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TANGLE-TREE DUALITY IN INFINITE GRAPHS

SANDRA ALBRECHTSEN

Abstract. We extend Robertson and Seymour’s tangle-tree duality theorem to infinite graphs.

1. Introduction

Tree-decompositions are a central object in structural graph theory. They were not only a crucial

tool in the Graph Minor Project of Robertson and Seymour [21], but also attracted attention as several

computationally hard problems can be solved efficiently on graphs of small tree-width. Because of this, the

question arose which graphs have small tree-width, that is, admit a tree-decomposition into bags that all

contain only few vertices, and, conversely, what kind of substructures prevent a graph from having small

tree-width.

There are a number of substructures, e.g. large grid or clique minors, or k-blocks for large k, that are

known to force a graph to have large tree-width. While these objects differ in their concrete shape, they

have one thing in common: they witness high cohesion somewhere in the graph.

In their Graph Minors Project [21], Robertson and Seymour introduced tangles as a unified way to

capture all such highly cohesive substructures in a graph. Formally, a k-tangle in a graph G is a certain

orientation of all its separations of order less than k. The idea is that every highly cohesive substructure

of G will lie mostly on one side of such a low-order separation, and therefore orient it towards that side.

All these orientations, collectively, are then called a tangle.

One of the two major theorems in Robertson and Seymour’s original work on tangles is the following

duality between tangles of high order and small tree-width [22], rephrased here in the terminology of [7]:

Theorem 1.1. For every finite graph G and k ∈ N, exactly one of the following assertions holds:

(i) There exists a k-tangle in G.

(ii) There exists an Sk(G)-tree over T ∗.

Theorem 1.1 is known as the tangle-tree duality theorem. For a definition of Sk(G)-trees over T ∗ we refer

the reader to Section 2. Theorem 1.1 implies an approximate duality for tangles and tree-width: every

graph G with a k-tangle has tree-width at least k − 1, while a tree as in (ii) induces a tree-decomposition

of G of width at most 3k − 4.

The definition of a tangle extends verbatim to infinite graphs. There are several papers that extend

results about tangles in finite graphs to infinite ones, or which deal with new questions that arise from

tangles in infinite graphs only [5,6,14,15,19]. In this paper we contribute to this a duality statement about

tangles and small tree-width in infinite graphs, which extends Theorem 1.1 to infinite graphs.
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The first thing to notice is that, in infinite graphs, high-order tangles no longer force the tree-width up.

Indeed, every infinite graph G contains a tangle of infinite order [6], an orientation of all the finite-order

separations of G. By restricting it to only those oriented separations that have order less than k, every

such tangle induces a k-tangle for every k ∈ N. Hence, every infinite graph has a k-tangle for every k ∈ N.

However, there are infinite graphs, e.g. infinite trees, that have small tree-width. Thus, in contrast to

finite graphs, high-order tangles in infinite graphs are in general not an obstruction to small tree-width.

Specifically, infinite locally finite trees are an example of graphs that have both a 3-tangle and an S3(G)-tree

over T ∗, thus witnessing that Theorem 1.1 fails for infinite graphs.

So what is the difference between finite and infinite graphs that causes high-order tangles to force large

tree-width in finite graphs but not in infinite graphs? In finite graphs, tangles arise only from highly

connected substructures (which may be fuzzy) as indicated earlier. In infinite graphs, however, there are

also tangles that arise from infinite phenomena of the graph that do not reflect high local cohesion.

Let us first consider locally finite graphs. Every infinite locally finite, connected graph G has an end,

an equivalence class of rays in G where two rays are equivalent if they cannot be separated by deleting

finitely many vertices. Every end induces an infinite tangle by orienting every finite-order separation to the

side which contains a tail of one (equivalently each) of its rays [6]. The degree of an end is the maximum

number of disjoint rays in it.

Ends of large degree do force the tree-width up: It is not difficult to see that every graph with an end of

degree at least k has tree-width at least k. But this is sharp in the sense of Theorem 1.1: For every k ∈ N,

there exists a locally finite graph (e.g. the rectangular (k− 1)×∞ grid) whose single end has degree k− 1,

and that has an Sk(G)-tree over T ∗. In particular, ends of small degree do not force the tree-width up.

So if we want to extend Theorem 1.1 to locally finite graphs in a way that retains its duality between tree

structure on the one hand and the existence of high local cohesion on the other, we need to adjust (i) to

ban tangles that are induced by ends of small degree.

We also have to adjust (ii) of Theorem 1.1, for a different reason. Since no infinite graph has a finite

Sk(G)-tree over T ∗, we have to allow infinite Sk(G)-trees in (ii) when we extend Theorem 1.1 to infinite

graphs. But this creates another problem. For example, consider the graph G which is obtained from a ray

on vertex set N by gluing a large cliqueK on to 0. Then G has an infinite S4(G)-tree (R,α) over T ∗, where R

is the natural ray on vertex set N and α : E(R) → S4 (G) with α(i, i + 1) = ({0, . . . , i + 1},N>i ∪ V (K)).

But G has large tree-width (and a high-order tangle), as witnessed by the large clique K. The problem is

that, in contrast to finite Sk(G)-trees, (R,α) does not induce a tree-decomposition.

Since it is our aim to extend Theorem 1.1 to infinite graphs in a way that retains its duality between tree

structure and the existence of high local cohesion, we need to exclude such Sk(G)-trees from (ii). This will

be formalised by ‘weakly exhaustive’ Sk(G)-trees in Section 2: every weakly exhaustive Sk(G)-tree does

induces a tree-decomposition.

Our tangle-tree duality theorem for locally finite graphs then reads as follows:

Theorem 1. For every locally finite, connected graph G and k ∈ N, exactly one of the following assertions

holds:

(i) There exists a k-tangle in G that is not induced by an end of degree < k.

(ii) There exists a weakly exhaustive Sk(G)-tree over T ∗.

Let us now consider arbitrary infinite graphs. There is another type of tangle that can occur in infinite

graphs which also does not reflect any highly cohesive substructure. For example, let G be the edgeless
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graph1 with vertex set N. Let β be a non-principal ultrafilter on N, and orient every 1-separation of G

(a bipartition of N) towards its side in β. This is a 1-tangle in G, since N is not a union of three subsets

not in β. More generally, a k-tangle is principal if it contains for every set X of fewer than k vertices a

separation of the form (V (G)rV (C), V (C)∪X) where C is a component of G−X . A tangle is non-principal

if it is not principal. As in our example, an infinite graph G contains a non-principal k-tangle if there is

a set X of fewer than k vertices of G whose deletion separates G into infinitely many components; and

every such tangle, one for each non-principal ultrafilter on the set of components of G−X , contains all the

separations of the form (V (C) ∪X,V (G)r V (C)) for components C of G−X [6].2 As we have seen, such

non-principal tangles do not force a graph to have large tree-width, and hence give rise to counterexamples

to Theorem 1.1 and Theorem 1 for arbitrary infinite graphs. Hence, for graphs that are not locally finite,

we shall have to adjust (i) again, to ban non-principal tangles.

We shall have to adjust (i) in another way too. A vertex v of G dominates an end ε of G if no finite set

of vertices other than v separates v from a ray in ε. The combined degree of an end is the sum of its degree

and the number of its dominating vertices.3 Similarly to ends of large degree, also ends of large combined

degree force the tree-width up: It is not difficult to see that every graph with an end of combined degree k

has tree-width at least k. Hence, we need to adjust (i) as follows:

Theorem 2. For every countable graph G and k ∈ N, exactly one of the following assertions holds:

(i) There exists a principal k-tangle in G that is not induced by an end of combined degree < k.

(ii) There exists a weakly exhaustive Sk(G)-tree over T ∗.

Note that we restricted the graphs in Theorem 2 to those that are countable. We did so for a reason:

There is no uncountable graph G that has a weakly exhaustive Sk(G)-tree over T ∗ for any k ∈ N. Indeed,

let (T,V) be the tree-decomposition induced by any weakly exhaustive Sk(G)-tree over T ∗. Then the

definition of T ∗ ensures that the bags Vt of (T,V) all have size 6 3k− 3, and that the tree T has maximum

degree at most 3, and hence is countable. But then G is countable.

However, there are uncountable graphs, e.g. stars with uncountably many leaves, that have no 3-tangles

as in (i) of Theorem 2, and that even have tree-width 1. We could now try to update (i) again, so that our

duality theorem always outputs (i) if the graph is uncountable; but then (i) would no longer capture high

local cohesion in a graph, which remains our aim. So we need to adjust (ii).

As indicated earlier, the definition of Sk(G)-trees over T ∗ is too restrictive to capture uncountable

graphs of small tree-width, as those Sk(G)-trees have maximum degree at most 3. Hence, we will allow the

Sk(G)-tree in (ii) to have infinite-degree nodes. For this, we allow Sk(G)-trees over T ∗ ∪ U∞
k rather than

just T ∗, where U∞
k is the set of all infinite stars of separations of order < k whose interior has size < k.4

Now a tree-decomposition induced by a weakly exhaustive Sk(G)-tree over T ∗ ∪ U∞
k may have nodes t of

infinite degree as long as their bags Vt have size less than k. This modification of (ii) will be in line with

our aim that (ii) describes graphs that have no large highly cohesive substructures: such graphs may have

non-principal tangles, and these can now happily live in the Sk(G)-tree in its nodes of infinite degree.

Our tangle-tree duality theorem for arbitrary graphs now reads as follows:

1If you do not like tangles of edgeless graphs, let G be a countably infinite disjoint union of copies of K2.
2Note that such tangles cannot exist in connected locally finite graphs, where deleting finitely many vertices never leaves

infinitely many components.
3Note that in locally finite graphs a vertex cannot dominate an end, so the combined degree of an end is simply its degree.
4Formally, U∞

k
:= {σ = {(Ai, Bi) : i ∈ I} ⊆ Sk (G) : σ is a star, |

⋂
i∈I Bi| < k and |σ| = ∞}; see Section 2 for details.
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Theorem 3. For every graph G and k ∈ N, exactly one of the following assertions holds:

(i) There exists a principal k-tangle in G that is not induced by an end of combined degree < k.

(ii) There exists a weakly exhaustive Sk(G)-tree over T ∗ ∪ U∞
k .

We remark that Theorems 1 and 2 are simple applications of Theorem 3 (see Section 5 for details). In

particular, Theorem 3 contains Theorem 1.1 as a special case. Indeed, in finite graphs all tangles are

principal, so a finite graph satisfies (i) of Theorem 3 if and only if it satisfies (i) of Theorem 1.1. Moreover,

in finite graphs the set U∞
k is empty and every finite Sk(G)-tree over T ∗ is weakly exhaustive. So a finite

graph satisfies (ii) of Theorem 3 if and only if it satisfies (ii) of Theorem 1.1.

Moreover, similarly to Theorem 1.1, a tree as in (ii) induces a tree-decomposition of G of width at most

3k − 4, while every graph with a tangle as in (i) has tree-width at least k − 1.

Diestel and Oum [12] generalized Theorem 1.1 to so-called ‘F -tangles’. The ‘standard’ k-tangles are

orientations of the separations of a graph G of order < k that avoid the set T ∗ ⊆ 2Sk (G): a k-tangle does

not contain an element of T ∗ as a subset. This set T ∗ can be replaced by more general sets of separations,

leading to the more general notion of F -tangles.

We will in fact prove Theorem 3 more generally for F -tangles (see Theorem 6 in Section 5 for the precise

statement). As an application, we obtain the following exact characterization of graphs that have tree-width

k ∈ N, which generalizes a result of Diestel and Oum [11]:

Theorem 4. The following assertions are equivalent for all graphs G and k ∈ N:

(i) G has a Uk-tangle of order k that is not induced by an end of combined degree < k.

(ii) G has a finite bramble of order at least k.

(iii) G has no weakly exhaustive Sk(G)-tree over Uk.

(iv) G has tree-width at least k − 1.

(See Section 2 for definitions.) The equivalence of (ii) and (iv) yields a generalization of the ‘bramble-

treewidth duality theorem’ of Seymour and Thomas [23] (see Theorem 6.2 in Section 6), which also includes

their finite version as a corollary (without using it in the proof).

The other major theorem about tangles which Robertson and Seymour [22] proved is the tree-of-tangles

theorem. Recall that a separation {A,B} of a graph G distinguishes two tangles in G if they orient {A,B}

differently. It distinguishes them efficiently if they are not distinguished by any separation of smaller order.

The tree-of-tangles theorem for fixed k ∈ N asserts that every finite graph G has a tree-decomposition

(T,V) which efficiently distinguishes all its k-tangles: for every pair τ, τ ′ of k-tangles in G, there is an

edge e of T such that the separation induced by e distinguishes τ and τ ′ efficiently.

Following [15], we call two k-tangles combinatorially distinguishable if there is a finite set X ⊆ V (G)

and a component C of G − X such that {V (C) ∪ X,V (G − C)} distinguishes them. In particular, if

two k-tangles are combinatorially indistinguishable, then they are both non-principal. For instance, in

the example mentioned above, where G is the edgeless graph on vertex set N, no two 1-tangles in G are

combinatorially distinguishable.

We show that if a graph G has no k-tangle as in (i) of Theorem 3, then it has an Sk(G)-tree as in (ii)

which additionally distinguishes all the combinatorially distinguishable k-tangles that G may have: those

that are not of the form as in (i):
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Theorem 5. Let G be a graph and k ∈ N. Suppose that all principal k-tangles in G are induced by ends

of combined degree < k. Then G has a weakly exhaustive Sk(G)-tree (T, α) over T ∗ ∪ U∞
k such that

(i) every end of G lives in an end of T , and conversely every end of T is home to an end of G,

(ii) every non-principal k-tangle lives at a node t of T with {α(t′, t) : t′ ∈ NT (t)} ∈ U∞
k , and

(iii) for every pair τ, τ ′ of combinatorially distinguishable k-tangles in G there is an edge e of T such

that α(e) distinguishes τ and τ ′ efficiently.

In particular, (iii) ensures that no two ends of G live in the same end of T , and that no two combinatorially

distinguishable non-principal k-tangles live at the same node of T . We remark that it is not possible to

strengthen (iii) so that all k-tangles are efficiently distinguished by a separation of the form α(e) for an

edge e of T [15, Corollary 3.4].

We will obtain Theorem 5 as a corollary of a more general theorem (see Theorem 7.1 in Section 7) that

yields a tree-decomposition with similar properties as the Sk(G)-tree in Theorem 5 even if G has other

k-tangles than those allowed in the premise of Theorem 5.

This paper is organised as follows. We first give a brief introduction to infinite graphs and their tangles

in Sections 2 and 3. In Section 4, we first sketch the proof of Theorem 3 briefly, and then prove Lemma 4.4,

which is one of the two main ingredients to the proof of Theorem 3. In Section 5, we prove Theorem 3,

and then derive Theorems 1 and 2 from it. In Section 6 we deduce Theorem 4. In Section 7, we use the

tools developed in Section 4 to show a ‘refined’ version of the tree-of-tangles theorem, which generalizes a

result of [1] to infinite graphs, and which contains Theorem 5 as a special case.

2. Preliminaries

We mainly follow the notions from [7]. In what follows, we recap some important definitions which we

need later. All graphs in this paper may be infinite unless otherwise stated.

2.1. Infinite graphs. A ray in a graph is a one-way infinite path. A graph is rayless if it contains no ray.

A graph is tough if deleting finitely many vertices never leaves infinitely many components.

The following theorem was first proved by Polat [20]; see [3, Theorem 2.5] for a short proof.

Theorem 2.1. Every tough, rayless graph is finite.

2.2. Separations. Let G be any graph. A separation of G is a set {A,B} of subsets of V (G) such that

A∪B = V (G) and there is no edge in G between ArB and BrA. A separation {A,B} of G is proper if

neither A nor B equals V (G). The order |{A,B}| of a separation {A,B} is the size |A∩B| of its separator

A ∩B. For some k ∈ N ∪ {ℵ0}, we define Sk(G) to be the set of all separations of G of order < k.

The orientations of a separation {A,B} are the oriented separations (A,B) and (B,A). We refer

to A (rB) as the (strict) small side of (A,B) and to B (rA) as the (strict) big side of (A,B). Given a

set S of separations of G, we write S := {(A,B) : {A,B} ∈ S} for the set of all their orientations. We will

use terms defined for unoriented separations also for oriented ones and vice versa if that is possible without

causing ambiguities. Moreover, if the context is clear, we will simply refer to both oriented and unoriented

separations as ‘separations’. If we do not need to know about the sides of a separation, we sometimes

denote separations with s, and their orientations with s, s. Note that there are no default orientations:

Once we denoted one orientation by s the other one will be s, and vice versa.
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A separation (A,B) of G is left-tight (right-tight) if the neighbourhood in G of some component of

G[ArB] (G[B rA]) equals A ∩B. Moreover, {A,B} is tight if (A,B) is left- and right-tight.

The oriented separations of a graph G are partially ordered by (A,B) 6 (C,D) if A ⊆ C and B ⊇ D.

A separation r of G is trivial in S ⊆ Sℵ0
(G) if there exists s ∈ S such that r < s as well as r < s. The

separations of G that are trivial in Sℵ0
(G) are those of the form r = (X,V (G)) for which there exists

s = {A,B} ∈ Sℵ0
(G)r {r} with X ⊆ A ∩B.

An infinite increasing sequence ((Ai, Bi))i∈N of separations of a graph G is weakly exhaustive if the

intersection of their strict big sides is empty, i.e. if
⋂

i∈N
Bi rAi = ∅.

A set σ ⊆ Sℵ0
(G) r {(V, V )} of separations is called a star if for any (A,B), (C,D) ∈ σ it holds that

(A,B) 6 (D,C). The interior of a star σ ⊆ Sℵ0
(G) is the intersection int(σ) :=

⋂

(A,B)∈σ B, and the torso

of σ, denoted by torso(σ), is the graph that is obtained from G[int(σ)] by adding an edge {v, u} whenever

v 6= u ∈ int(σ) lie together in some separator of a separation in σ.

The partial order on Sℵ0
(G) also relates the proper stars in Sℵ0

(G): : If σ, τ ⊆ Sℵ0
(G) are stars of

proper separations, then σ 6 τ if and only if for every s ∈ σ there exists some r ∈ τ such that s 6 r. Note

that this relation is again a partial order [8].

Two separations {A,B} and {C,D} of G are nested if they have orientations which can be compared;

otherwise they cross.

For any pair of separations (A,B) and (C,D) also their infimum (A,B) ∧ (C,D) := (A ∩ C,B ∪ D)

and their supremum (A,B) ∨ (C,D) := (A ∪ C,B ∩ D) are separations of G; we call {A ∩ C,B ∪ D},

{A ∪ C,B ∩D}, {B ∩ C,A ∪D} and {B ∪ C,A ∩D} the corner separations of {A,B} and {C,D}.

Lemma 2.2. [7, Lemma 12.5.5] Let r, s be two crossing separations of a graph G. Every separation of G

that is nested with both r and s is also nested with all four corner separations of r and s.

Moreover, it is easy to check that if two separations {A,B}, {C,D} of a graph cross, then

|(A ∩ C) ∩ (B ∪D)|+ |(A ∪ C) ∩ (B ∩D)| = |A ∩B|+ |C ∩D|.

Here ‘6’ is the important part, which is called submodularity.

2.3. Profiles and tangles. An orientation of a set S ⊆ Sℵ0
(G) is a set O ⊆ S which contains, for every

{A,B} ∈ S, exactly one its orientations (A,B) and (B,A). It is consistent if it does not contain both

(B,A) and (C,D) whenever (A,B) < (C,D) for distinct {A,B}, {C,D} ∈ S. An orientation is regular if

it does not contain (V (G), A) for any subset A ⊆ V (G).

An orientation O of S lives in a star σ ⊆ S (or equivalently σ is home to O) if σ ⊆ O. If O is a set of

consistent orientations of S, we call a star σ ⊆ S essential (for O) if some O ∈ O lives in σ. Otherwise σ

is called inessential (for O).

A separation {A,B} ∈ S distinguishes two orientations of S if they orient {A,B} differently. {A,B}

distinguishes them efficiently if they are not distinguished by any separation of smaller order. A set of

separations N ⊆ S (efficiently) distinguishes a set O of consistent orientations of S if any two distinct

orientations in O are (efficiently) distinguished by some separation in N .

Let S ⊆ Sℵ0
(G), and let F be a set of subsets of Sℵ0

(G). We call an orientation O of S an F-tangle

of S if O is consistent and avoids F , i.e. if O does not contain any element of F as a subset.

For some k ∈ N ∪ {ℵ0}, a k-tangle in G (or tangle of order k) is an Tk-tangle of Sk(G) where

Tk :=
{

{(A1, B1), (A2, B2), (A3, B3)} ⊆ Sk (G) : G[A1] ∪G[A2] ∪G[A3] = G
}

.
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We denote with T ∗
k the set of all stars in Tk, and we abbreviate Tℵ0

, T ∗
ℵ0

with T , T ∗, respectively.

For some k ∈ N, a consistent orientation P of Sk(G) is a k-profile in G if for all (A,B), (C,D) ∈ P the

separation (B ∩ D,A ∪ C) does not lie in P . Tangles and profiles of unspecified order are referred to as

tangles / profiles in G. Note that every k-tangle is a k-profile. Set

Pk :=
{

{(A,B), (B ∩ C,A ∪D), (B ∩D,A ∪ C)} ⊆ Sk (G) : (A,B), (C,D) ∈ Sk (G)
}

and

P ′
k :=

{

σ = {(Ai, Bi) : i ∈ [3]} ∈ Pk : | int(σ)| < k
}

.

The k-profiles in G are precisely the Pk-tangles of Sk(G) (cf. [9, Lemma 11]).

Lemma 2.3. [14, Lemma 6.1] Let P, P ′ be two regular profiles in a graph G. If {A,B} is a separation of

finite order that efficiently distinguishes P and P ′, then {A,B} is tight.

An orientation of some Sk(G) is principal if it contains for every set X of fewer than k vertices a

separation of the form (V (G−K), V (K) ∪X) where K is a component of G−X . It is easy to check that

the regular, principal P ′
k-tangles of Sk(G) avoid

Uk :=
{

σ = {(Ai, Bi) : i ∈ I} ⊆ Sk (G) : σ is a star and | int(σ)| < k
}

.

Write U∞
k := {σ ∈ Uk : |σ| = ∞} be the set of all infinite stars in Uk.

Lemma 2.4. Let τ be a regular, non-principal P ′
k-tangle of order k ∈ N in a graph G, and let σ ⊆ Sk (G)

be a finite star with finite interior. Then σ 6⊆ τ .

Proof. Suppose for a contradiction that σ ⊆ τ . Since τ is non-principal, there is some X ⊆ V (G) such

that (V (K) ∪X,V (G −K)) for all components K of G −X ; note that |X | < k as τ has order k. By the

consistency of τ , we have
(

V
(
⋃

K(A,B)

)

∪X,V
(

G−
⋃

K(A,B)

))

∈ τ for all (A,B) ∈ σ where K(A,B) is the

set of all components of G − X that are contained in G[A r B]. Since |σ| is finite, inductively applying

that τ is a P ′
k-tangle yields that

(

V
(
⋃

K
)

∪X,V
(

G−
⋃

K
))

∈ τ where K :=
⋃

(A,B)∈σ K(A,B). As int(σ)

is finite, at most finitely many components of G−X are not in K, so the same inductive argument yields

that (V (G), X) ∈ τ , which contradicts that τ is regular. �

2.4. Nice sets of stars. Let S ⊆ Sℵ0
(G), r ∈ Sℵ0

(G), and set S>r := {x ∈ S : x > r or x > r}. Further,

let s ∈ S. We say that s emulates r in S if s > r and for every x ∈ S with x > r it holds that s ∨ x ∈ S.

Given a set F of stars in Sℵ0
(G), we say that s emulates r in S for F if s emulates r in S and for every

star σ ∈ F with σ ⊆ S>r r {r} that contains an element t > r it holds that {s ∨ t}∪ {s ∧ t′ : t′ ∈ σr {t}}

is again a star in F .

A set F of stars in Sℵ0
(G) is closed under shifting in S if whenever s ∈ S emulates some non-trivial

r ∈ S r {(V (G), V (G))} in S with {r} /∈ F , then it also emulates r in S for F . Further, if S = Sk(G)

for some k ∈ N, then F is strongly closed under shifting in Sk (G) if whenever s ∈ Sk (G) emulates some

r ∈ S2k−1 (G) in Sk(G), then it also emulates r in Sk (G) for F .

Proposition 2.5. Let G be a graph, k ∈ N, and let F be a set of stars in Sk (G) that is strongly closed

under shifting. Further, let P be a k-profile in G, let s ∈ P , and let {t} ∪ {ri : i ∈ I} ∈ F be such that

t ∈ P . Suppose further that s ∨ x ∈ Sk (G) for all x ∈ P . Then {s ∨ t} ∪ {s ∧ ri : i ∈ I} is a star in F .

Proof. We show that s emulates s ∧ t in Sk(G) from which the assertion follows as F is strongly closed

under shifting and |s ∧ t| 6 |s|+ |t| < 2k− 1. For this let x ∈ Sk (G) with x > s ∧ t be given. Then x ∈ P

by [13, Theorem 1]. So by the assumptions on s, it follows that s ∨ x ∈ Sk(G). �
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A set F of stars in Sk (G) is called nice if F is strongly closed under shifting in Sk (G), {(V (G), A)} ∈ F

for all subsets A ⊆ V (G) of fewer than k vertices, and P ′
k ⊆ F .

Lemma 2.6. For every k > 0, the sets Uk and T ∗
k are nice.

Proof. By definition, P ′
k ⊆ Uk ∩ T ∗

k , and we have {(V (G), A)} ∈ Uk ∩ T ∗
k for all sets A of fewer than k

vertices. The proofs that Uk and T ∗
k are strongly closed under shifting in Sk (G) are analogous to the proofs

that they are closed under shifting (see the proofs of [11, Lemma 6.1 & Theorem 4.1]). �

2.5. Tree-decompositions and S-trees. A tree-decomposition of a graph G is a pair (T,V) of a tree T

together with a family V = (Vt)t∈V (t) of subsets of V (G) such that
⋃

t∈T G[Vt] = G, and such that for

every vertex v ∈ V (G), the graph T [{t ∈ T : v ∈ Vt}] is connected. We call the sets Vt ∈ V the bags and

their induced subgraphs G[Vt] the parts of (T,V). The sets Ve := Vt ∩ Vt′ for edges e = {t, t′} ∈ E(T ) are

the adhesion sets of (T,V). We say that (T,V) has adhesion < k ∈ N if all its adhesion sets have size < k.

Further, (T,V) has width < k ∈ N if all its bags have size 6 k. A graph G has tree-width < k if it admits

a tree-decomposition of width < k.

In a tree-decomposition (T,V) of G every (oriented) edge e = (t0, t1) of T induces a separation of G as

follows: For i = 0, 1, write Ti for the component of T − e containing ti. Then (Ut0 , Ut1) is a separation of G

where Uti :=
⋃

s∈V (Ti)
Vs for i = 0, 1 [7, Lemma 12.3.1]. We say that (Ut0 , Ut1) and {Ut0 , Ut1} are induced

by e and e, respectively. It is easy to check that the separations induced by the edges of an oriented ray

in T form a weakly exhaustive increasing sequence. Moreover, the set σt := {(Ut′ , Ut) : (t′, t) ∈ E(T )}

induced by the inwards oriented edges incident with a node t of T is a star, which we call the star associated

with t. The torso of a bag Vt is the graph torso(σt).

We say that a consistent orientation O of Sk(G), for some k ∈ N ∪ {ℵ0}, lives at a node t of T , or in

the bag Vt, if σt ⊆ O. Further, given a set O of consistent orientations of Sk(G), we call a node t of T and

its bag Vt essential (for O) if there is an orientation in O that lives at t and otherwise inessential (for O).

A tree-decomposition (T,V) (efficiently) distinguishes two profiles if there is an edge {t0, t1} ∈ E(T ) such

that {Ut0 , Ut1} (efficiently) distinguishes them.

Let S ⊆ Sℵ0
(G). An S-tree is a pair (T, α) of a tree T and a map α : E(T ) → S from the oriented

edges E(T ) of T to S such that α(e) = (B,A) whenever α(e) = (A,B). If the tree T is finite, then we call

(T, α) a finite S-tree. If x ∈ V (T ) is a leaf of T and t ∈ V (T ) its unique neighbour, then we call α(x, t) ∈ S

a leaf separation (of T ).

An S-tree (T, α) is over a set F ⊆ 2S if {α(t′, t) : (t′, t) ∈ E(T )} ∈ F for every node t ∈ V (T ). If (T, α)

is over a set of stars in S and t ∈ V (T ), then we call σt := {α(t′, t) : (t′, t) ∈ E(T )} ⊆ S the star associated

with t (in T ). Further, we call (T, α) weakly exhaustive if for every ray R = (r1r2 . . . ) in T the sequence

(α(ri, ri+1))i∈N is weakly exhaustive.

2.6. Tangle-tree duality. For the proof of our main result, Theorem 3, we need the abstract version [12]

of the finite tangle-tree duality theorem, Theorem 1.1. In order to state that theorem formally, we need

two further definitions.

Given a graph G and a set F of stars in Sℵ0
(G), a set S ⊆ Sℵ0

(G) is F-separable if for every two

non-trivial r, r′ ∈ S r {(V (G), V (G))} with r 6 r′ and {r}, {r′} /∈ F there exists an s ∈ S such that s

and s emulate r and r′ , respectively, in S for F . Further, F is standard for S if {r} ∈ F for all r ∈ S that

are trivial in S.
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Theorem 2.7. [12, Theorem 4.3] Let G be any graph, S ⊆ Sℵ0
(G) finite, and let F be a set of stars

in Sℵ0
(G), standard for S. If S is F-separable, exactly one of the following assertions holds:

(i) There exists an F-tangle of S.

(ii) There exists an S-tree over F .

3. Ends, critical vertex sets and tangles

3.1. Ends. An end of a graph G is an equivalence class of rays in G where two rays are equivalent if they

are joined by infinitely many disjoint paths in G or, equivalently, if for every finite set X ⊆ V (G) they have

a tail in the same component of G−X .

It is easy to see that every end ε of G induces an ℵ0-tangle, denoted by τε, by orienting every finite-order

separation of G to that side which contains a tail of some (equivalently every) ray in ε [6, §1]. We say that

an orientation O of Sk(G), for some k ∈ N, is induced by an end ε of G if τ ⊆ τε.

It is easy to check that a tangle τε induced by an end ε of G cannot contain any stars with finite interior

(cf. [6, Discussion preceding Lemma 1.6]). Hence, the following observation about ends follows easily.

Proposition 3.1. Let G be any graph, k ∈ N, and let F be a set of stars in Sk (G) all of which have finite

interior. Then every end of G induces an F-tangle of Sk(G). �

We say that an end ε of a graph G lives in a star σ ⊆ Sℵ0
(G) (or equivalently σ is home to ε) if σ ⊆ τε.

Let (T,V) be a tree-decomposition of G whose adhesion sets are all finite, and let ε be an end of G.

Let O ⊆ E(T ) consist of those oriented edges (t, s) of T such that (Ut, Us) ∈ τε. Then the orientation O

of E(T ) points towards a node of T or to an end of T . We say that ε lives at that node or in that end,

respectively.

A vertex v of G dominates an end ε of G if v ∈ B for every finite-order separation (A,B) ∈ τε. We

denote with Dom(ε) the set of vertices of G that dominate ε, and with dom(ε) the cardinality of Dom(ε).

The degree of an end ε, which we denote by deg(ε) ∈ N ∪ {∞}, is the maximum5 number of pairwise

disjoint rays in ε. The combined degree of ε is ∆(ε) := deg(ε) + dom(ε).

The following lemma describes when an end has small combined degree.

Lemma 3.2. [17, Corollary 5.8] Let ε be an end of a graph G and k ∈ N. Then the following assertions

hold:

(i) If τε contains a weakly exhaustive increasing sequence of separations of order 6 k, then ∆(ε) 6 k.

(ii) If ∆(ε) = k, then τε contains a weakly exhaustive increasing sequence ((Ai, Bi))i∈N of separations

of order k such that G[Bi rAi] is connected and (Ai ∩Bi)∩ (Aj ∩Bj) ∈ Dom(ε) for all i 6= j ∈ N.

We need the following two lemmas, which describe the interaction between the ends of a torso and the

ends of the underlying graph. The first lemma essentially says that every end of a torso stems from an end

of the underlying graph.

Proposition 3.3. [3, Proposition 6.1] Let σ be a star of left-tight, finite-order separations of some graph G.

Then there exists for every ray R in torso(σ) a ray R′ in G that meets V (R) infinitely often.

The next lemma describes a condition that is sufficient to ensure that all ends of a torso have small

degree.

5Note that if an end contains k disjoint rays, for every k ∈ N, then it also contains infinitely many disjoint rays [7].
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Lemma 3.4. Let σ be a star of separations of order < k ∈ N of some graph G such that every separation

in σ distinguishes some pair of k-profiles in G efficiently. Then for every end ε′ of torso(σ) there exists an

end ε of G such that σ ⊆ τε, ∆(ε′) = ∆(ε) and for every (A,B) ∈ τε we have (A∩ int(σ), B ∩ int(σ)) ∈ τε′

if {A ∩ int(σ), B ∩ int(σ)} is a separation of torso(σ)

Proof. Let R′ be some ε′-ray. Since all separations in σ efficiently distinguish some pair of k-profiles, they

are left-tight by Lemma 2.3, so by Proposition 3.3 there is a ray R in G such that |V (R) ∩ V (R′)| = ∞.

Let ε be the end of G to which R belongs. Then σ ⊆ τε, because V (R) ∩ V (R′) ⊆ int(σ) is infinite, and

thus R has a tail in G[B rA] for every (A,B) ∈ σ. Moreover, for all (A,B) ∈ τε that induce a separation

{A ∩ int(σ), B ∩ int(σ)} of torso(σ), we have (A ∩ int(σ), B ∩ int(σ)) ∈ τε′ for the same reason.

Since connected subgraphs of G induce connected subgraphs of torso(σ), every ε-ray induces an ε′-ray

and Dom(ε) ⊆ Dom(ε′). Hence, ∆(ε) 6 ∆(ε′). We claim that also ∆(ε′) 6 ∆(ε), which concludes the proof.

So suppose for a contradiction that ∆(ε′) > ∆(ε). Let U ⊆ int(σ) be a set of size n := ∆(ε) + 1 6 ∆(ε′)

and P := {Px : x ∈ U} a family of n pairwise disjoint paths/rays in torso(σ) such that Px is either an

ε′-ray that starts in x or the trivial path whose single vertex x lies in Dom(ε′). As U is finite, there exists

by Lemma 3.2 (ii) a separation (A,B) ∈ τε of order ∆(ε) such that U ⊆ An and G[B rA] is connected.

Set ̺ := {(C,D) ∈ σ : {A,B}, {C,D} cross} and ̺′ := {(C,D) ∈ ̺ : C ∩D ∩ (ArB) 6= ∅}. Let us first

show that ̺′ is finite. For this, it suffices to show that each of the pairwise disjoint strict small sides CrD

of (C,D) ∈ ̺′ meets the finite set A ∩ B. Since (C,D) is left-tight, there is component K ⊆ G[C r D]

such that NG(K) = C ∩ D. In particular, since C ∩ D ∩ (A r B) 6= ∅, we have that A ∩ B meets K if

also C ∩D ∩ (B r A) 6= ∅. So we may assume that B rA avoids C ∩D. Then either B r A ⊆ C rD or

B r A ⊆ D r C as G[B r A] is connected, which implies that {A,B}, {C,D} are nested and contradicts

(C,D) ∈ ̺.

Now set (Ā, B̄) := (A,B)∧
∧

(C,D)∈̺r̺′(D,C) and (Ã, B̃) := (Ā, B̄)∧
∧

(C,D)∈̺′(D,C). Then |Ā∩ B̄| =

|A∩B| because (ArB)∩(C∩D) = ∅ for all (C,D) ∈ ̺r̺′, and |Ã ∩ B̃| 6 |(Ā ∩ B̄) ∪
⋃

(C,D)∈̺′(C ∩D)| < ∞

because ̺′ is finite. So τε contains an orientation of {Ā, B̄}, {Ã, B̃}; since τε is consistent, we find

(Ã, B̃) 6 (Ā, B̄) 6 (A,B) ∈ τε. Since U ⊆ int(σ) ⊆ D for all (C,D) ∈ ̺, we also have U ⊆ Ã. Moreover, by

Lemma 2.2, (Ã, B̃) is nested with σ, and (Ā, B̄) crosses at most those finitely many separations in σ that are

contained in ̺′. It follows by [1, Claim 1 in the proof of Lemma 4.3]6 applied to τε, σ and (Ã, B̃) 6 (Ā, B̄)

that there is a separation (A′, B′) ∈ τε of order 6 |Ā ∩ B̄| = |A ∩ B| = ∆(ε) such that (Ã, B̃) 6 (A′, B′),

and thus U ⊆ Ã ⊆ A′. Since (A,B) ∈ τε, its big side G[B] contains a tail of R, and hence V (R′′) ⊆ B for

some tail R′′ of R′. By the choice of Px, there exists an infinite family of Px–R
′′ paths in torso(σ) that

meet at most in there endvertices on Px. In particular, since (A′, B′) is nested with σ and thus induces a

separation of torso(σ), we find x ∈ B′ if Px is a trivial path, or V (P ′
x) ⊆ B′ for some tail P ′

x of Px if Px

is a ray. But since each Px is connected, it follows that V (Px) ∩ (A′ ∩B′) 6= ∅. Since the Px are pairwise

disjoint, this implies that |A′ ∩B′| > ∆(ε) + 1, a contradiction. �

3.2. Critical vertex sets. Given a set X of vertices of a graph G, a component K of G−X is tight at X

in G if NG(K) = X . By slight abuse of notation, we will refer to such K as tight components of G −X .

We write CX for the set of components of G−X and C̆X ⊆ CX for the set of all tight components of G−X .

A critical vertex set of G is a finite set X ⊆ V (G) such that C̆X is infinite. The collection of all the critical

vertex sets of G is denoted by crit(G).

6In [1] this is shown for finite graphs G, but the proof only uses the finiteness of G to conclude that (Ā, B̄) crosses at most

finitely many separations in σ, which we have proved separately.
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Lemma 3.5. [3, Lemma 2.6] Let σ a star of left-tight, finite-order separations of a graph G. Then

crit(torso(σ)) ⊆ crit(G).

In the previous subsection we have seen that every end induces an ℵ0-tangle. The following lemma

asserts that also graphs with critical vertex sets have ℵ0-tangles: for every critical vertex set X , every free

ultrafilter on CX induces an ℵ0-tangle
7.

Lemma 3.6. [6, Lemmas 3.4 & 3.7] Given some finite set X of vertices of a graph G, for each free

ultrafilter U on CX there exists a (non-principal) ℵ0-tangle τ in G such that, for all K ⊆ CX , we have
(

V
(

G−
⋃

K
)

, V
(
⋃

K
)

∪X
)

∈ τ if and only if K ∈ U . In particular, then

τ = {(A,B) ∈ Sℵ0
(G) | ∃K ∈ U :

⋃
K ⊆ G[B]}.

Even though the ℵ0-tangles described in Lemma 3.6 are non-principal, critical vertex sets still induce

principal k-tangles, but only for k ∈ N that are not greater than their size.

Lemma 3.7. Let G be any graph, k ∈ N, and let F be a set of stars in Sk (G) all of which have finite

interior. Further, let X be a critical vertex set of G of size > k. Then τ := {(A,B) ∈ Sk (G) : X ⊆ B} is

a principal F-tangle of Sk(G). In particular, if σ ⊆ Sk (G) is a star with X ⊆ int(σ), then σ ⊆ τ .

Proof. Since X is a critical vertex set and thus infinitely connected in G, and because |X | > k, every

separation in Sk(G) has a unique side which contains X . Hence, τ is an orientation of Sk(G), which for the

same reason is consistent. Now let σ be a star contained in τ . Since X ∩ (B r A) 6= ∅ for all (A,B) ∈ σ,

every component of G − X whose neighbourhood in G equals X meets B. Hence, as components are

connected, each such component of G−X meets int(σ). Since X is a critical vertex set of G, this implies

that | int(σ)| = ∞, so σ is not in F . In particular, τ avoids Uk and is thus principal. �

We also need the following lemma, which describes a sufficient condition for a star to be home to a

(non-principal) tangle.

Lemma 3.8. Let G be any graph, k ∈ N, and let F be a set of finite stars in Sk (G) all of which have

finite interior. Further, let σ ⊆ Sk (G) be a star of left-tight separations, and let X ⊆ int(σ) be of size < k.

Suppose that either X is a critical vertex set of torso(σ) or that infinitely many separations in σ have

separator X. Then there is a (non-principal) F-tangle of Sk(G) that lives in σ.

Proof. Set K := {K ⊆ CX : |K| = 1 or
⋃

K ⊆ G[A r B] for some (A,B) ∈ σ}. Note that by Lemma 3.5 if

X ∈ crit(torso(σ)) or by the left-tightness of the separations in σ if {(A,B) ∈ σ : A∩B = X} is infinite, X

is critical in G. In particular, every K ∈ F := {CX} ∪ {CX r (K1 ∪ · · · ∪ Kn) : n ∈ N,K1, . . . ,Kn ∈ K} still

contains infinitely many components of G −X . In particular, ∅ /∈ F . Moreover, by definition, F is closed

in CX under taking supersets and under finite intersections. Thus, F is a filter on CX . So by Lemma 3.6

(and the ultrafilter lemma), there is an ℵ0-tangle τ in G such that (V (G − K), V
(
⋃

K) ∪ X) ∈ τ for all

K ∈ F . By [6, Lemma 1.3 & Corollary 1.5], τ avoids F . Moreover, by Lemma 3.6, there exists for every

(A,B) ∈ τ a collection K ⊆ CX such that
⋃

K ⊆ G[B] and K /∈ K. By the definition of K, this implies that

(B,A) /∈ τ for all (A,B) ∈ σ, and hence σ ⊆ τ . So τ ∩ Sk (G) is as desired. �

7These ℵ0-tangles are called ultrafilter tangles [6].
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4. Refining inessential stars

In this section we prove Lemma 4.4, which is one of the two main ingredients to the proof of Theorem 3.

Let us begin by giving a brief sketch of the proof of Theorem 3. Similarly to the finite tangle-tree duality

theorem, Theorem 1.1, it is not too difficult to show that not both, (i) and (ii) of Theorem 3, can hold at the

same time. To see that at least one of the two assertions holds, we consider an arbitrary graph G without

any k-tangles as in (i). For the proof that G then has an Sk(G)-tree as in (ii), we need two ingredients. The

first one is a certain tree-decomposition of G, whose existence follows from a result of the author, Jacobs,

Knappe and Pitz ([3]; see Theorem 5.2 in Section 5): G admits a tree-decomposition (T,V) of adhesion

< k into finite parts such that every node t of T with σt /∈ U∞
k is inessential and has finite degree.

The second main ingredient to the proof of Theorem 3 is Lemma 4.4 below. This lemma ensures that,

under mild additional assumptions on (T,V), there exists, for every inessential node t ∈ T , a finite Sk(G)-

tree (T t, αt) over T ∗
k ∪{{s} : s ∈ σt} in which each s ∈ σt appears as a leaf separation. In particular, all its

non-leaves are associated with stars in T ∗
k . We then obtain a weakly exhaustive Sk(G)-tree over T ∗

k ∪ U∞
k

by sticking the Sk(G)-trees (T t, αt) together along T . More precisely, for every edge e = {t, s} of T we glue

the trees T t and T s together along those leaf edges f of T t and f ′ of T s with αt(f) = {A,B} = αs(f ′)

where {A,B} is the separation induced by the edge e of T (see Construction 5.3).

The idea of refining the inessential parts of a tree-decomposition (T,V) with Sk(G)-trees as described

above has its origin in [16]. There, Erde proved for finite graphs that if all edges of T induce separations

that efficiently distinguish two k-tangles, then such Sk(G)-trees (T t, αt) exist for all inessential nodes t

of T . The main result of this section generalizes his lemma ([16, Lemma 3.1]) not only to infinite graphs

but also to certain tree-decompositions which no longer need to distinguish the k-tangles efficiently. To

state this result formally, we need some further definitions.

First, we recall the definition of ‘closely related’ from [2]: Let G be any graph and k ∈ N. A separation

(A,B) ∈ Sk (G) is closely related to an orientation O of Sk(G) if (A,B) ∈ O and for every (C,D) ∈ O we

have (A ∩ C,B ∪D) ∈ Sk (G).

Proposition 4.1. [2, Proposition 3.4] Let k ∈ N, and let P and P ′ be two k-profiles in a graph G. If a

separation (A,B) ∈ P distinguishes P and P ′ efficiently, then (A,B) and (B,A) are closely related to P

and P ′, respectively.

A finite-order separation (A,B) of a graph G is left-ℓ-robust for ℓ ∈ N if there exist a set U ⊆ A of size ℓ

and a family {Px : x ∈ A ∩ B} of pairwise disjoint paths in G[A] such that Px ends in x and there are ℓ

U–Px paths in G[(A r B) ∪ {x}] that meet at most in their endvertices in Px. An unoriented separation

{A,B} is ℓ-robust if both (A,B) and (B,A) are left-ℓ-robust.

Note that the property ‘left-ℓ-robust’ is designed to mimic the presence of a highly connected substructure

of G on the small side of a separation. For example, we can obtain left-ℓ-robust separations from ends or

critical vertex sets in the following way:

Lemma 4.2. [3, Lemma 8.5] Let ε be an end of a graph G of finite combined degree, and let ((Ai, Bi))i∈N

be a weakly exhaustive increasing sequence of separations in τε such that lim infi∈N |Ai ∩Bi| = ∆(ε). Then

cofinitely many (Ai, Bi) with |Ai ∩Bi| = ∆(ε) are ℓ-robust.
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Proposition 4.3. Let {A,B} be a finite-order separation of a graph G, and suppose that G[ArB] contains

infinitely many tight components of G −X for some set X ⊇ A ∩B of vertices of G. Then (A,B) is left-

ℓ-robust for all ℓ ∈ N.

Proof. This is witnessed by the trivial paths Px in A ∩ B and a set U consisting of ℓ vertices that lie in

pairwise distinct tight components of G−X contained in G[ArB]. �

The definition of left-ℓ-robust is tailored to the proof of Theorem 3: ‘left-ℓ-robust’ is defined precisely so

that we can prove Lemma 4.4 below, and, at the same time, show that there exists a tree-decomposition

(T,V) as described above whose ‘relevant’ edges all induce left-ℓ-robust separations (see Theorem 5.2), and

whose nodes are thus eligible for the application of Lemma 4.4.

A set F of stars in Sℵ0
(G) is m-bounded for some m ∈ N if |int(̺)| 6 m for all ̺ ∈ F . It is finitely

bounded if it is m-bounded for some m ∈ N. The main result of this section then reads as follows:

Lemma 4.4. Let G be a graph, k,m ∈ N, and let F be an m-bounded, nice set of stars in Sk (G). Set

ℓ := max{3k − 2, k(k − 1)m+m}, and let σ := {s1 , . . . , sn } ⊆ Sk (G) be a finite star with finite interior.

Suppose that every separation in σ is either left-ℓ-robust or has an inverse that is closely related to some

k-profile in G that avoids F . Set F ′ := F ∪ {{si} : i ∈ [n]}. Then either there is an F ′-tangle of Sk(G) or

there is a finite Sk(G)-tree over F ′ in which each si appears as a leaf separation.

We remark that Erde [16] gave an example which shows that there need not exist an Sk(G)-tree over F ′ for

every inessential star, even if G is finite and F = T ∗
k for some k ∈ N. Thus, the additional assumptions on

the separations in σ cannot be omitted. Moreover, Example 5.4 shows that we cannot omit the assumption

that F is finitely bounded.

The remainder of this section is devoted to the proof of Lemma 4.4, which we briefly sketch here. The

idea is to derive Lemma 4.4 from Theorem 2.7. In order to apply Theorem 2.7, we first reduce the problem

to some finite separation system. For this, we define a subsystem Sσ
k (G) ⊆ Sk(G) that consists only of

those separations of G that are ‘relevant’ for finding either an F ′-tangle of Sk(G) or an Sk(G)-tree over F ′.

For a star σ ⊆ Sk (G), set

Sσ
k (G) := {r ∈ Sk(G) : s 6 r or s 6 r for every s ∈ σ}.

As we will see in a moment, S
σ

k(G) is finite and F ′-separable if σ is finite and has finite interior. We

can thus apply Theorem 2.7 to Sσ
k (G) and F ′, which yields either an F ′-tangle of Sσ

k (G) or an Sσ
k (G)-tree

over F ′. By definition, an Sσ
k (G)-tree over F ′ is already an Sk(G)-tree over F ′. The main part of the proof

is then concerned with showing that every F ′-tangle τ of Sσ
k (G) extends to an F ′-tangle of Sk(G): that

there exists an F ′-tangle τ ′ of Sk(G) such that τ ⊆ τ ′.

Proposition 4.5. Given a graph G and k ∈ N, for every finite star σ ⊆ Sk (G) with finite interior the

set Sσ
k (G) is finite.

Proof. By definition, every separation {A,B} ∈ Sσ
k (G) is nested with σ, and thus for every (C,D) ∈ σ

we have C ∩ D ⊆ A or C ∩ D ⊆ B. Hence, every separation {A,B} ∈ Sσ
k (G) induces a separation

{A∩ int(σ), B ∩ int(σ)} of torso(σ). As int(σ) is finite, there are only finitely many separations of torso(σ).

It thus suffices to show that only finitely many separations in Sσ
k (G) induce the same separation of torso(G).

For this, let {A′, B′} be a separation of torso(σ). Then every separation of G that induces {A′, B′}

can be obtained from {A′, B′} by adding each component K of G − int(σ) to one side of {A′, B′} that
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contains NG(K). It is straightforward to check that the arising separation will be in Sσ
k (G) if and only if

we added for every separation (C,D) ∈ σ all components of G− int(σ) that are contained in G[C rD] to

the same side of {A′, B′}. It follows that at most 2|σ| separations in Sσ
k (G) induce the same separation of

torso(G). As σ is finite, this concludes the proof. �

Given an F ′-tangle τ of Sσ
k (G), we now inductively construct an F ′-tangle τ ′ of Sk(G) with τ ⊆ τ ′.

For this, recall that σ := {s1 , . . . , sn} is finite by assumption. So to define τ ′, we may proceed by

extending τ =: τn step-by-step to an F ′-tangle τi of S
σi

k (G) where σi := {s1 , . . . , si} for i ∈ [n] and σ0 := ∅.

Then τ0 will be the desired F ′-tangle of Sk(G) = Sσ0

k (G).

The following two lemmas describe how to obtain the tangle τi−1 from τi. We distinguish between two

cases: whether si is closely related to some k-profile that avoids F or whether si is left-ℓ-robust.

Lemma 4.6. Let G be a graph, k ∈ N, and let F be a set of stars in Sk (G) that is strongly closed under

shifting. Further, let σ ⊆ Sk (G) be a star, and suppose there is some s ∈ σ such that s is closely related

to some k-profile in G that avoids F . Set F ′ := F ∪ {{r} : r ∈ σ} and σ′ := σ r {s}. Then the following

assertions hold:

(i) If τ ′ is an F ′-tangle of Sσ′

k (G), then τ ′ ∩ S
σ

k(G) is an F ′-tangle of Sσ
k (G).

(ii) If τ is an F ′-tangle of Sσ
k (G), then τ extends to an F ′-tangle of Sσ′

k (G).

Proof. By definition it is clear that every F ′-tangle τ of Sσ′

k (G) induces an F ′-tangle τ ∩ S
σ

k(G) of Sσ
k (G).

For (ii), let τ be an F ′-tangle of Sσ
k (G). We extend τ to an orientation τ ′ of Sσ′

k (G) as follows. Let r ∈

Sσ′

k (G) be given, and first assume that r is nested with s. Then either r ∈ Sσ
k (G), and we then let r ∈ τ ′

if and only if r ∈ τ , or r has an orientation that is smaller than s, and we then let r ∈ τ ′ if and only

if r 6 s. Second, assume that r and s cross, and fix an orientation r of r. By the assumption on s, its

inverse s is closely related to some k-profile P in G that avoids F . Since r ∈ Sk(G), it is oriented by P ; we

set t := r ∨ s if r ∈ P and t := r ∧ s if r ∈ P . As s is closely related to P , it follows that t has order < k,

and thus t ∈ Sσ
k (G) by Lemma 2.2. Hence, τ contains an orientation of t; we let r ∈ τ ′ if t ∈ τ , and r ∈ τ ′

otherwise.

By definition, τ ′ is an orientation of Sσ′

k (G) and τ ⊆ τ ′; in particular, τ extends to τ ′ and σ ⊆ τ . Hence,

we are left to show that τ ′ is an F -tangle of Sσ′

k (G). For this, suppose for a contradiction that there is a

set ̺ ⊆ τ ′ which has one of the following two forms: either ̺ = {ri : i ∈ I} is a star in F , or ̺ = {r1 , r2 }

with r1 < r2 .

As P is consistent and avoids F , we have ̺ 6⊆ P , and thus P contains the inverse ri of a separation

ri ∈ ̺, say r1 ∈ P . If ̺ is a star in F , then ri ∈ P for all ri ∈ ̺r{r1} since P is consistent. As s is closely

related to the k-profile P , it follows from Proposition 2.5 that ̺′ := {r1 ∨ s} ∪ {(ri ∧ s) : ri ∈ ̺r {r1}} is

a star in F . But then ̺′ ⊆ τ by the definition of τ ′, which contradicts that τ is an F ′-tangle of Sσ
k (G).

Otherwise, if ̺ = {r1 , r2 } with r1 < r2 , then, since s is closely related to P , we have r1∨s, r2∨s ∈ Sk (G)

if r2 ∈ P , or r1 ∨ s, r2 ∧ s ∈ Sk (G) if r2 ∈ P . By the definition of τ ′, it follows that {r1 ∨ s, r2 ∨ s} ⊆ τ or

{r1 ∨s, r2 ∧s} ⊆ τ , respectively, which contradicts that τ is consistent because (r1 ∨s)∗ 6 r1 < r2 6 r2 ∨s

and (r1 ∨ s)∗ = r1 ∧ s 6 r2 ∧ s. �

Lemma 4.7. Let G be any graph, k,m ∈ N, and let F be an m-bounded, nice set of stars in Sk (G). Set

ℓ := max{3k−2, k(k−1)m+m}, let σ ⊆ Sk (G) be a star, and suppose that some (C,D) ∈ σ is left-ℓ-robust.

Set F ′ := F ∪ {{r} : r ∈ σ} and σ′ := σ r {(C,D)}. Then the following assertions hold:

(i) If τ ′ is an F ′-tangle of Sσ′

k (G), then τ ′ ∩ S
σ

k(G) is an F ′-tangle of Sσ
k (G).
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(ii) If τ is an F ′-tangle of Sσ
k (G), then τ extends to an F ′-tangle of Sσ′

k (G).

Proof. By definition it is clear that every F ′-tangle τ ′ of Sσ′

k (G) induces an F ′-tangle τ ′ ∩S
σ

k (G) of Sσ
k (G).

For (ii), let τ be an F ′-tangle of Sσ
k (G). Fix a set U ⊆ C of size ℓ and a family {Px : x ∈ C ∩ D} of

disjoint paths witnessing that (C,D) is left-ℓ-robust. We first observe the following:

Claim 1. Every {A,B} ∈ Sk(G) has a side that meets every Px at least once.

Proof. Since ℓ > 3k − 2 and |A ∩B| < k, some strict side of {A,B}, say ArB, contains a subset U ′ of U

of at least k vertices. By the choice of U and the Px, there are at least k pairwise internally disjoint U ′–Px

paths for every x ∈ C ∩ D. Since U ′ ⊆ A r B and |A ∩ B| < k, at least one of these paths is contained

in A. Thus, A meets every Px at least once. �

Claim 2. For every {A,B} ∈ Sk(G), if A meets every Px, then {A ∪ C,B ∩D} has order < k.

Proof. By assumption, there are vertices px ∈ A ∩ V (Px) for every x ∈ C ∩D. Since also V (Px) ⊆ C for

every x ∈ C ∩D, we have px ∈ A ∩ C, and thus every Px meets A ∩ C. Additionally, as every Px ends in

x ∈ C ∩D, it also meets B ∪D. Since Px is connected and {A ∩C,B ∪D} is a separation of G, it follows

that V (Px) ∩ ((A ∩ C) ∩ (B ∪ D)) 6= ∅ for all x ∈ C ∩ D. Thus {A ∩ C,B ∪ D} has order > |C ∩ D|, as

the Px are disjoint. By submodularity, this implies that {A ∪ C,B ∩D} has order 6 |A ∩B| < k. �

Claim 3. For every {A,B} ∈ Sσ′

k (G), if A meets every Px, then τ contains an orientation of {A∪C,B∩D}.

Proof. By Claim 2 and Lemma 2.2, {A ∪ C,B ∩ D} is contained in Sσ
k (G), which clearly implies the

assertion. �

Claim 4. If both sides A and B of some {A,B} ∈ Sσ′

k (G) meet every Px at least once, then either

(A ∪ C,B ∩D), (A ∩D,B ∪C) ∈ τ or (B ∪ C,A ∩D), (B ∩D,A ∪ C) ∈ τ .

Proof. By Claim 3, τ orients both separations, {A ∪ C,B ∩D} and {B ∪C,A ∩D}. Since τ is consistent,

it cannot contain both (A ∪ C,B ∩ D) and (B ∪ C,A ∩ D). We show that D ∩ (A ∪ C) ∩ (B ∪ C) has

size less than k. The assertion then follows as P ′
k ⊆ F because F is nice, and (C,D) ∈ τ as well as

{(C,D), (B ∩D,A ∪ C), (A ∩D,B ∪ C)} ∈ Pk. We have

D ∩ (A ∪ C) ∩ (B ∪ C) = D ∩ ((A ∩B) ∪ C) = (A ∩B ∩D) ∪ (C ∩D) = (C ∩D)∪̇(A ∩B ∩ (D r C)),

and thus

|D ∩ (B ∪ C) ∩ (A ∪ C)| = |C ∩D|+ (|A ∩B| − |A ∩B ∩ C|) < |C ∩D|+ k − |A ∩B ∩C|.

Since both A and B meet every Px, and because every Px is connected, also A ∩ B meets every Px. As

all Px are pairwise disjoint and contained in G[C], it follows that |A ∩B ∩ C| > |C ∩D|. Hence,

|D ∩ (B ∪ C) ∩ (A ∪ C)| < |C ∩D|+ k − |C ∩D| = k.

This completes the proof of the claim. �

We now define an orientation τ ′ of Sσ′

k (G) as follows:

For every {A,B} ∈ Sσ′

k (G), if A meets every path Px at least once, then we

let (A,B) ∈ τ ′ if (A ∪ C,B ∩D) ∈ τ, and (B,A) ∈ τ ′ if (B ∩D,A ∪C) ∈ τ.
(△)
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By Claims 1, 3 and 4, τ ′ contains precisely one orientation of every separation in Sσ′

k (G). We claim that τ ′

is an F ′-tangle of Sσ′

k (G) and that τ extends to τ ′, i.e. τ ⊆ τ ′.

We first show the latter. For this, let (A,B) ∈ τ be given. Then {A,B} ∈ Sσ
k (G), which implies that

either (C,D) 6 (A,B) or (C,D) 6 (B,A). In the first case, we have V (Px) ⊆ C ⊆ A for every x ∈ C ∩D.

Moreover, (A ∪ C,B ∩D) = (A,B) ∈ τ , and thus (A,B) ∈ τ ′ by (△). Analogously, we find in the second

case that (B,A) ∈ τ ′.

Towards a proof that τ ′ is an F ′-tangle of Sσ′

k (G), we first show that τ ′ is consistent. For this, suppose

for a contradiction that there are (A,B), (E,F ) ∈ τ ′ such that (B,A) < (E,F ). By Claim 1, {A,B} has a

side that meets every Px at least once; we first assume that B ∩ V (Px) 6= ∅ for all x ∈ C ∩D. Then also

E ⊇ B meets every Px, and thus, by (△), we have (A ∩D,B ∪ C), (E ∪ C,F ∩D) ∈ τ , which contradicts

that τ is consistent as (B∪C,A∩D) 6 (E∪C,F ∩D). The case that F meets every Px is symmetric, so we

may assume that A∩V (Px) 6= ∅ 6= E∩V (Px) for every x ∈ C ∩D. Then (A∪C,B∩D), (E∪C,F ∩D) ∈ τ

by (△), which again contradicts that τ is consistent since (B∩D,A∪C) 6 (B,A) < (E,F ) 6 (E∪C,F∩D).

It remains to show that τ ′ avoids F ′. We have already seen that τ ⊆ τ ′. Since τ avoids F ′, this implies

that σ ⊆ τ ⊆ τ ′. So suppose for a contradiction that there is a star ̺ ⊆ τ ′ such that ̺ ∈ F .

Claim 5. There is a separation (A,B) ∈ ̺ such that A meets every path Px at least once.

Proof. Let us first assume that there is a separation (A,B) ∈ ̺ whose strict small side A r B contains a

set U ′ of k vertices from U . By the choice of U and the Px, it follows that there are k internally disjoint

U ′–Px paths, for every x ∈ C ∩ D. Since U ′ ⊆ A r B and |A ∩ B| < k, at least one of these paths is

contained in A. Thus, A meets every Px at least once.

Now suppose that no separation in ̺ contains more than k − 1 vertices from U in its strict small side.

Since | int(̺)| 6 m, it follows that U ∩ (ArB) 6= ∅ for at least (ℓ−m)/(k−1) = km separations (A,B) ∈ ̺.

Let ̺′ ⊆ ̺ be the set of these separations, and pick for each (A,B) ∈ ̺′ some vA ∈ U ∩ (A rB). Further,

fix some y ∈ C ∩ D. By the choice of U , there is a family {QA : (A,B) ∈ ̺′} of internally disjoint paths

such that QA starts in vA and ends in a vertex of Py . As each QA meets A ∩ B ⊆ int(̺) in an internal

vertex if V (Py)∩A = ∅, and since | int(̺)| 6 m, Py meets the small sides A of at least (k−1)m separations

(A,B) ∈ ̺′. As |C ∩D| < k, iterating this argument for all x ∈ C ∩D yields that the small side of some

(A,B) ∈ ̺′ ⊆ ̺ meets every Px. �

By Claim 5 there is a separation (A,B) ∈ ̺ whose small side A meets every Px at least once in some

vertex px. Since ̺ is a star, we then have px ∈ A ⊆ F for every (E,F ) ∈ ̺r {(A,B)}. Therefore, by (△),

̺′ := {(A ∪ C,B ∩D)} ∪ {(E ∩D,F ∪ C) : (E,F ) ∈ ̺r {(A,B)}}

is contained in τ .

We claim that ̺′ ∈ F , contradicting that τ is an F -tangle of Sσ
k (G). For this, we show that (C,D)

emulates (A ∩C,B ∪D) in Sk(G), from which the claim follows as F is strongly closed under shifting and

|(A∩C)∩(B∪D)| 6 |A∩B|+|C∩D| 6 2k−2. Indeed, let {E,F} ∈ Sk(G) such that (A∩C,B∪D) 6 (E,F ).

Then px ∈ A ∩ C ⊆ E for every x ∈ C ∩D, so E meets every Px. Then by Claim 2, {E ∪ C,F ∩D} has

order < k, which concludes the proof. �

For the proof of Lemma 4.4 it remains to show that S
σ

k (G) is F ′-separable.
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Lemma 4.8. Let G be a graph, k ∈ N, and let σ ⊆ Sk (G) be a finite star. Suppose that every separation

is either left-(3k − 2)-robust or has an inverse that is closely related to some k-profile in G. If F is a set

of stars in Sk (G) and closed under shifting, then S
σ

k(G) is F ′-separable where F ′ := F ∪ {{s} : s ∈ σ}.

Proof. Since every s with s ∈ σ is maximal in S
σ

k(G) with respect to the partial order on Sk (G), we have

{s ∨ t} = {s} ∈ F ′ for all t that emulate some r 6 s in S
σ

k (G). Hence, it suffices to show that S
σ

k (G) is

F -separable. So let r, r′ ∈ S
σ

k (G) be given such that r < r′ , and pick a separation s ∈ S
σ

k(G) of minimal

order such that r 6 s 6 r′ . We claim that s and s emulate r and r′ , respectively, in S
σ

k (G) for F . This

clearly implies the assertion.

We show that s emulates r in S
σ

k(G) for F ; the other case is symmetric. By the choice of s and

Lemma 2.2, x ∧ s has order at least |s| for all x ∈ Sσ
k (G) with x > r. So s ∨ x ∈ S

σ

k by submodularity

and Lemma 2.2, which implies that s emulates r in S
σ

k (G). Since F is closed under shifting in Sk (G), it

thus suffices to show that s also emulates r in Sk (G). So suppose for a contradiction that there is some

x ∈ Sk (G) with x > r such that x ∨ s has order > k; since σ is finite, we may choose x so that x and y

are nested for as many y ∈ σ as possible. Let σ′ ⊆ σ consist of all those y ∈ σ such that y, x cross. As

s > r and r ∈ S
σ

k (G), we have r 6 y for all y ∈ σ′. If also s 6 y for all y ∈ σ′, then s ∧ x ∈ S
σ

ℵ0
(G).

Since r 6 s ∧ x 6 s 6 r′ , it follows by the choice of s that |s ∧ x| > |s|. By submodularity, this implies

|s ∨ x| 6 |x| < k as desired.

Hence, we may assume that y 6 s for some y ∈ σ′. Then by Claims 1 and 2 in the proof of Lemma 4.4

if y is left-(3k − 2)-robust or by definition if y is closely related to a k-profile in G, one of x ∨ y and x ∧ y

has order 6 |x|; let t be that corner. By Lemma 2.2, t is nested with more separations in σ than x, so we

have that |s ∨ t| < k by the choice of x. Since |s ∨ t| > |s ∨ x|, which it is straightforward to check, this

concludes the proof. �

We are now ready to prove Lemma 4.4:

Proof of Lemma 4.4. Since σ is finite and has finite interior, Sσ
k (G) is finite by Proposition 4.5. Moreover,

by Lemma 4.8, S
σ

k is F ′-separable. Hence, we can apply Theorem 2.7 to Sσ
k (G) and F ′, which yields either

an F ′-tangle of Sσ
k (G) or an Sσ

k (G)-tree over F ′. Let us first assume that there is an F ′-tangle τ ′ of Sσ
k (G).

Then inductively applying Lemma 4.6 (ii) and 4.7 (ii) yields that τ ′ extends to an F ′-tangle τ of Sk(G)

as desired. So we may assume that there is an Sσ
k (G)-tree (T, α) over F ′. By definition, (T, α) is also

an Sk(G)-tree over F ′, so we are left to show that every s ∈ σ appears as a leaf separation of (T, α).

For this, let s ∈ σ be given, and set O := {r ∈ S
σ

k (G) : r 6 s}. As s ∈ σ, the set O is a consistent

orientation of Sσ
k (G). Moreover, since either s is left-ℓ-robust and F is (ℓ − 1)-bounded, or s is contained

in an F -tangle, O avoids F . Thus, O has to live at a leaf of T , which then has to be associated with {s};

so s is a leaf separation of (T, α). �

5. Tangle-tree duality in infinite graphs

In this section we prove Theorems 1, 2 and 3. In fact, we prove the following more general duality

theorem for F -tangles:

Theorem 6. Let G be a graph, and let k ∈ N. Further, let F be a finitely bounded, nice set of stars

in Sk (G). Then exactly one of the following assertions holds:

(i) There exists a principal F-tangle of Sk(G) which is not induced by an end of combined degree < k.

(ii) There exists a weakly exhaustive Sk(G)-tree over F ∪ U∞
k .
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For the proof of Theorem 3, we first show two auxiliary statements. We will use the first of them to

prove that in Theorem 6 not both, (i) and (ii), can hold.

Lemma 5.1. Let G be a graph, k ∈ N, and let ((Ai, Bi))i∈N be a weakly exhaustive increasing sequence

in Sk (G). Then every principal, consistent orientation τ of Sk(G) with (Ai, Bi) ∈ τ , for every i ∈ N, is

induced by an end of G of combined degree < k.

Proof. Let S be the set of all finite subsets of V (G). A direction of G is a map f with domain S that

maps every S ∈ S to a component of G − S such that f(S) ⊆ f(S′) whenever S′ ⊆ S. Now τ defines a

direction f of G as follows. Let S ∈ S be given. Since ((Ai, Bi))i∈N is weakly exhaustive, there exists some

i ∈ N such that S ⊆ Ai. As τ is principle, there further exists a component Ci of G− (Ai ∩Bi) such that

(V (G−Ci), V (Ci)∪ (Ai ∩Bi)) ∈ τ ; and since τ is consistent, we have Ci ⊆ G[Bi rAi]. Now let f(S) := C

where C is the unique component of G − S that contains Ci. It is straightforward to check that f is a

direction because τ is consistent.

By [10, Theorem 2.2], there exists an end ε of G such that for all {A,B} ∈ Sℵ0
(G) we have (A,B) ∈ τε

if and only if f(A ∩ B) ⊆ G[B r A]. We claim that τ is induced by ε. Indeed, let (A,B) ∈ τ be given.

Since A∩B is finite and ((Ai, Bi))i∈N is weakly exhaustive, there exists some i ∈ N such that A∩B ⊆ Ai.

As Ci is connected and avoids A ∩ B ⊆ Ai, either Ci ⊆ G[B r A] or Ci ⊆ G[A r B]. In fact, because τ

is consistent, we find Ci ⊆ G[B r A], and hence (A,B) 6 (V (G− Ci), V (Ci) ∪ (Ai ∩Bi)). It follows that

(A,B) ∈ τε since τε is consistent and (V (G− Ci), V (Ci) ∪ (Ai ∩Bi)) ∈ τε by the choice of ε.

The assertion now follows since ∆(ε) < k by Lemma 3.2 (i). �

In order to show that in Theorem 6 at least one of (i) and (ii) holds, we will construct for every graph

with no tangles as in (i) an Sk(G)-tree as in (ii). For this, we need the following theorem which follows

easily from a result of the author, Jacobs, Knappe and Pitz [3]:

Theorem 5.2. Let G be a graph, ℓ ∈ N, and suppose there exists some k ∈ N such that every end of G has

combined degree < k and every critical vertex set of G has size < k. Then G has a tree-decomposition (T,V)

of adhesion < k into finite parts such that

(i) for every node t of T of infinite degree its associated star σt is in U∞
k , and infinitely many (A,B) ∈

σt are left-tight and satisfy A ∩B = Vt,

(ii) every end η of T is home to a unique end ε of G, and we have lim infi∈N |Vri ∩ Vri+1
| = ∆(ε) for

every η-ray R = r1r2 . . . in T ,

(iii) for every edge e = (t, s) in T , if degT (s) < ∞, then the separation induced by e is left-ℓ-robust, and

(iv) (T,V) is tight and displays the infinities8.

Proof. Since all ends of G have finite degree, G contains no half-grid minor, and in particular no subdivision

of Kℵ0
. So by [18, Theorem 10.1] and [3, Theorem 2.2], G has finite tree-width, that is, admits a tree-

decomposition into finite parts. Thus, by [3, Theorem 4’ & Lemma 8.3], G admits a tree-decomposition

(T,V) into finite parts which satisfies (i) – (iv). Indeed, (iii) and (iv) follow immediately by [3, Lemma 8.3].

(i) and (ii) hold because all bags of (T,V) are finite and (T,V) displays the infinities of G9. Moreover, by

[3, Theorem 4’ (L1)], all adhesion sets of (T,V) are either linked9 to an end or a critical vertex set of G.

8See [3, §2] for definitions. We remark that it is not important what these properties actually mean, we only need them

once in Section 7 to apply [3, Lemma 8.6] to this tree-decomposition.
9See [3, §2] for a definition.
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Since all ends of G have combined degree < k and all critical vertex sets of G have size < k, this implies

that all adhesion sets of (T,V) have size < k. �

In the proof of Theorem 6, if a graph has no tangles as in (i), we will apply Lemma 4.4 to the stars

associated with the nodes of the tree-decomposition (T,V) from Theorem 5.2. We then obtain an Sk(G)-tree

as in (ii) by sticking the Sk(G)-trees obtained from Lemma 4.4 together along T as follows:

Construction 5.3. Let (T,V) be a tree-decomposition of a graph G of adhesion < k ∈ N, and let F be a

set of stars in Sk (G). Further, let U ⊆ V (T ′) be a set of nodes of T . Assume that for every node t ∈ U , we

are given a weakly exhaustive Sk(G)-tree (T t, αt) over F ∪ {{s} : s ∈ σt} in which each s ∈ σt appears as

a leaf separation. Assume further that the stars σt associated in T with nodes t ∈ V (T )rU are contained

in F .

Set T t := T [NT (t) ∪ {t}] and αt((s, t)) := (Us, Ut) for all t ∈ V (T ) r U . We obtain the tree T ′ from

the disjoint union of the trees T t by identifying for every edge e = {t1, t2} of T the nodes s1 ∈ T t1

and u2 ∈ T t2 as well as s2 ∈ T t2 and u1 ∈ T t1 where (ui, si) is the unique (leaf) edge of T ti such that

αti(ui, si) = (Uti , Ut3−i
). For each edge e of T ′, we then set α′(e) to be αt(e), where t is a node of T such

that e ∈ E(T t). It is straightforward to check that (T ′, α′) is an Sk(G)-tree over F . Moreover, since (T,V)

is a tree-decomposition of G and because each (T t, αt) is weakly exhaustive, (T ′, α′) is weakly exhaustive.

We are now ready to prove Theorem 6.

Proof of Theorem 6. We first show that not both, (i) and (ii), can hold for G. For this, suppose that

there is a weakly exhaustive Sk(G)-tree (T, α) over F as in (ii), and let τ be any consistent orientation

of Sk(G). We claim that τ is not a tangle as in (i). Indeed, since τ is consistent, it induces via α−1 a

consistent orientation O of E(T ). It follows that O either contains a sink or a directed ray. If O contains

a sink, that is, if there is a node t of T all whose incident edges are oriented inwards by O, then σt ⊆ τ .

But T is over F ∪ U∞
k , and thus τ is either not principal or not an F -tangle. Otherwise, if O contains a

directed ray R = r1r2..., then, since (T, α) is weakly exhaustive, τ contains an infinite weakly exhaustive

increasing sequence (α(ri, ri+1))i∈N of separations of order < k. It follows, by Lemma 5.1, that τ is either

not principal or induced by an end of G of combined degree < k.

We now show that at least one of (i) and (ii) holds. For this, suppose that (i) does not hold: that all

principal F -tangles of Sk(G) are induced by ends of combined degree < k. We show that then (ii) must

hold: that there exists a weakly exhaustive Sk(G)-tree over F ∪ U∞
k . By Proposition 3.1 and Lemma 3.7,

all ends of G have combined degree < k, and all critical vertex sets of G have size < k. We may thus apply

Theorem 5.2, which yields a tree-decomposition (T,V) of G of adhesion < k into finite parts. Let t be a

node of T finite degree. Since int(σt) = Vt is finite, and because of Theorem 5.2 (iii), σt satisfies the premise

of Lemma 4.4. Since σt is not home to any ends as int(σt) = Vt is finite, and since G does not contain any

principal F -tangles in G of order k that are not induced by an end, the star σt cannot be home to any

principal F -tangles of order k. Moreover, since F is nice, and hence P ′
k ⊆ F as well as {(V (G), A)} ∈ F for

all sets A of fewer than k vertices, σt can also not be home to any non-principal F -tangle by Lemma 2.4.

Hence, applying Lemma 4.4 to σt yields a finite Sk(G)-tree (T t, αt) over F ′ := F ∪ {{s} : s ∈ σt} in which

each s ∈ σt appears as a leaf separation.

Since σt ∈ U∞
k for all infinite-degree nodes t of T by Theorem 5.2 (i), applying Construction 5.3 to (T,V)

and the (T t, αt) yields a weakly exhaustive Sk(G)-tree over F ∪ U∞
k , as desired. �



20 SANDRA ALBRECHTSEN

Proof of Theorem 3. By Lemma 2.6, T ∗
k is nice. As the T ∗

k -tangles of Sk(G) are precisely the k-tangles

in G if |G| > k [11, Lemma 4.2], the assertion follows immediately by applying Theorem 6 to the (3k− 3)-

bounded, nice set T ∗
k . �

Proof of Theorem 1. By definition, U∞
k is empty if G is locally finite. Moreover, since every k-tangle is

a k-profile, inductively applying the profile property yields that every k-tangle in a locally finite graph is

principal (see also [7, Exercise 43 in Ch. 12]). The assertion thus follows immediately from Theorem 3. �

Proof of Theorem 2. By Theorem 3, it is enough to show that if (ii) of Theorem 3 holds, then also (ii) of

Theorem 2 holds. For this, assume that (T, α) is a weakly exhaustive Sk(G)-tree over T ∗ ∪ U∞
k . If (T, α)

is even over T ∗, then we are done. Otherwise we define an Sk(G)-tree (T ′, α′) as follows.

By pruning the tree T if necessary, we may assume that (T, α) is irredundant : for every node t of T and

neighbours t′, t′′ of t we have α(t′, t) = α(t′′, t) if and only if t′ = t′′.10 Then all nodes in T have countable

degree. Indeed, let t be a node of of T of infinite degree and consider σt := {α(s, t) : {s, t} ∈ E(T )}.

Then σt is a star in Sk (G) because (T, α) is an Sk(G)-tree over T ∗ ∪ U∞
k . Since G is countable, there are

only countably many small separations of G of the form (A, V (G)) for some set A of fewer than k vertices,

and also σt can contain at most countably many separations of the form (A,B) with B 6= V (G), as any such

separation contains a vertex in its strict small side Ar B that is not contained in the strict small side of

any other separation in σt. Hence, σt is countable, and thus NT (t) is countable since (T, α) is irredundant.

Let r be an arbitrary node of T , and for every infinite-degree node t of T , let {sti : i ∈ N0} be an

enumeration of its neighbourhood such that st0 is the unique vertex of rT t that is incident with t. Let F

be the forest obtained from T by deleting all edges e of the form e = {t, sti} where deg(t) = ∞ and

i > 2. Now the tree T ′ is obtained from F by simultaneously adding, for every infinite-degree node t

of T , a ray Rt := rt2r
t
3 . . . , the edge {t, rt2}, and all edges of the form {rti , s

t
i} for i > 2. Further, let

α′ : E(T ′) → Sk (G) be defined via α′(e) := α(e) for all edges e ∈ E(T ′) ∩ E(T ), and α′(sti, r
t
i) := α(sti, t)

and α′(rti , r
t
i+1) :=

∨

j>i α(s
t
j , t) for all i > 2 as well as α′(t, rt2) := α(st0, t) ∨ α(st1, t).

Then (T ′, α′) is again an Sk(G)-tree, and it is straightforward to check that (T ′, α′) is weakly exhaustive

and over T ∗ ∪ {σ ∈ Uk : |σ| = 3}. To turn (T ′, α′) into an Sk(G)-tree over T ∗, we add a subdivision

vertex ve to those edges e = {s, t} of T ′ whose endvertices s and t are both associated in T ′ with stars

σ′
s, σ

′
t in Uk r T ∗. We denote the arising tree with T ′′. To define α′′, let e be an edge of T ′′, and first

assume that e = {s, t} for nodes s, t of T ′. If σ′
s, σ

′
t ∈ T ∗, then let α′′(e) := α′(e). Otherwise, if σ′

t /∈ T ∗,

then let α′′((s, t)) := α′((s, t)) ∧ (V (G), int(σ′
t)) (and α′′((t, s)) accordingly). Second, if e = {vf , t} where

f = {s, t} ∈ E(T ′), then let α′′((vf , t)) := α′((s, t)) ∧ (V (G), int(σ′
t)) (and α′′((t, vf )) accordingly). Since

| int(σ′
t)| < k if σ′

t /∈ T ∗, the image of α′′ is contained in Sk (G); so (T ′′, α′′) is again an Sk(G)-tree, which

by definition is over T ∗. �

We conclude this section with an example that shows that Theorem 3 fails for sets F of stars that are

nice but not finitely bounded.

Example 5.4. Let G = (V,E) be the graph with vertex set V := {vij : (i, j) ∈ [4] × N} and edge

set E := {{vij, vi′j′} ∈ V (G) : j′ ∈ {j, j + 1}} (see Figure 1). Set F ′ := {{(Ak, Bk)} : k ∈ N} where

10Pick any node r of T and for every separation (A,B) ∈ σr a neighbour t(A,B) of r such that α(t(A,B) , r) = (A,B).

Deleting from T all components of T − r that do not contain t(A,B) for any (A,B) ∈ σr turns (T, α) into an Sk(G)-tree

(T ′, α↾T ′ ) in which the neighbourhood of r has changed but σr has not, and neither has σt for any other node t of T ′. So

(T ′, α↾T ′ ) is still a weakly exhaustive Sk(G)-tree over T ∗ ∪ U∞

k
. Now think of T ′ as rooted in r and proceed along its levels.
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(Ak, Bk) := ({vij : i ∈ [4], j > k}, {vij : i ∈ [4], j 6 k}) (see Figure 1), and let F := F ′ ∪ P ′
5 ∪ {(V (G), A) :

A ⊆ V (G), |A| < 5}. Clearly, F is strongly closed under shifting, and thus a nice set of stars in S5 (G).

K8 K8 K8 ε

v11

v21

v31

v41

v12

v22

v32

v42

v13

v23

v33

v43

v14

v24

v34

v44
B1 B2 B3 B4A1 A2 A3 A4

Figure 1. Example 5.4

It is easy to check that G has precisely one F -tangle of order 5, the one induced by its end ε. Indeed,

any consistent orientation of S5(G) that is not induced by ε has to contain some (Bi, Ai), and is hence not

an F -tangle. Thus, G has no F -tangle of order 5 that is not induced by an end of combined degree < 5.

But G has no S5(G)-tree over F ∪ U∞
k either. Indeed, any such tree would have to contain a ray whose

edges are associated with separations that form an increasing sequence in τε. By the definition of P ′
k, and

because U∞
k is empty since G is locally finite, the nodes of that ray would eventually be associated with

stars in F ′, a contradiction because F ′ contains only singleton stars.

6. Bramble-treewidth duality: an application of the tangle-tree duality theorem

A set U of vertices of a graph G is connected if G[U ] is connected. A bramble in G is a set B of mutually

touching connected sets of vertices of G where two sets of vertices are said to touch if they have a vertex

in common or if G contains an edge between them. The order of a bramble is the least number of vertices

that cover the bramble, in that they meet every element of it.

Seymour and Thomas proved the following duality between high-order brambles and small tree-width

(see also [7, Theorem 12.4.3]):

Theorem 6.1. [23] Let k ∈ N. A finite graph has tree-width < k if and only if it contains no bramble of

order > k.

Theorem 6.1 extends to infinite graphs with one adaptation. For this, let us first note that every

graph G with a ray contains a bramble of infinite order. Indeed, if R = r0r1 . . . is a ray in G, then

B := {{ri : i > n} : n ∈ N} is a bramble, and it clearly cannot be covered by finitely many vertices.

However, the graph that consists of just a single ray has clearly tree-width 1.

Thus, in order to ensure that brambles of high order force the tree-width of a graph up, we have to

restrict the class of brambles we consider to those that are finite. Here, a bramble is finite if all its elements

are finite. Note that, clearly, every bramble in a finite graph is finite.

With this definition, Theorem 6.1 extends to infinite graphs:

Theorem 6.2. Let k ∈ N. A graph has tree-width < k if and only if it contains no finite bramble of

order > k.
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The probably shortest way to prove Theorem 6.2 is to use a result discovered by Thomas (see [24,

Theorem 14] for a proof) which says that an infinite graph G has tree-width 6 k if and only if every finite

subgraph of G has tree-width 6 k. Hence, if a graph G has tree-width > k for some k ∈ N, then some finite

subgraph H ⊆ G has tree-width > k. Theorem 6.1 then yields a bramble B in H of order > k. Since H is

finite, B will be finite as well, and it is easy to see that B is also a bramble of order > k in G. The other

implication can be proved similarly to the finite case.

In this section we present an alternative proof of Theorem 6.2, which derives Theorem 6.2 from Theorem 6.

Though this proof is not as short as the one indicated above, it provides an example of how Theorem 6

can be employed to obtain other duality theorems for infinite graphs. Moreover, the proof we present in

this section is direct in that it does not make use of the finite result (Theorem 6.1); but, of course, it easily

implies it. Further, we prove Theorem 6.2 by showing a more general duality that includes brambles and

tree-width as well as Uk-tangles and Sk(G)-trees over Uk.

Recall that Uk :=
{

σ ⊆ Sℵ0
(G) : σ is a star with | int(σ)| < k

}

for k ∈ N. The main result of this

section is Theorem 4, which we restate here for convenience:

Theorem 4. The following assertions are equivalent for all graphs G and k ∈ N:

(i) G has a Uk-tangle of order k that is not induced by an end of combined degree < k.

(ii) G has a finite bramble of order at least k.

(iii) G has no weakly exhaustive Sk(G)-tree over Uk.

(iv) G has tree-width at least k − 1.

Theorem 4 generalizes a result of Diestel and Oum [11, Theorem 6.5] to infinite graphs; its proof is inspired

by theirs.

Proof of Theorem 4. (i) ⇔ (iii) is Lemma 2.6 and Theorem 6. (iii) ⇔ (iv) is analogous to [11, Lemma 6.3].

It remains to show (i) ⇔ (ii). For (ii) ⇒ (i) we closely follow the proof of [11, Lemma 6.4]. Let B be

a finite bramble of order at least k. For every {A,B} ∈ Sk(G), since A ∩ B is too small to cover B but

every two sets in B touch and are connected, exactly one of the sets ArB and BrA contains an element

of B. Thus, O := {(A,B) ∈ Sk (G) : B r A contains an element of B} is an orientation of Sk(G), and it is

consistent for the same reason.

To show that O avoids Uk, let σ = {(Ai, Bi) : i ∈ I} ∈ Uk be given. Then | int(σ)| < k, so some C ∈ B

avoids int(σ), and hence lies in the union of the sets Ai r Bi. But these sets are disjoint, since σ is a

star, and they have no edges between them. Hence, C lies in one of them, Aj rBj say, which implies that

(Bj , Aj) ∈ O. But then (Aj , Bj) /∈ O, so σ 6⊆ O as claimed.

To see that O is not induced by an end of G of combined degree < k, let ε be an end of G. If

∆(ε) < k, then in particular dom(ε) < k. Since B has order at least k, there exists some C ∈ B that avoids

Dom(ε). Moreover, again because ∆(ε) < k, there exists, by Lemma 3.2 (ii), a weakly exhaustive increasing

sequence ((Ai, Bi))i∈N of separations in τε such that (Ai ∩Bi) ∩ (Aj ∩Bj) ⊆ Dom(ε) for i 6= j ∈ N. Since

C ∩ Dom(ε) = ∅ and C is finite, this implies that there is some j ∈ N such that C ⊆ Aj r Bj . But then

(Bj , Aj) ∈ O, and thus O is not induced by ε.

For (i) ⇒ (ii) assume that G has an Uk-tangle τ of order k that is not induced by an end of combined

degree < k.

Claim 1. For every separation (A,B) ∈ τ the set {(C,D) ∈ τ : (A,B) 6 (C,D)} has a maximal element.
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Proof. Suppose towards a contradiction that the set S := {(C,D) ∈ τ : (A,B) 6 (C,D)} has no maximal

element, and let S′ ⊆ S consist of all separations (C,D) in S that are right-tight and have a connected

strict right side D r C. Since τ avoids Uk and is hence principal, there exists for every (C,D) ∈ τ a

component K of G− (A∩B) such that (V (G−K), V (K)∪NG(K)) ∈ τ . In particular, for every (C,D) ∈ S

there exists (C′, D′) ∈ S′ such that (C,D) 6 (C′, D′). It follows that S′ is non-empty and that S′ has no

maximal element either. Thus, S′ contains a strictly increasing sequence ((Ci, Di))i∈N of separations.

Since all (Ci, Di) have order < k, we may assume that |Ci ∩ Di| = ℓ for some ℓ < k and all i ∈ N, by

passing to a subsequence of ((Ci, Di))i∈N if necessary. We claim that ((Ci, Di))i∈N is weakly exhaustive.

Indeed, since all DirCi are connected, all separators Ci∩Di are distinct. Hence, X :=
⋂

i∈N

⋃

j>i(Cj∩Dj)

has size < ℓ; let j ∈ N such that X ⊆ Ci∩Di for all i > j. Pick some u ∈ (Cj∩Dj)rX , and let j′ ∈ N such

that u ∈ Cj′ rDj′ . Since (Cj , Dj) is right-tight and Dj rCj is connected, there is for every v ∈ Dj rCj a

v–u path in G that avoids X . So if D :=
⋂

i∈N
DirCi is non-empty, then there exists a finite D–(Cj′ rDj′)

path that avoids X . But this path has to meet all separators Ci ∩Di with i > j′ in vertices outside of X ,

a contradiction.

Thus, ((Ci, Di))i∈N is weakly exhaustive, which by Lemma 5.1 contradicts the assumption that τ is not

induced by an end of combined degree < k. �

We now define a finite bramble B as follows. Let V (G) be equipped with a fixed well-ordering. Then

for every non-empty set U ⊆ V (G) there exists a unique element in U which is least in the well-ordering;

we denote this vertex with vU .

Now for every separation (A,B) ∈ τ that is maximal in τ (with respect to the partial order on τ induced

by Sk (G)), we pick a finite, connected set U(A,B) ⊆ B r A which contains vBrA and for every vertex in

A ∩ B at least one of its neighbours. For this note that such a set exists since (A,B) is maximal in τ ,

and thus G[B r A] is connected and NG(B r A) = A ∩ B. We then put in B precisely all sets UA,B. By

definition, all elements of B are finite and connected. Moreover, B has order at least k. Indeed, since τ

avoids Uk, there exists for every set U of at most k − 1 vertices of G a component C of G − U such that

(V (G− C), V (C) ∪NG(C)) ∈ τ . Then for every maximal separation (A,B) in τ with (V (G− C), V (C) ∪

NG(C)) 6 (A,B) the set U(A,B) avoids U ; and such an (A,B) exists by Claim 1.

To conclude the proof, it remains to show that the sets in B mutually touch. For this, let U := U(A,B),

U ′ := U(A′,B′) ∈ B be given. If v := vBrA = vB′rA′ =: v′, then U and U ′ intersect by construction. So

one of v and v′, say v, is strictly smaller in the well-ordering, which by the choice of v′ implies that v ∈ A′.

We claim that (A∩B)∩ (B′
rA′) 6= ∅. Then the assertion follows. Indeed, let u be any vertex in that set.

Since A∩B ⊆ NG(U) by the choice of U , there is a v–u path in G[U ∪{u}]. But as v ∈ A′ and u ∈ B′
rA′,

it follows that U meets A′ ∩B′. Hence U and U ′ touch since A′ ∩B′ ⊆ NG(U
′) by the choice of U ′.

To prove the claim suppose for a contradiction that (A∩B)∩(B′
rA′) = ∅. If also (BrA)∩(B′

rA′) = ∅,

then it follows that (B′, A′) 6 (A,B), which contradicts the consistency of τ as (A′, B′), (A,B) ∈ τ . Hence,

there is a vertex u′ ∈ (B r A) ∩ (B′
r A′). Since both (A′, B′) and (A,B) are maximal separations in τ ,

we have B′
rA′ 6⊆ B r A, and hence the exists a vertex w ∈ (B′

rA′) ∩ A 6= ∅. As B′
r A′ is connected,

there exists a u′–w path in G[B′
r A′]. But this path has to meet A ∩ B since u′ ∈ B and w ∈ A, which

concludes the proof. �

Proof of Theorem 6.2. This is (ii) ⇔ (iv) of Theorem 4. �
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We conclude this section with the following corollary of Lemma 4.4 that the author, Jacobs, Knappe

and Pitz use in [3]:

Corollary 6.3. Let G be a graph of tree-width 6 w ∈ N, and let σ be a finite star of separations of G

of order 6 w + 1 whose interior is finite. Suppose that all separations in σ are left-ℓ-robust for ℓ :=

(w + 1)2(w + 2) + w + 1. Then torso(σ) has tree-width 6 w.

Proof. By definition, Uw+2 is (w + 1)-bounded, and by Lemma 2.6, Uw+2 is nice, so we may apply

Lemma 4.4, which yields that there is either an Uw+2-tangle τ of G with σ ⊆ τ or a finite Sw+2(G)-

tree (T, α) over Uw+2 ∪ {{s} : s ∈ σ} in which each s ∈ σ appears as a leaf separation. Suppose first that

the former holds. Since the interior of σ is finite and σ ⊆ τ , the Uw+2-tangle τ cannot be induced by an

end of G. But since G has tree-width 6 w, it has no Uw+2-tangles of order w + 2 that are not induced

by an end by Theorem 4, a contradiction. So we may assume the latter. It is easy to check that (T, α)

induces a tree-decomposition (T,V) of G (cf. [11, Lemma 6.3]) whose bags have size 6 w + 1, unless they

are associated with leaves of T whose incident edge induces a separation in σ. By restricting the bags in V

to int(σ), we obtain a tree-decomposition (T,V ′) of G[int(σ)] of width 6 w. In fact, since (T, α) contains

all s ∈ σ as leaf separations, (T,V ′) is even tree-decomposition of torso(σ). Thus, torso(σ) has tree-width

6 w. �

7. Refining trees of tangles

Besides the tangle-tree duality theorem, Robertson and Seymour [22] proved the tree-of-tangles theorem,

which asserts that for every k ∈ N every finite graph has a tree-decomposition such that its k-tangles live at

different nodes of the tree. Erde [16] combined this theorem and the tangle-tree duality theorem into one,

by constructing a single tree-decomposition such that every node either accommodates a single k-tangle or

is too small to accommodate one, in that it is associated with a star in Tk. In fact, he showed that such a

tree-decomposition can be obtained from any given one that efficiently distinguishes all the k-tangles, by

refining its inessential parts.

The author [1] improved Erde’s result by constructing further refinements of the essential parts of that

tree-decomposition, yielding a tree-decomposition that has the additional property that all its essential

bags are as small as possible. In this section, we extend this result to infinite graphs. We then obtain

Theorem 5 as a simple corollary.

To state the main result of this section, we first need some further definitions. Following [15], we call two

regular k-profiles τ, τ ′ in a graph G combinatorially distinguishable if at least one of them is principal or

they are both non-principal but such that there exists a set X ⊆ V (G) such that (V (K)∪X,V (G−K)) ∈ τ

for all K ∈ CX and such that (V (G−K), V (K) ∪X) ∈ τ ′ for a component K ∈ CX .

A set F of stars in Sk (G) is profile-respecting if every F -tangle of Sk (G) is a k-profile in G. A k-profile

in G is bounded if it does not extend to an ℵ0-profile
11.

Given some set S ⊆ Sℵ0
(G), a star σ ⊆ S is exclusive for some set O of consistent orientations of S if

it is contained in exactly one orientation in O. If O ∈ O is that orientation, we say that σ is O-exclusive

(for O). Similarly, a bag Vt of a tree-decomposition of G is exclusive (for O) if σt is exclusive for O.

11Equivalently, a principal k-profile τ in G is bounded if and only if it is neither induced by an end nor of the form

{(A,B) ∈ Sk (G) : X ⊆ B} for a set X ∈ crit(G) of size > k (cf. [6, Theorem 3]). Moreover, every non-principal k-profile is

unbounded.
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If (T,V) and (T̃ , Ṽ) are both tree-decompositions of G, then (T,V) refines (T̃ , Ṽ) if the set of separations

induced by the edges of T is a superset of the set of separations induced by the edges of T̃ .

Theorem 7.1. Let G be a graph, k ∈ N, and let F be a finitely bounded, profile-respecting, nice set of

finite stars in Sk(G). Further, let (T̃ , Ṽ) be a tree-decomposition of G which distinguishes all combinatorially

distinguishable F-tangles of order k such that every separation induced by an edge of T̃ distinguishes a pair

of F-tangles of order k efficiently. Then there exists a tree-decomposition (T,V) of G which refines (T̃ , Ṽ)

and which is such that

(i) every end of G of combined degree < k lives in an end of T ;

(ii) if every end of T̃ is home to an end of G, then also every end of T is home to an end of G;

(iii) every non-principal F-tangle of order k which does not live in an end of T̃ lives at a node t of T

with σt ∈ U∞
k ;

(iv) for every inessential node t of T we have σt ∈ F ; and

(v) every bag Vt of (T,V) that is home to a bounded F-tangle of order k is of smallest size among all

the exclusive bags of tree-decompositions of G that are home to the F-tangle living in Vt.

We remark that if G is locally finite, then there exists by [5, Theorem 7.3] for every k ∈ N a tree-decom-

position (T̃ , Ṽ) of G which efficiently distinguishes all k-tangles in G, and which thus satisfies the premise

of Theorem 7.1.

In the remainder of this section we prove Theorem 7.1. For this, we need two more refining lemmas.

The first one lets us refine stars which are home to a bounded tangle, and the second one generalizes our

refining lemma for inessential stars, Lemma 4.4, to stars whose interior is infinite.

To show the first lemma, we need the following result of [1]:

Lemma 7.2. [1, Proof of Lemma 4.3] Let k ∈ N, let Q be some set of k-profiles in a graph12 G, and

let τ ∈ Q. Further, let σ ⊆ τ be a finite star with finite interior, and suppose that every separation in σ

efficiently distinguishes some pair of k-profiles in Q. Then there exists a star ̺ ⊆ τ with σ 6 ̺ whose

interior is of smallest size among all stars in τ that are exclusive for Q and which has the further property

that all the separations in ̺ are closely related to τ .

The following lemma refines essential stars that are home to a bounded tangle in a similar way as

Lemma 4.4 refines inessential stars. It generalizes [1, Lemma 4.3] to infinite graphs.

Lemma 7.3. Let G be a graph, k ∈ N, and let F be a finitely bounded, profile-respecting, nice set of finite

stars in Sk (G). Let σ ⊆ Sk (G) be a star, and suppose that every separation in σ efficiently distinguishes

some pair of F-tangles of Sk(G). Further, suppose there is a unique F-tangle τ of Sk(G) that satisfies

σ ⊆ τ . If τ is bounded, then there exists a star σ′ ⊆ τ whose interior is of smallest size among all exclusive

stars in τ , and a finite Sk(G)-tree over F ∪ {σ′} ∪ {{s} : s ∈ σ} in which each s ∈ σ appears as a leaf

separation.

Note that we show in the proof that the interior of every exclusive star in τ is finite. Thus, ‘of smallest

size’ is well-defined.

12In [1] the assertion of Lemma 7.2 is shown only for finite graphs. However, the same proof works for infinite graphs as

long as σ is finite and has finite interior.
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Proof. Since τ is bounded and thus not induced by an end, and because σ is τ -exclusive, no end of G

lives in σ by Proposition 3.1. Hence, by Proposition 3.3 and because all separations in σ are left-tight by

Lemma 2.3, torso(σ) is rayless. Moreover, by Lemmas 3.7 and 3.8, torso(σ) is tough, and so by Theorem 2.1,

int(σ) is finite. In particular, again by Lemma 3.8, σ is finite.

We can thus apply Lemma 7.2 to σ and τ , which yields a star σ′ ⊆ τ with σ 6 σ′ which is closely related

to τ and whose interior is of smallest size among all exclusive stars in τ . As all separations in σ distinguish

some pair of F -tangles in G efficiently, and are hence closely related to some F -tangle by Proposition 4.1,

it follows that all the stars ̺s := {s} ∪ {r : r 6 s, r ∈ σ} for s ∈ σ′ satisfy the premise of Lemma 4.4. We

thus obtain, for every ̺s, a finite Sk(G)-tree (T s, αs) over F ∪ {{r} : r ∈ ̺s} in which each r ∈ ̺s appears

as a leaf separation.

Let T be the tree obtained from the disjoint union of the trees T s by identifying their leaves vs where vs

is the unique leaf of T s whose incident edge induces s. Then (T, α) with α(e) = αs(e) where T s is the

unique tree containing e is an Sk(G)-tree over F ∪ {σ′} ∪ {{s} : s ∈ σ}. �

The next lemma generalizes Lemma 4.4 to stars with infinite interior:

Lemma 7.4. Let G be a graph, k ∈ N, and let F be a finitely bounded, nice set of stars in Sk (G). Let

σ := {si : i ∈ I} ⊆ Sk (G) be a star, and suppose that every separation in σ efficiently distinguishes some

pair of k-profiles in G that avoid F . Set F ′ := F ∪{{si} : i ∈ I}. Then either there is a principal F ′-tangle

of Sk(G) that is not induced by an end of G of combined degree < k, or there is a weakly exhaustive Sk(G)-

tree (T, α) over F ′ ∪ U∞
k in which each si appears as a leaf separation.

In particular, (T, α) can be chosen so that every end of T is home to an end of G.

If (T,V) is a tree-decomposition of a graph G, then a tree T ′ obtained from T by edge contractions

induces the tree-decomposition (T ′,V ′) of G whose bags are V ′
t =

⋃

s∈t Vs for every t ∈ T ′, where we

denote the vertex set of T ′ as the set of branch sets.

To prove Lemma 7.4 we need the following lemma:

Lemma 7.5. [3, Lemma 8.6] Let G be a graph, and let (T,V) be the tree-decomposition of G that satisfies

(ii) and (iv) of Theorem 5.2. Let F be some set of edges of T such that no edge in F is incident with a

node of infinite degree and such that for every end η of T , the set F avoids cofinitely many edges e of the

η-ray R in T with |Ve| = ∆(ε) where ε is the end of G that lives in η. Then the tree-decomposition obtained

from (T,V) by contacting all edges in F has still finite parts.

Proof of Lemma 7.4. Let us assume that there is no F ′-tangle that is as desired and show that there then

exists a weakly exhaustive Sk(G)-tree over F ′ ∪ U∞
k . Set ℓ := max{3k − 2, k(k − 1)m+m} where m ∈ N

is such that F is m-bounded.

Assume first that σ has finite interior; in this case, we allow that separations in σ do not efficiently

distinguish two F -tangles if they are left-ℓ-robust. We show that there then exists an Sk(G)-tree (T, α)

as desired such that T is rayless. Set X := {X ⊆ V (G) : X = A ∩ B for infinitely many (A,B) ∈ σ} and

̺ := {(A,B) ∈ σ : A∩B /∈ X}∪{(AX , BX) : X ∈ X} where (AX , BX) is the supremum over all (A,B) ∈ σ

with A ∩ B = X . Clearly, we have AX ∩ BX = X , and hence ̺ is included in Sk (G). We claim that ̺

satisfies the premise of Lemma 4.4. Indeed, ̺ is still a star, and it is finite since int(σ) is finite. Moreover,

every separation in ̺∩ σ is either left-ℓ-robust or has an inverse that is closely related to some F -tangle of

order k by Proposition 4.1. Further, every separation (A,B) ∈ ̺r σ is left-ℓ-robust by Proposition 4.3, as

G[ArB] contains infinitely many tight components of G− (A ∩B) by Lemma 2.3.
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Hence, we may apply Lemma 4.4 to ̺. As ̺ is finite and has finite interior, it cannot be home to any

F -tangles that are non-principal or induced by an end by Lemma 2.4 and Proposition 3.1. Since ̺ is also

not home to any other principal F -tangles by assumption, we thus obtain a finite Sk(G)-tree (T, α) over

F∪{{s} : s ∈ ̺} in which each (A,B) ∈ ̺ appears as a leaf separation; let us denote the respective leaf of T

with t(A,B). We now obtain the desired rayless Sk(G)-tree over F ∪U∞
k by adding, for every (A,B) ∈ σr̺

a leaf u(A,B) and the edge {u(A,B), t(AX ,BX)} where X = A ∩B.

We now turn to the general case that σ may have infinite interior. By Proposition 3.1, no end of G of

combined degree > k lives in σ, and hence, by Lemma 3.4, all ends of torso(σ) have combined degree < k.

Further, by Lemmas 3.5 and 3.7, all critical vertex sets of torso(σ) have size < k. Hence, we may apply

Theorem 5.2 to torso(σ), which yields a tree-decomposition (T ′,V ′) of torso(σ) of adhesion < k. Since

every separator A∩B of a separation (A,B) ∈ σ is complete in torso(σ), there exists for every such A∩B

a node tA∩B of T ′ such that A∩B ⊆ V ′
tA∩B

. We then obtain a tree-decomposition (T ′′,V ′′) of G by adding

for every (A,B) ∈ σ a node u(A,B) and the edge {u(A,B), tA∩B} to T ′ and assigning the bag A to u(A,B).

Let F be the set of edges e = {s, t} of T ′′ with σ′′
s , σ

′′
t /∈ U∞

k whose induced separation is neither ℓ-

robust nor in σ. Note that if σ′′
s ∈ U∞

k , then e = (s, t) is left-ℓ-robust by Proposition 4.3: infinitely many

separations in σ′
s are left-tight by Theorem 5.2 (i), and hence, as all separations in σ are left-tight, also

infinitely many separations in σ′′
s are left-tight; so (Us, Ut) contains infinitely many tight components of

G− Ve in its small side.

Let (T̃ ′′, Ṽ ′′) and (T̃ ′, Ṽ ′) be the tree-decompositions obtained from (T ′′,V ′′) and (T ′,V ′), respectively,

by contracting all edges in F . Then all bags Ṽ ′′
t for nodes t of T̃ ′′ not of the form u(A,B) are finite: By

Theorem 5.2 (ii) every end η of T ′ is home to an end ε′ of torso(σ) with lim infe∈R |Ve| = ∆(ε′) where R is

any η-ray. Then by Lemma 3.4 the same holds true for the ray R in T ′′ ⊇ T ′ and some end ε of G with

∆(ε) = ∆(ε′). Thus, by Lemma 4.2 applied to ε and the separations of G induced by the ray R in T ′′, the

set F and (T ′,V ′) satisfy the premise of Lemma 7.5, and thus (T̃ ′, Ṽ ′) has still finite parts. As Ṽ ′′
t = Ṽ ′

t

for all nodes t of T̃ ′′ not of the form u(A,B), these bags are finite.

Now let t be a node of T̃ ′′ which is neither a leaf of the form u(A,B) for some (A,B) ∈ σ nor associated

with a star σ̃′′
t in U∞

k . Then all separations in σ̃′′
t are either left-ℓ-robust or efficiently distinguish two

F -tangles by construction. Since int(σ̃′′
t ) is finite, we may apply the first case to σ̃′′

t . As σ is not home to

any principal F -tangles that are not induced by an end of combined degree < k, σ̃′′
t is not home to any such

F -tangles either. Hence, we obtain a rayless Sk(G)-tree (T t, αt) over F ∪ U∞
k ∪ {{s} : s ∈ σ̃′′

t } in which

each s ∈ σ̃′′
t appears as a leaf separation. Applying Construction 5.3 to (T̃ ′′, Ṽ ′′) and the (T t, αt) yields a

weakly exhaustive Sk(G)-tree (T, α) over F ∪ U∞
k ∪ {{s} : s ∈ σ}. Moreover, by construction, each si ∈ σ

appears as a leaf separation of (T, α). For the ‘in particular’-part, note that every end of T ′ is home to

an end of torso(σ) by Theorem 5.2 (ii), and hence every end of T̃ ′′ is home to an end of G by Lemma 3.4.

Since all T t are rayless, the assertion follows. �

With Lemmas 7.3 and 7.4 at hand, we are ready to prove the main result of this section.

Proof of Theorem 7.1. We define for every node t of T̃ an Sk(G)-tree (T t, αt) as follows. If t is home to

a bounded F -tangle, then let (T t, αt) be the finite Sk(G)-tree obtained from applying Lemma 7.3 to σ̃t.

If t is inessential or only home to F -tangles of order k that are either non-principal or induced by ends of

combined degree < k, then let (T t, αt) be the Sk(G)-tree obtained from applying Lemma 7.4 to σ̃t.

Then applying Construction 5.3 to (T̃ , Ṽ) and the (T t, αt) yields a weakly exhaustive Sk(G)-tree (T, α).

It is now straightforward to check that (T,V) with Vt := int(σt) is a tree-decomposition of G (cf. [4, §4]); in
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particular, every edge e of T induces the separation α(e). Then (T,V) satisfies (i) to (v): By construction,

no end of combined degree < k can live at a node of T , and hence they have to live in ends of T ; so (i) holds.

(ii) follows by the ‘in particular’ part of Lemma 7.4. Property (iii) holds because non-principal F -tangles

that live at nodes of T̃ have to live at nodes of T by the ‘in particular’ part of Lemma 7.4, but they cannot

live at nodes that are associated with stars in F . (iv) and (v) follow by Lemmas 7.3 and 7.4. �

We conclude this section with the proof of Theorem 5. For this, we need the following theorem, which

is immediate from the proof of [3, Corollary 5’]:

Theorem 7.6. Every graph G without half-grid minor admits a tree-decomposition (T,V) which efficiently

distinguishes all combinatorially distinguishable ℵ0-tangles in G.

Moreover, (T,V) can be chosen so that every end of T is home to an end of G, and every non-principal

ℵ0-tangle lives at a node t of T .

Proof of Theorem 5. By assumption, G has no end of combined degree > k, and hence no half-grid minor.

Let (T ′,V ′) be the tree-decomposition of G from Theorem 7.6. Since G has no bounded k-tangle by

assumption, (T ′,V ′) in particular distinguishes all combinatorially distinguishable k-tangles. By contracting

all edges of T whose induced separations do not efficiently distinguish some pair of k-tangles, we obtain a

tree-decomposition (T̃ , Ṽ) that satisfies the premise of Theorem 7.1. Let (T,V) be the tree-decomposition

obtained from applying Theorem 7.1 to (T̃ , Ṽ). Then (T, α) is an Sk(G)-tree, where α(t0, t1) := (Ut0 , Ut1)

for all edges (t0, t1) ∈ E(T ). In particular, (T, α) is over T ∗ ∪ U∞
k by (i), (iii) and (iv) of Theorem 7.1 and

because all principal k-tangles in G are induced by ends of combined degree < k.

We claim that (T, α) is as desired. Indeed, it satisfies (i) by Theorem 7.1 (i) and (ii) and because every end

of T ′, an hence every end of T̃ , is home to an end of G. Moreover, (T, α) satisfies (ii) by Theorem 7.1 (iii) and

because every non-principal k-tangle in G lives at a node of T ′ and hence of T̃ . Finally, (T, α) satisfies (iii)

because (T,V) refines (T̃ , Ṽ), and (T̃ , Ṽ) distinguishes all combinatorially distinguishable k-tangles in G. �
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