 2

n + 1)fn+1.

When m is odd, we have fh ≡ fh−1 + fh−2 (mod 2) and
{

fh even, when h ≡ 0 (mod 3)

fh odd, when h ≡ 1, 2 (mod 3)

Thus, when n ≡ 0 (mod 6), we have fn even, fn+1 odd and Tn odd. Similarly, when
n ≡ 4 (mod 6), we have fn odd, fn+1 odd and Tn odd. In both cases, by Lemma 4,
we conclude that the minimal solution of the negative Pell’s equation is again

x =
1

2
(T 2

n + 3)Tn, y =
1

2
(T 2

n + 1)fn+1.

Finally, when m is odd and n ≡ 2 (mod 6), we have fn odd, fn+1 even and Tn even,
thus by Lemma 4 we obtain

x =
Tn

2
, y =

fn+1

2
.

�

For obtaining the solutions of the Pell’s equation X2−DY 2 = 1, we still need the
following lemma.

Lemma 5. Let D ∈ N be not square, if (u, v) is the minimal solution of the Dio-
phantine equation X2 −DY 2 = 4, then

(u

2
,
v

2

)

,

(
2u2 − 4

4
,
uv

2

)

, or

(
1

2
(u3 + 3u),

1

2
(u2 + 1)v

)

is the minimal solution of the negative Pell’s equation X2 −DY 2 = 1.

Proof. By hypothesis N (u+ v
√
D) = 4 and consequently

N
(
1

2
(u+ v

√
D)

)

= N
(
1

4
(u+ v

√
D)2

)

= N
(
1

8
(u+ v

√
D)3

)

= 1.
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Thus, depending on the parity of u and v the minimal solution of X2 −DY 2 = 1 is

(u

2
,
v

2

)

,

(
2u2 − 4

4
,
uv

2

)

, or

(
1

2
(u3 + 3u),

1

2
(u2 + 1)v

)

where we also exploited that Dv2 = u2 − 4. �

Theorem 14. The minimal solution of X2 − DY 2 = 1, with D = s2(n,m, k) −
4t(n,m, k) and k ≥ fn−2(m) + 1, is

a) (2x2 + 1, 2xy), where (x, y) as in Theorem 13, for n even and k odd

b)

(
Tn

2
,
fn+1

2

)

, for m even and n odd or m odd and n ≡ 2 (mod 3) odd

c)

(
T 3
n − 3Tn

2
,
(T 2

n − 1)fn+1

2

)

, for m odd and n ≡ 0, 1 (mod 3) odd.

Proof. When n is even, we deduce the minimal solution of the Pell’s equation by
Theorem 13.

Let us consider now n odd. In this case, we obtain

D =
T 2
n − 4

f2
n+1

,

from which (Tn, fn+1) minimal solution of X2 −DY 2 = 4. Thus, for m even or m
odd and n ≡ 2 (mod 3), we can observe that Tn and fn+1 are both even and by
Lemma 5 we conclude.

When m odd and n ≡ 0, 1 (mod 3), we can observe that Tn and fn+1 are both
odd, but T 3

n−3Tn and (T 2
n−1)fn+1 are even, so that we obtain the minimal solution

of the Pell’s equation applying Lemma 5. �
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