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Abstract

In the bandits with knapsacks framework (BwK) the learner has m resource-
consumption (i.e., packing) constraints. We focus on the generalization of BwK in
which the learner has a set of general long-term constraints. The goal of the learner
is to maximize their cumulative reward, while at the same time achieving small cu-
mulative constraints violations. In this scenario, there exist simple instances where
conventional methods for BwK fail to yield sublinear violations of constraints. We
show that it is possible to circumvent this issue by requiring the primal and dual
algorithm to be weakly adaptive. Indeed, even in absence on any information on
the Slater’s parameter ρ characterizing the problem, the interplay between weakly
adaptive primal and dual regret minimizers yields a “self-bounding” property of
dual variables. In particular, their norm remains suitably upper bounded across
the entire time horizon even without explicit projection steps. By exploiting this
property, we provide best-of-both-worlds guarantees for stochastic and adversarial
inputs. In the first case, we show that the algorithm guarantees sublinear regret. In
the latter case, we establish a tight competitive ratio of ρ/(1+ ρ). In both settings,
constraints violations are guaranteed to be sublinear in time. Finally, this results
allow us to obtain new result for the problem of contextual bandits with linear
constraints, providing the first no-α-regret guarantees for adversarial contexts.

1 Introduction

We consider a problem in which a decision maker tries to maximize their cumulative reward over a
time horizon T , subject to a set of m long-term constraints. At each round t, the learner chooses
xt ∈ X and, subsequently, observes a reward ft(xt) ∈ [0, 1] and m constraint functions gt(xt) ∈
[−1, 1]m. Then, the problem becomes that of finding a sequence of decisions which guarantees a
reward close to that of the best fixed decision in hindsight, while satisfying long-term constraints∑T

t=1 gt(xt) ≤ 0 up to small sublinear violations. This framework subsumes the bandits with
knapsacks (BwK) problem, where there are only resource-consumption constraints [10, 5, 31].

Inputs (ft, gt) may be either stochastic or adversarial. The goal is designing algorithms providing
guarantees for both input models, without prior knowledge of the specific environment they will
encounter. Achieving this goal involves addressing two crucial challenges which prevent a direct
application of primal-dual approaches based on the LagrangeBwK framework in [31].

1.1 Technical Challenges

In order to obtain meaningful regret guarantees, primal-dual frameworks based on LagrangeBwK
need to control the magnitude of dual variables. This is necessary as dual variables appear in the loss
function of the primal algorithm, and, therefore, influence the no-regret guarantees provided by the
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primal algorithm. In the context of knapsack constraints, this is usually achieved by exploiting the
existence of a strictly feasible solution with Slater’s parameter ρ, consisting of a void action which
yields zero reward and resource consumption. For instance, the frameworks of [14, 18] guarantee
boundedness of dual multipliers through an explicit projection step on the interval [0, 1/ρ]. However,
in settings with general constraints beyond resource consumption, it is often unreasonable to assume
that the learner knows the Slater’s parameter ρ a priori. The problem of operating without knowledge
of ρ has been already addressed in the stochastic setting [4, 5, 46, 45, 20]. For instance, a simple
approach for the case of stochastic inputs involves adding an initial estimation phase to calculate
an estimate of ρ, and subsequently treating this estimate as the true parameter [20]. However, these
techniques cannot be applied in adversarial environments as estimates of ρ based on the initial rounds
could be inaccurate about future inputs.

Primal-dual templates based on LagrangeBwK usually operate under the assumption that the pri-
mal and dual algorithms have the no-regret property. In the case of standard BwK, the no-regret
requirement is sufficient to obtain optimal guarantees (see, e.g., [31, 18]). However, in our model,
there exist simple instances in which the primal and dual algorithms satisfy the no-regret require-
ment, but the overall framework fails to guarantee small constraints violations (see Section 5.1).
Moreover, known techniques to prevent this problem, such as introducing a recovery phase to pre-
vent excessive violations, crucially require a priori knowledge of the Slater’s parameter ρ [20].

1.2 Contributions

Our approach is based on a generalization of the technique presented in [19] for online bidding
under one budget and one return-on-investments constraint. The crux of the approach is requiring
that both the primal and dual algorithms are weakly adaptive, that is, they guarantee a regret upper
bound of o(T ) for each sub-interval of the time horizon [30]. We generalize this approach to the
case of m general constraints, thereby providing the first primal-dual framework for this problem
that can operate without any knowledge of Slater’s parameter in both stochastic and adversarial
environments.

First, we prove a “self-bounding” lemma for the case of m arbitrary constraints. It shows that, if the
primal and dual algorithms are weakly adaptive, then boundedness of dual multipliers emerges as a
byproduct of the interaction between the primal and dual algorithm. Thus, it is possible to guarantee
a suitable upper bound on the dual multipliers even without any information on Slater’s parameter.

We use this result to prove best-of-both-worlds no-regret guarantees for primal-dual frameworks
derived from LagrangeBwK which employ weakly adaptive primal and dual algorithms. Our
guarantees will be modular with respect to the regret guarantees of the primal and dual algorithms.
In presence of a suitable primal regret minimizer, we show that our framework yields the following
no-regret guarantees while attaining sublinear constraints violations: in the stochastic setting, it
guarantees sublinear regret with respect to the best fixed randomized strategy that is feasible in
expectation. Remarkably, this result is obtained without having to allocate the initial T 1/2 rounds for
estimating the unknown parameter as in [20]. In the adversarial setting, our framework guarantees
a competitive ratio of ρ/(1 + ρ) against the best unconstrained strategy in hindsight. We provide a
lower bound showing that this cannot be improved if constraint violations have to be o(T ). This is
the first regret guarantee for our problem in adversarial environments.

Finally, we show that our model can be used to describe the contextual bandits with linear con-
straints (CBwLC) problem, which was recently studied by [41, 28] in the context of stochastic and
non-stationary environments. Our framework allows to extend these works in two directions: we
establish the first no-α-regret guarantees for CBwLC when contexts are generated by an adversary,
and we provide the first Õ(

√
T ) guarantees for the stochastic setting when the learner does not know

an estimate of the Slater’s parameter of the problem.

2 Related Work

Bandits with Knapsacks. The (stochastic) BwK problem was introduced an optimally solved by
[9, 10]. Other algorithms with optimal regret guarantees have been proposed by [4, 5], whose
approach is based on the paradigm of optimism in the face of uncertainty, and in [32, 31]. In the
latter works, the authors propose the LagrangeBwK framework, which has a natural interpretation:
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arms can be thought of as primal variables, and resources as dual variables. The framework works by
setting up a repeated two-player zero-sum game between a primal and a dual player, and by showing
convergence to a Nash equilibrium of the expected Lagrangian game.

Adversarial BwK. The adversarial BwK problem was first introduced in [32, 31], where they stud-
ied the case in which the learner has m knapsack constraints, and inputs are selected by an obliv-
ious adversary. Their algorithm is based on a modified analysis of LagrangeBwK, and guar-
antees a O(m logT ) competitive ratio. Subsequently, [33] provided a new analysis obtaining a
O(logm logT ) competitive ratio, which is optimal. In the case in which budgets are Ω(T ), [18]
showed that it is possible to achieve a constant competitive ratio of 1/ρ where ρ is the per-iteration
budget.

Beyond packing constraints. [18] studies a setting with general constraints analogous to ours, and
show how to adapt the LagrangeBwK framework to obtain best-of-both-worlds guarantees when
Slater’s parameter is known a priori. Similar guarantees are also provided, in the stochastic setting,
by [41], which then extend the results to the CBwLC model. Finally, the work of [19] introduces
the use of weakly adaptive regret minimizers within the LagrangeBwK framework, and provides
guarantees in the specific case of one budget constraint and one return-on-investments constraint.

Contextual bandits (CB). We briefly survey the most relevant works for our paper. Further ref-
erences can be found in [40, Chapter 8]. As in [42], we focus on CB with regression oracles
[25, 26, 17, 39]. The contextual version of BwK was first studied by [11] in the case of classifi-
cation oracles. A regret-optimal and oracle-efficient algorithm for this problem was proposed by [6]
by exploiting the oracle-efficient algorithm for CB by [2]. The first regression-based approach for
constrained BwK was proposed by [3] by exploiting the optimistic approach for linear CB [35, 22, 1].
[28] propose a regression-based approach for a constrained BwK setup under stochastic inputs. Fi-
nally, a notable special case of constrained CB is online bidding under constraints [13, 21, 27, 23, 44].

Other related works. [24] show how to interpolate between the fully stochastic and the fully ad-
versarial setting, depending on the magnitude of fluctuations in expected rewards and consumptions
across rounds. [36] study a non-stationary setting and provide no-regret guarantees against the best
dynamic policy through a UCB-based algorithm. Some recent works explore the case in which re-
source consumptions in BwK can be non-monotonic [34, 15, 16]. Finally, a related line of works is
the one on online allocation problems with fixed per-iteration budget, where the input pair of reward
and costs is observed before the learner makes a decision [14, 12].

3 Preliminaries

There are T rounds and m constraints. We denote with X ⊂ R
K the decision space of the agent.

At each round t ∈ JT K, the agent selects an action xt ∈ X and subsequently observes a reward
ft(xt) and costs function gt(xt) ∈ [−1, 1]m, with ft : X → [0, 1] and gt,i : X → [−1, 1] for
each i ∈ JmK.1 The reward and cost functions can either be chosen by an oblivious adversary or
drawn from a distribution. The goal of the decision maker is to maximize the cumulative reward
Rew(T ) :=

∑
t∈JT K ft(xt), while minimizing the cumulative violation Vi(T ) defined as

Vi(T ) :=
∑

t∈JT K gt,i(xt)

for each constraint i ∈ JmK. We denote by V (T ) := maxi∈JmK Vi(T ) the maximum cumulative
violation across the m constraints.

3.1 Baselines

We will provide best-of-both-worlds no-regret guarantees for our algorithm, meaning that it achieves
optimal theoretical guarantees both in the stochastic and adversarial setting. In this section, we
introduce the baselines used to define the regret in these two scenarios.

1In this work, for any a, b ∈ N, with a < b we denote with JaK the set {1, . . . , a} while Ja, bK the set
{a+ 1, . . . , b}.
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Adversarial Setting In the adversarial setting we employ the strongest baseline possible, i.e., the
best unconstrained strategy in hindsight:

OptAdv := supx∈X

∑
t∈JT K ft(x).

This baseline is more powerful than the best fixed strategy which is feasible on average [31, 18],
which is the most common baseline in the literature. Our algorithm will yield an optimal competitive
ratio against this stronger baseline. In this setting, we define ρAdv as the feasibility parameter of the
problem instance, i.e., the largest reduction of cumulative violations that the agent is guaranteed to
achieve by playing a “safe” strategy ξ◦ ∈ ∆(X ), where ∆(X ) is the set of all probability measures
on X . Formally,

ρAdv := − max
t∈JT K,i∈JmK

Ex∼ξ◦ [gt,i(x)] and ξ◦ := arg inf
ξ∈∆(X )

max
t∈JT K,i∈JmK

Ex∼ξ[gt,i(x)].

Stochastic Setting When the reward and the costs are stochastic we denote by f̄ and ḡ the mean of
ft and gt, respectively. In particular, we have that the rewards are drawn so that EEnv[ft(x)] = f̄(x)
(and similarly for the costs), where EEnv denotes expectation over the environment measure. We
define the baseline for the stochastic setting as the best fixed randomized strategy that satisfies
the constraints in expectation, which is the standard choice in Stochastic Bandits with Knapsacks
settings [9, 31]. Formally,

OptStoc := sup
ξ∈∆(X ):Ex∼ξ[ḡ(x)]≤0

Ex∼ξ[f̄(x)].

Similarly to the adversarial case, we define the feasibility parameter ρStoc as the “most negative”
cost achievable by randomized strategies in expectation:

ρStoc := − inf
ξ∈∆(X )

max
i∈JmK

Ex∼ξ[ḡi(x)].

As it is customary in relevant literature (see, e.g., [31, 18, 20]), we make the following natural
assumption about the existence of a strictly feasible solution. Note that we do not make any assump-
tion on the variance of the samples (ft, gt) as we assume that they have bounded support, i.e., with
probability holds that ft(x) ∈ [0, 1] and gt,i(x) ∈ [−1, 1] for all x ∈ X and i ∈ JmK.

Assumption 3.1. In the adversarial setting, the sequence of inputs (ft, gt)Tt=1 is such that ρAdv > 0.
In the stochastic setting, the environment Env is such that ρStoc > 0.

Remark 3.2. We will describe a best-of-both-worlds type algorithm, that attains optimal guarantees
both under stochastic and adversarial inputs, without knowledge of the specific setting in which the
algorithm operates. It should be noted that ρAdv and ρStoc are not known by the algorithm. While
the algorithm could potentially efficiently estimate ρStoc in stochastic settings, as shown in [20],
acquiring knowledge of ρAdv in the adversarial setting would necessitate information about future
inputs. This requirement is generally unfeasible for most instances of interest.

4 On Best-Of-Both-Worlds Guarantees

We employ the expression best-of-both-worlds as defined in [14] for the case of online allocation
problems with resource-consumption constraints. In this context, we expect different types of guar-
antees depending on the input model being considered.

When inputs are stochastic, a best-of-both-worlds algorithm should guarantee that, given failure
probability δ > 0, with probability at least 1− δ

max(OptStoc − Rew(T ), V (T )) = Õ(
√
T ).

The dependency on T is optimal since, in the worst case, it is optimal even without constraints [7].

In adversarial settings, a best-of-both-worlds algorithm should guarantee that, with probability at
least 1− δ,

max (OptAdv − αRew(T ), V (T )) = Õ(
√
T ),

where α > 1 is the competitive ratio. In the BwK scenario with only resource-consumption con-
straints, the optimal competitive ratio attainable is α = 1/ρAdv. In that setting, ρAdv denotes the
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Figure 1: Reward and costs of each arm of the instance employed in Example 5.2.

per-iteration budget, which we can assume is equal for each resource without loss of generality. In
our set-up, considering arbitrary and potentially negative constraints, we will present an algorithm
for which the above holds for α := 1 + 1/ρAdv. The following result shows that this competitive ra-
tio is optimal. In particular, we show that it is not possible to obtain cumulative constraint violations
of order o(T ) and competitive ratio strictly less that 1 + 1/ρAdv (omitted proofs can be found in the
Appendix).

Theorem 4.1. [Lower bound adversarial setting] Consider the family of all adversarial instances
with X = {a1, a2}, each characterized by a parameter ρAdv and optimal reward OptAdv. Then, no
algorithm can achieve, on all instances, sublinear cumulative violations E[V (T )] = o(T ) and

OptAdv

E[Rew]
> 1 +

1

ρAdv

5 Lagrangian Framework

Algorithm 1 Primal-Dual Algorithm

1: Input: AlgP and AlgD.
2: for t = 1, 2, . . . , T do
3: Primal decision: xt ← AlgP
4: Dual decision: λt ← AlgD
5: Observe: ft(xt) and gt(xt)
6: Primal update: feed uPt (xt) to AlgP,

where
7: uPt (xt)← ft(xt)− 〈λt, gt(xt)〉
8: Dual update:
8: Feed uDt : λ 7→ −ft(xt)+ 〈λ, ct(xt)〉 to

AlgD
9: end for

Given the reward function f : X → [0, 1] and
the costs functions g : X → [−1, 1]m we define
the Lagrangian Lf,g : X × R

m
+ → R as:

Lf,g(x,λ) := f(x)− 〈λ, g(x)〉.
We will consider a modular primal-dual ap-
proach that employs a primal algorithm AlgP,
producing primal decisions xt, and a dual al-
gorithm AlgD that produces dual decisions λt

for all t. We assume that AlgP and AlgD
produce their decisions in order to maximize
their utilities uPt and uDt , respectively. We de-
fine uPt : x 7→ Lft,gt

(x,λt) and uDt : λ 7→
−Lft,gt

(xt,λ). The regret of the primal algo-
rithm AlgP on any subset I ⊆ JT K is defined as:

RP
I (X ) := sup

x∈X

∑

t∈I

[uPt (x) − uPt (xt)].

The regret of the dual algorithm AlgD is defined similarly for any bounded subset D ⊆ R+:

RD
I (D) := supλ∈D

∑
t∈I [u

D
t (λ)− uDt (λt)].

For ease of notation we write RP
T (X ) and RD

T (D) when I = JT K, instead of RP
JT K(X ) and RD

JT K(D).
The interaction of AlgP and AlgD with the environment is reported in Algorithm 1. Note that the
feedback of AlgP is forced to be bandit by the fact that we do not have counterfactual information
of ft and gt, however AlgD receives full feedback by design.

Remark 5.1 (The Challenges of the Adversarial Setting). In the stochastic setting, it is not required
adaptive regret minimization, see e.g., [41], as it is possible to analyze directly the expected zero-
sum game between AlgP and AlgD. However, in the adversarial setting, the algorithms AlgP and
AlgD face a different zero-sum game at each time t. Indeed, since ft and gt are adversarial, the
zero-sum game with payoffsLft,gt

(·, ·) is only seen at time t. This is in contrast to what happens in
the stochastic setting in which the zero-sum game Lf̄ ,ḡ(·, ·) at each time t is the same for all time t.
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5.1 No-Regret is Not Enough!

Typically, Lagrangian frameworks for constrained bandit problems are solved by instantiating AlgP
and AlgD with two regret minimizers, which are algorithms guaranteeing RP

T (X ), RD
T (D) = o(T ),

respectively [31, 18]. The dual regret minimizer is usually instantiated withD := [0,M ]m, for some
constant M > 0. Ensuring that D is bounded is crucial to control the magnitude of primal utilities
uPt (·), whose scale influences the magnitude of the primal regret. In the following example, we show
that the simple no-regret property alone of AlgP and AlgD is not sufficient in our setting.
Example 5.2. We have one constraint, i.e., m = 1 and the set X = {a1, a2, a3} is a discrete set of
3 actions. The rewards of a1 is always 0, i.e., ft(a1) = 0 for all t ∈ JT K, while its cost is always−ρ,
i.e., gt,1(a1) = −ρ for all t ∈ t. The rewards for a2 and a3 are defined as follows: for t ∈ JT/3K
we have ft(a2) = 0 while ft(a3) = 1. On the other hand, for t ∈ JT/3, 2T/3K we have ft(a2) = 1
while ft(a3) = 0. Finally ft(a2) = ft(a3) = 0 for all t ∈ J2T/3, T K. The costs for a2 and a3 are
defined as follows: for t ∈ J2T/3K we have gt,1(a2) = gt,1(a3) = 0, while gt,1(a2) = gt,1(a3) = 1
for all t ∈ J2T/3, TK. The instance is depicted in Figure 1.

Proposition 5.3. Consider the instance of Example 5.2. Even if AlgP and AlgD suffer regret less
than or equal then zero, the primal-dual framework fails to achieve sublinear constraint violations.

Intuitively, the reason for which a standard primal-dual framework fails in Example 5.2 is that the
primal regret minimizer can accumulate enough negative regret in the first two phases to “absorb”
large regret suffered in the third phase. This “laziness” of AlgP allows it to play actions in the last
phase for which it incurs linear violations of the constraint. For more details see the proof of Propo-
sition 5.3 in Appendix A. One could solve the problem employing the recovery technique proposed
in [20], which prescribes to minimize the violations at a prescribed time. However, selecting the
right time to start the recovery phase crucially requires knowledge of the Slater’s parameter, which
is not available in our setting. The only approach which does not require knowledge of Slater’s
parameter is the one proposed in [19] for the case of return-on-investment constraints, whose core
idea we describe in the next section.

5.2 No-Adaptive Regret

The reason why generic regret minimizes fail to give satisfactory result on the instance described in
Example 5.2 is that they fail to adapt to the changing environment, even if the regret of the primal
is zero on the entire horizon JT K, it fails to “adapt” in the final rounds J2T/3, T K. Indeed, in these
last rounds, if the primal algorithm’s objective is guaranteeing sublinear regret over JT K, it is not
required to updated its decision, since it accumulated large negative regret of −2T/3 regret in the
initial rounds J2T/3K. Therefore, standard no-regret guarantees are not enough.

A stronger requirement for the primal and dual algorithm is being weakly adaptive [30], that is,
guaranteeing that in high probability supI=Jt1,t2K R

P,D
I = o(T ). Intuitively, this requirement would

force AlgP to change its action during the last phase of Example 5.2. This idea was first proposed in
[19] for the specific case of a learner with one budget and one return-on-investments constraints. In
the following section, we show how such approach can be extended to the case of general constraints.

6 Self-Bounding Lemma

One crucial difference with the previous literature is that the feasibility parameter is not known a
priori, and thus we cannot directly bound the range of the Lagrange multipliers as in BwK. At a high
level we want that, regardless of the choices of ft and gt, the ℓ1 norm of the Lagrange multipliers
is bounded by a quantity that depends on the (unknown) parameters of the instance. However, for
this to hold we need that the primal algorithm AlgP is (almost) scale free, i.e., that its regret scale
quadratically in the unknown range of its reward function.2 Formally:

Definition 6.1. For any c ≥ 1, we say that AlgP is a c-scale-free and weakly-adaptive regret
minimizer if, for any subset of rounds I = Jt1, t2K ⊆ JT K, with probability at least 1 − δ it holds
that

RP
I (X ) ≤ Lc · RP

T,δ(X ),
2Usually we say that an algorithm is scale-free [38] if its regret scales linearly in the (unknown) range of its

rewards, i.e., 1-scale-free with our definition.
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where the maximum module of the primal utilities is supt∈JT K,x∈X |uPt (x)| =: L, and RP
T,δ(X )

depends only on T , δ and X , and is non-decreasing in the length of the time horizon T .

Now, we show that online gradient descent (OGD) [47] with a carefully defined learning rate yields
the required self-bounding property both in the stochastic and adversarial setting.

Lemma 6.2 (Self-bounding lemma). Let ηOGD :=
(
800 ·m ·max

{
RP

T,δ(X ), ET,δ

})−1
, then if

AlgD is OGD on the set D = R
m
≥0, and the primal algorithm AlgP is 2-scale-free and has a high-

probability weakly adaptive regret bound RP
T,δ(X ), then with probability at least 1− δ:

maxt∈JT K ‖λt‖1 ≤ 13m
ρ ,

where ρ = ρAdv or ρ = ρStoc depending on the setting and ET,δ :=
√
16T log (2T/δ).

We remark that the self-bounding lemma shows that, if we take OGDwith a carefully defined learning
rate ηOGD = Õ((mmax{RP

T,δ(X ),
√
T})−1) as AlgP, then the ℓ1-norm of the variables λt is

automatically bounded by the reciprocal of the feasibility parameter, even if the feasibility parameter
is unknown to the learner. This is the central result that allows us to build algorithms that work
without knowing Slater’s parameter. We observe that:

Remark 6.3. Even in the simplest instances of bandit problems one has RP
T,δ(X ) = Ω̃(

√
T ) and,

therefore, we can assume that ηOGD = Õ
(
(mRP

T,δ(X ))−1
)
.

Remark 6.4. We will work with 2-scale-free algorithms, which suffice to obtain the desired guaran-
tees for our framework. We observe that scale-free algorithms would yield a tighter bound of 1/ρ in
the Theorems 7.2 and 7.3 and a simpler analysis of Lemma 6.2. However, scale-free algorithm are
much more difficult to find and this would limit the extent to which our framework can be applied.
On the other hand, 2-scale-free algorithm seems to be more abundant (see, e.g., Section 8). Indeed,
as we show in Section 8, it is usually the case that setting the learning rate independent on the scale
of the rewards provides 2-scale-freeness. We leave such characterization to future research.

7 General Guarantees

First, we exploit Lemma 6.2 to bound the total violations of the framework.

Theorem 7.1. Let AlgD be OGD with learning rate η as in Lemma 6.2, and let AlgP any 2-scale-
free algorithm with no-adaptive regret. Then, with probability at least 1 − δ, it holds that VT =

Õ
(

m2

ρ RP
T,δ(X )

)
, where ρ = ρAdv in the adversarial setting and ρ = ρStoc in the stochastic.

Moreover, the proof of Theorem 7.1 can be easily adapted to show that the violations of any con-
straint i ∈ JmK is bounded on any interval JtK with t ∈ JT K.

Now, we prove that the framework, with high probability, yields optimal guarantees in both stochas-
tic and adversarial settings. We start with the adversarial setting, for which the following result
holds.

Theorem 7.2. If AlgD is OGD with learning rate ηOGD and domainD := R
m
≥0, and AlgP is 2-scale-

free, then, in the adversarial setting, with high probability:

Rew ≥ ρAdv
1 + ρAdv

OptAdv − Õ

((
m

ρAdv

)2

RP
T,δ(X )

)
.

On the other hand, for the stochastic setting we can prove the following result:

Theorem 7.3. If AlgD is OGD with learning rate ηOGD and domainD := R
m
≥0, and AlgP is 2-scale-

free, then in the stochastic setting, in high probability:

Rew ≥ OptStoc − Õ

((
m

ρStoc

)2

RP
T,δ(X )

)
.

Remark 7.4. Any algorithm with vanishing constraints violations can be employed to handle also
BwK constraints. In such setting, the learner has resource-consumption constraints with hard stop-
ping (i.e., once the budget for a resource is fully depleted the learner must play the void action until
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the end of time horizon). This does not yield any fundamental complication for our framework. In-
deed, we could introduce an initial phase of o(T ) rounds in which the algorithm collects the extra
budget needed to cover potential violations, before starting the primal-dual procedure.

8 Applications

In this section, we show how our framework can be instantiated to handle scenarios such as bandits
with general constraints, as well as contextual bandits with constraints (i.e., CBwLC). Thanks to
the modularity of the results derived in the previous sections, we only need to provide an algorithm
AlgP which is 2-scale-free and weakly adaptive for a desired action space X and rewards uPt .

8.1 Bandits with General Constraints

In this setting, the action space is X = JKK. [19] showed that the EXP3-SIX algorithm introduced
by [37] can be used as AlgP, since it guarantees sublinear weakly adaptive regret in high probability,
and it is 2-scale-free.

Theorem 8.1 (Theorem 8.1 of [19]). EXP3-SIX instantiated with suitable parameters guarantees

that, with probability at least 1− δ that supI=Jt1,t2K R
P
I (X ) = O

(√
KT log

(
KTδ−1

))
.

Thus, by applying Theorem 7.1 on the violations, and Theorem 7.2 and Theorem 7.3 on the adver-
sarial and stochastic reward guarantees respectively, we get the following result:

Corollary 8.2. Consider a multi armed bandit problem with constraints. There exists an algorithm

that w.h.p. guarantees, in the adversarial setting, violations at most Õ
(

m2

ρAdv

√
KT

)
and Rew ≥

ρAdv
1+ρAdv

OptAdv − Õ
(

m2

ρ2

Adv

√
KT

)
, while,in the stochastic setting, it guarantees violations at most

Õ
(

m2

ρStoc

√
KT

)
and reward at least Rew ≥ OptStoc − Õ

(
m2

ρ2

Stoc

√
KT

)
.

8.2 Contextual Bandits with Constraints

Following [42], we apply our general framework to contextual bandits with regression oracles. In
this setting, the decision maker observes a context zt ∈ Z from some context set Z , where zt is
possibly chosen by an adversary. Then, the decision maker picks its decision at from an action set
A. Then, the reward is computed as a function of the context and the action, i.e., ft : Z×A→ [0, 1],
and similarly for the constraints gt : Z ×A → [−1, 1]m. At each t, ft and gt are drawn from some
distribution. More precisely, there exist a class F of functions and f̄ , ḡi ∈ F such that for all
(z, a) ∈ Z ×A it holds that E[ft(z, a)|z, a] = f̄(z, a) and E[gt,i(z, a)|z, a] = ḡi(z, a) for i ∈ JmK.

We slightly modify the primal-dual algorithm to handle contexts. In particular, AlgP gets to ob-
serve a context zt before deciding their action. Formally, we can use the machinery introduced
in Section 3 by taking X as the set of deterministic policies Π := {π : Z → A}. Then,
uPt (π) = ft(zt, π(zt)) − 〈λt, gt(zt, π(zt))〉, and the action at is computed through πt returned
by the primal algorithm. Although this choice transforms the contextual framework into an appli-
cation of the framework introduced in Section 3, in practical terms, it is simpler to think of at as
the direct output of AlgP upon observing the context zt. The extended primal-dual framework is
sketched in Algorithm 2.

We assume to have m + 1 online regression oracles (Of ,O1, . . . ,Om) for the functions f̄ and
ḡ1, . . . , ḡm, respectively. The regression oracleOf produces, at each t, a regressor f̂t ∈ F that tries
to approximate the true regressor f̄ . Then, the oracle is feed with a new data point, comprised of a
context zt ∈ Z and an action at ∈ A, and the performance of the regressor is evaluated on the basis
of its prediction for the tuple (zt, at). The online regression oracle Of is updated with the labeled
data point (zt, at, ft(zt, at)). Overall, its performance is measured by its cumulative ℓ2-error:

Err(Of ) :=
∑

t∈JT K

(
f̂t(zt, at)− f̄(zt, at)

)2
.

Each online regression oracle (Oi)i∈JmK works analogously, and its performance is measured by

Err(Oi) :=
∑

t∈JT K (ĝt(zt, at)− ḡ(zt, at))
2
.
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Algorithm 2 Primal-Dual Algorithm
for Contextual Bandits

1: Input: AlgP and AlgD.
2: for t = 1, 2, . . . , T do
3: Observe context zt
4: Dual decision: λt ← AlgD
5: Primal decision:
6: at ← AlgP(zt,λt)
7: Observe: ft(zt, at) and gt(zt, at)
8: Primal update: feed uPt (at) to

AlgP, where
9: uPt (at)=ft(zt, at)−〈λt, gt(zt, at)〉

10: Dual update: feed uDt to AlgD,
where

10: uDt (λ)−ft(zt, at)+〈λ, ct(zt, at)〉
11: end for

Algorithm 3 Primal Algorithm for Contextual Bandits

1: Input: Learning rate ηP
2: Get regressors from online regression oracles:

3: f̂t ← Of , and ĝt,i ← Oi for all i ∈ JmK
4: Observe context zt and dual variable λt

5: For all a ∈ A compute L̂t(a) :=
Lf̂t,ĝt

((zt, a),λt)

6: Compute ξt ∈ ∆(A) as:

ξt(a) =
(
µt + ηP

(
max
a′

L̂t(a′)− L̂t(a)
))−1

⊲ µt is such that ξt ∈ ∆(A)
7: Sample at ∼ ξt and return it.
8: Update online regression oracles:
9: Feed (zt, at, ft(zt, at)) to Of

10: Feed (zt, at, gt,i(zt, at)) to Oi ∀i ∈ JmK

By combining the online regression oracles Of and {Oi}i∈JmK we can build an online regression

oracle OL for the Lagrangian which outputs regressors L̂t : Z ×A → R defined as:

L̂t(z, a) = Lf̂t,ĝt
((z, a),λt) = f̂t((z, a))− 〈λt, ĝt(z, a)〉,

while we define L̄(z, a) := Lf̄ ,ḡ((z, a),λt). The ℓ2-error of OL can be bounded via the following
extension of [41, Theorem 16].

Lemma 8.3. The error of OL can be bounded as

Err(OL) ≤ 2Err(Of ) + 2
(
supt∈JT K ‖λt‖1

)2∑
i∈JmK Err(Oi).

The fundamental idea of [26] is to reduce (unconstrained) contextual bandit problems to online linear
regression. Recently, this ideas was extended in [42, 28] in order to design a primal algorithm AlgP
capable of handling stochastic contextual bandits with constraints (see Algorithm 3).

To apply Algorithm 3 to our framework we need to find an algorithm AlgP which is 2-scale-free
and weakly adaptive with high probability. We extend the result [26] to prove that their reduction
actually satisfies the required guarantees.

Lemma 8.4. Assume that max{Err(Of ),Err(Oi)} ≤ Err. Then, we have that Algorithm 3 with

ηP :=
√
KT guarantees that supI=Jt1,t2K R

P
I (Π) = Õ

(
m · Err · L2 ·

√
KT

)
with high probabil-

ity, where L := supt∈JT K,π∈Π |uPt (π)|.

Equipped with a 2-scale free algorithm that suffers no adaptive regret with high probability, we
can combine AlgP with the results of Theorems 7.1 to 7.3 to prove the first optimal guarantees for
CBwLC with adversarial contexts.

Corollary 8.5. Consider a functional class F and an online regression oracle that guarantees ℓ2-

error Err. There exists an algorithm that w.h.p. guarantees violations at most Õ
(

m3

ρAdv
Err
√
KT

)

and reward at least Rew ≥ ρAdv
1+ρAdv

OptAdv − Õ
(
Err m3

ρ2

Adv

√
KT

)
in the adversarial setting, while

it guarantees violations at most Õ
(

m3

ρStoc
Err
√
KT

)
and reward at least Rew ≥ OptStoc −

Õ
(
Err m3

ρ2

Stoc

√
KT

)
in the stochastic setting.

[26] includes many examples of functional classesF that have good online regression oracles, mean-
ing that their error is subpolynomial in the time horizon T . We report here some notable mentions
for completeness.

If F is a finite set of functions we have that Err = O(log |F|), which comes from using as regres-
sion oracles the Vovk forecaster [43]. Another important examples is the case in which F is the

9



class of linear functions, i.e., F = {h(z, a) = 〈za, θ〉 : θ ∈ R
d, ‖θ‖2 ≤ 1}, i.e., each actions a is

associated with a known feature vector za ∈ R
d which generates the reward/costs trough a unknown

parameter θ that characterize the linear function. Here, there exists a online regression oracle which
provides ℓ2-error Err = O(d log(T/d)) [8].
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A Omitted Proofs from Section 4 and Section 5

TT/2

fA(a)

1

T

fB(a)
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a2
a1

T

T
2

gA(a)

1

−1
−ρ

TT/2

gB(a)

1

−ρ
−δρ

Figure 2: Lower bound adversarial setting: rewards and costs in the two instances A and B.

Theorem 4.1. [Lower bound adversarial setting] Consider the family of all adversarial instances
with X = {a1, a2}, each characterized by a parameter ρAdv and optimal reward OptAdv. Then, no
algorithm can achieve, on all instances, sublinear cumulative violations E[V (T )] = o(T ) and

OptAdv

E[Rew]
> 1 +

1

ρAdv

Proof. We show that, for all ǫ > 0 and δ ∈ (0, 1), there exists two instances such that it is impossible
to obtain E[V (T )] ≤ ǫT and

OptAdv

E[Rew]
≥ 1 + ρAdv

ρAdv(1 + δ) + 2ǫ

in both instances. The two instances are denoted by A and B respectively, with X = {a1, a2} and
sequences of inputs of length T . The two instances are identical in the first T/2 rounds. Rewards
in instance A are, for each t ∈ JT K, fAt (a2) = 0 and fAt (a1) = 1[t ≤ T/2]. On the other hand, in
instance B we have fBt (a2) = 0, and fBt (a1) = 1 for all t ∈ JT K. Costs for the first instance A are
define as

gAt (a1) :=

{
1 if t ≤ T/2
−1 otherwise ,

and gAt (a2) = −ρ for all t ∈ JT K. In the second instance B, costs are gBt (a1) = 1 for all t ∈ JT K,
and

gAt (a2) :=

{
−ρ if t ≤ T/2
−δρ otherwise ,

for some δ > 0. The two instances are depicted in Figure 2.

Let N be the expected number of times that action a1 is played in rounds JT/2K, that is

N :=
∑

t∈JT/2K

E
A[xt = a1] =

∑

t∈JT/2K

E
B[xt = a1],

where expectation is with respect to the algorithm’s randomization. We observe that the algorithm
plays in the same way in both instances up to time T/2, as they are identical (formally, the KL
between instance A and B is zero in the first T/2 rounds). Then, we have that the optimal action in
instance A is to play deterministically action a1. Therefore, OptAAdv = T/2. The expected reward
in instance A comes only from the number of plays of a1 in the first T/2 rounds: EA[Rew] = N .
On the other hand, call M the expected number of times an algorithm plays action a1 in the last
JT/2, T K rounds of instance B, that is

M :=
∑

t∈JT/2,T K

E
B[xt = a1].

We have that, in order to have EB[V (T )] ≤ ǫT violations in the second instance, we need to play a1
a small number of times:

M − δρ

(
T

2
−M

)
+N − ρ

(
T

2
−N

)
≤ ǫT,
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which yields

N ≤ T (ρ(δ + 1) + 2ǫ)

2(ρ+ 1)
.

Then, we get that
OptAAdv

EA[Rew]
≥ 1 + ρ

ρ(1 + δ) + 2ǫ
,

which concludes the proof since ρAAdv = ρ.

Proposition 5.3. Consider the instance of Example 5.2. Even if AlgP and AlgD suffer regret less
than or equal then zero, the primal-dual framework fails to achieve sublinear constraint violations.

Proof. Consider the instance described in Example 5.2, and consider an algorithm AlgP for X =
{a1, a2, a3} such that xt = a3 for t ∈ JT/3K, while xt = a2 for t ∈ JT/3, T K. Moreover, consider
an algorithm AlgD instantiated onD = [0,M ], with M ≥ 1/ρ, that plays λt = 0 for all t ∈ J2T/3K,
and λt = M for all t ∈ J2T/3, T K.

We start by analyzing the primal regret achieved by AlgP:

RP
T := sup

x∈X

∑

t∈JT K

[ft(x)− ft(xt)− λt(gt,1(x) − gt,1(xt))]

= sup
x∈X

∑

t∈JT K

[ft(x) − λtgt,1(x)] −
2

3
T +

Mρ

3
T

=
∑

t∈JT K

[ft(a1)− λtgt,1(a1)] +
T

3
(Mρ− 2)

= ρM
T

3
+

T

3
(Mρ− 2)

=
T

3
(2Mρ− 2) ≤ 0,

where we replaced the sup with the utility at a1 since M ≥ 1/ρ. Moreover, the dual regret is such
that

RD
T := sup

λ∈[0,M ]

∑

t∈J2T/3,T K

(λ−M) gt,1(xt)

= sup
λ∈[0,M ]

T

3
(λ−M) ρ = 0.

However, for a suitable choice of ρ, the violations are linear in T since

V1(T ) :=
∑

t∈JT K

gt,1(xt) =
ρ

3
T = Ω(T ).

This concludes the proof.

B Proof of Lemma 6.2

We start by providing the following auxiliary lemmas.

Lemma B.1. Let yt ∈ R
m
≥0 be generated by OGD with learning rate η and utilities y 7→ 〈y, gt〉,

where ‖gt‖∞ ≤ 1 for all t ∈ JT K. Then:

|‖yt+1‖1 − ‖yt‖1| ≤ m · η

Proof. The update of the i-th component of yt+1 can be written as:

yt+1,i := max(0, yt,i + ηgt,i).
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If gt,i ≥ 0 then the update can be simplified to yt+1,i = yt + ηgt,i ≤ yt + η. If gt,i < 0 then
yt+1,i ≥ yt,i + ηgt,i ≥ yt,i − η. Thus |yt+1,i − yt,i| ≤ η for all i ∈ JmK. By summing over
all component we have that ‖yt+1 − yt‖1 ≤ m · η. By triangular inequality we have the desired
statement.

Lemma B.2. [[29, Chapter 10]] For any t1, t2 ∈ JT K with t1 < t2, it holds that if λt is generated
by OGD with learning rate η > 0 on a set D, then:

RP
Jt1,t2K({λ}) ≤

‖λ− λt1‖22
2η

+
1

2
ηmT.

with probability probability one on the randomization of the algorithm, i.e., δ = 0. Moreover it also
holds component-wise, i.e., for all λ ≥ 0:

∑

t∈Jt1,t2K

(λ− λt)gt(xt) ≤
(λ− λt1)

2

2η
+

1

2
ηT.

Lemma B.3. In the stochastic setting, for any ξ ∈ ∆(X ) and δ ∈ (0, 1], with probability at least
1− δ, it holds that:

∑

t∈I

Ex∼ξ [〈λt, gt(x)〉] ≤
∑

t∈I

Ex∼ξ [〈λt, ḡt(x)〉] +MET,δ and (1)

∑

t∈I

Ex∼ξ [ft(x)] ≥
∑

t∈I

Ex∼ξ

[
f̄(x)

]
− ET,δ, (2)

for any interval I = [t1, t2] ⊆ [T ], where ET,δ :=
√
16T log

(
2T
δ

)
and M = sup

t∈JT K

‖λ‖1.

Proof. We start by proving that the all the inequalities of Equation (1) holds simultaneously with
probability 1− δ/2. We have that given a I = [t1, t2] ⊆ [T ], with probability at least 1− δ/(2T 2),

∑

t∈I

Ex∼ξ [〈λt, gt(x)〉] −
∑

t∈I

Ex∼ξ [〈λt, ḡt(x)〉] ≤M

√
8|I| log

(
2T 2

δ

)
≤M

√
16T log

(
2T

δ

)
,

where the first inequality holds by Azuma-Hoeffding inequality. By taking a union bound over all
possible intervals I (which are at most T 2), we obtain that all the first set of equations holdswith
probability at least 1− δ/2.

Equation (2) can be proved in a similar way. Indeed, for any fixed interval I = [t1, t2] ⊆ [T ], and for
any strategy mixture ξ ∈ ∆(X ), by the Azuma-Hoeffding inequality we have that, with probability
at least 1− δ/(2T 2), the following holds

∑

t∈I

Ex∼ξ

[
f̄(x)

]
−
∑

t∈I

Ex∼ξ [ft(x)] ≤
√

2|I| log
(
2T 2

δ

)
≤
√

4T log

(
2T

δ

)
.

By taking a union bound over all possible T 2 intervals, we obtain that, for all possible intervals I ,
the equation above holds with probability 1− δ/2.

The Lemma follows by a union bound on the two sets of equations above.

These auxiliary technical lemmas are used in proving the following result.

Lemma 6.2 (Self-bounding lemma). Let ηOGD :=
(
800 ·m ·max

{
RP

T,δ(X ), ET,δ

})−1
, then if

AlgD is OGD on the set D = R
m
≥0, and the primal algorithm AlgP is 2-scale-free and has a high-

probability weakly adaptive regret bound RP
T,δ(X ), then with probability at least 1− δ:

maxt∈JT K ‖λt‖1 ≤ 13m
ρ ,

where ρ = ρAdv or ρ = ρStoc depending on the setting and ET,δ :=
√
16T log (2T/δ).
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Proof. Let c1 := 2 and c2 := 12m and any learning rate η for OGD with η ≤ ηOGD. By contradiction,
suppose there exists a time such that ‖λt‖1 ≥ c2/ρ, and let t2 ∈ JT K be the smallest t for which this
happens. We unify the proof of the adversarial and stochastic setting. In particular, let ρ = ρAdv if
the losses (ft, gt) are adversarial, and let ρ = ρStoc if (ft, gt) are stochastic with mean (f̄ , ḡ). The
extra stochasticity coming from the environment in the stochastic setting will be handled through
Lemma B.3. In order to streamline the notation, we define ET,δ :=

√
16T log (2T/δ).

Then, let t1 ∈ Jt2K be the largest time for which ‖λt‖1 ∈ [ c1ρ ,
c2
ρ ] for all t ∈ Jt1, t2K.

Step 1. First, we need to bound ‖λt1‖1 and ‖λt2‖1. To do that, we exploit Lemma B.1. In particular,
by telescoping the sum in the lemma, we obtain that:

‖λt2‖1 − ‖λt1‖1 ≤ ηm(t2 − t1).

Moreover, by the definition of λt1 and λt2 , we have:

c1
ρ
≤ ‖λt1‖1 ≤ ‖λt1−1‖1 +mη ≤ c1

ρ
+mη

and similarly
c2
ρ
≤ ‖λt2‖1 ≤ ‖λt2−1‖1 +mη ≤ c2

ρ
+mη.

This, together with the inequality above, yields

c2 − c1
2ηmρ

≤ t2 − t1. (3)

Step 2. The range of the primal utilities in the turns Jt1, t2K can now be bounded as:

sup
x∈X ,t∈Jt1,t2K

|uPt (x)| ≤ sup
x∈X ,t∈Jt1,t2K

{|ft(x)| + ‖λt‖1 · ‖gt(x)‖∞}

≤ 1 +
c2
ρ

+mη

≤ 1 +
12m+ 1

ρ

≤ 14m

ρ
=: L.

Now, by the assumption that AlgP is weakly adaptive and 2-scale-free, we obtain:

RP
Jt1,t2K(X ) ≤ L2 · RP

T,δ(X ),

which holds with probability at least 1− δ.

If we apply the primal no-regret condition above for strictly safe strategy ξ◦ ∈ ∆(X ) we have

∑

t∈Jt1,t2K

Lft,gt
(xt,λt) ≥ Ex∼ξ◦




∑

t∈Jt1,t2K

Lft,gt
(x,λt)



− L2RP
T,δ(X ). (4)

Moreover, by definition of safe strategy we have that in the adversarial setting Ex∼ξ◦ [gt,i(x)] ≤
−ρAdv for all i ∈ JmK and t ∈ Jt1, t2K, while in the stochastic setting by Lemma B.3 it holds

∑

t∈Jt1,t2K

Ex∼ξ◦ [〈λt, gt(x)〉] ≤
∑

t∈Jt1,t2K

Ex∼ξ◦ [〈λt, ḡt(x)〉] +MET,δ

and
Ex∼ξ◦ [ḡi(ξ)] ≤ −ρStoc ∀i ∈ JmK,

where we recall that ET,δ =
√
16T log (2T/δ) and M = sup

t∈JT K

‖λ‖1.
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Therefore, we can lower bound the first term of the right-hand side of Equation (4) the stochastic
setting as:

Ex∼ξ◦



∑

t∈Jt1,t2K

Lft,gt
(x,λt)


 = Ex∼ξ◦



∑

t∈Jt1,t2K

ft(x)− 〈λt, gt(x)〉




≥ −Ex∼ξ◦ [〈λt, gt(x)〉]

≥ −Ex∼ξ◦ [〈λt, ḡ(x)〉]−
(

sup
t∈JT K

‖λ‖1
)
ET,δ

≥ ρStoc
∑

t∈Jt1,t2K

‖λt‖1 −
(

sup
t∈JT K

‖λ‖1
)
ET,δ

≥ ρStoc
∑

t∈Jt1,t2K

‖λt‖1 −
(

c2
ρStoc

+mη

)
ET,δ

≥ c1(t2 − t1)−
(

c2
ρStoc

+mη

)
ET,δ

In the adversarial setting we can more easily conclude that Ex∼ξ◦

[
∑

t∈Jt1,t2K

Lft,gt
(x,λt)

]
≥

c1(t2 − t1) and thus in both settings it holds that:

Ex∼ξ◦



∑

t∈Jt1,t2K

Lft,gt
(x,λt)


 ≥ c1(t2 − t1)−

(
c2

ρStoc
+mη

)
ET,δ. (5)

Combining the two inequalities of Equation (4) and Equation (5), we can conclude that the overall
utility of the primal algorithm AlgP can be lower bounded by:

∑

t∈Jt1,t2K

uPt (xt) ≥ c1(t2 − t1)− L2RP
T,δ(X )−

(
c2
ρ

+mη

)
ET,δ (6)

Now, we need an auxiliary result that we will use to upper bound the left hand side of the previous
inequality.

Claim B.4. It holds that: ∑

t∈Jt1,t2K

〈λt, gt(xt)〉 ≥
m

2ρ2η
.

Then, we upper bound the left-hand side by using Claim B.4:
∑

t∈Jt1,t2K

uPt (xt) =
∑

t∈Jt1,t2K

Lft,gt
(xt,λt) =

∑

t∈Jt1,t2K

[ft(xt)− 〈λt, gt(xt)〉]

≤ (t2 − t1)−
m

2ρ2η
(7)

Thus, combining Equation (7) and (6)

t2 − t1 ≤
1

c1 − 1

(
L2RP

T,δ(X ) −
m

2ρ2η
+

(
c2
ρ

+mη

)
ET,δ

)
.

Combining it with Equation (3) one obtains that:

c2 − c1
2ηmρ

≤ 1

c1 − 1

(
L2RP

T,δ(X )−
m

2ρ2η
+

(
c2
ρ

+mη

)
ET,δ

)
,
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which gives as a solution η ≥ m2−2ρ+13mρ

392m3RP
T,δ(X+2mρET,δ(1+13m)

. Which is a contradiction since:

η ≤ ηOGD :=
1

800 ·m ·max
{
RP

T,δ(X ), ET,δ

} >
m2 − 2ρ+ 13mρ

392m3RP
T,δ(X + 2mρET,δ(1 + 13m)

Thus, we can conclude that ‖λt‖t ≤ c2/ρ for each t ∈ JT K.

Now, we provide the proof of Claim B.4.

Proof of Claim B.4. We define t̃i as the last time in Jt1, t2K in which λt̃i,1 = 0, or t̃1,i = t1 if
λt,i > 0 for all t ∈ Jt1, t2K. Formally:

t̃1,i = max

{
t1, sup

τ∈Jt2K:λτ,i=0

τ

}
.

We are now going to analyze separately for all i ∈ JmK, the rounds Jt1, t̃1,iK and the rounds Jt̃1,i, t2K.

Phase 1: First, we analyze the rounds Jt1, t̃1,iK. By definition, it can be either that λt̃1,i = 0 or

t̃1,i = t1. In the latter case, Jt1, t̃1,iK = ∅ and the dual algorithm incurs zero regret. In the former
case, we can use Lemma B.2 and write that the regret over the interval with respect to λ∗

i = 0 is

0 ≤
∑

t∈Jt1,t̃1,iK

λt,igt,i(xt) +
λ2
t1

2η
+

1

2
ηT ≤

∑

t∈Jt1,t̃1,iK

λt,igt,i(xt) +
λ2
t1

2η
+

1

2
ηT. (8)

Phase 2: Now, we consider the rounds Jt̃1,i, t2K. We take λ∗ defined as follows: λ∗
i = 1

ρ for all
i ∈ JmK.

Let ∆̃i := λt2,i − λt̃1,i,i. Due to the definition of t̃1,i, gradient descent never projects the multiplier
relative to constraint i, and we can write that

∑

t∈Jt̃1,i,t2K

gt,i(xt) =
∆̃i

η

and, therefore,
∑

t∈Jt̃1,i,t2K

λ∗
i gt,i(xt) =

∆̃i

ρη
. (9)

Now we can use Lemma B.2 to find that:

∑

t∈Jt̃1,i,t2K

λ∗
i gt,i(xt) ≤

∑

t∈Jt̃1,t2K

λt,igt,i(xt) +
(λ∗

i − λt̃1,i,i)
2

2η
+

1

2
ηT.

Combining it with Equation (9) yields the following

∑

t∈Jt̃1,i,t2K

λt,igt,i(xt) ≥
∆̃i

ρη
−

(λ∗
i − λt̃1,i,i)

2

2η
− 1

2
ηT. (10)

Combining Equation (10) and Equation (8) we obtain:

∑

t∈Jt1,t2K

λt,igt,i(xt) ≥
∆̃i

ρη
−

(λ∗
i − λt̃1,i,i)

2

2η
− λ2

t1

2η
− ηT

≥ ∆̃i

ρη
−

(λ∗
i )

2 + λ2
t̃1,i,i

2η
− λ2

t1

2η
− ηT.
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Now, by summing over all i ∈ JmK, and by letting λt̃1 be the vector that has λt̃1,i as its i-th
component, we get:

∑

t∈Jt1,t2K

〈λt, gt(xt)〉 ≥
‖λt2‖1 − ‖λt̃1‖1

ρη
− 1

2η

(
‖λ∗‖22 + ‖λt̃1‖22 + ‖λt1‖22

)
− 1

η
(as η ≤ 1/

√
T )

≥ c2
ρ2η
− 1

ρη
‖λt1‖1 −

1

2η

(
‖λ∗‖22 + 2‖λt1‖22

)
− 1

η
(‖λ‖1 ≥ c2/ρ and ‖λt̃1‖1 ≤ ‖λt1‖1)

≥ c2
ρ2η
− 1

ρη

(
c1
ρ

+mη

)
− 1

2η

(
m

ρ2
+ 2

(
c1
ρ

+mη

)2
)
− 1

η

≥ c2
ρ2η
− c1 + 1

ρ2η
− m

2ρ2η
− 2(c1 + 1)2

2ρ2η
− 1

η
(η ≤ 1/ρm)

≥ 2c2 − 24−m

2ρ2η

≥ m

2ρ2η

where the last two inequalities hold due to the choice of parameters in the proof of Claim B.4, that
is c1 = 2 and c2 = 13m. This concludes the proof.

C Omitted Proofs from Section 7

Theorem 7.1. Let AlgD be OGD with learning rate η as in Lemma 6.2, and let AlgP any 2-scale-
free algorithm with no-adaptive regret. Then, with probability at least 1 − δ, it holds that VT =

Õ
(

m2

ρ RP
T,δ(X )

)
, where ρ = ρAdv in the adversarial setting and ρ = ρStoc in the stochastic.

Proof. The update of OGD for each component i ∈ JmK is λt+1,i := [λt,i + ηgt,i(xt)]
+. Thus:

λt+1,i ≥ λt,i + ηOGDgt,i(xt),

and by induction:

λt+1,i ≥ λ0,i + ηOGD

t∑

τ=1

gτ,i(xτ ).

By rearranging and recalling that λ0,i = 0 we obtain:

∑

t∈JT K

gt,i(xt) ≤
1

ηOGD
λT+1,i ≤

1

η
‖λT+1‖1

Moreover, by Lemma 6.2 we can bound ‖λT‖1 ≤ 13m
ρ which holds with probability at least 1 − δ.

Thus, with probability at least 1− δ, it holds:

VT := max
i∈JmK

Vi(T ) ≤
13m

ηOGDρ
.

The proof is concluded by observing that ηOGD = Õ
(
(mRP

T,δ(X ))−1
)
.

Theorem 7.2. If AlgD is OGD with learning rate ηOGD and domainD := R
m
≥0, and AlgP is 2-scale-

free, then, in the adversarial setting, with high probability:

Rew ≥ ρAdv
1 + ρAdv

OptAdv − Õ

((
m

ρAdv

)2

RP
T,δ(X )

)
.
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Proof. Define x∗ ∈ X such that: ∑

t∈JT K

ft(x
∗) = OptAdv

Now, consider a randomized strategy ξ that randomized with probabilityα between x∗ and ξ◦, where
ξ◦ is any strategy for which Ex∼ξ◦ [gt,i(xt)] ≤ −ρAdv. This strategy exists by assumption. Formally,
for any x ∈ X the randomized strategy ξ assigns probability to x:

ξ(x) = αδx∗(x) + (1 − α)ξ◦(x).

Then, we compute the component of the primal utility of ξ due to a constraint i ∈ JmK as follows:

Ex∼ξ



∑

t∈JT K

λt,igt,i(x)


 = α

∑

t∈JT K

λt,igt,i(x
∗) + (1− α)Ex∼ξ◦



∑

t∈JT K

λt,igt,i(x)




≤ α
∑

t∈JT K

λt,i − (1− α)ρAdv
∑

t∈JT K

λt,i

≤ (α− (1− α)ρAdv)
∑

t∈JT K

λt,i.

Thus, setting α = ρAdv
1+ρAdv

we have that Ex∼ξ

[∑
t∈JT K λt,igt,i(x)

]
≤ 0, and

∑
t∈JT K

〈λt, gt(xt)〉 ≤ 0.

We now compute the reward of ξ for α = ρAdv
1+ρAdv

:

Ex∼ξ



∑

t∈JT K

ft(x)


 = α

∑

t∈JT K

ft(x
∗) + (1− α)Ex∼ξ◦



∑

t∈JT K

ft(x)




≥ ρAdv
1 + ρAdv

OptAdv

Now, we consider the regret of AlgP with respect to ξ and we find that:

∑

t∈JT K

Lft,gt
(xt,λt) ≥ Ex∼ξ




∑

t∈JT K

Lft,gt
(x,λt)



− L2 · RP
T,δ(X ).

where L is the maximum module of the payoffs of the primal regret minimizer, i.e., L :=
supt∈JT K,x∈X |uPt (x)|.
Exploiting the definition of Lft,gt

(·, ·) in the inequality above we obtain that:

∑

t∈JT K

ft(xt)− 〈λt, gt(xt)〉 ≥ Ex∼ξ




∑

t∈JT K

ft(x) − 〈λt, gt(x)〉



 − L2 · RP
T,δ(X )

≥ Ex∼ξ




∑

t∈JT K

ft(x)



 − L2 · RP
T,δ(X )

≥ ρAdv
1 + ρAdv

OptAdv − L2 ·RP
T,δ(X ) (11)

Then, we lower bound the term
∑

t∈JT K

〈λt, gt(xt)〉 by using the dual regret of AlgD with respect to

λ∗ = 0. Indeed, ∑

t∈JT K

〈λ∗ − λt, gt(xt)〉 ≤ RD
T,δ({λ∗})

implies that ∑

t∈JT K

〈λt, gt(xt)〉 ≥ −RD
T,δ({λ∗}).
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Combining it with Equation (11) gives:
∑

t∈JT K

ft(xt) ≥
ρAdv

1 + ρAdv
OptAdv − L2 ·RP

T,δ(X )−RD
T,δ({λ∗}).

Now, we use Lemma 6.2 which bounds L ≤ 2 13m
ρAdv

and Lemma B.1 which we can use to bound

RD
T,δ({λ∗}).

In particular, RD
T,δ({λ∗}) can be bounded with:

RD
T,δ({λ∗}) ≤ 1

2
ηOGDmT,

and thus:

Rew :=
∑

t∈JT K

ft(xt) ≥
ρAdv

1 + ρAdv
OptAdv − 676

(
m

ρAdv

)2

RP
T,δ(X ) − ηOGDmT.

The proof is concluded by noting that ηOGD = Õ
(
(mRP

T,δ(X ))−1
)
.

Theorem 7.3. If AlgD is OGD with learning rate ηOGD and domainD := R
m
≥0, and AlgP is 2-scale-

free, then in the stochastic setting, in high probability:

Rew ≥ OptStoc − Õ

((
m

ρStoc

)2

RP
T,δ(X )

)
.

Proof. By Lemma 6.2 we have that with probability at least 1 − δ we have that supt∈JT K ‖λt‖1 ≤
13m
ρStoc

and in the same way supt∈JT K,x∈X ‖uPt (x)‖1 ≤ 2 13m
ρStoc

.

Define ξ as the best strategy that satisfies the constraints, i.e., OptStoc := T Ex∼ξ

[
f̄(x)

]
and

Ex∼ξ[ḡi(x)] ≤ 0. The no-regret property of AlgP with respect to ξ gives that with probability 1− δ
it holds:
∑

t∈JT K

[ft(xt)− 〈λt, gt(xt)〉]

≥ Ex∼ξ



∑

t∈JT K

[ft(x) − 〈λt, gt(x)〉]


 −

(
2
13m

ρStoc

)2

RP
T,δ(X )

≥ Ex∼ξ



∑

t∈JT K

[f̄(x)− 〈λt, ḡ(x)〉]


 − 676

(
m

ρStoc

)2

RP
T,δ(X )− 2

(
13m

ρStoc

)
ET,δ

= T OptStoc − 676

(
m

ρStoc

)2

RP
T,δ(X ) −

26m

ρStoc
ET,δ,

where the second inequality follows from Lemma B.3 with M := 13m
ρStoc

.

Moreover, the no-regret property of the dual regret minimizer AlgD, with respect to λ∗ = 0, gives
that: ∑

t∈JT K

〈λ∗ − λt, gt(xt)〉 ≤
1

2
ηOGDmT.

Finally, we can combine everything from which follows that:

Rew ≥ OptStoc − 676

(
m

ρStoc

)2

RP
T,δ(X )−

26m

ρStoc
ET,δ −

1

2
ηOGDmT.

The proof is concluded by observing that ηOGD = Õ
(
(mRP

T,δ(X ))−1
)

and ET,δ = Õ(
√
T )
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D Proofs omitted from Section 8

Lemma 8.3. The error of OL can be bounded as

Err(OL) ≤ 2Err(Of ) + 2
(
supt∈JT K ‖λt‖1

)2∑
i∈JmK Err(Oi).

Proof. Consider the following inequalities:

Err(OL) :=
∑

t∈JT K

(
L̂t(zt, at)− L̄(zt, at)

)2

≤ 2
∑

t∈JT K

(
f̂t(zt, at)− f̄(zt, at)

)2
+ 2

∑

t∈JT K

(〈λt, ĝt(zt, at)〉 − 〈λtḡ(zt, at)〉)2

(By AM-GM inequality: 2ab ≤ a2 + b2 for a, b ≥ 0.)

= 2 · Err(Of ) + 2
∑

t∈JT K

(〈λt, ĝt(zt, at)− ḡ(zt, at)〉)2

≤ 2 · Err(Of ) + 2
∑

t∈JT K

‖λt‖21 · ‖ĝt(zt, at)− ḡ(zt, at)‖2∞ (〈a, b〉 ≤ ‖a‖1 · ‖b‖∞)

≤ 2 · Err(Of ) + 2

(
sup
t∈JT K

‖λt‖1
)2

·
∑

t∈JT K

‖ĝt(zt, at)− ḡ(zt, at)‖2∞

≤ 2 · Err(Of ) + 2

(
sup
t∈JT K

‖λt‖1
)2

·
∑

t∈JT K

∑

i∈JmK

(ĝt,i(zt, at)− ḡi(zt, at))
2

= 2 · Err(Of ) + 2

(
sup
t∈JT K

‖λt‖1
)2

·
∑

i∈JmK

Err(Oi)

which concludes the proof.

Lemma 8.4. Assume that max{Err(Of ),Err(Oi)} ≤ Err. Then, we have that Algorithm 3 with

ηP :=
√
KT guarantees that supI=Jt1,t2K R

P
I (Π) = Õ

(
m · Err · L2 ·

√
KT

)
with high probabil-

ity, where L := supt∈JT K,π∈Π |uPt (π)|.

Proof. Consider any interval I = Jt1, t2K ⊆ JT K. Since the prediction error at each time t is positive,
one trivially has that:

∑

t∈Jt1,t2K

(
L̂t(zt, at)− L̄(zt, at)

)2
≤ Err(OL).

Then, applying Lemma 8.3 we have that:

∑

t∈Jt1,t2K

(
L̂t(zt, at)− L̄(zt, at)

)2
≤ 2Err(Of ) + 2 sup

t∈JT K

‖λt‖21
∑

i∈JmK

Err(Oi).

Moreover, by the assumption on the errors of the oracles it holds that:

∑

t∈Jt1,t2K

(
L̂t(zt, at)− L̄(zt, at)

)2
≤ 2m(1 + sup

t∈JT K

‖λt‖21)Err. (12)

Note that we could pretend that the algorithm starts at any time t1 ∈ JT K, and the same analysis
of [26, Theorem 1] would hold, as their algorithm behavior does not depend on its past behavior.
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Hence, the following holds:

RP
Jt1,t2K(Π) := sup

π∈Π

∑

t∈Jt1,t2K

[uPt (π)− uPt (πt)]

:= sup
π∈Π

∑

t∈Jt1,t2K

[Lt(π(zt))− Lt(πt(zt))]

= sup
π∈Π

∑

t∈Jt1,t2K

[Lt(π(zt))− Lt(at)]

≤ ηP
2
Err(OL) + 4ηP log

(
2T 2

δ

)
+ 2K

T

ηP
+

√

2T log

(
2T 2

δ

)

which holds with probability 1− δ/(T 2).

Thus, by an union bound, and combining it with Equation (12) we obtain that:

RP
Jt1,t2K(Π) ≤ ηPm(1 + sup

t∈JT K

‖λt‖21)Err+ 4ηP log

(
2T 2

δ

)
+ 2K

T

ηP
+

√

2T log

(
2T 2

δ

)
,

which holds with probability 1− δ/T 2. Finally, by tuning ηP =
√
KT and applying an union bound

on all the T 2 possible intervals Jt1, t2K, we obtain that with probability 1− δ it holds that:

sup
I=Jt1,t2K

RP
Jt1,t2K(Π) ≤ 504 ·m Err L2 log(T 2/δ)

√
KT.
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