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Abstract. In this paper, we explore the potential application of
Large Language Models (LLMs) that will automatically model con-
straints and generate code for dynamic scheduling problems given an
existing static model. Static scheduling problems are modelled and
coded by optimization experts. These models may be easily obso-
leted as the underlying constraints may need to be fine-tuned in or-
der to reflect changes in the scheduling rules. Furthermore, it may be
necessary to turn a static model into a dynamic one in order to cope
with disturbances in the environment. In this paper, we propose a
Retrieval-Augmented Generation (RAG) based LLM model to auto-
mate the process of implementing constraints for Dynamic Schedul-
ing (RAGDYS), without seeking help from an optimization model-
ing expert. Our framework aims to minimize technical complexities
related to mathematical modelling and computational workload for
end-users, thereby allowing end-users to quickly obtain a new sched-
ule close to the original schedule with changes reflected by natural
language constraint descriptions.

1 Introduction

Companies today are facing increasing pressure to apply optimiza-
tion models to solve complex resource planning and scheduling prob-
lems. Traditionally, these models are developed by human expert
modelers and once they have been handed over and deployed in a
production system, the models will remain unchanged until the next
release of the system.

In an increasing dynamic and uncertain world, the models de-
veloped may need to constantly evolve in order to remain relevant.
Maintaining a team of human experts to keep the underlying opti-
mization models updated is usually costly; many end-users organiza-
tions lament that the models expire quickly, and often they lack the
expertise to keep the models updated in a production setting.

Our research is motivated by the recent advances in large language
models (LLM). Our goal is to develop a Generative AI methodol-
ogy that enables the deployed resource optimization models to be
updated (finetuned) by end-users themselves to cope with dynamics
and uncertainty. This is a significant departure from the traditional
modus operandi of hefty investments in either maintaining optimiza-
tion modeling experts in-house or outsourcing the software mainte-
nance to a third-party provider. In a wider context, this work is by the
ideal to have human-AI collaboration via Generative AI in the con-
text of resource planning, scheduling and optimization. While LLMs
may not be directly relied upon for generating complex planning and
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scheduling models from ground zero [9], we investigate in this pa-
per the idea of prompt engineering for revising an existing planning
model, which we believe to be a less daunting task.

In this paper, we propose a LLM-based methodology that enables
an existing static optimization model to be revised automatically in
order to cope with dynamics and uncertainty. More precisely, we con-
sider a well-known manpower scheduling/rostering problem, and ex-
plore how an LLM can be exploited to provide the necessary changes
to the underlying constraints to cope with a dynamic variant of the
underlying static scheduling problem. We assume that a static model
exists and solutions for solving the model can be obtained via an ef-
ficient mathematical programming solver (such as Gurobi, Google
OR-Tools etc). The interesting question we like to address is, with-
out relying on a human modeling expert, to what extent can a planner
interact with a pre-trained LLM to effectively generate the revised
optimization model based on the static model?

1.1 Motivating Example

To illustrate how a static nurse scheduling problem is extended into
a dynamic scheduling problem, we present the following problem
setting as a motivating example.

The static problem is to generate a schedule for nurses over a plan-
ning horizon over set of shift patterns. The following constraints for
the schedule are:

• Every day, each shift is assigned to a single nurse.
• No nurse works more than one shift each day.
• Each nurse is assigned to at least M number of shifts overall.

Each nurse has specified which shifts per day are preferable. The
objective is to maximize the total number of preferences fulfilled.

We define the parameters below

• N : Number of nurses
• D: Number of days
• S: Number of shifts
• M : Minimum number of shifts per nurse
• Pn,d,s: A boolean matrix over (N,D, S), indicating if nurse n

prefers to be assigned day d and shift s.

We define the decision variables as:
Xn,d,s: An array of binary decision variables over (N,D, S), in-

dicating if nurse n is assigned to day d and shift s.
We formulate the constraints below:

•
∑N

n Xn,d,s = 1, ∀(d, s) ∈ D,S
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•
∑S

s Xn,d,s ≤ 1, ∀(n, d) ∈ N,D

•
∑D

d

∑S
s Xn,d,s ≥ M,∀n ∈ N

The objective is to maximise:

N∑
n

D∑
d

S∑
s

Xn,d,s × Pn,d,s (1)

Now suppose that the model has been formulated and imple-
mented in code written by an optimization expert. The end-user plan-
ner runs the code and obtains an initial schedule to be used, X . Now
suppose on the day before the schedule was to be used, a nurse A
has to take a medical leave from day D1 to D2. We term this as a
disturbance. The planner wants to ensure that the repaired sched-
ule is within T number of changes to X . We term T as the perturba-
tion threshold. In order for the planner to repair the schedule due to
this and other disturbances, ideally the model need to be adjusted to
include the following constraints:

XA,d,s = 0, ∀s ∈ S,∀d ∈ [D1, D2] (2)

N∑
n

D∑
d

S∑
s

|Xn,d,s −X ′
n,d,s| ≤ T (3)

Our proposed method will allow the planner to generate a revised
model and the corresponding code to reflect these constraints, via a
natural language description of the disturbance and perturbation. An
example prompt chain for the planner could be: "Add a constraint
such that nurse A is not available from day D1 to D2.". After gener-
ating the new code, the additional prompt is "Add a constraint such
that the schedule generated does not change too much from the orig-
inal schedule. The number of changes to the schedule should not
exceed T."

1.2 Contributions

Our contributions are as follows:

• We introduce the problem arising from developing such an auto-
mated tool for commercial manpower scheduling application in
service organizations (such as restaurant chains and hospitals);

• We propose a framework that enables the underlying constraint
model and the resulting code to be revised over time. This in-
volves designing a dataset comprising natural language descrip-
tions, mathematical formulations, and code samples both before
and after incorporating dynamic constraints.

• We utilize Retrieval-Augmented Generation (RAG) to generate
the revised constraint formulation to solve the Minimum Pertur-
bation Problem, whose aim is make use of an existing schedule
obtained previously to generate a revised schedule automatically,
such that the perturbation from the existing schedule is no more
than the perturbation threshold T .

2 Background and Related Work

Before going through the details of our proposed method, we would
like to introduce some main concepts and related work to contextual-
ize our work: Constraint Programming and Optimization, Minimum
Perturbation in Dynamic Scheduling, LLMs for Constraint Genera-
tion, and Retrieval-Augmented Generation.

2.1 Constraint Programming and Optimization

Constraint programming is now a relatively mature technology for
solving a wide range of difficult combinatorial search problems [8],
and in our context used to formulate our static and dynamic schedul-
ing problems. Unlike Mixed-Integer Programming and Linear Pro-
gramming models, Constraint programming models include func-
tions to model more complex relations between variables, such as
the AllDifferent function. Due to addition of these functions,
which are closer to natural language as opposed to linear constraints,
we opted the use constraint programming formulations and code for
our LLM planning and coding agents to learn from.

2.2 Minimum Perturbation in Dynamic Scheduling

The idea of modifying an existing scheduling problem (formulated as
a Constraint Satisfaction Problem (CSP)) and the initial schedule to
reflect new constraints introduced by disturbances, and maintaining
a "minimally changed" new schedule, is termed a Minimum Pertur-
bation Problem (MPP)[3]. The work formally defines a minimum
perturbation problem as a 5-tuple (Θi, αi, Cdel, Cadd, δ).

• Θi is a CSP
• αi is a solution to Θi

• Cdel, Cadd are constraint removal and addition sets
• δ is a distance function between 2 complete solutions.

The original MPP defines a CSP, rather than a constraint optimiza-
tion problem with an objective function. The objective function for
the MPP is then defined as a minimization of the distance function δ,
which is described as as dx = |x − c| where x is the new schedule
variables and c is the initial schedule assignments. For our problem,
we formulate the MPP constraint as a hard constraint, where dx ≤ T
and T is a threshold value for the maximum Hamming distance be-
tween the new and initial schedules. This minimum perturbation con-
straint serves 2 purposes: 1) It reduces the amount of unnecessary
changes to the current schedule, which end-users are likely to want
to be as stable as possible. 2) It reduces the search space considerably
as we set a threshold for the maximum amount of change from the
pre-computed schedule to the new schedule.

2.3 LLMs for Constraint Generation

There has been recent progress on using LLMs for combinatorial
optimization, specifically on how to generate constraints for these
problems based on natural language. For our work, we applied some
elements from the OptiMUS framework presented in [1] such as
the planning and coding agents, which breaks down the challeng-
ing problem of formulating constraints from natural language into
smaller stages. Our work, however, differs in 1) the problem repre-
sentation and 2) the context-specific constraint generation produced
by the coding agent. To cater the the non-technical end-users of our
framework, we do not expect them to formulate their problems in a
structured form, and instead simply expects simple natural language
to describe the new constraint to be added. To provide better context
for the planning and coding agents, our scenario of dynamic schedul-
ing already assumes an initial problem description, formulation, and
code. By using these components, in addition to following including
RAG examples, the planning agent is able to make use of existing
parameters, variables, and constraints to generate a plan for new pa-
rameters, variables and constraints. The coding agent then makes use
of the original code and the planning agent output to produce a mod-
ified code which implements the new constraint.



2.4 Retrieval-Augmented Generation

With minimizing technical expertise and computational resource re-
quirements for end-users as our goal, Retrieval-Augmented Genera-
tion (RAG) techniques can be applied. RAG is commonly used to in-
troduce context-specific knowledge which the pre-trained model may
not have been trained on, as shown in [6], without the need for further
fine-tuning. In the case of dynamic scheduling, worker scheduling
problems can vary significantly and have context specific constraints
which pre-trained LLMs are unlikely to be trained on. While there are
various RAG techniques, as surveyed in [4], we opted to use Naive
RAG for our method which has minimal fine-tuning steps.

2.5 Challenges in Dynamic Constraint Generation

For our problem of dynamic constraint generation, it would be prefer-
able to have a set of benchmark worker scheduling problems to use,
accompanied with natural language descriptions for each problem.
There are a few challenges.

1) There is a lack of worker scheduling benchmark datasets avail-
able publicly. Most papers define the constraints specific to their
problem and leave out the values of parameters required to construct
a full problem instance to run.

2) There is a lack of natural language descriptions for worker
scheduling problem instances. When scraping natural language de-
scription from optimization papers describing a worker scheduling
problem, most papers use technical terms or mathematical formu-
lation to express what they mean, which would differ significantly
for an end-user’s layperson description of a dynamic constraint to be
added.

3 Proposed Method

Figure 1. Overview of our approach.

We introduce our proposed framework, RAGDYS, which takes as
input (see pink components in Figure 1) a base problem description,
a dynamic constraint description, and the current code for the base
problem. In our context, the initial base problem description and cur-
rent code are provided by an optimization expert, while the dynamic
constraint description is provided by a non-technical end-user. The
final output to be used would be the coding agent output, which is a
modified version of the current code that includes code for new pa-
rameters, variables and constraints to reflect the dynamic constraint
inserted. This new code can be executed to obtain a new schedule for
the end-user. Further details of our approach and implementation are
presented in the following section 3.1.

3.1 Architecture and Approach Details

RAGDYS contains 3 stages. In the planning and coding stages, we
use RAG methods to inform the LLM agents with the most simi-
lar example input output pair. The vector database used for our ex-

periments was implemented using ChromaDB, which by default cre-
ates document embedding vectors using all-MiniLM-L6-v2 [10], and
performs cosine similarity search to find the most similar example
prompts from ChromaDB database.

3.1.1 Step 1: Planning Stage

Figure 2. Planning Stage Details.

The planning stage takes as input the base problem description and
dynamic constraint description. Following RAG methods, the most
similar example is retrieved from a vector database of planning agent
examples, which contain example user input and planning agent out-
put pairs. These examples, along with the base problem and dynamic
constraint descriptions, are inserted into the planning agent prompt
template (See Appendix C for example planning agent prompt). The
planning agent prompt is sent to an LLM agent (our implementation
uses Gemini [5]), and the output of the LLM agent should contain 3
sections: New parameters, New variables and New constraints. See
Figure 2 for more details. This output is then used in the coding stage.

3.1.2 Step 2: Coding Stage

Figure 3. Coding Stage Details.



The coding stage takes as input the base problem and dynamic
constraint descriptions, the planning agent output, and the current
code to be modified. Similar to the planning stage, we obtain most
similar example user input and coding agent output pairs. All these
components are inserted into the coding agent prompt template (See
Appendix D for example coding agent prompt) to produce the cod-
ing agent prompt. The LLM coding agent (implemented with Claude
Haiku [2] and OpenAI GPT-4 [7]), will take this prompt as input and
produce the modified version of the code as output. See Figure 3 for
more details.

3.1.3 Step 3: Execution Stage

Figure 4. Code-fixing stage Details.

The execution stage is where the user is able to decide how to
progress from the generated code output from the coding stage. The
user may choose to either execute the modified code to produce a new
schedule, or repeat the process to add another dynamic constraint.
Our framework proposes to not only add the dynamic constraint as-
sociated with a disturbance, but also leveraging the existing schedule
(if it exists) and minimal adjustments to obtain a new schedule effi-
ciently through a repeated process of adding the minimum perturba-
tion constraint using natural language.

When executing the new code, the code may produce errors and
our framework will enters the code-fixing stage. In the code-fixing
stage, the coding engine is called repeatedly to fix the code. The num-
ber of attempts cannot exceed the maxAttempts threshold. Using
RAG, we retrieve the most relevant document stored in a database
containing documentation on Google OR-Tools CP-SAT objects and
methods. Combining the error message, relevant documentation, and
current code, we prompt the coding engine to amend the current code
to fix the error. See Figure 4 for overall pipeline on the code-fixing
stage.

3.2 Dataset Generation

We manually prepare a data set to be inserted into the vector database
and used as references for RAG when solving unseen problems. We
also manually write a test set for the unseen problem instances. We
multiply the total number of instances used in our database and test-
ing set by prompting a LLM to generate paraphrased versions of the
natural language descriptions, as shown in Figure 5. Due to possi-
ble mistakes generated when the LLM paraphrases the description
(removes or changes the name of parameters to be used in the con-
straint), we opt to manually fix these mistakes.

Figure 5. LLM paraphrasing for dataset generation

3.2.1 Database Set

We manually write natural language prompts with a base worker
scheduling problem (In our case, we only use the Gig-Scheduling
Problem (GSP)), planning agent outputs, and before and after con-
straint insertion codes written in Python using the Google OR-Tools
CP-SAT solver library.

GSP is a variant of the worker scheduling problem, where workers
are not assigned a shift out of a fixed set of shifts per day, but are
assigned directly to hours subject to constraints(such as specifying
the minimum and maximum length of consecutive hours assigned).
These worker-hour assignments must then match, as much as possi-
ble, the task demands. Tasks are defined as a job to be assigned to
a worker for a single hour, and is constrained by skill requirements
(only a subset of workers with the qualified skills can be assigned to
the task), and no multi-tasking (a worker can only be assigned at most
1 task per hour). See Appendix A for the mathematical programming
formulations for the base GSP.

3.2.2 Test Set

Similar to the Database set, we manually write natural language
prompts, planning agent outputs, and code for the GSP. In addition,
to test if our proposed method is able to generalize to different base
problems, we also manually construct data for the standard Nurse
Scheduling Problem (NSP). See Appendix B for the mathematical
programming formulations for the base NSP. We use the same LLM
paraphrasing method to increase the initial testing set of size 14 to
size 70 (35 GSP instances, 35 NSP instances).

4 Evaluation and Results

In the following, we report experimental results. Besides performing
automatic evaluation, we also conduct manual inspection to evalu-
ate the correctness of the constraints and code. As described in 3.2,
we populated the dataset using GSP problem instances, and test the
performance of the planning and coding agents using 2 sets: 1) Un-
seen dynamic constraints for the GSP, to verify if the LLMs are able
to generalise dynamic constraints with similar base problem); and 2)
Unseen dynamic constraints for the NSP, to verify if the LLMs are
able to generalise to different base worker scheduling problem and
apply dynamic constraints to the new context.



4.1 Automatic Evaluation

Similar to OptiMUS, we can evaluate the performance of our model
by executing the generated code from the coding agent and compar-
ing the results with the expected results. There are a few possible
outcomes when running the code:

• KeyError for data
• Syntax error in expressing constraints
• Infeasible solution
• Feasible solution but objective value does not match
• Solution matches expectation

We classify the outcome as a solution matching the target when
one of the following are met:

• If both target and generated code reach an optimal solution, then
the 2 solutions are exactly equal.

• If both target and generated code are at least feasible, then check
if the computed upper and lower bounds are similar (measure the
overlap between the 2 intervals). If the overlap covers half the total
coverage, it is considered a match.

We should note that the results of the automatic evaluation method
are not completely reliable and produce false positives (Detect a
Match in expected solution, but the constraint formulated differs
from what the prompt intends) and false negatives (Detect a mis-
match in solution despite correct constraint formulation. This is due
to the non-deterministic nature of running Google OR-Tools with
multi-threading). Hence, we also conduct manual evaluation to inves-
tigate these possible outcomes, as well as look provide more in-depth
explanations for the errors.

4.2 Manual Evaluation

During manual inspection, we delve deeper into the specifics behind
the results displayed in the automatic evaluation. This includes iden-
tifying the reasons behind the outcomes and double-checking solu-
tions for both false positives and false negatives.

We can identify the following:

• False Positives
• False Negatives
• Hallucinating Parameters
• Incorrect Reasoning

In the following section, we detail our experimental results.

4.3 Results and Discussion

Outcome
KeyError Syntax Error Infeasible Feasible (Not Match) Match Total

GSP 0 0 0 6 29 35
NSP 0 1 0 0 34 35
Total 0 1 0 6 63 70

Table 1. Evaluation results on test sets using OpenAI GPT4

Table 1 shows the overall results for automatic evaluation with
OpenAI GPT-4 as the coding agent. In general, automatic evaluation
has shown that for both seen and unseen constraints for the same
and different base problems, the model attains a 90% match rate. As
mentioned in the earlier section, we would need to further inspect the
output code for the cases of false positives and false negatives. In the
next section, we measure the false positive and negatives, as well as
analyze the code outputs to obtain explanations for the errors.

False Positives False Negative Parameter Hallucination Incorrect Reasoning
GSP 6 2 0 9
NSP 4 0 3 1

Table 2. Manual Evaluation results on test sets OpenAI GPT4

4.3.1 Example False Positive

Figure 6. Table of results for false positive cases for GSP prompt 3 and the
paraphrased versions.

As shown in Figure 6, there are instances where the automatic
evaluation flags the result as a match, but the code generated does
not formulate the correct constraint. Looking at the code and target
code, we can see that the coding agent has misinterpreted the para-
phrased prompt as "Worker A must have at least the same schedule as
Worker B, with additional hours added on" rather than "Total number
of hours worked by worker A >= Total number of hours worked by
worker B". It is possible that this error is caused by poor phrasing of
the paraphrased prompt.

4.3.2 Example False Negative

Figure 7. Table of results for false negative cases for GSP prompt 7 and the
paraphrased versions.

In Figure 7, we observe that the generated code is logical and is
consistent with the target code, despite sometimes creating unnec-
essary variables or constraints. However, the automatic evaluation
flagged the result as a mismatch, because the objective value obtained
after running the code differs from the target code’s objective value.
This is a result of how ORTools handles different constraint formula-
tions and how one formulation could be computationally more effi-
cient, as well as the non-deterministic nature of ORTools when run-
ning on multiple threads, meaning even with the exact same code
running there is a possibility that the output will differ if we do not
allow the solver to run to optimality. Due to the nature of the GSP
instance, we opted to run the code with multiple threads and a fixed
time limit so as to obtain results in reasonable time.

4.3.3 Example Parameter Hallucination

As shown in Figure 8, we can see an example of parameter hallucina-
tion when observing prompts like prompt 11. In this NSP prompt, we
opted to use numbers directly instead of variable names for the days,
such as D1 and D2. Because most code is written using the variable
formulation, there is a possibility that the LLM coding agent halluci-
nates parameters for day 1 to day 2, replacing it with D1 and D2 as
parameters expected to be provided by the user.



Figure 8. Table of results for false positive cases for NSP prompt 11 and
the paraphrased versions, which exemplify parameter hallucination

4.3.4 Example Incorrect Reasoning

Figure 9. Table of results for false positive cases where we identify incor-
rect reasoning causing incorrect / empty constraints being generated

In Figure 9, we can see a few examples of incorrect reasoning. For
prompt 13.3, the LLM coding agent did not generate any additional
code on top of the base code, implying that it was simply unable to
reason what the prompt wanted (Minimum perturbation constraint).
For prompts 5.1, we can see a combination of hallucinated param-
eters (reducedHours) and incorrect reasoning (not using origSched-
ule parameter at all, as well as adding illogical constraints). Lastly,
in prompt 5.3 we can see an almost correct constraint, however the
change in number of hours from origSchedule should be computed
with the expression "origSchedule[A,h] - workerHours[A,h]" rather
than "workerHours[A,h] - origSchedule[A,h]".

4.4 Ablation Study

We conduct an ablation study on how a different LLM (Claude
Haiku) performs against OpenAI GPT-4 when being used as the cod-
ing agent. The results of the experiments are shown in Table 3.

4.4.1 Ablation 1: Varying the LLM

Outcome
KeyError Syntax Error Infeasible Feasible (Not Match) Match Total

GSP 5 3 1 5 21 35
NSP 7 1 5 0 22 35
Total 12 4 6 5 43 70

Table 3. Evaluation results on test sets using Claude Haiku

We can observe the difference in performance using GPT-4 and
Claude Haiku, looking at Tables 1 and 3. As expected of the more
expensive model, OpenAI GPT-4 outperforms Claude Haiku when
used in the coding agent, with an automatic evaluation match rate of
90% while Claude Haiku has an automatic match rate of 60%.

Looking at the outputs of Claude Haiku in Figure 10, we can
see its limitations as opposed to GPT-4. Very often, Claude Haiku

Figure 10. Table of some prompts and generated code from OpenAI GPT-4
and Claude Haiku as the coding agent.

will remove the existing constraints despite instructions in the sys-
tem prompt to output the full code. In addition, it frequently halluci-
nates parameters such as MaxConsecutiveAMShifts and even
library functions such as AddEquality.

5 Conclusion and Future Work

We propose a framework RAGDYS which automates the process of
adding dynamic constraints to existing static scheduling problems,
thereby minimizing the need for human optimization experts.

For future work, we plan to encompass a wider range of worker
scheduling problems and explore other combinatorial optimization
problems that can be formulated with minimum perturbation con-
straints. One such example is dynamic pickup and delivery routing
problems. Routing problems are well-studied and routing-specific
methods (such as AddCircuit in ORTools) in constraint program-
ming libraries should be useful and intuitive for LLMs to make use
of. Additionally, further prompt optimization can be done, specifi-
cally on the intricacies and techniques specific to the solver library.
For example, to further improve the performance of the coding agent,
our coding agent prompt requires additional knowledge on how the
Python absolute (abs) function cannot be used when defining vari-
ables and constraints in OR-Tools. We should explore strategies for
prompt optimization and apply them to enhance the current frame-
work.
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Appendices
A Gig Scheduling Problem (GSP) Formulation
A.1 Variables

• W , H , T represents the number of workers, hours and tasks re-
spectively.

• xw,h and yw,t is the binary worker-hour assignment and the binary
worker-task assignment.

• Aw,h and Sw,t is the worker-hour availability and worker-task
skill compatibility parameters.

• taskHour(t) returns the hour of task t, and Th is the set of tasks
in hour h.

• sw,h and ew,h are the intermediate binary variables indicating the
start and end of a block of consecutive working hours starting /
ending at hour h for worker w.

• BMin, BMax, and RMin are the parameters for minimum
block length, maximum block length, and minimum rest length.

• ut is the soft constraint variable indicating if task t is unassigned.

A.2 Constraint Description

• Worker Hour Availability: hard constraint ensuring that workers
can only be assigned hours they are available in as specified in
Aw,h.

• Worker Task Skill Requirements: hard constraint ensuring that
workers can only be assigned tasks if they meet the skill require-
ments, specified in workerTaskSkills[w, t].

• Worker Task Hour Precedence: hard constraint ensuring that a
worker must be assigned the task’s hour before being assigned the
task.

• No Multi-task: hard constraint ensuring that a worker can only
work at most 1 task per hour.

• Minimum Block Length: hard constraint ensuring an assigned
block of hours for a worker is at least BMin long.

• Maximum Block Length: hard constraint ensuring an assigned
block of hours for a worker is at most BMax long.

• Minimum Rest: hard constraint ensuring the length of rest time
between consecutive blocks is at least RMin long.

• Unassigned Tasks: soft constraint which counts the number of
tasks that are not assigned to any worker.

A.3 Constraint Formulation

xw,h ≤ Aw,h, ∀w ∈ W,h ∈ H (4)

yw,t ≤ Sw,t,∀w ∈ W, t ∈ T (5)

yw,t ≤ xw,taskHour(t), ∀w ∈ W, t ∈ T (6)

Th∑
t

yw,t ≤ 1,∀w ∈ W, ∀h ∈ H (7)

Intermediate constraints formulating the start and end of blocks.

sw,h ≥ xw,h − xw,h−1, ∀w ∈ W, ∀h ∈ H (8)

sw,0 = xw,0, ∀w ∈ W (9)

ew,h ≥ xw,h − xw,h+1, ∀w ∈ W,∀h ∈ H (10)

ew,H−1 = xw,H−1, ∀w ∈ W (11)

Minimum block length constraint

h+BMin−1∑
h′=h

xw,h′ ≥ sw,h ×BMin (12)

Maximum block length constraint

h+BMax∑
h′=h

1− xw,h′ ≥ sw,h (13)

Minimum Rest constraint

ew,h ≤ xw,h′ , ∀w ∈ W,∀h ∈ H, ∀h′ ∈ [h, h+RMin] (14)

Unassigned Task constraint

W∑
w

yw,t ≥ 1− ut,∀t ∈ T (15)

A.4 Objective

Minimize the following:

W,H∑
w,h

xw,h + α

T∑
t

ut (16)

α = 1000

B Nurse Scheduling Problem (NSP) Formulation
B.1 Variables

• N , D, S, T represents the number of nurses, days and shifts and
slots respectively.

• There are 3 slots, morning AM, afternoon PM, and night ND.
• xn,d,s and yn,d,t is the binary nurse-day-shift assignment and the

binary nurse-day-slot assignment.
• An,d,s is the nurse availability parameter for each day and shift.
• shiftSlot(s) returns the slot number for shift s.
• shiftHours(s) returns the number of hours for shift s.
• Yd,t is the demand for the nurses required on day d slot t.
• Rn,d is the specified rest days for each nurse for each day.
• MinHours, MaxHours, MaxWorkDays represent the min-

imum hours worked per nurse, maximum hours worked per nurse,
and the maximum days worked per nurse.

• surplus and shortfall are intermediate integer variables count-
ing the over or under supply of nurses on day d slot t.

B.2 Constraint Description

• Nurse Availability: a nurse can only be assigned a day and shift
if she is available.

• At most 1 shift per day: a nurse can at most be assigned 1 shift
per day.

• Nurse Shift Slot: a nurse assigned to a shift indicates the nurse is
assigned the shift’s slot.

• Demand constraint: the number of nurses assigned to day d and
slot t equals Yd,t + surplusd,t − shortfalld,t

• Minimum hours: minimum hours assigned to nurse is
MinHours.

• Maximum hours: maximum hours assigned to nurse is
MaxHours.



• Maximum days: maximum days assigned to a nurse is
MaxDays

• No ND-AM pattern: a nurse cannot work a night slot followed
by a morning slot.

B.3 Constraint Formulation

xn,d,s ≤ An,d,s,∀n, d, s ∈ N,D, S (17)

S∑
s

xn,d,s ≤ 1, ∀n, d ∈ N,D (18)

xn,d,s ≤ yn,d,shiftSlot(s), ∀n, d, s ∈ N,D, S (19)

D,S∑
d,s

xn,d,s × shiftHours(s) ≥ MinHours, ∀n ∈ N (20)

D,S∑
d,s

xn,d,s × shiftHours(s) ≤ MaxHours, ∀n ∈ N (21)

D,S∑
d,s

xn,d,s ≤ MaxDays, ∀n ∈ N (22)

Demand Constraint

N∑
n

yn,d,t = Yd,t + surplusd,t − shortfalld,t (23)

No ND-AM Pattern

yn,d,ND + yn,d+1,AM ≤ 1,∀n, d ∈ N,D (24)

B.4 Objective

Minimize the following:

D,T∑
d,t

surplusd,t + shortfalld,t (25)



C Planning Agent Prompt Example

### Role ###
You are a planning agent who excels at performing Constraint Programming tasks, tasked to model a new constraint.
Think step by step carefully before answering the problem.

### Instruction ###
Based on the user problem statement and the new constraint you have to come up with:
- New Parameters
- New Variables
- New Constraint Formulation

### Example ###

*User*
Problem:
You are tasked to solve a worker scheduling problem.
In this problem, there are {W} workers, {H} hours, and {T} tasks.
Each worker can be assigned to each hour.
Each task has a fixed hour, and can be assigned to each worker. {taskHour[t]} specified which hour task t is assigned.
The main task is to assign workers to hours and tasks to workers, subject to various constraints.
The objective is to minimize the following:
total_hours_assigned + {UNASSIGNED_PENALTY} * total_number_of_unassigned_tasks

Parameters:
W: Number of workers
H: Number of hours
T: Number of tasks
BMin: Minimum block length
BMax: Maximum block length
RMin: Minimum rest length
availableHours[w,h]: Indicates if worker w is available to be assigned hour h (1 if available, otherwise 0)
workerTaskSkills[w,t]: Indicates if worker w is skilled enough to be assigned task t (1 if sufficiently skilled, otherwise 0)
taskHour[t]: Returns the hour of the task
UNASSIGNED_PENALTY: Penalty per unassigned task in the objective function

Decision Variables:
workerHours[w,h]: Indicates if worker w is assigned hour h
workerTasks[w,t]: Indicates if worker w is assigned task t
startBlock[w,h]: Indicates if worker w is assigned a consecutive block of hours starting at hour h
endBlock[w,h]: Indicates if worker w is assigned a consecutive block of hours ending at hour h
unassignedTasks[t]: Indicates if task t is not assigned all workers

Constraints:
1) Available hours constraint. If a worker is assigned an hour, he must be available for that hour.
workerHours[w,h] <= availableHours[w,h] for each w for each h
2) Worker task skill constraint. If a worker is assigned a task, he must be skilled enough for that task.
workerTask[w,t] <= workerTaskSkills[w,t] for each w for each t
3) Task hour assignment constraint. If a worker is assigned a task, he must be assigned the task’s hour.
workerTask[w,t] <= workerHours[w,taskHour[t]] for each w for each t
4) At most 1 task assigned for each worker for each hour
sum(workerTask[w,t] for each t if taskHour[t]=h) <= 1 for each w for each h
5) Start block constraint. If a worker w starts a block of consecutive worker-hour assignments at hour h, startBlock[w,h] = 1. If workerHours[w,0], then startBlock[w,0]
workerHours[w,h] + (1-workerHours[w,h-1]) - 1 <= startBlock[w,h] for each w for each h
workerHours[w,0] <= startBlock[w,0] for each w
6) End block constraint. If a worker w ends a block of consecutive worker-hour assignments at hour h, endBlock[w,h] = 1. If workerHours[w,H-1], then endBlock[w,H-1]
workerHours[w,h] + (1-workerHours[w,h+1]) - 1 <= endBlock[w,h] for each w for each h
workerHours[w,H-1] <= endBlock[w,H-1] for each w
7) Minimum block length constraint. If a worker starts a block at hour h, the worker must be assigned the at least {BMin} hours.
startBlock[w,h] <= workerHours[w,x] for each w for each h for each x in range(h,h+BMin)
8) Maximum block length constraint. If a worker starts a block at hour h, the worker must end within {BMax} hours.
startBlock[w,h] <= sum(endBlock[w,x] for x in range(h,h+BMax)) for each w for each h



9) Minimum Rest constraint. The minimum length of rest (block of consecutive worker-hour = 0) between the end of a block and the start of a block is {RMin}.
endBlock[w,h] <= 1-workerHours[w,x] for each w for each h for each x in range(h+1,h+RMin+1)
10) Unassigned Task constraint. If a task is not assigned to any worker, unassignedTasks[t] = 1.

Given the above context, provide the mathematical formulation for the new constraint mentioned below.:
New Constraint:
11) Formulate a constraint such that worker A does not work from hours H1 to H2.

You are free to add parameters and decision variables.

New Parameters:
A: Worker affected from hours H1 to H2
H1: Start of hours where worker A does not work
H2: End of hours where worker A does not work

New Variables:
None

New Constraints:
workerHours[A,h] = 0 for each h in range(H1,H2)

Your turn
### Problem ###
You are tasked to solve a nurse rostering problem.
In this problem, there are {N} nurses, {D} days, {S} shifts and {T} slots.
Each worker can be a shift for each day.
Each shift takes a certain number of hours, specified in {shiftHours}.
Each shift fills either a Morning(AM)(Slot 0), Afternoon(PM)(Slot 1), or Night(ND)(Slot 2) slot.
There is a demand requirement for each day for each slot, where we want to assign the nurses their shifts as close as possible to fulfil this demand.
The main task is to assign nurses a shift for each day (or no shift if the nurse is not working for that day), while satisfying some constraints and minimizing an objective.
The objective is to minimize the following:
surplus + shortfall
surplus is the total number of nurses assigned to a slot more than the specified demand for that day and slot.
shortfall is the total number of nurses assigned to a slot less than the specified demand for that day and slot.

Parameters:
N: Number of nurses
D: Number of days
S: Number of shifts
T: Number of slots
availableShifts[n,d,s]: Indicates if nurse n is available to be assigned day d and slot s (1 if available, otherwise 0)
shiftSlot[s] returns the slot number for shift s. (Eg. 7am to 11am is a Morning shift(AM), so it has a value of 0 (Slot 0))
shiftHours[s] = Integer value for the number of hours in shift s. (Eg. 7am to 11am shift has a value of 4)
demandSlot[d,t] = Integer value of the demand required specified per day d per slot t
restDays[n,d]: Indicates if nurse n is resting (Not available) on day d.
MinHours = data["MinHours"]
MaxHours = data["MaxHours"]
MaxWorkingDays = data["MaxWorkingDays"]

Decision Variables:
nurseDayShift[n,d,s]: Indicates if nurse n is assigned day d and shift s
nurseDaySlot[n,d,t]: Indicates if nurse n is assigned a shift in day d slot t
surplus[d,t] = Integer value of the surplus nurses assigned on day d slot t. (If X more nurses are assigned to day d slot t than specified in demandSlot[d,t], return X, otherwise 0)
shortfall = Integer value of the shortfall nurses assigned on day d slot t. (If X less nurses are assigned to day d slot t than specified in demandSlot[d,t], return X, otherwise 0)

Constraints:
1) Available shift constraint. If nurse n is assigned day d and shift s, she must be available on day d shift s.
nurseDayShift[n,d,s] <= availableShifts[n,d,s] for each n for each d for each s
2) Max 1 shift per day constraint. At most 1 shift per day constraint
sum(nurseDayShift[n,d,s] for each s) <= 1, for each n for each s



3) Shift to slot assignment constriant. If a nurse n is assigned day d shift s, then nurseDaySlot[n,d,shiftSlot[s]] = 1
nurseDaySlot[n,d,t] <= sum(nurseDayShift[n,d,s] for each s if shiftSlot[s] == t)
4) Demand Requiremented Constraint. Number of nurses assigned for each day d for each slot t == demandSlot[d,t] + surplus[d,t] - shortfall[d,t]
sum(nurseDaySlot[n,d,t] for each n) == demandSlot[d,t] + surplus[d,t] - shortfall[d,t]
5) Minimum Hours Constraint. Each nurse must work at at least {MinHours}
sum(shiftHours[s] * nurseDayShift[n,d,s] for each d for each s) >= MinHours, for each n
6) Maximum Hours Constraint: Each nurse must work at most {MaxHours}
sum(shiftHours[s] * nurseDayShift[n,d,s] for each d for each s) <= MaxHours, for each n
7) Rest Days Constraint. If a nurse n is assigned any shift on day d, she must not be on a rest.
nurseDayShift[n,d,s] <= 1 - restDays[n,d] for each n for each d for each s
8) Maximum number of working days per week constraint. Each nurse must work at most (MaxWorkingDays) per week.
sum(nurseDayShift[n,w*7 + d,s] for d in range(7) for each s) <= MaxWorkingDays, for each n for each week w
9) No consecutive Night(ND) shift - Morning (AM) shift assignment for any nurse constraint.
nurseDaySlot[n,d,ND] + nurseDaySlot[n,d+1,AM] <= 1, for each n for each d

New Constraint
Nurse K cannot work on days D1.



D Coding Agent Prompt Example

### Role ###
You are a Coding Agent python developer who excels at solving Constraint Programming tasks using Google OR-Tools CPSAT python package.
Think step by step carefully before writing the code.

### Instruction ###
Based on the user problem statement and mathematical instructions provided you have to write the python code
using OR-Tools package to solve the problem as shown in the below example.
Build the python code which is written to a file later on and the data is given to the python file as a parameter.

### Note ###
Note that your response should only contain python code without any explanation or run command is needed.

### Example ###
*User*
Problem:
You are tasked to solve a worker scheduling problem.
In this problem, there are {W} workers, {H} hours, and {T} tasks.
Each worker can be assigned to each hour.
Each task has a fixed hour, and can be assigned to each worker. {taskHour[t]} specified which hour task t is assigned.
The main task is to assign workers to hours and tasks to workers, subject to various constraints.
The objective is to minimize the following:
total_hours_assigned + {UNASSIGNED_PENALTY} * total_number_of_unassigned_tasks

Parameters:
W: Number of workers
H: Number of hours
T: Number of tasks
BMin: Minimum block length
BMax: Maximum block length
RMin: Minimum rest length
availableHours[w,h]: Indicates if worker w is available to be assigned hour h (1 if available, otherwise 0)
workerTaskSkills[w,t]: Indicates if worker w is skilled enough to be assigned task t (1 if sufficiently skilled, otherwise 0)
taskHour[t]: Returns the hour of the task
UNASSIGNED_PENALTY: Penalty per unassigned task in the objective function

Decision Variables:
workerHours[w,h]: Indicates if worker w is assigned hour h
workerTasks[w,t]: Indicates if worker w is assigned task t
startBlock[w,h]: Indicates if worker w is assigned a consecutive block of hours starting at hour h
endBlock[w,h]: Indicates if worker w is assigned a consecutive block of hours ending at hour h
unassignedTasks[t]: Indicates if task t is not assigned all workers

Constraints:
1) Available hours constraint. If a worker is assigned an hour, he must be available for that hour.
workerHours[w,h] <= availableHours[w,h] for each w for each h
2) Worker task skill constraint. If a worker is assigned a task, he must be skilled enough for that task.
workerTask[w,t] <= workerTaskSkills[w,t] for each w for each t
3) Task hour assignment constraint. If a worker is assigned a task, he must be assigned the task’s hour.
workerTask[w,t] <= workerHours[w,taskHour[t]] for each w for each t
4) At most 1 task assigned for each worker for each hour
sum(workerTask[w,t] for each t if taskHour[t]=h) <= 1 for each w for each h
5) Start block constraint. If a worker w starts a block of consecutive worker-hour assignments at hour h, startBlock[w,h] = 1. If workerHours[w,0], then startBlock[w,0]
workerHours[w,h] + (1-workerHours[w,h-1]) - 1 <= startBlock[w,h] for each w for each h
workerHours[w,0] <= startBlock[w,0] for each w
6) End block constraint. If a worker w ends a block of consecutive worker-hour assignments at hour h, endBlock[w,h] = 1. If workerHours[w,H-1], then endBlock[w,H-1]
workerHours[w,h] + (1-workerHours[w,h+1]) - 1 <= endBlock[w,h] for each w for each h
workerHours[w,H-1] <= endBlock[w,H-1] for each w
7) Minimum block length constraint. If a worker starts a block at hour h, the worker must be assigned the at least {BMin} hours.
startBlock[w,h] <= workerHours[w,x] for each w for each h for each x in range(h,h+BMin)
8) Maximum block length constraint. If a worker starts a block at hour h, the worker must end within {BMax} hours.
startBlock[w,h] <= sum(endBlock[w,x] for x in range(h,h+BMax)) for each w for each h
9) Minimum Rest constraint. The minimum length of rest (block of consecutive worker-hour = 0) between the end of a block and the start of a block is {RMin}.
endBlock[w,h] <= 1-workerHours[w,x] for each w for each h for each x in range(h+1,h+RMin+1)
10) Unassigned Task constraint. If a task is not assigned to any worker, unassignedTasks[t] = 1.

Given the above context, provide the mathematical formulation for the new constraint mentioned below:



New Constraint:
11) Formulate a constraint such that worker A does not work from hours H1 to H2.

You are free to add parameters and decision variables.

New Parameters:
A: Worker affected from hours H1 to H2
H1: Start of hours where worker A does not work
H2: End of hours where worker A does not work

New Variables:
None

New Constraints:
workerHours[A,h] = 0 for each h in range(H1,H2)

*Current Code*
‘‘‘python
from ortools.sat.python import cp_model
import pandas as pd
import sys
import os
sys.path.append(os.getcwd())
from readdata import read_input_json

# Read data
current_dir = os.getcwd()
# Parameters
input_data_file = os.path.join(current_dir, "gsp_input.json")
data = read_input_json(input_data_file)
W = data["W"]
H = data["H"]
T = data["T"]
availableHours = data["availableHours"]
taskHour = data["taskHour"]
workerTaskSkills = data["workerTaskSkills"]
BMin = data["BMin"]
BMax = data["BMax"]
RMin = data["RMin"]

# Start model object
model = cp_model.CpModel()

# Create Variables
workerHours = model.NewBoolVarSeries("workerHours", pd.Index([(w,h) for w in range(W) for h in range(H)]))
startBlock = model.NewBoolVarSeries("startBlock", pd.Index([(w,h) for w in range(W) for h in range(H)]))
endBlock = model.NewBoolVarSeries("endBlock", pd.Index([(w,h) for w in range(W) for h in range(H)]))
taskAssigned = model.NewBoolVarSeries("taskAssigned", pd.Index([(w,t) for w in range(W) for t in range(T)]))
unassignedTask = model.NewBoolVarSeries("unassignedTask", pd.Index([t for t in range(T)]))

# Main Constraints - start
## Constraint 1: Available hours constraint
for w in range(W):

for h in range(H):
model.Add(workerHours[w,h] <= availableHours[w,h])

## Constraint 2: Worker task skill constraint
for w in range(W):

for t in range(T):
model.Add(taskAssigned[w,t] <= workerTaskSkills[w,t])

## Constraint 3: Task hour assignment constraint
for w in range(W):

for t in range(T):
model.Add(taskAssigned[w,t] <= workerHours[w,taskHour[t]])



## Constraint 4: At most 1 task assigned for each worker for each hour
for w in range(W):

for h in range(H):
model.Add(sum(taskAssigned[w,t] for t in range(T) if taskHour[t] == h) <= 1)

## Constraint 5: startBlock[w,h] = 1 indicates the start of a consecutive assignment of workerHours for worker w starting at hour h.
for w in range(W):

for h in range(1, H):
model.Add(workerHours[w,h-1].Not() + workerHours[w,h] - 1 <= startBlock[w,h])

model.Add(workerHours[w,0] <= startBlock[w,0])

## Constraint 6: endBlock[w,h] = 1 indicates the end of a consecutive assignment of workerHours for worker w ending at hour h.
for w in range(W):

for h in range(0,H-1):
model.Add(workerHours[w,h] + workerHours[w,h+1].Not() - 1 <= endBlock[w,h])

model.Add(workerHours[w,H-1] <= endBlock[w,H-1])

## Constraint 7: Min Block Length constraint
for w in range(W):

for h in range(H-BMin):
for x in range(h, h+BMin):

model.Add(startBlock[w,h] <= workerHours[w,x])

for h in range(H-BMin, H):
model.Add(startBlock[w,h] == 0)

## Constraint 8: Max Block Length Constraint
for w in range(W):

for h in range(H-BMax-1):
model.Add(startBlock[w,h] <= sum(workerHours[w,x].Not() for x in range(h+1,h+BMax+1)))

## Constraint 9: Minimum Rest constraint
for w in range(W):

for h in range(H):
for x in range(h+1, min(H, h+RMin+1)):

model.Add(endBlock[w,h] <= workerHours[w,x].Not())

## Constraint 10: Unassigned task constraint
for t in range(T):

model.Add(sum(taskAssigned[w,t] for w in range(W)) >= 1 - unassignedTask[t])
# Main Constraints - end

# Dynamic Constraints

# Objective
total_hours_assigned = sum(workerHours[w,h] for w in range(W) for h in range(H))
total_unassigned_tasks = sum(unassignedTask[t] for t in range(T))
UNASSIGNED_PENALTY = 1000
objective = total_hours_assigned + UNASSIGNED_PENALTY * total_unassigned_tasks
model.Minimize(objective)

# Run Solver
solver = cp_model.CpSolver()
solver.parameters.linearization_level = 0
solver.parameters.max_time_in_seconds = 180
solver.parameters.optimize_with_core = True
solver.parameters.num_search_workers = 1
solver.parameters.log_search_progress = True
status = solver.Solve(model)



‘‘‘
*Coding Agent*
‘‘‘python
from ortools.sat.python import cp_model
import pandas as pd
from readdata import read_input_json

# Global Parameters
input_data_file = "simple_input.json"
data = read_input_json(input_data_file)
W = data["W"]
H = data["H"]
T = data["T"]
availableHours = data["availableHours"]
taskHour = data["taskHour"]
workerTaskSkills = data["workerTaskSkills"]
BMin = data["BMin"]
BMax = data["BMax"]
RMin = data["RMin"]

A = data["A"]
H1 = data["H1"]
H2 = data["H2"]
# Global Parameters - end

# Start model object
model = cp_model.CpModel()

# Global Variables
workerHours = model.NewBoolVarSeries("workerHours", pd.Index([(w,h) for w in range(W) for h in range(H)]))
startBlock = model.NewBoolVarSeries("startBlock", pd.Index([(w,h) for w in range(W) for h in range(H)]))
endBlock = model.NewBoolVarSeries("endBlock", pd.Index([(w,h) for w in range(W) for h in range(H)]))
taskAssigned = model.NewBoolVarSeries("taskAssigned", pd.Index([(w,t) for w in range(W) for t in range(T)]))
unassignedTask = model.NewBoolVarSeries("unassignedTask", pd.Index([t for t in range(T)]))

None
# Global Variables - end

# Main Constraints - start
## Constraint: 1
"""
Desc: Skill prequisite constraint: If a task is assigned to a worker, the worker-task skills must be compatible. If taskAssigned[w,t] = 1, then workerTaskSkills[w,t] = 1
Type: Main
Parameters: None
Variables: None
"""
### Code:
for w in range(W):

for t in range(T):
model.Add(taskAssigned[w,t] <= workerTaskSkills[w,t])

## Constraint: 2
"""
Desc: Time prerequisite constraint: If a task is assigned to a worker, the worker must be assigned to the task’s hour. If taskAssigned[w,t] = 1, then workerHours[w,taskHour[t]] = 1
Type: Main
Parameters: None
Variables: None
"""
### Code:
for w in range(W):

for t in range(T):
model.Add(taskAssigned[w,t] <= workerHours[w,taskHour[t]])

## Constraint: 3
"""
Desc: No multi-tasking constraint: A worker can only be assigned at most 1 task per hour. A worker can work at most 1 task per hour



Type: Main
Parameters: None
Variables: None
"""
### Code:
for w in range(W):

for h in range(H):
model.Add(sum(taskAssigned[w,t] for t in range(T) if taskHour[t] == h) <= 1)

## Constraint: 4
"""
Desc: Time availability constriant: If a worker is assigned an hour, the worker must be available for that hour. If workerHours[w,h] = 1, then availableHours[w,h] = 1
Type: Main
Parameters: None
Variables: None
"""
### Code:
for w in range(W):

for h in range(H):
model.Add(workerHours[w,h] <= availableHours[w,h])

## Constraint: 5
"""
Desc: startBlock[w,h] = 1 indicates the start of a consecutive assignment of workerHours for worker w starting at hour h. If workerHours[w,h-1] = 0 and workerHours[w,h] = 1, then startBlock[w,h] = 1. If workerHours[w,0] = 1, then startBlock[w,0] = 1.
Type: Main
Parameters: None
Variables: None
"""
### Code:
for w in range(W):

for h in range(1, H):
model.Add(workerHours[w,h-1].Not() + workerHours[w,h] - 1 <= startBlock[w,h])

model.Add(workerHours[w,0] <= startBlock[w,0])

## Constraint: 6
"""
Desc: endBlock[w,h] = 1 indicates the end of a consecutive assignment of workerHours for worker w ending at hour h. If workerHours[w,h-1] = 1 and workerHours[w,h] = 0, then endBlock[w,h-1] = 1. If workerHours[w,H-1] = 1, then endBlock[w,H-1] = 1.
Type: Main
Parameters: None
Variables: None
"""
### Code:
for w in range(W):

for h in range(1, H):
model.Add(workerHours[w,h-1] + workerHours[w,h].Not() - 1 <= endBlock[w,h-1])

model.Add(workerHours[w,H-1] <= endBlock[w,H-1])

## Constraint: 7
"""
Desc: If a task is not assigned to a single worker (if taskAssigned[w,t] = 0 for all w), then unassignedTask[t] = 1. If unassignedTask[t] = 0, then sum(taskAssigned[w,t] for all w) >= 1
Type: Main
Parameters: None
Variables: None
"""
### Code:
for t in range(T):

model.Add(sum(taskAssigned[w,t] for w in range(W)) >= 1 - unassignedTask[t])

## Constraint: 8
"""
Desc: Min Block Length constraint: Minimum length of consecutive hours assigned to a worker is {BMin}. If startBlock[w,h] = 1, then workerHours[w,h] = 1 and workerHours[w,h+1] = 1 and ... workerHours[w,h+BMin-1] = 1



Type: Main
Parameters: None
Variables: None
"""
### Code:
for w in range(W):

for h in range(H-BMin):
for x in range(h, h+BMin):

model.Add(startBlock[w,h] <= workerHours[w,x])

for h in range(H-BMin, H):
model.Add(startBlock[w,h] == 0)

## Constraint: 9
"""
Desc: Max Block Length Constraint: Maximum length of consecutive hours assigned to a worker is {BMax}. If startBlock[w,h] = 1, then NOT (workerHours[w,h+1]=1 and ... workerHours[w,h+BMax]=1). If startBlock[w,h] = 1, then workerHours[w,h+1]=0 or ... workerHours[w,h+BMax]=0
Type: Main
Parameters: None
Variables: None
"""
### Code:
for w in range(W):

for h in range(H-BMax-1):
model.Add(startBlock[w,h] <= sum(workerHours[w,x].Not() for x in range(h+1,h+BMax+1)))

## Constraint: 10
"""
Desc: Minimum Rest constraint: Minimum length of consecutive non-working hours after hour h for worker w = {RMin} if endBlock[w,h] = 1. If endBlock[w,h], then (workerHours[w,h+1]=0 and workerHours[w,h+2]=0 and ... workerHours[w,h+RMin]=0)
Type: Main
Parameters: None
Variables: None
"""
### Code:
for w in range(W):

for h in range(H):
for x in range(h+1, min(H, h+RMin+1)):

model.Add(endBlock[w,h] <= workerHours[w,x].Not())

## Constraint: 11

### Code:

for h in range(H1, H2+1):
model.Add(workerHours[A,h] == 0)

# Objective
total_hours_assigned = sum(workerHours[w,h] for w in range(W) for h in range(H))
total_unassigned_tasks = sum(unassignedTask[t] for t in range(T))
UNASSIGNED_PENALTY = 1000
objective = total_hours_assigned + UNASSIGNED_PENALTY * total_unassigned_tasks
model.Minimize(objective)

# Run Solver
solver = cp_model.CpSolver()
solver.parameters.linearization_level = 0
solver.parameters.max_time_in_seconds = 60 * 3
solver.parameters.optimize_with_core = True
solver.parameters.num_search_workers = 1
solver.parameters.log_search_progress = True
status = solver.Solve(model)
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Your turn:
Problem:
You are tasked to solve a nurse rostering problem.



In this problem, there are {N} nurses, {D} days, {S} shifts and {T} slots.
Each worker can be a shift for each day.
Each shift takes a certain number of hours, specified in {shiftHours}.
Each shift fills either a Morning(AM)(Slot 0), Afternoon(PM)(Slot 1), or Night(ND)(Slot 2) slot.
There is a demand requirement for each day for each slot, where we want to assign the nurses their shifts as close as possible to fulfil this demand.
The main task is to assign nurses a shift for each day (or no shift if the nurse is not working for that day), while satisfying some constraints and minimizing an objective.
The objective is to minimize the following:
surplus + shortfall
surplus is the total number of nurses assigned to a slot more than the specified demand for that day and slot.
shortfall is the total number of nurses assigned to a slot less than the specified demand for that day and slot.

Parameters:
N: Number of nurses
D: Number of days
S: Number of shifts
T: Number of slots
availableShifts[n,d,s]: Indicates if nurse n is available to be assigned day d and slot s (1 if available, otherwise 0)
shiftSlot[s] returns the slot number for shift s. (Eg. 7am to 11am is a Morning shift(AM), so it has a value of 0 (Slot 0))
shiftHours[s] = Integer value for the number of hours in shift s. (Eg. 7am to 11am shift has a value of 4)
demandSlot[d,t] = Integer value of the demand required specified per day d per slot t
restDays[n,d]: Indicates if nurse n is resting (Not available) on day d.
MinHours = data["MinHours"]
MaxHours = data["MaxHours"]
MaxWorkingDays = data["MaxWorkingDays"]

Decision Variables:
nurseDayShift[n,d,s]: Indicates if nurse n is assigned day d and shift s
nurseDaySlot[n,d,t]: Indicates if nurse n is assigned a shift in day d slot t
surplus[d,t] = Integer value of the surplus nurses assigned on day d slot t. (If X more nurses are assigned to day d slot t than specified in demandSlot[d,t], return X, otherwise 0)
shortfall = Integer value of the shortfall nurses assigned on day d slot t. (If X less nurses are assigned to day d slot t than specified in demandSlot[d,t], return X, otherwise 0)

Constraints:
1) Available shift constraint. If nurse n is assigned day d and shift s, she must be available on day d shift s.
nurseDayShift[n,d,s] <= availableShifts[n,d,s] for each n for each d for each s
2) Max 1 shift per day constraint. At most 1 shift per day constraint
sum(nurseDayShift[n,d,s] for each s) <= 1, for each n for each s
3) Shift to slot assignment constriant. If a nurse n is assigned day d shift s, then nurseDaySlot[n,d,shiftSlot[s]] = 1
nurseDaySlot[n,d,t] <= sum(nurseDayShift[n,d,s] for each s if shiftSlot[s] == t)
4) Demand Requiremented Constraint. Number of nurses assigned for each day d for each slot t == demandSlot[d,t] + surplus[d,t] - shortfall[d,t]
sum(nurseDaySlot[n,d,t] for each n) == demandSlot[d,t] + surplus[d,t] - shortfall[d,t]
5) Minimum Hours Constraint. Each nurse must work at at least {MinHours}
sum(shiftHours[s] * nurseDayShift[n,d,s] for each d for each s) >= MinHours, for each n
6) Maximum Hours Constraint: Each nurse must work at most {MaxHours}
sum(shiftHours[s] * nurseDayShift[n,d,s] for each d for each s) <= MaxHours, for each n
7) Rest Days Constraint. If a nurse n is assigned any shift on day d, she must not be on a rest.
nurseDayShift[n,d,s] <= 1 - restDays[n,d] for each n for each d for each s
8) Maximum number of working days per week constraint. Each nurse must work at most (MaxWorkingDays) per week.
sum(nurseDayShift[n,w*7 + d,s] for d in range(7) for each s) <= MaxWorkingDays, for each n for each week w
9) No consecutive Night(ND) shift - Morning (AM) shift assignment for any nurse constraint.
nurseDaySlot[n,d,ND] + nurseDaySlot[n,d+1,AM] <= 1, for each n for each d

New Constraint
Nurse K is not available to work on day D1.

### Parameters ###
K: Nurse affected on day D1.
D1: Nurse K cannot work on this day.

### Variables ###
None

### Constraints ###
nurseDayShift[K,D1,s] = 0 for each s

Current code:
‘‘‘python
from ortools.sat.python import cp_model



import pandas as pd
import numpy as np
import sys
import os
sys.path.append(os.getcwd())
from readdata import read_input_json

# Read data
current_dir = os.getcwd()
input_file = os.path.join(current_dir, "nsp_input.json")
data = read_input_json(input_file)

# Parameters
N = data["N"] # Num nurses
D = data["D"] # Num days
S = data["S"] # Num Shifts. A shift can be 7am to 11am, 9am to 1pm, 8pm to 7am, etc.
T = data["T"] # Num Slots: AM = 0, PM = 1, ND = 2 (Morning, Afternoon Night). A shift is classified under one of these 3 slots.
AM,PM,ND = 0,1,2
availableShifts = data["availableShifts"] # availableShifts[n,d,s] returns a boolean if nurse n is available for day d and shift s.
shiftSlot = data["shiftSlot"] # shiftSlot[s] returns the slot number for shift s. (7am to 11am is a Morning shift(AM), so it has a value of 0)
shiftHours = data["shiftHours"] # shiftHours[s] returns the number of hours in shift s. (7am to 11am shift has a value of 4)
demandSlot = data["demandSlot"] # Demand is specified per day per slot in demandSlot[d,t]
restDays = data["restDays"] # restDays[n,d]=1 implies that availableShifts[n,d,s] = 0 for all s
MinHours = data["MinHours"]
MaxHours = data["MaxHours"]
MaxWorkingDays = data["MaxWorkingDays"]

# Start model object
model = cp_model.CpModel()

# Variables
nurseDayShift = model.NewBoolVarSeries("nurseDayShift", pd.Index([(n,d,s) for n in range(N) for d in range(D) for s in range(S)]))
nurseDaySlot = model.NewBoolVarSeries("nurseDaySlot", pd.Index([(n,d,t) for n in range(N) for d in range(D) for t in range(T)]))
surplus = model.NewIntVarSeries("surplus", pd.Index([(d,t) for d in range(D) for t in range(T)]), 0, 3)
shortfall = model.NewIntVarSeries("shortfall", pd.Index([(d,t) for d in range(D) for t in range(T)]), 0, 3)

# Constraints
## Available shift constraint
for n in range(N):

for d in range(D):
for s in range(S):

model.Add(nurseDayShift[n,d,s] <= availableShifts[n,d,s])

## At most 1 shift per day constraint
for n in range(N):

for d in range(D):
model.Add(sum(nurseDayShift[n,d,s] for s in range(S)) <= 1)

## Nurse Shift Slot assignment Constraint
for n in range(N):

for d in range(D):
for t in range(T):

model.Add(nurseDaySlot[n,d,t] <= sum(nurseDayShift[n,d,s] for s in range(S) if shiftSlot[s] == t))

## Demand Constraint: Number of nurses assigned for each day d for each slot t == demandSlot[d,t] + surplus[d,t] - shortfall[d,t]
for d in range(D):

for t in range(T):
model.Add(sum(nurseDaySlot[n,d,t] for n in range(N)) == demandSlot[d,t] + surplus[d,t] - shortfall[d,t])

## Min Hours Constraint
for n in range(N):

model.Add(sum(nurseDayShift[n,d,s] * shiftHours[s] for d in range(D) for s in range(S)) >= MinHours)

## Max Hours Constraint
for n in range(N):



model.Add(sum(nurseDayShift[n,d,s] * shiftHours[s] for d in range(D) for s in range(S)) <= MaxHours)

## Rest Day Constriant
for n in range(N):

for d in range(D):
for s in range(S):

model.Add(nurseDayShift[n,d,s] <= 1- restDays[n,d])

## MaxWorkingDays = 5 per week
NumWeeks = D // 7
for n in range(N):

for w in range(NumWeeks):
model.Add(sum(nurseDayShift[n,w*7 + d,s] for d in range(7) for s in range(S)) <= MaxWorkingDays)

## No Night-Morning Shift pattern Constraint
## If a nurseDaySlot[n,d,ND] = 1, then nurseDaySlot[n,d+1,AM] = 0
for n in range(N):

for d in range(D-1):
model.Add(nurseDaySlot[n,d,ND] <= 1 - nurseDaySlot[n,d+1,AM])

## New Constraints

# Objective
demand_mismatch = sum(surplus[d,t] + shortfall[d,t] for d in range(D) for t in range(T))
model.Minimize(demand_mismatch)

# Run Solver
solver = cp_model.CpSolver()
solver.parameters.linearization_level = 0
solver.parameters.max_time_in_seconds = 60 * 2
solver.parameters.optimize_with_core = True
solver.parameters.num_search_workers = 16
solver.parameters.log_search_progress = True
status = solver.Solve(model)
‘‘‘
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