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STRONG EXISTENCE FOR FREE-DISCONTINUITY PROBLEMS WITH

NON-STANDARD GROWTH

CHIARA LEONE, GIOVANNI SCILLA, FRANCESCO SOLOMBRINO, AND ANNA VERDE

ABSTRACT. An Ahlfors-type regularity result for free-discontinuity energies defined on the space SBV ϕ

of special functions of bounded variation with ϕ-growth, where ϕ is a generalized Orlicz function, is

proved. Our analysis expands on the regularity theory for minimizers of a class of free-discontinuity prob-

lems in the non-standard growth case.
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1. INTRODUCTION

This paper is concerned with existence of strong minimizers for a model functional of the form
ˆ

Ω
ϕ(x, |∇u|) dx +Hd−1(K), (1.1)

to be minimized on pairs (u,K) of smooth functions u outside of a closed discontinuity set K , whose

Hausdorff measure Hd−1(K) is penalised. The prototypical example (for ϕ(x, ξ) = |ξ|2) was introduced

by Mumford and Shah [25] in the context of image segmentation, and later used as well for describing

failure phenomena such as fracture and damage in elastic materials after the seminal paper by Francfort

and Marigo [16] on the variational reformulation of Griffith’s theory of brittle fracture. In our paper

we will however not assume a standard p-growth assumption for the bulk energy integrand, but rather a

non-standard growth in generalized Orlicz type of spaces (see, e.g., [20]). As relevant examples of bulk
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energies undergoing non-standard growth we report here the perturbed Orlicz, the so-called variable

exponent, and the double-phase case

a(x)ϕ(|ξ|), |ξ|p(x), and |ξ|p + a(x)|ξ|q for (x, ξ) ∈ R
d × R

d, (1.2)

for suitable choices of the N -function ϕ : [0,+∞) → [0,+∞), of the exponent function p : Rd →
(1,+∞), of the exponents 1 < p < q < +∞, and of the weight function a : Rd → [0,+∞), while a list

of relevant examples in the literature can be found, for instance in [1, Section 4.3].

In a Sobolev setting, that is when the term Hd−1(K) does not appear, integral functionals with non-

standard growth first appeared in the works of Zhikov [26, 27] for modeling composite materials charac-

terized by a strongly anisotropic behavior, and have attracted an increasing attention in the last decades.

A huge amount of results for these models, their variants as well as borderline cases have been investi-

gated. Each single case has been studied in a peculiar way, relying on its particular structure. A unified

approach to treat several cases of non-standard growth has been recently proposed in the monograph

[20], which can be consulted also for the rich bibliography (see also [21] and the references therein for

the regularity topic).

The coupling of bulk energies of this kind with a free discontinuity term is therefore a natural pos-

sibility in the variational approach to the emergence of singularities with codimension 1 in anisotropic

media.

The usual strategy for proving well-posedness of (1.1) goes through a weak reformulation in the space

SBV of special functions of bounded variation (see Section 2.2) of the form
ˆ

Ω
ϕ(x, |∇u|) dx +Hd−1(Ju). (1.3)

Above, Ju is the set of jump discontinuities of u with normal νu, which, exactly like the gradient ∇u,

has in general to be understood in an approximate measure-theoretical sense. If ϕ is superlinear, and

convex in the second variable, existence of weak minimizers can be recovered by combining De Giorgi’s

lower semicontinuity theorem [11] with the closure and compactness results in SBV by Ambrosio (see

[2, Theorem 4.7 and 4.8]). Then, in order to get strong existence, the crucial point is to prove that

minimizers of (1.3) have an essentially closed jump set and are smooth outside of it. Practically, this

is achieved by proving that the singular set Su, a superset of the crack set Ju (which in a BV setting,

differs therefrom only by a Hd−1-null set), is locally Ahlfors-regular, meaning that it satisfies the uniform

density estimate

Hd−1(Su ∩Bρ(x0)) ≥ θ0ρ
d−1

for x0 ∈ Su and sufficiently small balls Bρ(x0), with θ0 independent of x0 and ρ.

For the model case ϕ(x, ξ) = |ξ|p, this result was obtained in the seminal paper [12]. There, a

contradiction-compactness argument shows that, in regions with small crack, the energy in a ball Bρ(x0)

decays on the order of ρd (like a bulk energy), much faster than the surface energy scaling ρd−1. A

crucial step to this aim is represented by a Poincaré-Wirtinger inequality for SBV functions with small

jump set in a ball [2, Theorem 4.14], which is exploited to replace (a suitable rescaling of) optimal

sequences with more regular functions, without excessively increasing the energy. Such an inequality

is obtained with respect to the Lp-norm, and its proof heavily exploits its homogeneity. The result in

[12] has been generalized to nonhomogenous bulk integrands with p-growth in [19], and recently to

the variable exponent setting in [23] (see also [13] for constrained energy functionals in the variable

exponent setting). Also the vector-valued case of linearly elastic bulk integrands (that is, depending only

on the symmetrized part e(u) of the strain ∇u) has been investigated in [7, 8, 17] through a delicate

reformulation in spaces of functions of bounded deformation, where a number of additional technical

issues have to be overcome.
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Description of our results. In this paper we will deal with integrands ϕ(x, |ξ|) which are convex in

the last variable. We do not focus on a single case study, but rather follow a general perspective fixing

a fair set of assumptions on the bulk integrand ϕ, under which existence of strong minimizers can be

recovered. These conditions, summarized in (H1)-(H3), are borrowed from the regularity theory for

variational integrals in generalized Orlicz spaces [20, 21], and here specified to the free-discontinuity

setting. In particular, the Orlicz setting (when ϕ′(t) is equivalent to tϕ′′(t)), the variable exponent

setting (under strongly log-Hölder continuity of the variable exponent), and the double-phase case (under

suitable Hölder continuity of the function a(x) in (1.2)) are covered by our results (see Section 8 in [21],

where the authors show that (H1)-(H3) include these special structures). Notice that (H1)-(H2) imply

in particular that the growth from above and below of the energy is ruled by two possibly different

exponents 1 < p < q. Condition (H3) is fundamental to our blow-up analysis. Roughly speaking, this

condition does not allow for a too degenerate behavior on small balls contained in Ω of the functions

ϕ+
B(t) := sup

x∈B
ϕ(x, t) ϕ−

B(t) := inf
x∈B

ϕ(x, t) for t ∈ [0,+∞) and B ⊆ Ω,

since the first one has to be controlled by the second one, up to a vanishing error when the size of the

ball goes to zero.

The proof of the crucial density lower bound goes, exactly as in [12], through a decay lemma (see

Lemma 3.1). One assumes by contradiction that the energy is decaying faster than ρd−1 around a jump

point x0. The goal is then to show that a scaled copy of blown-up sequences converges to a Orlicz-

Sobolev minimizer of a variational integral of the type
ˆ

B1

ϕ∞(|∇u|)) dx,

where the function ϕ∞ does not depend on x and is recovered as locally uniform limit of a scaled version

of ϕ acting on a scaled deformation gradient. For the above problem, decay estimates only depending

on the dimension and the growth exponents p and q are provided by [14, 21] and can be used to get a

contradiction. A crucial point for this procedure is the construction of nearly optimal sequence whose

Orlicz norm is controlled, despite the presence of a small jump set, only in terms of the Orlicz norm of

the gradient. This can be achieved by means of a Poincaré-type inequality recently introduced in [1],

which is proved under quite different lines than in [12], relying on some ideas in [5, 6]. Actually, in our

setting a slight refinement thereof is needed, that is summarized in Theorem 2.14. It can be obtained with

a prompt adaptation of the arguments in [1, Section 5]. In the form we state, it eventually allows one to

get equi-integrability estimates for some remainder terms appearing in Lemma 3.1.

Actually, an application of the Poincaré-type inequality is not enough to our purposes, as the bulk

energy may explicitly depend on the point x in the reference configuration. This is a point where (H3)

comes essentially into play, in order to assure that some remainder terms appearing in the construction

can be taken uniformly small. Once this is established, one can recover existence of strong minimizers

in Theorem 3.3 following in the footsteps of the classical proof in [12], up to the necessary adaptations

to the generalized Orlicz setting.

Outlook. We provide a well-posedness result for (1.1) under a generalized Orlicz growth for the bulk in-

tegrand, establishing of a general framework for the analysis of the problem, which encompasses diverse

relevant case studies under a unified perspective. Along with the usage of the Poincaré-type inequality

for SBV functions with Orlicz growth in the gradient, together with assumption (H3), these are the main

points where our analysis departs from the classical program in [12]. It must be however mentioned

that some interesting examples are still not covered by the present analysis and deserve further investi-

gation, possibly requiring the introduction of new tools. For instance, an L logL-growth on ϕ, although

superlinear, is excluded by (2.4). While the regularity properties of minimizers of the corresponding

variational integrals in Sobolev spaces is by now well understood (see [10, 18]), a blow-up procedure
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would likely deliver no significant information in the free-discontinuity setting, as the limit function ϕ∞

turns out to be linear. A different strategy has therefore to be found in order to deal with such a problem.

Let us also remark that the existence theory for weak minimizers can encompass a broader range of

situations, in particular in the vectorial case: ϕ(x, ξ) may indeed be a non radial, quasiconvex integrand

with p-growth ([2, Theorem 5.29]) or, under suitable assumptions, with a variable exponent or Orlicz

growth ([1, 9, 24]). Also the investigation of general free discontinuity functionals with bulk energies

having a mixed (p, q)-growth condition (which is implied by, but not equivalent to (H1)-(H2)), relevant

for the modeling of determinant constraints, is not yet well understood. In this case, even the well-

posedness of (1.3) is actually not clear, by lack of suitable lower semincontinuity results.

2. BASIC NOTATION AND PRELIMINARIES

We start with some basic notation. Let Ω ⊂ R
d be open and bounded. For every x ∈ R

d and

r > 0 we indicate by Br(x) ⊂ R
d the open ball with center x and radius r. If x = 0, we will often

use the shorthand Br. For x, y ∈ R
d, we use the notation x · y for the scalar product and |x| for the

Euclidean norm. The m-dimensional Lebesgue measure of the unit ball in R
m is indicated by κm for

every m ∈ N. We denote by Ld and Hk the d-dimensional Lebesgue measure and the k-dimensional

Hausdorff measure, respectively. The closure of A is denoted by A. The diameter of A is indicated by

diam(A). We write χA for the characteristic function of any A ⊂ R
d, which is 1 on A and 0 otherwise.

Given two functions f, g : [0,+∞) → R, we write f ∼ g, and we say that f and g are equivalent, if

there exist constants c1, c2 > 0 such that c1g(t) ≤ f(t) ≤ c2g(t) for any t ≥ 0. Similarly the symbol .
stands for ≤ up to a constant. L0(Ω) denotes the set of the measurable functions on Ω.

2.1. Generalized Φ-functions and Orlicz spaces. We introduce some basic definitions and useful facts

about generalized Φ-functions and Orlicz spaces. We will restrict to only considering concepts we will

use. We refer the reader to [20] for a comprehensive treatment of the topic.

Definition 2.1. Let ϕ : [0,+∞) → [0,+∞] be increasing with ϕ(0) = 0, limt→0+ ϕ(t) = 0 and

limt→+∞ ϕ(t) = +∞. Such ϕ is called a

(i) weak Φ-function if
ϕ(t)
t

is almost increasing, meaning that there exists L ≥ 1 such that
ϕ(t)
t

≤
Lϕ(s)

s
for 0 < t ≤ s.

(ii) convex Φ-function if ϕ is left-continuous and convex.

By virtue of Remark 2.6, each convex Φ-function is a weak Φ-function. If ϕ is a convex Φ-function,

then there exists ϕ′ the right derivative of ϕ, which is non-decreasing and right-continuous, and such

that

ϕ(t) =

ˆ t

0
ϕ′(s) ds .

A special subclass of convex Φ-functions is represented by the so called “nice Young functions”, also

known as N -functions (see, e.g., [22, Ch.I]).

Definition 2.2. A function ϕ : [0,∞) → [0,∞) is said to be anN -function if it admits the representation

ϕ(t) =

ˆ t

0
a(τ) dτ

where a(s) is right-continuous, non-decreasing for s > 0, a(s) > 0 for s > 0 and satisfies the conditions

a(0) = 0 , lim
s→+∞

a(s) = +∞ . (2.1)
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The function a(t) is nothing else than the right-derivative of ϕ(t). As a straightforward consequence

of the definition, we have that an N -function ϕ is continuous, ϕ(0) = 0 and ϕ is increasing. Moreover,

ϕ is a convex function, and, in view of Remark 2.6, it satisfies (inc)1. Conditions (2.1) imply

lim
t→0+

ϕ(t)

t
= 0 , lim

t→+∞

ϕ(t)

t
= +∞ . (2.2)

It can be shown that an equivalent definition ofN -function is the following: a continuous convex function

ϕ is called an N -function if it satisfies (2.2).

For our purposes, we need functions ϕ to depend also on the spatial variable x.

Definition 2.3. Let ϕ : Ω × [0,∞) → [0,∞]. We call ϕ a generalized weak Φ-function (resp., convex

Φ-function, N -function) if

(1) x 7→ ϕ(x, |f(x)|) is measurable for every f ∈ L0(Ω);
(2) t 7→ ϕ(x, t) is a weak Φ-function (resp., a convex Φ-function, an N -function) for every x ∈ Ω.

We write ϕ ∈ Φw(Ω), ϕ ∈ Φc(Ω) and ϕ ∈ N(Ω), respectively. If ϕ does not depend on x, we will

adopt the shorthands ϕ ∈ Φw, ϕ ∈ Φc and ϕ ∈ N , respectively. For the right-derivative of a generalized

convex Φ-function, we will use the notation ϕt in place of ϕ′.

For a bounded function ϕ : Ω × [0,+∞) → [0,+∞) and a ball Br(x0) ⊂ Ω we define, for every

t ≥ 0,

ϕ−
r,x0

(t) := inf
x∈Br(x0)

ϕ(x, t) and ϕ+
r,x0

(t) := sup
x∈Br(x0)

ϕ(x, t). (2.3)

Following the terminology of [20], we give the following definitions. The first three ones concern

with the regularity of ϕ with respect to the t- variable, while the last one is a continuity assumption with

respect to the spatial variable x.

Definition 2.4. Let p, q > 0. A function ϕ : Ω× [0,+∞) → [0,+∞) satisfies

(inc)p if t ∈ (0,+∞) 7→ ϕ(x,t)
tp

is increasing for every x ∈ Ω

(dec)q if t ∈ (0,+∞) 7→ ϕ(x,t)
tq

is decreasing for every x ∈ Ω

(A0) if there exists L ≥ 1 such that 1
L
≤ ϕ(x, 1) ≤ L for every x ∈ Ω

(VA1) if there exists an increasing continuous function ω : [0,+∞) → [0, 1] with ω(0) = 0 such that,

for any ball Br(x0) ⊂ Ω,

ϕ+
r,x0

(t) ≤ (1 + ω(r))ϕ−
r,x0

(t), ∀t > 0 such that ϕ−
r,x0

(t) ∈
[
ω(r),

1

Ld(Br(x0))

]
.

Remark 2.5. If ϕ satisfies (inc)p (resp., (dec)q) for some p > 0 (resp., q > 0), then so do ϕ+
r,x0

and ϕ−
r,x0

for any Br(x0) ⊂ Ω.

Remark 2.6. If ϕ : [0,+∞) → [0,+∞) is convex and ϕ(x, 0) = 0 for every x ∈ Ω, then ϕ satisfies

(inc)1. If ϕ satisfies (inc)p1 , then it satisfies (inc)p2 for every 0 < p2 ≤ p1. If ϕ satisfies (dec)q1 , then it

satisfies (dec)q2 for every q2 ≥ q1.

Next simple results can be found in [21, Section 3].

Proposition 2.7. Let 1 < p ≤ q < +∞ and ϕ ∈ Φc(Ω) with right derivative ϕt. Assume that ϕt
satisfies (inc)p−1 and (dec)q−1. Then

(i) ϕ satisfies (inc)p and (dec)q , and the following estimate hold:

ϕ(x, s)min{tp, tq} ≤ ϕ(x, ts) ≤ max{tp, tq}ϕ(x, s), ∀x ∈ Ω, ∀s, t ∈ [0,+∞). (2.4)
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(ii) ϕ(x, t) and tϕt(x, t) are equivalent, in the sense that

pϕ(x, t) ≤ t ϕt(x, t) ≤ q ϕ(x, t), ∀(x, t) ∈ Ω× [0,+∞); (2.5)

(iii) if, in addition, ϕt complies with (A0), then also ϕ does with constants depending on L, p, q.

More precisely,

1

Lq
≤ ϕ(x, 1) ≤ L

p
, ∀x ∈ Ω. (2.6)

If, in addition, ϕ(x, ·) ∈ C1([0,+∞)) for every x ∈ Ω, then ϕ ∈ N(Ω).

For ϕ ∈ Φw(Ω), the generalized Orlicz space is defined by

Lϕ(Ω) :=
{
f ∈ L0(Ω) : ‖f‖Lϕ(Ω) <∞

}

with the (Luxemburg) norm

‖f‖Lϕ(Ω) := inf

{
λ > 0 : ̺ϕ

(f
λ

)
≤ 1

}
, where ̺ϕ(f) :=

ˆ

Ω
ϕ(x, |f(x)|) dx.

We denote by W 1,ϕ(Ω) the set of f ∈ Lϕ(Ω) satisfying that ∂1f, . . . , ∂df ∈ Lϕ(Ω), where ∂if is the

weak derivative of f in the xi-direction, with the norm ‖f‖W 1,ϕ(Ω) := ‖f‖Lϕ(Ω)+
∑

i ‖∂if‖Lϕ(Ω). Note

that if ϕ satisfies (dec)q for some q ≥ 1, then f ∈ Lϕ(Ω) if and only if ̺ϕ(f) < ∞, and if ϕ satisfies

(A0), (inc)p and (dec)q for some 1 < p ≤ q, then Lϕ(Ω) and W 1,ϕ(Ω) are reflexive Banach spaces. In

addition we denote by W 1,ϕ
0 (Ω) the closure of C∞

0 (Ω) in W 1,ϕ(Ω).

We also need the following definitions and results about the maximal operator in Orlicz spaces (see [20,

Section 4.3]).

Definition 2.8. Given an open set Ω ⊆ R
d and f ∈ L1

loc(Ω), the (centered) Hardy-Littlewood maximal

operator is Mf : Ω → [0,∞] defined as

Mf(x) := sup
ρ>0

1

Ld(Bρ(x))

ˆ

Bρ(x)∩Ω
|f(y)|dy. (2.7)

Analogously, for ν a positive, finite Radon measure in R
d one can define

Mν(x) := sup
ρ>0

ν(Bρ(x))

Ld(Bρ)
, x ∈ R

d .

As a consequence of the Besicovitch covering theorem (see, e.g., [15]), it can be shown that

Ld({x ∈ R
d : Mν(x) > λ}) ≤ c

λ
ν(Rd)

for a constant c depending only on d.

It is also well-known that the maximal operator is bounded on Lp, for p > 1. Next theorem shows that

maximal operator is bounded on Lϕ provided the weak Φ-function ϕ satisfies (inc)p for some p > 1.

Proposition 2.9. Let an open set Ω ⊆ R
d and ϕ ∈ Φw be given. If p > 1 and ϕ satisfies (inc)p, then

there exists a µ > 0 such that

ϕ(µMf(x))
1
p≤M

(
ϕ(|f |)

1
p

)
(x)

for every ball B, x ∈ B ∩ Ω, and f ∈ Lϕ(Ω) satisfying

ˆ

Ω
ϕ(|f |) dx ≤ 1.

Remark 2.10. Proposition 2.9 is a particular case of [20, Corollary 4.3.3], since ϕ does not depend on

the x variable. Inspecting its proof one can say that the constant µ depends on ϕ in terms of ϕ−1(1).
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Corollary 2.11. Let ϕ ∈ Φw be satisfying (inc)p and (dec)q , with 1 < p ≤ q < +∞. Then there exists

C = C(ϕ−1(1), d, p, q) such that
ˆ

Ω
ϕ(Mf) dx ≤ C

ˆ

Ω
ϕ(|f |) dx

for every f ∈ Lϕ(Ω) satisfying

ˆ

Ω
ϕ(|f |) dx ≤ 1.

Proof. Noticing that ϕ(t) ≤ ϕ(µt)max{ 1
µp
, 1
µq
}, the previous proposition produces the result. �

2.2. BV and SBV functions. For a general survey on the spaces of BV and SBV functions we refer

for instance to [2]. Below, we just recall some basic definitions useful in the sequel.

If u ∈ L1
loc(Ω) and x ∈ Ω, the precise representative of u at x is defined as the unique value ũ(x) ∈ R

such that

lim
ρ→0+

1

ρd

ˆ

Bρ(x)
|u(y)− ũ(x)|dx = 0 .

The set of points in Ω where the precise representative of x is not defined is called the approximate

singular set of u and denoted by Su. We say that a point x ∈ Ω is an approximate jump point of u if

there exist a, b ∈ R and ν ∈ S
d−1, such that a 6= b and

lim
ρ→0+

−
ˆ

B+
ρ (x,ν)

|u(y)− a|dy = 0 and lim
ρ→0+

−
ˆ

B−

ρ (x,ν)

|u(y)− b|dy = 0

where B±
ρ (x, ν) := {y ∈ Bρ(x) : 〈y − x, ν〉 ≷ 0}. The triplet (a, b, ν) is uniquely determined

by the previous formulas, up to a permutation of a, b and a change of sign of ν, and it is denoted by

(u+(x), u−(x), νu(x)). The Borel functions u+ and u− are called the upper and lower approximate

limit of u at the point x ∈ Ω. The set of approximate jump points of u is denoted by Ju ⊆ Su.

The space BV (Ω) of functions of bounded variation is defined as the set of all u ∈ L1(Ω) whose

distributional gradient Du is a bounded Radon measure on Ω with values in R
d. Moreover, the usual

decomposition

Du = ∇uLd +Dcu+ (u+ − u−)⊗ νuHd−1⌊Ju
holds, where ∇u is the Radon-Nikodým derivative of Duwith respect to the Lebesgue measure and Dcu
is the Cantor part of Du. If u ∈ BV (Ω), then ∇u(x) is the approximate gradient of u for a.e. x ∈ Ω:

lim
ρ→0

−
ˆ

Bρ(x)

|u(y)− u(x)−∇u(x)(y − x)|
|y − x| dy = 0 .

For the sake of simplicity, we denote by Dsu = Dcu+ (u+ − u−)⊗ νuHd−1⌊Ju. If u ∈ BV (Ω), then

Hd−1(Su \ Ju) = 0; so in the sequel we shall essentially identify the two sets.

We recall that the space SBV (Ω) of special functions of bounded variation is defined as the set of all

u ∈ BV (Ω) such that Dsu is concentrated on Su; i.e., |Dsu|(Ω \ Su) = 0. Finally, for p > 1 the space

SBV p(Ω) is the set of u ∈ SBV (Ω) with ∇u ∈ Lp(Ω;Rd) and Hd−1(Su) <∞.

In order to recall a Poincaré-Wirtinger inequality for SBV functions with small jump set in a ball, we

first fix some notation useful also in the sequel. With given a, b ∈ R, we denote a ∧ b := min(a, b) and

a ∨ b := max(a, b). Let B be a ball in R
d. For every measurable function u : B → R, we set

u∗(s;B) := inf{t ∈ R : Ld({u < t} ∩B) ≥ s} for 0 ≤ s ≤ Ld(B),

and

med(u;B) := u∗

(
1

2
Ld(B);B

)
.
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For every u ∈ SBV (Ω) such that

(
2γisoHd−1(Su ∩B)

) d
d−1 ≤ 1

2
Ld(B) ,

we define

τ ′(u;B) := u∗

((
2γisoHd−1(Su ∩B)

) d
d−1

;B

)
,

τ ′′(u;B) := u∗

(
Ld(B)−

(
2γisoHd−1(Su ∩B)

) d
d−1

;B

)
,

and the truncation operator

TBu(x) := (u(x) ∧ τ ′′(u;B)) ∨ τ ′(u;B) , (2.8)

where γiso is the dimensional constant in the relative isoperimetric inequality.

We are now in position to state the aforementioned Poincaré-Wirtinger inequality, due to De Giorgi-

Carriero-Leaci (see [12, Theorem 3.1] for the original proof in the scalar setting, and [4, Theorem 2.5]

for the subsequent extension to vector-valued functions).

Theorem 2.12. Let u ∈ SBV (B) and assume that

(
2γisoHd−1(Su ∩B)

) d
d−1 ≤ 1

2
Ld(B) . (2.9)

If 1 ≤ p < d then the function TBu satisfies |DTBu(B)| ≤ 2
´

B
|∇u|dy,

(
ˆ

B

|TBu−med(u;B)|p∗ dx
) 1

p∗

≤ 2γisop(d− 1)

d− p

(
ˆ

B

|∇u|p dx
) 1

p

,

and

Ld({TBu 6= u} ∩B) ≤ 2
(
2γisoHd−1(Su ∩B)

) d
d−1

, (2.10)

where p∗ := dp
d−p . If p ≥ d, then, for any q ≥ 1,

(
ˆ

B

|TBu−med(u;B)|q dx
) 1

q

≤ c(q,N, γiso)(Ld(B))
1
q
+ 1

d
− 1

p

(
ˆ

B

|∇u|p dx
) 1

p

.

As a first application of Theorem 2.12 one can obtain the following sufficient condition for the exis-

tence of the approximate limit at a given point (see [2, Theorem 7.8]).

Theorem 2.13. Let u ∈ SBVloc(Ω) and x ∈ Ω. If there exist p, q > 1 such that

lim
ρ→0

1

ρd−1

[
ˆ

Bρ(x)
|∇u|p dy +Hd−1(Su ∩Bρ(x))

]
= 0 and lim sup

ρ→0
−
ˆ

Bρ(x)

|u(y)|q dy <∞ ,

then x 6∈ Su.
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2.3. The space SBV ϕ. Sobolev-Poincaré inequality and Lusin-type approximation. We denote by

SBV ϕ(Ω) the set of functions u ∈ SBV (Ω) with ∇u ∈ Lϕ(Ω;Rd) and Hd−1(Su) < +∞.

A fundamental ingredient in the proof of our main result will be the following Sobolev-Poincaré

inequality for SBV ϕ-functions with small jump set, extending Theorem 2.12 to the Orlicz setting. The

result below is a slight refinement of that proven in [1, Theorem 5.7] for r = 1. The case r > 1 can be

inferred with minor modifications, so we briefly sketch the proof.

Theorem 2.14. Let ϕ be a weak Φ-function satisfying (inc)p and (dec)q , let B be any ball and u ∈
SBV ϕ(B), and assume that

(
2γisoHd−1(Su ∩B)

) d
d−1 ≤ 1

2
Ld(B) . (2.11)

Then the function TBu satisfies |DTBu(B)| ≤ 2
´

B
|∇u|dy,

Ld({TBu 6= u} ∩B) ≤ 2
(
2γisoHd−1(Su ∩B)

) d
d−1

, (2.12)

and there exists r ∈ (1, d
d−1 ) such that

(
ˆ

B

ϕ(|TBu−med(u;B)|)r dx
)1

r

≤ C

ˆ

B

ϕ(|∇u|) dx, (2.13)

where C = C(d, p, q).

Proof. Let r ∈ (1, pd−1
p(d−1) ] be fixed. In particular, this implies that r < d

d−1 . It will suffice to check that

the functions

φ(t) := ϕ
d

d−1 (t)t−
1

d−1 and ψ(t) := ϕr(t)

comply with the assumptions of [1, Lemma 5.8]. Indeed, for every 0 < t ≤ 1, recalling that ϕ−1 is

concave, we have

0 ≤ φ(ψ−1(t)) =
t

d
(d−1)r

[ϕ−1(t
1
r )]

1
d−1

. t
1
r ,

whence limt→0+ φ(ψ
−1(t)) = 0. Moreover, t→ φ(t)

ψ(t) is increasing, since

φ(t)

ψ(t)
=

[
ϕ(t)

t
1

d−r(d−1)

] d
d−1

−r

,

and t→ ϕ(t)

t
1

d−r(d−1)

, with 0 < 1
d−r(d−1) ≤ p, is increasing by Remark 2.6. Then (2.13) can be inferred by

arguing as in the proof of [1, Theorem 5.7], so we omit the details. �

A consequence of Theorem 2.14 is the following compactness result.

Theorem 2.15. Let B ⊂ Ω be a ball, and {ϕj}j∈N ⊂ Φw be complying with (inc)p, (dec)q , and (A0)

( 1
L
≤ ϕj(1) ≤ L). Let r > 1 be the exponent of Theorem (2.14). If {uj}j∈N ⊂ SBV ϕj (B) is such that

Λ := sup
j∈N

ˆ

B

ϕj(|∇uj |) dy < +∞ , lim
j→+∞

Hd−1(Suj ∩B) = 0, (2.14)
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then there exist a function u0 ∈W 1,1(B) and a subsequence (not relabeled) of {uj} such that

(i) ūj := TBuj −med(uj ;B) → u0 Ld − a.e. in B ,

(ii)

ˆ

B

ϕj(|ūj |)rdy ≤ C , where C = C(d, p, q,Λ) > 0 ,

(iii) ∇ūj ⇀ ∇u0 weakly in L1(B) ,

(iv) Ld({ūj 6= uj} ∩B1) ≤ 2
(
2γisoHd−1(Suj ∩B1)

) d
d−1

.

(2.15)

Proof. Noting that
1

L
min{tp, tq} ≤ ϕj(t) ≤ Lmax{tp, tq} ,

the result is a straightforward application of Theorem 2.14, compactness theorems in BV and SBV (see

[2, Theorem 3.23 and Theorem 4.7]), and [2, Remark 7.6]. �

We conclude this section with the following theorem, proved in [1, Lemma 7.2], which is a Lusin-

type approximation result in SBV ϕ, as it concerns the approximation of SBV ϕ functions with Lipschitz

functions in the unit ball.

Theorem 2.16. Let ϕ ∈ Φw(Ω) be satisfying (inc)p. For every u ∈ SBV ϕ(B1) ∩ L∞(B1) and every

λ > 0 there exists a Lipschitz function uλ : B1 → R satisfying Lip(uλ) ≤ c λ with c = c(d), such that

uλ = u in {M |Du| ≤ λ} and

Ld(A ∩ {M |Du| > λ}) ≤ 2
c

λ
‖u‖L∞(B1)Hd−1(Su) +

1

ϕ−
B1

(λ)

ˆ

{M |∇u|>λ}∩A
ϕ−
B1

(M |∇u|) dx,

for any Borel set A ⊂ B1, where M is introduced in Definition 2.8.

2.4. Auxiliary results. This section collects several supporting results used in the proof of the decay

lemma (Section 3.1).

First, we recall a regularity result from [14] for Sobolev minimizers of autonomous variational integrals

(see Lemma 5.8 therein), which will be used in our proof. As noticed in [21, Lemma 4.12], where a more

general result is proved, the constant C0 depends on ϕ only through p and q.

Proposition 2.17. Let ϕ ∈ Φc∩C1([0,+∞))∩C2((0,+∞)) be with ϕ′ satisfying (inc)p−1 and (dec)q−1

for some 1 < p ≤ q. LetBR be a ball in R
d and let v ∈W 1,ϕ(BR) be a local minimizer of the functional

w 7→
´

BR
ϕ(|∇w|) dx. Then there exists a constant C0 = C0(p, q, d) such that

sup
BR/2

ϕ(|∇v|) ≤ C0−
ˆ

BR

ϕ(|∇v|)dx . (2.16)

Remark 2.18. Actually, the C2 regularity assumption on ϕ can be removed working as in [21], finding

for every ε > 0 a suitably regular (twice differentiable) auxiliary function ϕε and approximating the

minimizer with the solution to the related minimization problem, identified by ϕε.
Let ϕ ∈ C1([0,+∞)). Let η ∈ C∞

c (R) be such that η ≥ 0, supp η ⊂ (0, 1) and ‖η‖1 = 1, and consider

for ε > 0 the scaled kernel ηε(t) :=
1
ε
η( t

ε
). According to [21] we define

ϕε(t) :=

ˆ +∞

0
ϕ(tσ)ηε(σ − 1) dσ .

Then it easy to check that ϕε ∈ C∞((0,+∞)) ∩ C1([0,+∞)),

ϕ(t) ≤ ϕε(t) ≤ (1 + ε)qϕ(t) (2.17)

and (ϕε)′ satisfies (inc)p−1 and (dec)q−1.
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Now, let u ∈ W 1,ϕ(BR) be a local minimizer of the functional w 7→
´

BR
ϕ(|∇w|) dx and Br ⊂⊂

BR. Note that, by (2.17), it holds that u ∈W 1,ϕε
(Br). Let uε ∈W 1,ϕε

(Br) be the minimizer of
ˆ

Br

ϕε(|∇v|) dx such that uε = u on ∂Br , (2.18)

whose existence is ensured by the direct methods in the calculus of variations. Then, from the minimality

of uε and taking into account (2.17) we get
ˆ

Br

ϕ(|∇uε|) dx ≤
ˆ

Br

ϕε(|∇uε|) dx ≤
ˆ

Br

ϕε(|∇u|) dx ≤ (1 + ε)q
ˆ

Br

ϕ(|∇u|) dx , (2.19)

whence we deduce that the sequence uε is equibounded in W 1,ϕ(Br). Then, since by virtue of Propo-

sition 2.7(i) ϕ satisfies (inc)p and (dec)q , the space W 1,ϕ is reflexive [20, Theorem 6.1.4(d)]. Therefore,

uε weakly converges (up to a subsequence not relabeled) in W 1,ϕ(Br) to a function ū such that ū = u
on ∂Br. Now, by lower semicontinuity we get

ˆ

Br

ϕ(|∇ū|) dx ≤ lim inf
ε→0

ˆ

Br

ϕ(|∇uε|) dx ≤
ˆ

Br

ϕ(|∇v|) dx (2.20)

for every function v coinciding with u on ∂Br. Thus, ū is a local minimizer of w 7→
´

Br
ϕ(|∇w|) dx,

and, by uniqueness of solutions to the boundary value problem, it holds that ū = u on Br. Combining

(2.19) and (2.20) we also get

lim
ε→0

ˆ

Br

ϕ(|∇uε|) dx =

ˆ

Br

ϕ(|∇u|) dx .

Now, by [21, Lemma 4.12 (4.13)], for any Bρ(x0) ⊂ Br we have

sup
B ρ

2
(x0)

|∇uε| ≤ C−
ˆ

Bρ(x0)
|∇uε|dx ≤ Cϕ−1

(
−
ˆ

Bρ(x0)
ϕ(|∇uε|)dx

)
,

where the constant C depends only on p, q and d. Passing to the limit as ε→ 0 we finally get

sup
B ρ

2
(x0)

|∇u| ≤ Cϕ−1

(
−
ˆ

Bρ(x0)
ϕ(|∇u|)dx

)
.

Finally, we consider the ϕ-recession function associated to a sequence of convex functions ϕj , cap-

turing the behaviour at infinity of ϕj (see also [19, Lemma 3.2] and [23, Lemma 4.3]).

Lemma 2.19. Let (ϕj)j∈N, ϕj : [0,+∞) → [0,+∞), be a sequence of C1 convex functions satisfying

ϕj(0) = 0 and assume that ϕ′
j satisfies (inc)p−1 and (dec)q−1, where 1 < p ≤ q < +∞. Let (βj) ⊂

(0,∞) be a sequence such that limj βj = +∞. Then, setting

ϕ̃j(t) :=
ϕj(tβj)

ϕj(βj)
, t ∈ [0,+∞) , j ∈ N ,

there exists a subsequence (βjk) such that ϕ̃jk converge to a C1 convex function ϕ∞ uniformly on com-

pact subsets of [0,+∞). Moreover, ϕ′
∞ satisfies (inc)p−1 and (dec)q−1.

Proof. The assertion follows in a standard way noticing that each ϕ̃j is uniformly bounded and equicon-

tinuous in any compact set of [0,+∞). Indeed, for every t ≥ 0, thanks to (2.4),

ϕ̃j(t) ≤ max{tp, tq},
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which entails the equiboundedness (with respect to j) on compact sets of [0,+∞). Moreover, given

t > t0 ≥ 0, from (2.5) and (2.4), we have

ϕ̃j(t)−ϕ̃j(t0) =
ˆ t

t0

d

dτ
ϕ̃j(τ)dτ =

ˆ t

t0

ϕ′
j(τβj)βj

ϕj(βj)
dτ ≤

ˆ t

t0

qϕj(τβj)

ϕj(βj)τ
dτ ≤ q

ˆ t

t0

max{τp−1, τ q−1}dτ,

from which we deduce the equicontinuity of ϕ̃j on compact sets of [0,+∞), since the function t →
max{tp−1, tq−1} ∈ L1

loc([0,+∞)). Then, by Ascoli-Arzelà Theorem, up to a subsequence (not rela-

beled), ϕ̃j converges to a function ϕ∞, uniformly on compact sets of [0,+∞). Obviously, the continuous

function ϕ∞ inherits the convexity of ϕj . Moreover, we can prove that ϕ∞ is a C1 function. Actually,

the regularity properties of ϕ′
j allow us to improve the convergence of ϕ̃j , entailing the local uniform

convergence of ϕ̃′
j . From now on let us consider the convergent subsequence of ϕ̃j , not relabeled.

Since, for t > 0, again by (2.5) and (2.4) we have

ϕ̃′
j(t) =

βjϕ
′
j(tβj)

ϕj(βj)
=
tβjϕ

′
j(tβj)

ϕj(tβj)

ϕj(tβj)

tϕj(βj)
≤ q

max{tp, tq}
t

= qmax{tp−1, tq−1}, (2.21)

and since ϕ̃′
j(0) = 0, we get the uniform boundedness of ϕ̃′

j in any compact set of [0,+∞).

Now, for t > t0 > 0, we use the property (dec)q−1 of ϕ′
j (and accordingly of ϕ̃′

j) and (2.21), to obtain

ϕ̃′
j(t)− ϕ̃′

j(t0) ≤ ϕ̃′
j(t0)

[(
t

t0

)q−1

− 1

]
≤ qmax{tp−1

0 , tq−1
0 }

[
tq−1 − tq−1

0

tq−1
0

]
,

which, together with the fact that

ϕ̃′
j(t)− ϕ̃′

j(0) = ϕ̃′
j(t) ≤ qmax{tp−1, tq−1}, t > 0,

lead to the equicontinuity of ϕ̃′
j on compact sets of [0,+∞). Then ϕ∞ is a C1 function (obtained as the

uniform limit on compact sets of a subsequence of ϕ̃′
j). Finally, we observe that ϕ′

∞ satisfies (inc)p−1

and (dec)q−1. �

3. FREE-DISCONTINUITY FUNCTIONALS WITH NON-STANDARD GROWTH

In this paragraph we consider integral functionals of the form

F (u, c,A) :=

ˆ

A

ϕ(x, |∇u|) dx + cHd−1(Su ∩A), (3.1)

defined on SBVloc(Ω), where c > 0 andA ⊂ Ω is an open set. The function ϕ : Ω×[0,+∞) → [0,+∞)
satisfies the following assumptions:

(H1) ϕ ∈ Φc(Ω) ∩ C1([0,+∞));
(H2) ϕt satisfies (A0), (inc)p−1, (dec)q−1, where 1 < p ≤ q;

(H3) ϕ satisfies (VA1).

Since (H1) and (H2) are in force, by virtue of Proposition 2.7 we conclude that ϕ ∈ N(Ω) and it

satisfies (2.4)-(2.6). Concerning the modulus of continuity of ω(r) in (VA1) for our purposes it will be

enough to assume that ω(0) = 0 without prescribing any decay rate. We remark that in the Sobolev case

maximal regularity has been obtained in [21] under the assumption ω(r) . rβ, for some β ∈ (0, 1].
This additional assumption is however not needed for Ahlfors type regularity of the jump set, as in the

blow-up procedure one only needs to be in a position for using (2.16). Clearly, it may come again into

play for having regularity of u in Ω \K , which then directly stems out of the result of [21].

We recall that a function u ∈ SBVloc(Ω) satisfying F (u, c,A) < +∞ for all open sets A ⊂⊂ Ω is a

local minimizer of F (·, c,Ω) in Ω if

F (u, c,A) ≤ F (v, c,A)
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for all v ∈ SBVloc(Ω) satisfying {v 6= u} ⊂⊂ A ⊂⊂ Ω. Then, in order to get an estimate of how far

a function u is from being a minimizer of F in Ω, the classical definition of deviation from minimality

Dev(u, c,Ω) has been introduced (see, e.g., [2]): it is defined as the smallest λ ∈ [0,+∞] such that

F (u, c,A) ≤ F (v, c,A) + λ

for all v ∈ SBVloc(Ω) satisfying {v 6= u} ⊂⊂ A ⊂⊂ Ω. Clearly, u is a local minimizer of F (·, c,Ω) in

Ω if Dev(u, c,Ω) = 0.

3.1. A decay lemma. In this Section we prove a crucial decay property of the energy F (see (3.1)) in

small balls. The proof is the non-standard growth counterpart of the well-known argument, based on a

blow-up procedure, devised for energies with p-growth (see, e.g., [2, Lemma 7.14]).

Recall that the shorthand F (u,A) below stands for F (u, 1, A), as defined in (3.1).

Lemma 3.1 (Decay estimate). Let ϕ be a function satisfying (H1), (H2), (H3). There is a constant

C1 = C1(d, p, q) with the property that, for every Ω0 ⊂⊂ Ω and for every τ ∈ (0, 1) there exist

ε = ε(τ,Ω0), θ = θ(τ,Ω0) in (0, 1) such that if u ∈ SBV (Ω) satisfies, for x ∈ Ω0 and Bρ(x) ⊂⊂ Ω,

ρ < ε2,

F (u,Bρ(x)) ≤ ερd−1, Dev(u,Bρ(x)) ≤ θF (u,Bρ(x)),

then

F (u,Bτρ(x)) ≤ C1τ
dF (u,Bρ(x)). (3.2)

Proof. It is enough to assume τ ∈ (0, 1/2) (otherwise just take C1 = 2d). We argue by contradiction

and assume that (3.2) does not hold. In this case, there exist a sequence uj ∈ SBV (Ω), sequences of

nonnegative numbers εj , θj , ρj , with limj εj = limj θj = 0, ρj ≤ ε2j , and xj ∈ Ω0, with Bρj(xj) ⊂⊂ Ω,

such that

F (uj , Bρj (xj)) ≤ εjρ
d−1
j , Dev(uj , Bρj (xj)) ≤ θjF (uj , Bρj (xj)) , (3.3)

and

F (uj , Bτρj (xj)) > C0τ
dF (uj , Bρj (xj)) , (3.4)

where C0 comes from (2.16) in Proposition 2.17 (see Remark 2.18).

Step 1: Blow-up. For every j, we consider the N -function ψj : [0,+∞) → [0,+∞) and the function

wj : B1 → R defined as

ψj(t) := ϕ(xj , t) and wj(y) :=
uj(xj + ρjy)

σjρj
,

respectively, where

σj := ψ−1
j

(
1

γjρj

)
, (3.5)

and γj :=
1
εj

. We denote by mj = med(wj , B1) and define vj = wj −mj ; if we set

Fj(v, γj , Bρ) :=

ˆ

Bρ

ϕj(y, |∇v|) dy + γjHd−1(Sv, Bρ),

with ϕj(y, t) := γjρjϕ(xj + ρjy, tσj), (3.3) and (3.4) can be rewritten respectively as

Fj(vj , γj , B1) ≤ 1 , Devj(vj , γj , B1) ≤ θj , (3.6)

and

Fj(vj , γj , Bτ ) > C0τ
dFj(vj , γj , B1) . (3.7)

The first bound in (3.6) in turn implies
ˆ

B1

ϕ−
j (|∇vj|) dy ≤ 1, and Hd−1(Svj ∩B1) ≤

1

γj
= εj , (3.8)
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where ϕ−
j (t) := inf

B1

ϕj(y, t). The function ϕ−
j is a weak Φ-function satisfying (inc)p, (dec)q , and, as a

consequence, (2.4); that is,

ϕ−
j (s)min{tp, tq} ≤ ϕ−

j (st) ≤ max{tp, tq}ϕ−
j (s) , ∀s, t.

In particular, for j sufficiently large,

min{tp, tq} . ϕ−
j (t) ≤ max{tp, tq}, (3.9)

the constant hidden in . being independent of j. In fact ϕ−
j (1) ≤ 1, and, defining ϕ+

j (t) := sup
B1

ϕj(y, t),

since from the definition

ϕ±
j (t) = γjρjϕ

±
ρj
(tσj) ,

by assumption (VA1),

ϕ−
j (1) ≥

1

2
ϕ+
j (1) ≥

1

2
(3.10)

if ϕ−
ρj
(σj) ∈ [ω(ρj),

1
Ld(Bρj )

]. For j large enough, ϕ−
ρj
(σj) < ω(ρj) ≤ 1 does not occur since, by (2.4)

and (2.6), this would entail 1
γjρj

equibounded. If in the end ϕ−
ρj
(σj) >

1
Ld(Bρj )

, then

ϕ−
j (1)>γjρj

1

κdρ
d
j

=
1

κdεjρ
d−1
j

≥ 1, (3.11)

for j large enough. Analogously, ϕ+
j satisfies (inc)p, (dec)q , and, for j sufficiently large,

min{tp, tq} ≤ ϕ+
j (t) . max{tp, tq},

the constant hidden in . being independent of j. Since 0 is a median for all vj , taking into account

Theorem 2.15 (applied with ϕj = ϕ−
j ), and extracting eventually a subsequence (not relabeled for

convenience), we find a function v0 ∈W 1,1(B1) such that the following scheme holds

(i) v̄j := TB1vj → v0 Ld − a.e. in B1 ,

(ii) ∃ r ∈ (1, d
d−1 ) such that

ˆ

B1

ϕ−
j (|v̄j |)rdy ≤ C,

(iii) ∇v̄j ⇀ ∇v0 weakly in L1(B1) ,

(iv) Ld({v̄j 6= vj} ∩B1) ≤ 2
(
2γisoHd−1(Svj ∩B1)

) d
d−1 −→

j→+∞
0 .

(3.12)

Let us observe that (3.12)(iv) and (3.8) imply that

lim
j→+∞

γj Ld({v̄j 6= vj} ∩B1) = 0, (3.13)

since

γj Ld({v̄j 6= vj} ∩B1) ≤ 2 (2γiso)
d

d−1 ε
1

d−1

j .

Step 2: Modification of v̄j . Introducing a further truncation, depending on ϕ and on the ball Bρj (xj), we

modify the sequence v̄j in order to extend the Sobolev-Poincaré inequality given by Theorem 2.14 for

SBV ϕ functions with small jump set to the cases where ϕ is a generalized Orlicz function satisfying our

assumptions.

In order to do that, we introduce the sequence

Tj :=
(ϕ−

ρj
)−1(1/ρµj )

σj
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for some fixed µ ∈ (1, d). Recalling that ψ−1
j (ts) ≥ min{s

1
p , s

1
q }ψj(t) for every s, t, we have

Tj ≥
ψ−1
j (1/ρµj )

σj
≥
(

γj

ρµ−1
j

) 1
q

,

so that lim
j→+∞

Tj = +∞. Moreover, from ϕ−
ρj
(Tjσj) =

1
ρ
µ
j

we deduce that

lim
j→+∞

ϕ−
ρj
(Tjσj) ρ

d
j = 0, (3.14a)

lim
j→+∞

ϕ−
ρj
(Tjσj) ρj = +∞ . (3.14b)

Correspondingly, for every j we consider the truncation

v̂j := Tj ∧ v̄j ∨ (−Tj) .
By definition

|v̂j | ≤ Tj =⇒ ϕ−
ρj
(|v̂j |σj) ≤ ϕ−

ρj
(Tjσj),

thus, using (3.14a), the set

{
ϕ−
ρj
(|v̂j |σj) > 1

Ld(Bρj
)

}
∩ B1 is empty if j is large. On the other hand, on

the set Sj =
{
ϕ−
ρj
(|v̂j |σj) < ω(ρj)

}
∩B1, one has

min{(|v̂j |σj)p, (|v̂j |σj)q} ≤ ω(ρj)Lq ≤ 1,

for j large enough. Taking these facts into account, and using assumption (VA1) on the set B1\Sj , for

r > 1 as in (3.12)(ii) we have
ˆ

B1

ϕ+
j (|v̂j |)r dy =

ˆ

Sj

ϕ+
j (|v̂j |)r dy +

ˆ

B1\Sj

ϕ+
j (|v̂j |)r dy

≤ (ω(ρj)Lq)
rp
q Ld(B1) + 2r

ˆ

B1

ϕ−
j (|v̂j |)r dy

≤ (ω(ρj)Lq)
rp
q Ld(B1) + 2r

ˆ

B1

ϕ−
j (|v̄j |)r dy ≤ C

for j large enough. Moreover, with Chebychev inequality,

γj Ld({v̂j 6= v̄j} ∩B1) ≤ γj Ld({|v̄j | ≥ Tj} ∩B1) ≤
C

ρjϕ
−
ρj (Tjσj)

−→
j→+∞

0,

thanks to (3.14b), concluding that the sequence (v̂j)j∈N satisfies

(i) v̂j → v0 Ld − a.e. in B1 ,

(ii) there exists j0:

ˆ

B1

ϕ+
j (|v̂j |)rdy ≤ C, for j ≥ j0

(iii) ∇v̂j ⇀ ∇v0 weakly in L1(B1) ,

(iv) lim
j→+∞

γj Ld({v̂j 6= v̄j} ∩B1) = 0 .

(3.15)

Step 3: The limit map. We now prove that the function ϕj(y, t) converges to an N -function ϕ∞(t)
uniformly on B1 × K , where K is any compact set in [0,+∞). Moreover, ϕ∞ is a C1([0,+∞))
function such that ϕ′

∞ satisfies (inc)p−1 and (dec)q−1. Setting

ψ̃j(t) := γjρjψj(tσj) = γjρjϕ (xj, tσj) ,
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we start by proving that, with fixed R > 0, there exists j1 ≥ 1 such that

|ϕj(y, t)− ψ̃j(t)| ≤ ωj,R, for every (y, t) ∈ B1 × [0, R], for j ≥ j1, (3.16)

for some ωj,R which is infinitesimal as j → +∞. In fact, we observe that

|ϕj(y, t)− ψ̃j(t)| = γjρj |ϕ(xj + ρjy, tσj)− ϕ(xj , tσj)|
≤ γjρj ω(ρj)ϕ

−
ρj
(tσj),

if ϕ−
ρj
(tσj) ∈ [ω(ρj),

1
Ld(Bρj )

], thanks to (H3). Recalling the definitions of ϕ−
ρj

and ψj , together with

(2.4), the last term can be estimated as

γjρj ω(ρj)ϕ
−
ρj
(tσj) ≤ γjρj ω(ρj)ψj(tσj) ≤ max{Rp, Rq}ω(ρj) .

On the other hand, if ϕ−
ρj
(tσj) < ω(ρj), from (2.4) and (2.6), we deduce

min{(tσj)p, (tσj)q} ≤ Lqω(ρj) ≤ 1, for j large enough,

entailing

tσj ≤ (Lqω(ρj))
1
q .

Then

|ϕj(y, t)− ψ̃j(t)| ≤ γjρj2(Lqω(ρj))
p
q
L

p
. εj .

Finally, case ϕ−
ρj
(tσj) >

1
Ld(Bρj

)
cannot occur for j large enough since, taking into account (2.4) and

(3.5), it would lead to

1

Ld(Bρj )
< ψj(tσj) ≤ max{tp, tq} 1

γjρj
≤ max{Rp, Rq}εj

ρj
,

that is
1

ρd−1
j

< max{Rp, Rq}κd εj ,

which clearly would give a contradiction for j large.

Therefore, (3.16) is proven with ωj,R := max
{
max{Rp, Rq}ω(ρj), 2(Lqω(ρj))

p
q L
p
εj

}
for j large

enough.

Now, recalling (3.5), thanks to Lemma 2.19, applied with βj := σj to the sequence

ψ̃j(t) =
ψj(tσj)

ψj(σj)
,

we may conclude that up to a subsequence

ϕj(y, t) → ϕ∞(t) uniformly on B1 ×K , where K ⊂ [0,+∞) is compact, (3.17)

for a C1([0,+∞)) convex function ϕ∞ such that ϕ′
∞ satisfies (inc)p−1 and (dec)q−1.

Step 4: Lower semicontinuity. We next turn our attention to the proof of the following lower semiconti-

nuity result:
ˆ

B1

ϕ∞(|∇v0|) dy ≤ lim inf
j→+∞

ˆ

B1

ϕj(y, |∇v̂j |) dy. (3.18)

We may follow the argument of [1, Proposition 7.3], and even if only a few changes are significant, we

prefer to give the details of the proof for the sake of completeness.

First, we notice that it will suffice to show the above inequality for ∇v̂Tj ⇀ ∇vT0 weakly in L1, where

v̂Tj and vT0 are the classical truncations at level T > 0 of v̂j and v0, respectively, since ϕj(y, 0) = 0 on



FREE-DISCONTINUITY PROBLEMS WITH NON-STANDARD GROWTH 17

B1. So, up to possibly replacing each v̂j with the corresponding truncation, we can suppose that (v̂j)j is

bounded uniformly with respect to j; namely,

‖v̂j‖∞ ≤ T , for every j.

Thanks to the first bound in (3.8), we apply Corollary 2.11 to ϕ−
j , which is a weak Φ-function satisfying

(inc)p and (dec)q , obtaining
ˆ

B1

ϕ−
j (M |∇v̂j |) dy ≤

ˆ

B1

ϕ−
j (M |∇vj |) dy ≤ C, (3.19)

having taken into account that, thanks to (3.9), (ϕ−
j )

−1(1) ≃ 1, and the hidden constants do not de-

pend on j. By Chacon’s Biting Lemma (see, e.g., [2, Lemma 5.32]) there exist a sequence of Borel

subsets Ah of B1 such that Ld(Ah) → 0 as h → +∞, and a (not relabelled) subsequence such that

(ϕ−
j (M |∇v̂j |)χB1\Ah

)j is equintegrable for every h ≥ 1.

Let λ > 1. Then, applying Theorem 2.16 to v̂j , we find vλj : B1 → R such that

Lip(vλj ) ≤ c λ and vλj = v̂j in B1 \ Eλj , (3.20)

where Eλj := {M |Dv̂j | > λ} and

Ld(Eλj \ A) ≤ 2
c T

λ
Hd−1(Sv̂j ) +

1

ϕ−
j (λ)

ˆ

{M |∇v̂j |>λ}\A
ϕ−
j (M |∇v̂j |) dy, (3.21)

for any Borel set A ⊂ B1. Moreover, from Chebychev inequality, (3.19), (inc)p for ϕ−
j , and the fact that

by (3.9), ϕ−
j (1) & 1 for j large enough, we deduce

Ld({M |∇v̂j | > λ}) ≤ 1

ϕ−
j (1)λ

p

ˆ

{M |∇v̂j |>λ}
ϕ−
j (M |∇v̂j |) dy ≤ C

λp
, (3.22)

for j large enough. We compute
ˆ

B1

ϕj(y, |∇v̂j |) dy ≥
ˆ

B1\(Ah∪E
λ
j )
ϕj(y, |∇vλj |) dy =

ˆ

B1\Ah

ϕj(y, |∇vλj |) dy

−
ˆ

Eλ
j \Ah

ϕj(y, |∇vλj |) dy =

ˆ

B1\Ah

[
ϕj(y, |∇vλj |)− ϕ∞(|∇vλj |)

]
dy

+

ˆ

B1\Ah

ϕ∞(|∇vλj |) dy −
ˆ

Eλ
j \Ah

ϕj(y, |∇vλj |) dy.

Since the convergence (3.17) implies

lim
j→+∞

ˆ

B1\Ah

[
ϕj(y, |∇vλj |)− ϕ∞(|∇vλj |)

]
dy = 0 ,

passing to the liminf in the previous inequality we obtain

lim inf
j→+∞

ˆ

B1

ϕj(y, |∇v̂j |) dy ≥ lim inf
j→+∞

ˆ

B1\Ah

ϕ∞(|∇vλj |) dy − lim sup
j→+∞

ˆ

Eλ
j \Ah

ϕj(y, |∇vλj |) dy.

(3.23)

We are first dealing with the second term. We have
ˆ

Eλ
j \Ah

ϕj(y, |∇vλj |) dy ≤
ˆ

Eλ
j \Ah

ϕ+
j (|∇vλj |) dy.
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InEλj \Ah we distinguish between the points ofB1 where ϕ−
ρj
(|∇vλj |σj) ∈ [ω(ρj), 1/Ld(Bρj )], denoting

the corresponding set by S1
j,λ, and the points where that condition does not hold. We then define

S2
j,λ :=

{
ϕ−
ρj
(|∇vλj |σj) < ω(ρj)

}
∩B1 and S3

j,λ :=
{
ϕ−
ρj
(|∇vλj |σj) > 1/Ld(Bρj )

}
∩B1.

The set S3
j,λ has to be empty for j sufficiently large, as otherwise, using (2.4) for any fixed point therein,

the resulting inequality λq

γjρj
> 1

κdρ
d
j

would imply
γj

ρd−1
j

uniformly bounded with respect to j.

In S2
j,λ, thanks to (2.4) and (2.6), min{(|∇vλj |σj)p, (|∇vλj |σj)q} ≤ Lqω(ρj) ≤ 1 for j large enough,

then

ˆ

(Eλ
j \Ah)∩S

2
j,λ

ϕ+
j (|∇vλj |) dy

≤ γjρj

ˆ

(Eλ
j \Ah)∩S

2
j,λ

max{(|∇vλj |σj)p, (|∇vλj |σj)q}ϕ+
ρj
(1) dy

≤ κd(Lqω(ρj))
p
q
L

p
γjρj −→

j→+∞
0.

In S1
j,λ condition (VA1) holds, then

ˆ

(Eλ
j \Ah)∩S

1
j,λ

ϕ+
j (|∇vλj |) dy ≤ 2

ˆ

(Eλ
j \Ah)∩S

1
j,λ

ϕ−
j (|∇vλj |) dy ≤ cϕ−

j (λ)Ld(Eλj \ Ah)

≤ c
ϕ−
j (λ)

λ
Hd−1(Svj ) + c

ˆ

{M |∇v̂j |>λ}\Ah

ϕ−
j (M |∇v̂j |) dy

≤ cλq−1Hd−1(Svj ) + c

ˆ

{M |∇v̂j |>λ}\Ah

ϕ−
j (M |∇v̂j |) dy,

where we used (3.20), (3.21), (3.9). From the equiintegrability of the functions ϕ−
j (M |∇v̂j |) in B1 \ Ah

and from (3.22), given η > 0, we fix λ = λ(η) sufficiently large in order that

c

ˆ

{M |∇v̂j |>λ}\Ah

ϕ−
j (M |∇v̂j |) dy < η. (3.24)

Therefore we can state that

lim sup
j→+∞

ˆ

Eλ
j \Ah

ϕj(y, |∇vλj |) dy < η.

Concerning the first term in (3.23), for the above fixed λ = λ(η), the sequence (vλj )j is equibounded in

W 1,∞(B1), therefore, up to a subsequence, it converges to a function vλ weakly∗ in W 1,∞(B1) and in

measure. Moreover, by the lower semicontinuity under convergence in measure of the map

w 7→ Ld({x ∈ B1 \Ah : w(x) 6= 0}),
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then

λpLd({x ∈ B1 \Ah : vλ 6= v0}) ≤ lim inf
j→+∞

λpLd({x ∈ B1 \ Ah : vλj 6= v̂j})

≤ lim inf
j→+∞

λpLd(Eλj \Ah)

≤ lim inf
j→+∞

λp

ϕ−
j (λ)

ˆ

{M |∇v̂j |>λ}\Ah

ϕ−
j (M |∇v̂j |) dy

≤ lim inf
j→+∞

1

ϕ−
j (1)

ˆ

{M |∇v̂j |>λ}\Ah

ϕ−
j (M |∇v̂j |) dy

≤ c lim inf
j→+∞

ˆ

{M |∇v̂j |>λ}\Ah

ϕ−
j (M |∇v̂j |) dy ≤ c η,

(3.25)

using that ϕ−
j satisfies (inc)p, the bound from above of ϕ−

j (1), obtained in (3.10) and (3.11), and (3.24).

All things considered, setting Cs := {x ∈ B1 : |∇v0(x)| ≤ s}, from (3.23) we derive

lim inf
j→+∞

ˆ

B1

ϕj(y, |∇v̂j |) dy ≥
ˆ

B1\Ah

ϕ∞(|∇vλ|) dy − η

≥
ˆ

(B1\Ah)∩{vλ=v0}∩Cs

ϕ∞(|∇v0|) dy − η

=

ˆ

(B1\Ah)∩Cs

ϕ∞(|∇v0|) dy −
ˆ

(B1\Ah)∩{vλ 6=v0}∩Cs

ϕ∞(|∇v0|) dy − η

≥
ˆ

(B1\Ah)∩Cs

ϕ∞(|∇v0|) dy − ϕ∞(s)Ld({x ∈ B1 \Ah : vλ 6= v0})− η

≥
ˆ

(B1\Ah)∩Cs

ϕ∞(|∇v0|) dy − ϕ∞(s)c η − η,

where we used (3.25) in the last inequality. Thus, letting first η tend to zero, then h and finally s tend to

infinity, we proved (3.18). In the same vein, (3.18) holds in every ball Bρ, for ρ ∈ (0, 1], of course.

Step 5: Asymptotics. Now we integrate Hd−1({˜̂vj 6= ṽj} ∩ ∂Bρ) with respect to ρ, and using coarea

formula, (3.13), and (3.15)(iv), we obtain

γj

ˆ 1

0
Hd−1({˜̂vj 6= ṽj} ∩ ∂Bρ) dρ = γj Ld({v̂j 6= vj} ∩B1) −→

j→+∞
0.

Then, up to a subsequence, we may assume that, for almost every ρ ∈ (0, 1),

lim
j→+∞

γj Hd−1({˜̂vj 6= ṽj} ∩ ∂Bρ) = 0. (3.26)

Since for any j and for L1 -a.e. ρ ∈ (0, 1), Hd−1(Sv̂j ∩ ∂Bρ) = 0, we can apply a straightforward

adaptation of [2, Lemma 7.3] to our setting which gives

Fj(vj , γj , Bρ) ≤ Fj(v̂j , γj , Bρ) + γjHd−1({˜̂vj 6= ṽj} ∩ ∂Bρ) + Devj(vj , γj , B1) , (3.27)

and

Devj(v̂j, γj , Bρ) ≤ Fj(v̂j , γj , Bρ)− Fj(vj , γj , Bρ) + γjHd−1({˜̂vj 6= ṽj} ∩ ∂Bρ)
+ Devj(vj , γj , B1) .

(3.28)

Moreover, taking into account that v̂j is a truncation of vj and that ϕj(·, 0) = 0 we also have

Fj(v̂j , γj , Bρ) ≤ Fj(vj , γj , Bρ). (3.29)
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Thus, if we set for all ρ < 1,

α(ρ) := lim
j→+∞

Fj(vj , γj , Bρ) ,

which exists, up to a subsequence (not relabeled), by virtue of Helly’s Selection Theorem since the

function ρ 7→ Fj(vj , γj , Bρ) is increasing and equibounded, thanks to (3.27), (3.29), (3.26), and (3.6),

we may conclude that for L1-a.e. ρ ∈ (0, 1),

α(ρ) = lim
j→+∞

Fj(v̂j , γj , Bρ). (3.30)

From this, the second inequality in (3.6), (3.26) and (3.28) we also have that

lim
j→+∞

Devj(v̂j, γj , Bρ) = 0 . (3.31)

Now, the sequence of Radon measures

µj := ϕj(·, |∇v̂j |)Ld + γjHd−1 Sv̂j

is equibounded in mass on B1 in view of (3.6), so we can find a Radon measure µ on B1 such that

µj ⇀
∗ µ on B1 (3.32)

up to a subsequence (not relabeled).

Step 6: Final comparison and conclusion. To derive the desired contradiction we let v ∈W 1,ϕ∞(B1) be

such that {v 6= v0} ⊂⊂ B1. We also consider a sequence (vε)ε>0 ⊂ W 1,∞(B1) of regularizations of v,

strongly converging to v in W 1,ϕ∞(B1) as ε → 0 (which exists since ϕ∞ satisfies (dec)q , see, e.g., [20,

Lemma 6.4.5]).

Let ρ < ρ′ ∈ (0, 1), with ρ′ such that (3.30) holds, µ(∂Bρ′) = µ(∂Bρ) = 0 and {v 6= u0} ⊂⊂ Bρ.

Let φ ∈ C∞
c (Bρ′) be such that φ = 1 onBρ, 0 ≤ φ ≤ 1, |∇φ| ≤ 2

ρ′−ρ , and define ζj = φvε+(1−φ)v̂j ;
since {ζj 6= v̂j} ⊂⊂ Bρ′ , straightforward computations lead to

Fj(v̂j , γj , Bρ′) ≤ Fj(ζj , γj, Bρ′) + Devj(v̂j , γj , Bρ′)

≤ Fj(v
ε, γj , Bρ) + c

[
ˆ

Bρ′\Bρ

(
ϕj(y, |∇vε|) + ϕj

(
y,

|vε − v̂j|
ρ′ − ρ

))
dy

]

+ c µj(Bρ′ \Bρ) + Devj(v̂j , γj , Bρ′) ,

(3.33)

for a suitable constant c ≥ 1 depending only on L and p, q. Now we deal with the convergence of the

terms inside the square bracket. Using the uniform convergence (3.17) we have that

lim
j→+∞

ˆ

Bρ′\Bρ

ϕj(y, |∇vε|) dy =

ˆ

Bρ′\Bρ

ϕ∞(|∇vε|) dy,

since |∇vε| is bounded. As for the other term, we first notice that ϕj(·, t) ≤ ϕ+
j (t), the boundedness of

vε and (3.15)(ii) entail the equi-integrability of
{
ϕj

(
·, |v

ε−v̂j |
ρ′−ρ

)}
j∈N

. Furthermore, taking into account

the pointwise convergence of ϕj

(
y,

|vε−v̂j |
ρ′−ρ

)
to ϕ∞

(
|vε−v0|
ρ′−ρ

)
implied by (3.17) we may appeal to Vitali

convergence theorem, which ensures that

lim
j→+∞

ˆ

Bρ′\Bρ

ϕj

(
y,

|vε − v̂j |
ρ′ − ρ

)
dy =

ˆ

Bρ′\Bρ

ϕ∞

( |vε − v0|
ρ′ − ρ

)
dy .

Therefore, passing to the limit as j → +∞ in (3.33), taking into account (3.31) and the convergence

(3.32), together with the choice of ρ and ρ′, we have

α(ρ′) ≤
ˆ

Bρ

ϕ∞(|∇vε|) dy + c

[
ˆ

Bρ′\Bρ

(
ϕ∞(|∇vε|) + ϕ∞

( |vε − v0|
ρ′ − ρ

))
dy

]
+ c µ(Bρ′ \Bρ) .
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Now we let ε→ 0 and recalling that v = v0 outside Bρ, we easily obtain

α(ρ) ≤ α(ρ′) ≤
ˆ

Bρ

ϕ∞(|∇v|) dy + c

ˆ

Bρ′\Bρ

ϕ∞(|∇v|)dy + c µ(Bρ′ \Bρ) .

Therefore, letting ρ′ tend to ρ we finally get that for L1 -a.e. ρ and any v ∈ W 1,ϕ∞(B1) such that

{v 6= v0} ⊂⊂ Bρ we have

lim
j→+∞

Fj(v̂j , γj , Bρ) = lim
j→+∞

Fj(vj , γj , Bρ) ≤
ˆ

Bρ

ϕ∞(|∇v|) dy .

In particular, the previous inequality holds for v = v0, whence taking into account the lower semiconti-

nuity result (3.18) previously obtained in Step 4, we get that

lim
j→+∞

Fj(vj , γj , Bρ) =

ˆ

Bρ

ϕ∞(|∇v0|) dy

and that v0 is a local minimizer of the functional v 7→
´

B1
ϕ∞(|∇v|) dx. Thanks to Proposition 2.17 and

Remark 2.18, v0 satisfies

sup
Bτ

ϕ∞(|∇v0|) ≤ sup
B1/2

ϕ∞(|∇v0|) ≤ C0−
ˆ

B1

ϕ∞(|∇v0|) dy.

In conclusion

lim
j→+∞

Fj(vj , γj , Bτ ) =

ˆ

Bτ

ϕ∞(|∇v0|) dy ≤ sup
Bτ

ϕ∞(|∇v0|)τdLd(B1)

≤ C0τ
d

ˆ

B1

ϕ∞(|∇v0|) dy ≤ C0τ
d lim sup
j→+∞

Fj(vj , γj , B1) ,

which provides the contradiction to (3.7).

�

3.2. Ahlfors-type regularity. Strong minimizers. In order to study the regularity of the jump set Su,

a key tool will be an Ahlfors-type regularity result, ensuring that F (u,Bρ(x)), where Bρ(x) is any ball

centred at a jump point x ∈ Su, is controlled from above and from below (see (3.35)).

We first recall the definition of quasi-minimizer (see [2, Definition 7.17]): a function u ∈ SBVloc(Ω)
is a quasi-minimizer of the functional F (v,Ω) if there exists a constant η ≥ 0 such that for all balls

Bρ(x) ⊂⊂ Ω it holds that

Dev(u,Bρ(x)) ≤ ηρd . (3.34)

The class of quasi-minimizers complying with (3.34) is denoted by Mη(Ω).

The upper bound in (3.35) follows from a standard comparison argument, and here the assumption

x ∈ Su is, actually, not needed. On the contrary, the lower bound for F (u,Bρ(x)) therein requires that

the small balls Bρ(x) be centred at x ∈ Su. The proof is based on the decay estimate of Lemma 3.1,

and it follows along the lines of the proof of [2, Theorem 7.21] where p is constant, or that of [23,

Theorem 4.7]. We then only sketch the proof, just indicating the main changes.

Theorem 3.2 (Ahlfors-type regularity). Let ϕ be a function satisfying (H1), (H2), (H3). There exist θ0
and ρ0 depending on d, p, q with the property that if u ∈ SBV (Ω) is a quasi-minimizer of F in Ω,

u ∈ Mη(Ω), then

θ0ρ
d−1 < F (u,Bρ(x)) ≤ dκdρ

d−1 + ηρd (3.35)

for all balls Bρ(x) ⊂ Ω with centre x ∈ Su and radius ρ < ρ0
η

. Moreover,

Hd−1((Su \ Su) ∩Ω) = 0. (3.36)
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Proof. For the proof of the upper bound in (3.35) see, e.g., [2, Lemma 7.19]. As for the lower bound,

without loss of generality, we may assume that x = 0. Let 0 < τ < 1 be fixed such that
√
τ ≤ 1

C1
and

set ε0 := ε(τ), where C1 and ε(τ) are given from Lemma 3.1. Let 0 < σ, ρ0 < 1 be chosen such that

σ ≤ ε0
C1(dκd + 1)

and ρ0 := min{1, ε(σ)2, ε0τdθ(τ), ε0σd−1θ(σ)} ,

where θ(τ) and θ(σ) are the constants of Lemma 3.1 corresponding to τ and σ, respectively. As a first

step, an argument by induction as for [23, (4.23)-(4.24)] shows that if ρ < ρ0
η

and Bρ ⊂ Ω, then

F (u,Bρ) ≤ ε(σ)ρd−1 (3.37)

implies

F (u,Bστmρ) ≤ ε0τ
m
2 (στmρ)d−1 , ∀m ∈ N . (3.38)

Now, assuming (3.37) for some ball Bρ ⊂ Ω, with ρ < ρ0
η

, from (3.38) we get

lim
r→0

F (u,Br)

rd−1
= 0 ,

whence, by using the inequality tp

Lq
≤ 1 + ϕ−

Br
(t), we infer

lim
r→0

1

rd−1

ˆ

Br(x)
|∇u|p dy = 0 .

Therefore, Theorem 2.13 with p above and q = 1∗ implies that 0 ∈ I , where

I :=

{
x ∈ Ω : lim sup

r→0
−
ˆ

Br(x)
|u(y)|1∗ dy = +∞

}
.

Then (3.35) holds true for all x ∈ Su\I , by a density argument, the inequality is still true for balls centred

in x ∈ Su \ I . We are left to prove that Su \ I = Su. Let x 6∈ Su \ I; we first observe that the set I is

Hd−1-negligible (see [2, Lemma 3.75]. Thus, we can find a neighborhood V of x such that Hd−1(V ∩
Su) = 0, and this implies in a standard way that u ∈ W 1,p(V ). Now, by virtue of the classical Poincaré

inequality for Sobolev functions, the upper bound in (3.35) and the Campanato’s characterization of

Hölder continuity (see, e.g., [3]), we infer that a representative of u belongs toC0,α(V ), where α := p−1
p

.

Therefore, x 6∈ Su, and this concludes the proof of (3.35).

As for (3.36), it follows from (3.35) by a geometric measure theory argument. Let us define the set

Σ :=

{
x ∈ Ω : lim sup

r→0

1

rd−1

ˆ

Br(x)
ϕ(y, |∇u|) dy > 0

}
.

Since ϕ(·, |∇u|) ∈ L1
loc(Ω), it holds that Hd−1(Σ) = 0 (see, e.g., [15, Section 2.4.3, Theorem 3]). The

proof of (3.36) then goes exactly as for the proof of [23, eq. (4.20)], we then omit the details.

�

We are now in position to prove an existence result for minimizers of free-discontinuity functionals of

the form

F(u) :=

ˆ

Ω
ϕ(x, |∇u|) dx + α

ˆ

Ω
|u− g|q dx+Hd−1(Su ∩ Ω) , (3.39)

defined for u ∈ SBV ϕ(Ω), where α > 0, q ≥ 1, and g ∈ L∞(Ω), which are the weak formulation of

G(K,u) :=
ˆ

Ω\K
ϕ(x, |∇u|) dx + α

ˆ

Ω\K
|u− g|q dx+Hd−1(K ∩ Ω) (3.40)

where u ∈W 1,ϕ(Ω \K) and K ⊂ R
d is a closed set.
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First, we notice that in order to minimize F , we may restrict to those u ∈ SBV (Ω) such that ‖u‖∞ ≤
‖g‖∞ < ∞. Indeed, since the integrand ϕ does not depend on u and t 7→ ϕ(·, t) is non-decreasing, it is

immediate to check that F(u) is non increasing by truncations.

Theorem 3.3. Let ϕ comply with the assumptions of Theorem 3.2. Then there exists a minimizer u ∈
SBV (Ω) ∩ L∞(Ω) of F defined in (3.39). Moreover, the pair (Su, u) is a (strong) minimizer of the

functional G (3.40).

Proof. As ϕ(x, ·) is convex and superlinear for every x ∈ Ω, the existence of a bounded minimizer u
is based on a nowadays classical argument, combining the De Giorgi’s lower semicontinuity theorem

[11] with the closure and compactness results in SBV by Ambrosio (see [2, Theorem 4.7 and 4.8]).

Moreover, it is easy to check (see, e.g., [2, Remark 7.16]) that any minimizer u of the functional F in

(3.39) belongs to Mη(Ω) with η := 2qακd‖g‖q∞, thus (3.36) holds. The rest of the proof closely follows

the argument of, e.g., [23, Theorem 4.8], so we omit further details. �
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