
Can Neural Networks learn Finite Elements?

Julia Novo∗ Eduardo Terrés †

May 20, 2024

Abstract

The aim of this note is to construct a neural network for which the linear finite element
approximation of a simple one dimensional boundary value problem is a minimum of the cost
function to find out if the neural network is able to reproduce the finite element approximation.
The deepest goal is to shed some light on the problems one encounters when trying to use
neural networks to approximate partial differential equations

Keywords: Neural Networks, Finite elements, Partial differential equations

1 Introduction

For a brief introduction to neural networks and their applications to the numerical approxi-
mation of partial differential equations we refer the reader to reviews [5], [7]. For the origins
of the finite element method and its influence in modern computing we refer to review [2].

The literature concerning the use of neural networks to approach partial differential equa-
tions has increased significantly in recent years. Most of the results are heuristic and the
ability of neural networks to perform better than classical methods is not always clear. With
this short note we would like to shed some light on the difficulties one encounters when trying
to define a neural network to approach a given problem better than classical finite element
methods. To this end, we choose a very simple model problem, that nevertheless allows us to
understand some general characteristics of neural networks.

When choosing a neural network to approach a problem one has to decide its structure and
activation function. The structure of the network, a priori unknown, has a great impact on the
obtained results. The use of different activation functions also leads to different approaches.
Another important question is the theoretical ability of a neural network to approximate a
function arbitrarily well, see [8].

In this note, following [4], we choose the structure of the neural network in such a way
that for certain values of the weights and biases the output of the network is the linear finite
element approximation to the model problem. The activation function is the so called ReLU.
With this structure, certain theoretical capabilities are guaranteed, given that piecewise linear
approximations over a certain partition can be exactly represented by the neural network. In
particular, the response of the network could be the finite element approximation itself, with
well-known approximation properties. However, we observed a first problem. Even in this
case in which the structure of the network is known, the result of the optimization problem
that finds the values of the weights and biases can lead to an approximation far away from
the linear finite element approximation that a priori gives a minimum of the optimization
problem. The idea behind this fact is very simple: the problem we are trying to solve is
highly over-determined, thus it is difficult to find the optimal value. On a second try, we add
some initial information to the neural network concerning the values of weights and biases
to lead somehow the answer toward the output we know is a minimum of the problem. As
we show in the numerical experiments, we consider several levels in the procedure of adding

∗Departamento de Matemáticas, Universidad Autónoma de Madrid, Spain. Research is supported by grant
PID2022-136550NB-I00 funded by MCIN/AEI/ 10.13039/501100011033 and by ERDF A way of making Europe,
by the European Union. (julia.novo@uam.es)

†(eduardo.terrescaballero@outlook.com)

1

ar
X

iv
:2

40
5.

06
48

8v
2 

 [
m

at
h.

N
A

] 
 1

7 
M

ay
 2

02
4



information. However, if we know how to compute the linear finite element approximation in
a deterministic way it probably does not make sense to use neural networks to get this ap-
proximation. So, the question is, can we find a balance between the deterministic information
we supply and the free values we keep (output values of the optimization problem) so that the
resulting approximation has the same or, if possible, better approximation capabilities than
the standard finite element approximation? This question can perhaps be re-formulated in
the following way: can physics-informed, or similarly defined, neural networks, [6], give better
approximations than standard methods? Our conclusion is that treating neural networks as
black boxes, without providing sufficient domain-specific insights does not offer guarantees
for success. At least with the procedure we followed, in our simple model problem we do
not obtain, in general, better approximations than the finite element method. Moreover, we
only obtain neural network approximations close to those of the finite element method in our
last try, in which we have fixed so many weights and biases, that the response of the neural
network, regardless of the output values of the optimization problem, is always a continuous
piecewise linear approximation with respect to the partition in which the linear finite element
approximation is defined.

This is not the first reference to pose the above question. In [3], the authors make a deep
comparison between PINNs and finite elements. Their study suggests that for certain classes
of PDEs for which classical methods are applicable, PINNs do not produce better results. As
the authors of [3] state, PINNs could however be efficient in high-dimensional problems for
which classical techniques are prohibitively expensive and when combining PDEs and data.

The outline of the paper is as follows. In Section 2 we introduce the model problem (based
on a one dimensional convection-diffusion equation) and describe the neural networks that
mimic finite elements. In Section 3 we present a series of numerical experiments in which
we distinguish two cases, corresponding to diffusion dominated and convection dominated
examples. In the convection dominated case, instead of the standard linear finite element
approximation we try to reproduce the stabilized streamline-upwind Petrov-Galerkin (SUPG)
linear finite element approximation [1] for which a different cost function from that of the
standard method is used.

2 Model problem. Neural networks that mimic fi-
nite elements

As a model problem we consider the following steady convection-diffusion problem in one
dimension. Find u ∈ C2(0, 1) ∩ C[0, 1] such that

−ϵ u′′ + u′ = 1, x ∈ (0, 1), (1)

u(0) = u(1) = 0,

where ϵ is a positive parameter. The weak solution of (1) is: find u ∈ H1
0 (0, 1) such that

ϵ (u′, v′) + (u′, v) = (1, v), ∀v ∈ H1
0 (0, 1), (2)

where (·, ·) represents the L2(0, 1) inner product and we have used standard notation for the
Sobolev space H1

0 (0, 1). For any integer N > 0 we consider a partition

τN = {0 = x0 < x1 < . . . < xN = 1} , (3)

of [0, 1] and denote by hi = xi+1 − xi. We denote by Vh the linear finite element space of
continuous functions that are piecewise linear with respect to the partition τN and satisfy the
homogeneous Dirichlet boundary conditions of the problem. Then, the linear finite element
approximation to the model problem (1) satisfies the weak form (2) over Vh: find uh ∈ Vh

such that

ϵ (u′
h, v

′
h) + (u′

h, vh) = (1, vh), ∀vh ∈ Vh. (4)

With the standard nodal Lagrange basis functions, ϕi ∈ Vh, defined by ϕi(xj) = δi,j we
can write uh(x) =

∑N−1
i=1 uh(xi)ϕi(x). Then, uh is unique and its vector of coefficients u =

[uh(x1), . . . , uh(xN−1)]
T is the unique solution of the linear system Au = f , with A = ϵK+C

2



and f = [f1, . . . , fN−1]
T with fi = (hi−1 + hi)/2. The matrices K and C are tridiagonal and

its elements are:

ki,i−1 = − 1

hi−1
, ki,i =

1

hi−1
+

1

hi
, ki,i+1 = − 1

hi
(5)

ci,i−1 = −1

2
, ci,i = 0, ci,i+1 =

1

2
.

Let us denote by σ the ReLU activation function defined as σ(x) = x for x ≥ 0 and σ(x) = 0
for x < 0. Then, following [4], we can write

ϕi(x) = σ

(
x− xi−1

hi−1

)
− σ

(
(x− xi)

(
1

hi−1
+

1

hi

))
+ σ

(
x− xi+1

hi

)
.

Following the notation in [5], any of the basis functions can be written as a neural network
of the form

ϕi(x) = W
[3]
i σ(W

[2]
i x+ b

[2]
i ), i = 1, . . . , N − 1, (6)

where

W
[2]
i =


1

hi−1
1

hi−1
+ 1

hi
1
hi

 , b
[2]
i =


−xi−1

hi−1

−xi

(
1

hi−1
+ 1

hi

)
−xi+1

hi

 , (7)

W
[3]
i =

(
1, −1, 1

)
. (8)

We now define a neural network that mimics the finite element approximation.

Definition 1 Let F : R → R, be a neural network with three layers where layer 1 is the Input
layer and layer 3 is the Output layer, and layers 1, 2 and 3 have 1, 3(N − 1) and 1 neurons,
respectively. More precisely, for W [2] ∈ R3(N−1)×1, b[2] ∈ R3(N−1) and W [3] ∈ R1×3(N−1),

F (x) = W [3]σ(W [2]x+ b[2]).

Proposition 1 Let us define W [2], b[2] and W [3] by:

W [2] =



W
[2]
1

...

W
[2]
i

...

W
[2]
N−1


, b[2] =



b
[2]
1

...

b
[2]
i

...

b
[2]
N−1


, W [3] =



uh(x1)W
[3]
1

...

uh(xi)W
[3]
i

...

uh(xN−1)W
[3]
N−1



T

where W
[2]
i , b

[2]
i and W

[3]
i are defined in (7) and (8). Then F ≡ uh.

Proof The proof is immediate using the definition of uh(x) =
∑N−1

i=1 uh(xi)ϕi(x), the ex-
pression of the basis functions as neural networks (6) and Definition 1. □

Proposition 1 says that the neural network F mimics the finite element approximation in the
sense that there exist values of the weights and biases for which we recover the finite element
approximation. We observe that there are different values of weights and biases that satisfy
the property F ≡ uh since σ(αx) = ασ(x) for any α > 0.

Once the structure of the neural network is chosen (depending only on the value N), we
still need to define a cost function. Since we want the network to mimic the finite element
approximation, we define the cost function as follows

Cost =

N−1∑
i=1

(
−ϵ

[
− 1

hi−1
F (xi−1) +

(
1

hi−1
+

1

hi

)
F (xi)−

1

hi
F (xi+1)

]

+
1

2
[F (xi+1)− F (xi−1)]−

1

2
(hi−1 + hi)

)2

+ F (0)2 + F (1)2. (9)

3



It is easy to check that choosing F (xi) = uh(xi), i = 0, . . . , N then Cost = 0. Then, ac-
cording to Proposition 1, there exist weights and biases for which there is a minimum of the
optimization problem.

It is well-known that in the convection dominated regime (in our case ϵ small in (1)) the
standard finite element approximation produces spurious oscillations unless the mesh size is
sufficiently small. Stabilized approximations are ussually applied to mitigate this problem.
The so called SUPG method is one of the most popular finite element stabilizations, [1]. Then,
in the convection dominated regime instead of (9) we consider

Cost =

N−1∑
i=1

(
−ϵ

[
− 1

hi−1
F (xi−1) +

(
1

hi−1
+

1

hi

)
F (xi)−

1

hi
F (xi+1)

]

+ [F (xi)− F (xi−1)]−
1

2
(hi−1 + hi)

)2

+ F (0)2 + F (1)2. (10)

It is easy to check that F (xi) = us
h(xi), i = 0, . . . , N , with us

h the linear finite element SUPG
approximation to problem (1) with stabilization parameter δi = hi−1/2 in (xi−1, xi), satisfies
Cost = 0.

3 Numerical experiments

We consider the neural network of Definition 1. In the numerical experiments we use the
gradient descent method with back propagation. In the sequel for simplicity we consider a
uniform partition (3) for different values of N . We denote by η, the learning rate, and Niter

the maximum number of iterations in the gradient descent method. We have tried to add a
regularization term to the Cost function of the form β∥w∥2, where ∥w∥2 represents the L2

norm of the vector that contains all the weights and biases. However, most of the experiments
are done with β = 0, since a small value of β does not affect the results and by increasing
the value of β we get worse results. We have carried out two types of experiments. In the
diffusion dominated regime we consider the cost function (9). In the convection dominated
regime we consider the cost function (10).

3.1 Diffusion dominated regime

Figure 1: N = 40, Niter = 104, η = 10−4, β = 10−4.

We fix the value of ϵ = 0.1 along this section. In a first experiment all the parameters,
weights and biases, in the neural network are free and we initialize them with random values.
We observe that, while the finite element approximation has N − 1 free parameters, our
neural network has 9(N − 1). In Figure 1 we have plotted, on the left, the neural network
approximation in blue and the exact solution in red and, on the right, the values of the
cost function in blue and the L2 error between the exact solution and the neural network
approximation in black. Let us observe that we use different scales on the left and right
axis for the picture on the right. The left axis is the scale for the cost function while the

4



right axis is the scale for the error. After less than 1000 iterations the value of the cost
function stabilizes at around 0.5. With this procedure the neural network is not able to
reach a minimum of the cost function. The main issue the network faces here is solving a
highly over-determined problem. We have tried different values of N , Niter, η and β without
improving (even worsening) the results shown in Figure 1.

In a second experiment, we try to add some initial information to the neural network
with the aim of improving the results obtained in the previous failed attempt. Along this
line, we initialize W [2] and b[2] with the values (7) and, as before, we use random values for
W [3]. After initialization, the neural network is free to adjust the values of W [2] and b[2] in
the pursuit of a configuration that minimizes the cost function and, potentially, outperforms
the finite element solution. Let us observe that we can write the neural network as F (x) =∑3(N−1)

i=1 w3
i σ(w

2
i x+b2i ) which means that F (x) is a piecewise linear function over a mesh with

nodes −b2i /w
2
i . If all the nodes are positive then F (0) = 0 while F (1) =

∑3(N−1)
i=1 w3

i σ(w
2
i +b2i ).

In the experiments we have observed that F (0) = 0 while F (1) is small (not strongly imposed).
In Figure 2 we have plotted on the left the approximation we have obtained and on the right

Figure 2: N = 20, Niter = 3× 105, η = 10−6, β = 0.

the values of the cost function and the error in the neural network, as the number of iterations
increases. The experiment is done for N = 20 and we can observe (see the vertical lines on the
left picture corresponding to values of the nodes xj = j/20, j = 1, . . . , 19) that the method
gives an approximation with small error at the nodes of the partition τ20 = {xj}19j=1. As
expected, the approximation is piecewise linear but over a mesh different from τ20, which
means that the neural network has modified (at least some) of the initial given values for
W [2] and b[2]. The fact that the neural network is accurate over τ20 but has a big error in the
extra nodes makes sense since the cost function is defined over the nodes of τ20 and does not
have any added information about other extra nodes. Let us observe that the cost function
(9) is blind for the nodes not belonging to τ20 which means that the spurious oscillations of
the neural network approximation at the extra nodes cannot be avoided with this algorithm.
At this point it would be interesting to be able to add some information to the neural network
(cost function) in order to produce a better approximation than uh. Taking into account that
the response F (x) is a piecewise linear approximation over a mesh with 3(N − 1) nodes while
uh is based on N−1 this could be, in principle, possible. However, our aim in this experiment
is to check whether a neural network for which the linear finite element approximation is a
minimum of the cost function is able by itself to reproduce (learn) the linear finite element
approximation.

In Figure 3 we have represented on the left the approximation corresponding to N = 40
with a smaller value of the learning rate η = 10−7. As before, we mark with vertical lines the
nodes of the uniform partition τ40, at which the neural network gives a small error. On the
right of Figure 3 we have represented the approximation for N = 100. Spurious oscillations
appear in both approximations with smaller local maximum and minimum values in the last
case: N = 100.

In our third experiment we try to lead the network to the linear finite element approxi-
mation in a stronger way. To this end, we fix the values of W [2] and b[2] to those in (7) and
keep only 3(N − 1) free parameters, those in W [3]. We observe that in this case our neural

5



Figure 3: N = 40, Niter = 5 × 105, η = 10−7 and β = 0 on the left and
N = 100, Niter = 3× 105, η = 10−8 and β = 0 on the right.

network can be written as

F (x) =

N−1∑
i=1

w3,1
i σ

(
x− xi−1

hi−1

)
+w3,2

i σ

(
(x− xi)

(
1

hi−1
+

1

hi

))
+w3,3

i σ

(
x− xi+1

hi

)
. (11)

This means that the response of the network is a continuous piecewise linear function with
respect to the original partition τN that satisfies in a strong way the boundary condition F (0).
In our numerical experiments we have plotted the resulting functions F (x) at different stages
of the iterative algorithm (different values of the number of iterations) and we have observed
that the main effort of the neural network seems to be to enforce the condition F (1) = 0.

Figure 4: N = 20, Niter = 2× 105, η = 10−6, β = 0.

In Figure 4 we can see the neural network approximation on the left and the cost function
and error of the approximation on the right for N = 20. In this case the final approximation
generated by the neural network is a good approximation and essentially indistinguishable
from the linear finite element approximation uh. We have obtained similar results for N = 40
and N = 100. In Figure 5 we plot the absolute value of the difference between the linear finite
element and the neural network approximations for N = 20, 40 and 100. We observe that in
all cases the error between both approximations increases from a point around x = 0.6 and
has a maximum at x = 1. The errors at x = 1 are around 10−11, 10−8 and 10−3 for N = 20,
40 and 100, respectively.

As we can also observe in Table 1, in which we have represented the errors in the finite
element and neural network approximations, both approximations give the same errors for
N = 20 and N = 40, both in L2 and H1 norms, while for N = 100 the finite element
approximation produces smaller errors. In our experiments we observed that for N = 100,
both the cost function and the error are decreasing functions (they do not stabilize). We
stopped the algorithm after 5 × 105 iterations. We guess that by increasing the number of
iterations, the network could had finally reached the error of the finite element approximation

6



Figure 5: Absolute value of errors between finite element and neural network
approximations for N = 20, 40 and 100.

L2 FEM H1 FEM L2 NN H1 NN
N = 20 3.87e− 3 3.20e− 1 3.87e− 3 3.20e− 1
N = 40 9.72e− 4 1.61e− 1 9.72e− 4 1.61e− 1
N = 100 1.56e− 4 6.45e− 2 3.30e− 4 2.60e− 1

Table 1: Errors in the finite element and neural network approximations.

as in the previous cases: N = 20 and N = 40. Our aim is, however, not to reproduce the
linear finite element approximation that can be obtained solving the linear system described
in (4)-(5) but find out how much information needs an a priori blind neural network with a
cost function for which the linear finite element is a minimum to learn (or reproduce) this
approximation. Since, in general, one does not even know the structure of the neural network,
with this simple experiment we just want to stand out the problems that Physical Informed
Neural Networks (or similarly based networks) may have in obtaining good approximations
to partial differential equations.

L2 SUPG H1 SUPG L2 NN H1 NN
N = 20 1.25e− 1 21.91 1.25e− 1 21.91
N = 40 8.52e− 2 21.45 5.79e− 2 42.67
N = 100 4.87e− 2 20.04 2.18e− 2 134.37

Table 2: Errors in the SUPG finite element and neural network approximations.

3.2 Convection dominated regime

We have reproduced the previous experiments in the convection dominated regime. In this
section we take ϵ = 0.001 and, as before, we consider a uniform partition (3) for different
values of N . In this case, instead of (9) we use the cost function (10). In view of the previous
results we did not expect to get much different results (probably worse) in this more difficult
problem.

As before, we do not obtain a reasonable approximation for the case in which all the
weights and biases are free. In the second case, in which we initialize W [2] and b[2] as in (7),
but then we allow the neural network to change those values, we obtained similar results with
some peculiarities. The case N = 20 is indeed very similar. As we can observe in Figure 6,
the neural network approximation is a piecewise linear approximation over a refined partition
of τ20. Again, the neural network approximation is only a good approximation to the true
solution in the nodes of τ20.

In Figure 7 we have represented on the left the neural network approximation for N = 40
and on the right the one corresponding to N = 100. Here, we find some differences with
respect to the diffusion dominated regime. We observe that in this case the errors at the
nodes of the underlying uniform partition are larger than in the diffusion dominated case and
also that the error at x = 1 is very large. This means that the neural network fails at imposing

7



Figure 6: N = 20, Niter = 106, η = 10−6, β = 0.

Figure 7: N = 40, Niter = 106, η = 10−7 and β = 0 on the left and
N = 100, Niter = 106, η = 10−8 and β = 0 on the right.

the condition F (1) = 0. As it is known, there is a boundary layer at x = 1 in this extremely
simple convection dominated problem.

To conclude, we fix W [2] and b[2] as in (7) and leave W [3] free to check if the network
is able to reproduce the SUPG linear finite element approximation. In Table 2 we have
collected the errors of the SUPG and neural network approximations. As expected, the
errors are larger than those in Table 1 for the diffusion dominated case, in particular all the
errors in H1 are considerably large. While for N = 20 the network is able to reproduce the
SUPG approximation, similarly to how it reproduced the FE approximation in the diffusion
dominated case (compare with Table 1), the situation changes for N = 40 and N = 100.
For these values of N , the L2 errors are smaller in the neural network approximation, while
the H1 errors are considerably larger. We believe that the explanation for this is the weak
imposition of the right homogeneous Dirichlet boundary condition at x = 1. While in the
SUPG method this condition is strongly imposed, in the neural network is not. In fact, the
neural network approximations fail to impose the condition F (1) = 0 within the specified
number of iterations in both cases. To study this in more detail, we have represented the
results of the experiments in Figures 8 and 9. It is surprising to see that, although the
approximations are quite accurate (except for the values at x = 1 being far from 0 in both
cases), the values of the cost function are large. For N = 40 (Figure 8) the cost has not
yet stabilized, hence we believe that with enough iterations the neural network would have
eventually approached the SUPG approximation, leading to a further increase in the L2 error.
For N = 100 (Figure 9), the value of the cost function stabilizes at around 1, meaning that
the neural network is not able to reproduce the SUPG approximation. However, it yields a
better approximation in terms of the L2 error than SUPG, even though the value of the cost
function is large. Since the limit solution (ϵ = 0) of problem (1) is the function G(x) = x,
which satisfies only the left boundary condition, the reason for having a boundary layer at
x = 1 is the strong imposition of the right boundary condition. As we can see in the left

8



Figure 8: N = 40, Niter = 2× 106, η = 10−7, β = 0.

Figure 9: N = 100, Niter = 4× 105, η = 10−9, β = 0.

picture of Figure 9, the neural network approximation for N = 100 is close to the function
G(x) = x. On the other hand, G(x) = x is also close in L2 to the solution of problem (1) for
the selected value of ϵ. Observe that function G(x) = x can be expressed as a neural network
of the form (11) by taking all parameters equal to zero except for w3,1

1 = h. Actually, after
the training process, the neural network presents a value of w3,1

1 = 0.0098 ≈ h = 0.01, and
most of the weights in W [3] are close to zero (< 10−10). Thus, in this particular example,
the weak imposition of the right boundary condition together with the particular form of the
output of the neural network seems to make the neural network approach the limit solution
of (1).

4 Conclusions

In this note we have constructed a neural network for which the linear finite element approxi-
mation of a simple one dimensional boundary value problem is a minimum of the cost function
to find out if the neural network is able to reproduce the finite element approximation. In
the first attempt, the optimization problem entails too many free parameters, rendering it
highly over-determined and making it difficult for the network to find the optimal values. In
this case, the approximation is far away from the linear finite element approximation and
the theoretical solution. In subsequent steps, we shift the focus into finding out how much
information an a priori blind neural network with a cost function for which the linear finite
element is a minimum needs to correctly learn this approximation. With this simple example
we just want to stand out the problems that PINNs (or similarly based networks) may have in
obtaining good approximations to partial differential equations since, in general, one does not
even know the structure of the neural network. Our conclusion is that in our simple model
problem we do not obtain, in general, better approximations than the finite element method.
In fact, we only obtain neural network approximations close to those of the finite element

9



method in our last try, where we have fixed so many weights and biases that the response of
the neural network, regardless of the output values of the optimization problem, is always a
continuous piecewise linear approximation with respect to the partition in which the linear
finite element approximation is defined.

Our conclusions are in agreement with the deeper study of [3] in which the authors compare
PINNs and finite elements through various linear and nonlinear partial differential equations.
Their study suggests that for certain classes of PDEs for which classical methods are applica-
ble, PINNs are not able to outperform these. However, as stated in [3], we believe that PINNs
could be efficient in high-dimensional problems for which classical techniques are prohibitively
expensive and when combining both PDEs and data.

Data availability

The MATLAB code for the training algorithms can be found in the following GitHub reposi-
tory: https://github.com/EduardoTerres/Can-Neural-Networks-learn-Finite-Elements.git

References

[1] A. N. Brooks & T. J. R. Hughes, Streamline upwind/Petrov-Galerkin formulations for
convection dominated flows with particular emphasis on the incompressible Navier-Stokes
equations, Comput. Methods Appl. Mech. Engrg. 32, 1982, 199-259.

[2] M. J. Gander and G. Wanner, From Euler, Ritz, and Galerkin to Modern Computing,
SIAM Review 54, 2012, 627-666.

[3] T. G.Grossmann, U.J. Komorowska, J. Latz & C.-B. Schonlieb, Can Physics-Informed
Neural Networks beat the finite element method? 2023. 10.48550/arXiv.2302.04107.

[4] J. He, L. Li, J. Xu & Ch. Zheng, ReLU Deep Neural Networks and Linear Finite elements,
J. Comp. Math. 38, 2020, 502–527.

[5] C. F. Higham & D. J. Higham, Deep learning: an Introduction for Applied Mathemati-
cians, SIAM Review, 61, 2019, 860–891.

[6] S. Mishra & R. Molinaro, Estimates of the generalization error of physics-informed neural
networks for approximating PDEs, IMA J. Numer. Anal. 43 2023, 1–43.

[7] L. Lu, X. Meng, Z. Mao & G. E. Karniadakis, DeepXDE: A Deep Learning Library for
Solving Differential Equations, SIAM Review, 63, 2021, 208–228.

[8] A. Pinkus, Approximation theory of the MLP model in neural networks, Acta Numerica
8, 1999, 143–195.

10

https://github.com/EduardoTerres/Can-Neural-Networks-learn-Finite-Elements.git

	Introduction
	Model problem. Neural networks that mimic finite elements
	Numerical experiments
	Diffusion dominated regime
	Convection dominated regime

	Conclusions

