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Abstract—We present a novel class of proof-of-position al-
gorithms: Tree-Proof-of-Position (T-PoP). This algorithm is de-
centralised, collaborative and can be computed in a privacy
preserving manner, such that agents do not need to reveal
their position publicly. We make no assumptions of honest
behaviour in the system, and consider varying ways in which
agents may misbehave. Our algorithm is therefore resilient
to highly adversarial scenarios. This makes it suitable for a
wide class of applications, namely those in which trust in a
centralised infrastructure may not be assumed, or high security
risk scenarios. Our algorithm has a worst case quadratic runtime,
making it suitable for hardware constrained IoT applications.
We also provide a mathematical model that summarises T-
PoP’s performance for varying operating conditions. We then
simulate T-PoP’s behaviour with a large number of agent-
based simulations, which are in complete agreement with our
mathematical model, thus demonstrating its validity. T-PoP can
achieve high levels of reliability and security by tuning its
operating conditions, both in high and low density environments.
Finally, we also present a mathematical model to probabilistically
detect platooning attacks.

Index Terms—location, position, proof, tree, algorithms, pri-
vacy, decentralisation.

I. INTRODUCTION

An emerging problem in many domains concerns the veri-
fication that an individual, or an object, is in the location that
it claims to be in. Examples of situations where such a need
arises range from images in conflict zones to vehicles who
need to prove their location in order to access services. Proof-
of-position algorithms refer to a suite of algorithmic tools that
are designed to enable such objects to prove their location.

The question of proving one’s position is trivial to answer
when a centralised and trustworthy infrastructure exists. An
example such an infrastructure of this could, for example, be a
network of surveillance cameras that are operated by a trusted
government agency. In such situations it is relatively straight-
forward for an agent to verify their claimed location. However,
such architectures impose a very strong trust assumption, and
should the centralised network be compromised or malicious,
one can no longer ensure that the location proof is trustworthy.
Consequently, making such a trust assumption greatly restricts
the practicality of any solution relying on it.

Hence we advocate for the need for a proof-of-position al-
gorithm that is decentralised. However, decentralisation alone
does not suffice. Information on an individual’s position is
sensitive. Revealing it may incur safety risks to the user.
Thus, the proof-of-position algorithms must also be privacy
preserving. More concisely: one should be able to provide a
verifiable proof of their position, without having to publicly
reveal their position. In addition, for any solution to be
applicable to real-world use cases, it must be designed to
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withstand adversarial environments and account for individuals
that lie and misbehave. In the context of proof-of-position,
there are many ways an agent could lie: they may lie about
their own position, but also about the position of others. With
these considerations in mind, our objective in this paper is
to provide a proof-of-position algorithm that is decentralised;
private; and robust to adversarial attacks.

II. RELATED WORK

A preliminary version of our work was presented at [1]. The
following Related Work section closely resembles the related
work in [1], given that, to the best of our knowledge, since
the publication [1] , the only new proof-of-position protocol
published in the literature is [2].

A number of works have appeared in the literature address-
ing the problem of proving one’s position; see for example
[3], [4], [5], [6], [7]. These proposals are unsuitable for
high risk scenarios we consider because they introduce trust
assumptions that may not hold in adversarial environments.
They also de facto re-introduce a degree of centralisation in
their systems. We proceed by outlining some of this prior
work.

An early example of a decentralized proof-of-location
scheme, known as APPLAUS, was introduced in [8]. AP-
PLAUS addressed collusion attacks through graph clustering
and computing a ‘betweeness’ metric to evaluate node trust-
worthiness. In [9], nodes weakly connected in the graph are
considered less reliable. They propose a time-decayed weight
function and determine node trustworthiness based on the ratio
of approvals to neighbours. This latter contribution serves as
a starting point for our work. Whilst offering a number of
valuable contributions, this work relies on a central server
that stores information on the number of agents at particular
time and location to detect fraudulent proof generation. This
information can be used to estimate whether a prover lies about
not finding enough peers or always finding the same peer based
on some statistical techniques. Conversely, the security and
integrity of our algorithm does not rely assuming access to a
trusted central server that stores said information.

Another scheme, SHARP, presents a private proximity test
without revealing actual locations to a server [10]. They
introduce a secure handshake method without needing pre-
shared secrets, ensuring a witness1 can only extract the session
key if in they are indeed in the vicinity of the prover 2. Security
is ensured by requiring that location tags are un-forgeable.
However, a coerced user could generate a valid location proof
and relay it to a malicious user in a different location. This
means the location proof is not non-repudiable [11].

1An agent that verifies that they see another agent wishing to prove their
position.

2An agent that wishes to prove their position.
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Vouch+ [12], another decentralized approach, addresses
high-speed and platooning scenarios. However, its security
relies on the assumption that the selected proof provider is
honest. We consider this assumption to be too strong. Indeed,
our algorithm provides probabilistic guarantees of detecting
that a prover is lying about their position. SPARSE [3]
makes collusion difficult by preventing provers from choosing
their own witnesses. Their solution provides integrity, un-
forgeability and non-transferability. However, this is achieved
through the use of a trusted verifier, and it is assumed that
they will not publish users’ identity and their data. We again
consider this assumption too strong.

The authors in [2] propose a proof-of-position protocol
using blockchain agnostic smart contracts. A number of
proposals have emerged to design proof-of-position schemes
leveraging blockchain technologies, see: [7], [6], [13], [14].
Blockchain is known to centralise over time [15], and is
highly resource intensive [16]. Our protocol does not rely on
blockchain, thus avoiding the drawbacks inherent to its design.

Contributions with respect to prior-art: In this paper we
present a decentralised proof-of-position algorithm, T-PoP. It
is decentralised because it does not rely on a trusted central
server or authority to ensure the position proof is valid. It
is privacy preserving, because the position proof may be
computed without revealing the position of an agent publicly,
and other participants may verify that the position proof is
indeed valid. Indeed, we provide a proof of concept using
Zama’s fully homomorphic encryption library [17], where
agents provide their encrypted position, and run T-PoP without
having to decrypt it. It is available on our GitHub repository.
Our algorithm is also robust to highly adversarial scenarios:
we consider that agents may not only lie about their own
position, but also about the position of other agents. We
take this consideration into account to provide a probabilistic
guarantee of an agent’s position. We provide a mathematical
model that summarises the behaviour of our algorithm, and
validate that the model does indeed represent our algorithm
through the use of agent-based simulations. This model pro-
vides designers with security and reliability guarantees of T-
PoP’s performance, given an expected distribution of malicious
agents in the network. Thus, designers may use this model
as opposed to conducting resource intensive agent based
simulations to determine what operating conditions of our
algorithm best suit their needs. Our algorithm runs in quadratic
time and thus can be implemented in a wide range of IoT
applications. T-PoP is a solution to prove one’s location in
a highly adversarial and mutually distrusting environment,
where a central authority and trusted infrastructure cannot be
relied upon. We demonstrate it performs well in both high and
low density applications, given that its operating conditions
may be tuned to provide increased security or reliability.

III. COMPONENTS

We proceed by introducing the components necessary to
understand the functioning of T-PoP.

Agents: Any participant in the proof-of-position protocol is
considered an agent, ai, where ai ∈ A, |A| = N and N is the

total number of agents operating in the protocol. All agents
are in a given state, that determines if they are honest, and
coerced, or not. For brevity, we omit the agent’s index where
unnecessary.

Environment: We assume that agents willing to participate
in the protocol are situated in in an environment, E, where
E ⊆ R2. We note that this does not represent a limitation
of the protocol and that any space with a suitable distance
metric can be employed for the T-PoP protocol.

Position: All agents have a real position, p, and a claimed
position, p̂. Each agent can lie about their claimed position by
committing to p̂ such that p̂ ̸= p.

p̂ ∈ {p, p′} (1a)
p̂ = p ∨ p̂ = p′ (1b)

p′ ̸= p (1c)

In other words, the claimed position may or may not be equal
to the real position. We say that {p̂, p, p′} ∈ E.

Agent states: All agents are in a given state, which is
comprised of three attributes: honesty, coercion and position.

• An agent is considered honest if they claim to be in their
real position. i.e.: p̂ = p, and dishonest otherwise, where
p̂ ̸= p.

• All agents are in a real position. Honest agents will claim
to be in their real position, and dishonest agents will claim
to be elsewhere.

• An agent is considered coerced if they attest to seeing a
dishonest agent in their claimed (fake) position. In other
words: a coerced agent will claim to see agents that are
not actually in its vicinity, if the latter are dishonest. Non-
coerced agents will only attest to seeing other nearby
agents in their real position.

Prover: An agent initiating the proof-of-position protocol,
wishing to prove that they are in their claimed position, is
called a prover.

Range of sight: Agents have a fixed, positive range of sight,
ri with ri ≥ 0.

Field of view: Agent ai’s field of view, Di, is defined as the
closed disk area with centre p̂i = (xi, yi) and radius ri.

Di = {(x, y) ∈ R2 : (x− xi)
2 + (y − yi)

2 ≤ r2i } (2)

We say agent aj with position p̂j = (xj , yj), is in ai’s field
of view if:

(xj − xi)
2 + (yj − yi)

2 ≤ r2i

In other words, if the position of aj falls inside Di.

Note: this field of view is not restrictive of physical obsta-
cles blocking immediate range of sight, rather, it is intended
as a model for connectivity range.
Witness: Provided aj is in ai’s field of view, aj may be
named as a witness of ai, depending on the states of both

https://github.com/aidamanzano/Tree-Proof-of-Position/blob/main/FHE.py
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agents.

Approvals: If a witness aj attests to seeing the agent that
named it, ai, the witness is said to approve ai. Approvals are
always computed from both the agents’ claimed position.

IV. OVERVIEW OF OUR PROTOCOL

In this section, we outline a brief, high-level description of
the protocol we propose. It is structured around three stages:
Commit, Tree Building, and Verification. This protocol is
initiated by an agent wishing to prove they are in a claimed
position. In the initial stage, Commit, each agent constructs
a cryptographic commitment of their claimed position, using
a cryptographic commitment scheme3. This commitment en-
sures the position claim cannot be changed a posteriori, i.e.,
it is binding, and is also hiding, meaning the position need
not be publicly revealed. Upon constructing the commitment,
each agent then uploads their commitment onto a decentralised
network. This can be a transaction in a DLT or uploaded to
IPFS, a peer to peer file sharing network [21]. In this manner,
immutability and verifiability are assured.

Subsequently, the Tree Building stage follows. It may only
be computed by an agent that has already committed to a
position in the Commit stage. Said agent is considered the
prover. The prover constructs a tree by naming other nearby
agents, which are considered the prover’s witnesses. Each node
in the tree is an agent, where the prover is the root of the tree,
and the witnesses are the leaves. The tree’s dimensions are
predetermined a priori, namely the height and the branching
factor. The protocol imposes strict constraints to prevent the
naming the same witness twice in the same tree, aiming to
mitigate deceitful practices (e.g., agents cyclically validating
each other).

The final stage of the protocol is the Verification stage. In it,
the prover’s tree of witnesses is assessed to verify the prover’s
position. The witnesses may attest to seeing the agent that
named them, or not. If a witness does so, this is considered
an approval. If sufficient approvals in the tree are amassed,
the prover’s position claim is considered valid, provided other
necessary criteria are also met in the tree.

V. IMPLEMENTATION DETAILS OF T-POP

We proceed by giving a more detailed description of the
novel components we present in the T-PoP protocol.

• Tree Building: Each agent who has already committed
their position, then constructs a tree of depth h ∈ N+,
incorporating the committed positions of agents, called
witnesses, at levels d ∈ {0, . . . , h}. A specific agent —
which we denote as g—is the root of the resulting tree.
For every prover, g, the tree is constructed as follows:

– g is is the root node at level 0.

3Many options are available: KZG commitment schemes [18], Pedersen
commitments, Merkle trees or Hashing [19]. Some schemes also offer the
desirable property of being additively and/or multiplicatively homomorphic
[20]. The choice of commitment scheme will be driven by application specific
needs.

Fig. 1: High-level Overview of the Proof of Position protocol.

– For each d ∈ {1, ..., h}, each node at level d − 1
will name wd other agents. An agent at level d is an
agent, aj , that is in the range of sight of agent, ai
at level l − 1 (note that, if p̂i ̸= pi, and ai is lying
about their position, it is possible that aj is not in
the range of sight of ai). ai is called the parent of
the child aj .

In practice, the root node, g, names w1 witnesses who in
turn name w2 witnesses and so on, until we reach depth
h. The number of witnesses per level, nl, can therefore
be computed recursively:

nd = wdnd−1, d = 1, . . . , h, (3)

with n0 ≡ 1.
• Checks and Verification: The Checks and Verification

stages start by considering level d = h− 1 of the tree:
1 Each witness at level d+1 states whether their parent

at level d is their neighbour or not (the child approves
the parent). If the answer is yes, and the child has
not yet been named in the tree, this witness becomes
a confirmed level d witness. The total number of
confirmed level d witnesses is denoted as Dd ≤ nd,
and the total number of witnesses that confirm a
parent b is denoted by Kb ≤ wl.

2 If a witness has already been named before, this wit-
ness is removed, regardless of whether they confirm
their parent or not.

3 If Kb < twd, t ∈ (0, 1], parent b is pruned from
the tree. Here, t is a parameter of T-PoP, called the
threshold, which is used to regulate the security and
reliability properties of the algorithm.

4 If Dd < tnd then the algorithm interrupts and
outputs that root g is lying about their position.
Otherwise, we move on to level d − 1 and we
repeat this process. Note that any parent removed
by the previous step will not be included in this next
iteration of T-PoP.

T-PoP is therefore an algorithm depending on a set of
parameters, θ ≡ {t, h, w1, ..., wh}. The influence of these
parameters on the performance of the algorithm will be
explored in Section IX.

Example: Consider the T-PoP example in Figures 3 and 4,
in which θ = {t = 0.5, d = 2, w1 = 2, w2 = 2}, and so n1 =
2 and n2 = 4 (3). Solid arrows mean that a witness approves
their parent and dotted lines mean that a witness does not
approve their parent. Agents a5 and a6 are dishonest agents,
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Fig. 2: Tree building examples. Agent a commits their alleged
position. The panel on the top right shows the construction of a
tree for h = 1 and w1 = 4, while the panel on the bottom right
shows the construction of a tree for h = 2, w1 = 2, w2 = 2.

so that their committed positions, p̂5 and p̂6, are different from
their true positions. However, agent a2 does not know this, it
saw those cars next to it and it picked a5 and a6 as witnesses.
So, a5 and a6 do not confirm that a2 is a neighbour of theirs,
whereas a3 and a4 confirm that a1 is a neighbour of theirs.
In line with point 3 of Checks and Verification (above), agent
a1 has enough confirmed witnesses (Ka1

= 2 ≥ t × w2 =
0.5 × 2) and stays in the tree, while agent a2 does not have
enough confirmed witnesses (Ka2 = 0 < 0.5× 2), and so a2
is removed from the tree. However, since the total number of
confirmed witnesses at level 2 is D2 = 2 ≥ t× n2 = 0.5× 4,
T-PoP does not stop for g, and we move to level 1. At level 1,
a2 has been removed but a1 confirms that g is its neighbour.
As per points 2 and 3 of Checks and Verification, the final
output of T-PoP is that g is truthful about their position. As
can be seen in the example above, t is critical in determining
the output of T-PoP. For instance, if t = 1, then M2 = 2 <
t×n2 = 1×4 = 4, causing T-PoP to stop at point 4 of Checks
and Verification, and returning an output of untruthful for g.

T-PoP’s practical implementations will vary depending on
the application. It may be used in by vehicles to prove
their position within a city, or it could be implemented in
a smartphone, operated by individuals wishing to prove their
location. It is also worth noting that T-PoP is not a highly
resource intensive algorithm to execute, and thus the hardware
constraints are not a critical concern. It is comprised of two
algorithms: Verification and Checks. These are further defined
in 3 and 2 accordingly. Verification is a (reverse) breadth-
first-search algorithm, meaning its runtime in the worst case
scenario is O(|V | + |E|), where V is the number of nodes
and E the number of edges in the tree data structure [22].
The Verification algorithm calls the Checks algorithm at each
node, and the Checks algorithm has a time complexity of
O(|V |). So T-PoP’s time complexity is O(|V |2 + |E|).

Of significant importance are the identity management so-
lution, the commitment scheme selected, the communication
security protocol and the notarising of the position proofs.

Fig. 3: We start by evaluating the outer level of the tree and
we evaluate the witnesses in W2 (the circled set). Agents a5
and a6 do not confirm that they see agent a2, even though a2
is an honest agent. This leads to agent a2 being eliminated
from the tree.

Fig. 4: We go down one level, and now evaluate the witnesses
in W1 (the circled set). a2 has been eliminated by the tree
(shown in grey) and so only agent a1 is left.
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Subsequently, we proceed with providing some possible op-
tions, but we note that the final decision must be made
considering the context specific needs: conflict-zones will have
different security and privacy needs to smart cities.

Identity management is trivial using a centralised solution.
T-PoP is a decentralised, peer to peer algorithm, so should
a centralised trust assumption not be desirable, we suggest
other alternatives: Proof of Humanity (PoH) is a decentralised
project ‘to provide a social identity verification system for
humans on Ethereum’ [23]. Users cannot submit duplicate
identities, fake or deceased identities may be challenged and
removed and identities are verified by other verified and
registered users. The drawback of this mechanism is that the
identity is (naturally) public. For reporting purposes this is
not an issue: paired with a commitment scheme, the reporter’s
position remains hidden, but the proof of humanity shows the
reporter (prover) is a real and verified individual. PoH is built
on the Ethereum blockchain, thus incurring transaction costs
to the user wishing to obtain a proof of humanity, however,
this is a one time cost, as users will not obtain more than one
proof of humanity.

Regarding securing communication between agents in T-
PoP, we advise using established protocols such as TLS 1.3.
The protocol used should guarantee the following properties
are met:

1) Confidentiality: Information is kept secret from all but
authorized parties.

2) Integrity: Messages have not been modified in transit.
3) Message Authentication: The sender of the message is

authentic.
4) Non-repudiation: The sender of the message cannot deny

the creation of the message. [11]
Finally, upon gaining a proof-of-position, this may be easily

notarised in a DLT or IPFS, along with the prover’s position
commitment and prover’s tree, such that all other agents may
verify that with the same inputs, they obtain the same T-PoP
result. This must be accompanied with the prover and the
witnesses’ unique signature to prevent forgery.

VI. TPOP PROTOCOL

In this section we provide an overview of T-PoP from an
algorithmic perspective and we introduce some notation that
is used in the remainder of the paper.

Accordingly, there are three main algorithms that T-PoP
calls:

• Tree Building: the process of building the tree of wit-
nesses.

• Checks: the process of verifying that the tree that has
been built satisfies certain criteria, listed below.

• Verification: the process of assessing the tree and deciding
whether or not to confirm the prover’s position.

A. Tree Building

A prover’s aim is to amass sufficient approvals to support
their position claim. Indeed, the prover provides a tree data
structure that summarises their received approvals and the

dependencies between them. The number of nodes and edges
present in the tree are evaluated to determine the likelihood
of the prover’s claim being true. We proceed by outlining
the algorithm the prover follows when constructing the tree
structure of approvals.
Terminology: Each node in the tree represents an agent. The
root of the tree is the prover. In a pair of nodes connected by a
directed edge, the node where the edge originates is the parent,
and the node where the edge terminates is the child. Each
edge represents an approval. Namely, an edge from parent ai
to child aj encodes aj’s approval of ai. The tree must be of
a specific dimension. Precisely, the variables are:

• height: the size of the longest path from the root to the
leaves of the tree, h.

• branching factor: the number of children, wd, that a
parent must have at a given depth level, d. For brevity,
if the branching factor is constant across levels, we omit
the index and simply denote it as w.

Algorithm 1 Tree Construction

Require: Prover ai, Height h, Branching Factor w1, ..., wd

1: Initialise ai as the root of the tree g and as a parent of
depth level 1

2: for d = 1, ..., h− 1 do
3: for each parent ai at depth level d do
4: ai names wd+1 children among its neighbours
5: All the named children are added as nodes of G

at depth level d+1, with aj as their parent node.
6: end for
7: end for
8: return G

B. Checks Algorithm

This algorithm is called within the Verification algorithm,
and its purpose is to assess, for each parent’s sub-tree, whether
it satisfies certain criteria. If so, the parent node is considered
honest and therefore remains in the prover’s tree. Otherwise, it
and its branch are pruned from the prover’s tree. The criteria
being checked for each sub-tree defined in algorithm 2, and
are the following:

1) each child approves their parent (Line 1),
2) the parent has named sufficient children (Line 2),
3) no child has been already named in the tree by another

parent (Line 3),
4) no parent names the same child twice (Line 4).

Indeed, criterion 3 and 4 can be summarised by ensuring
each agent in the tree is unique. The threshold parameter,
t, is a percentage that determines the minimum number of
children that a parent must have. A parent remains in the tree
iff |parent′s children| ≥ wd · t.

C. Verification

Starting at the lowest depth level, for each parent in that
level, Verification calls the Checks algorithm for all of its
children. If successful, the parent and its branch remains in
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Algorithm 2 Checks

Require: Child aj , Parent ai, Named Agents A, Branching
Factor wd, threshold t

1: if aj approves ai
2: and #[ai’s children] ≥ wd · t
3: and ai not in A
4: and #set([ai’s children]) = #[ai’s children] then
5: Add aj to A
6: return True
7: else
8: return False
9: end if

the tree, otherwise, it is pruned. It then moves up a level,
and performs the same operations, only considering the non-
pruned nodes. The algorithm terminates at the root of the
tree, where it evaluates if the tree has sufficient nodes after
pruning. If so, the prover is considered honest, otherwise it is
considered dishonest. Using the prover’s tree and the Checks
function, Verification calls Checks in a reverse breadth-first-
search manner. The algorithm returns True if the prover meets
the required criteria and False otherwise.

Algorithm 3 Verification

Require: Tree G, threshold t, Height h, Branching Factor
w1, ..., wd, threshold t

1: Initialise Named Agents to A = []
2: Initialise G’s nodes to not pruned
3: Initialise Depth Level Approvals to D1, ..., Dd−1

4: for d = 1, ..., h− 1 do
5: Depth Level Approval: Dd = 0
6: for each parent in at depth level d do
7: Parent Approvals = 0
8: for each parent’s child do
9: if child is not pruned then

10: if Checks(child, parent, A, wd, t) is True
then

11: Parent Approvals + = 1
12: end if
13: end if
14: end for
15: if Parent Approvals < wd · t then
16: parent is pruned
17: else
18: Dd + = 1
19: end if
20: end for
21: if Dd < wd · t then
22: return False
23: else
24: return True
25: end if
26: end for

VII. MATHEMATICAL MODELLING OF T-POP

We proceed with mathematically characterising the func-
tioning of T-PoP. This mathematical model can be used to
select the most suitable operating conditions of T-PoP, θ =
(h,w, t), provided the designers select a desired performance
level they wish to achieve in their application.

As discussed in Section VI, the heart of T-PoP is the Checks
algorithm, which is recursively called in the Verification
algorithm. The Checks algorithm assesses whether the criteria
necessary to confirm an agent’s position claim are satisfied.
These criteria are the following:

1) each child approves their parent,
2) each parent has named sufficient children,
3) all agents are unique in the tree
We hypothesize that it suffices to compute the probability

that each of the criterion above are met to determine the
probability that an agent will receive a valid proof-of-position.
We proceed by computing the individual probabilities of
each criterion and finally we combine them into one model.
Consequently, the probability that an agent ai with state su
will receive a proof-of-position through T-PoP with operating
conditions θ, is equal to the product of the probability of each
criterion above being satisfied:

P (TPoP(a) = True|su, θ) =
3∏

j=1

P (Criteria j = True|su, θ)

Finally, in order to analyse T-PoP’s performance, we con-
sider two metrics: Secutity and Reliability.

• True Negatives or Security, TN , is a conditional
probability quantifying the ability of the algorithm to de-
tect malicious agents. Specifically, it is the true-negative
conditional probability, which, under stationarity assump-
tions, is independent of i ∈ {1, . . . , |A|}:

TN ≡ Pr[TPoP(a) = False|a ∈ H]

• True Positives or Reliability, TP , is a conditional
probability quantifying the ability for the algorithm to
detect honest agents. Specifically, it is the true-positive
conditional probability. Once again, under stationarity
assumptions:

TP ≡ Pr[TPoP(a) = True|a ∈ H]

In what follows, we derive a mathematical expression for
P (Criteria j = True|su, θ), j ∈ {1, 2, 3}, and subsequently
demonstrate that our model faithfully represents T-PoP’s be-
haviour. We do so by conducting extensive agent-based sim-
ulations, and find that the results obtained are in complete
agreement with those of the mathematical model we provide.

The rationale behind our analysis is to understand the
performance of the algorithm when multiple agents collude
together to try and, either fake their own position (dishonest
agents) or attest that they see another agent in their fake
position (coherced agents). We first begin by formalising the
agent states mathematically. This allows us to construct a
probability model to determine the likelihood that a prover
will obtain sufficient approvals in their tree.
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Fig. 5: Venn Diagram Representing Possible Agent State
Combinations

A. Agent States

All agents have three attributes: honesty, α, coercion, β and
a claimed position, γ. These attributes are binary, taking either
a True or False value. We say an agent ai has an honesty
attribute αi, coercion attribute βi and claimed position γi,
where ai ∈ A, recalling that A is the set of all agents.

• Honesty: An agent ai is either honest, αi = h or
dishonest, αi = h̄. An honest agent claims to be in their
real position, whereas a dishonest agent claims to be in
a position that is different to their real position. We call
the set of honest agents H = {ai ∈ A : p̂i = pi} and the
set of dishonest agents H = {ai ∈ A : p̂i ̸= pi}.

• Coercion: An agent ai is either coerced, γi = c or
non-coerced, γi = c̄. When approving other agents, a
coerced agent will approve other agents in their claimed
position (regardless of whether this claimed position is
equal to their real position or not). A non-coerced agent
will only approve agents in their real position. We call
the set of coerced agents C = {ai ∈ A : βi = c} and
the set of non-agents C = {ai ∈ A : βi = c}.

• Position: An agent ai claim to be in a position. If
the agent is honest, their claimed position is equal
to their real position p. As such, we say, γi = t.
If the agent is dishonest, their claimed position p̂ is
different to their real position, p, and therefore, γi = t̄.
We call the set of agents that claim to be in their
real position T = {ai ∈ A : γi = t} and the set of
agents that claim to be elsewhere T = {ai ∈ A : γi = t}.

We denote all three attributes of an agent ai as follows:

αi ∈ {h, h} (4a)
βi ∈ {c, c} (4b)
γi ∈ {t, t} (4c)

We depict the agents having each attribute (honesty, coer-
cion and position) as a set in Figure 5. Each numbered region
in Figure 5, u, where u ∈ {1, 2, 3, 4, 5, 6} corresponds to a

possible set of attribute combinations, Su, that an agent may
possess. For example, if ai ∈ S2 then ai belongs to the set
of all agents that are dishonest, H , the set of all agents that
are not coerced, C, and the set of all agents that claim to be
in their true position, T . For ease of exposition, we define the
state of an agent ai, x(ai), to be the set of attributes an agent
has:

x(ai) = {αi, βi, γi} (5)

where x(ai) may be any of the following permutations:

s1 = {h, c, t} (6a)

s2 = {h, c, t} (6b)
s3 = {h, c, t} (6c)
s4 = {h, c, t} (6d)

s5 = {h, c, t} (6e)

s6 = {h, c, t} (6f)

In short, we say that an agent ai has a state x(ai), and that
it belongs to the set of agents Su, (ai ∈ Su), where i ∈ |A|,
u ∈ {1, 2, 3, 4, 5, 6} and

S1 = {H ∩ C ∩ T} (7a)

S2 = {H ∩ C ∩ T} (7b)

S3 = {H ∩ C ∩ T} (7c)
S4 = {H ∩ C ∩ T} (7d)

S5 = {H ∩ C ∩ T} (7e)

S6 = {H ∩ C ∩ T} (7f)

P (ai ∈ Su) = P (x(ai) = su) (8a)
P (x(ai) = su) = P (αi)P (βi)P (γi|αi) (8b)

Formally, we assume that variables α and β are binary
random variables, independent of each other. These attributes
represent the probability of an agent being honest and coerced
respectively. We can therefore define the probability of an
agent being honest (i.e.: P (αi = h)) as ph, and being coerced
(i.e.: P (βi = c)) as pc, where ph, pc ∈ [0, 1]. Similarly, 1−ph
and 1 − pc are the probabilities of an agent being dishonest
and non-coerced respectively. Formally

ph = P (x(ai) = su, ∀u ∈ {3, 4}) (9a)
pc = P (x(ai) = su, ∀u ∈ {4, 5, 6}) (9b)

where ph, pc ∈ [0, 1].

ph = P (αi = h) (10a)
pc = P (βi = c) (10b)

1− ph = P (αi = h) (10c)
1− pc = P (βi = c) (10d)

Next, we wish to compute the following probabilities:
P (αi = h), P (βi = c) and P (γi = t) where:

P (αi = h) = 1− P (αi = h)
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(a) Dishonest parent

(b) Dishonest child

Fig. 6: Possible scenarios in which a dishonest agent may
appear in a prover tree.

P (βi = c) = 1− P (βi = c)

P (γi = t) = 1− P (γi = t)

This is not the case with γ. Attributes γ and α are not
independent. Indeed, by definition:

P (γi = t|αi = h) = 1 (11a)
P (γi = t|αi = h) = 0 (11b)

. In practical terms: an honest agent will always claim to be
in their real position. If P (αi = h), finding P (γi = t) is
slightly more convoluted. This is because when a dishonest
agent is sampled in a tree, one cannot, in theory, distinguish
if its claimed position is its real position or not. Indeed, that
is the purpose of T-PoP: to determine whether an agent is
claiming to be in their real position.

Remark: When a dishonest agent is named in a tree, it
could be that the dishonest agent is being observed in their
real position, or that it has somehow tricked other nearby
agents into pretending it is in their vicinity, when in fact it
is elsewhere (by sending a fake signal or through any other
possible attack vector). Because of this, we consider dishonest
agents to effectively exist in two places: their real position, and
their claimed position, which is fake.

To determine P (γi = t), we must therefore consider the
two possible cases in which a dishonest agent may appear in
a tree: as a parent or as a child. This is depicted in Figure 6.

Let us begin with the first case, shown in Figure 6a. If the
dishonest agent ai, is the parent in the tree:

P (γi = t|αi = h) = 0 (12a)

P (γi = t|αi = h) = 1 (12b)

This is because the dishonest agent would never construct
a tree for their real position: doing so would expose their lie.

In the second case, as depicted in Figure 6b, if the dishonest
agent is a child in the tree, then P (γi = t) = 1 if their parent

Fig. 7: Process of Parent to Child Approval

is non-coerced, and P (γi = t) = 0 if their parent is coerced.
Formally, for a dishonest child ai, with a parent aj :

P (γi = t|αi = h, βj = c) = 0 (13a)

P (γi = t|αi = h, βj = c) = 1 (13b)

P (γi = t|αi = h, βj = c) = 1 (13c)

P (γi = t|αi = h, βj = c) = 0 (13d)

Remark: Recall that a coerced agent is one that covers up
for other agents that lie about their position. This means that
if they happen to name a dishonest agent as their child, they
will name the dishonest agent in their fake position. The reader
may consider the state of coercion as an agent being bribed,
attacked or threatened to co-operate with another agent that is
lying about their own position.

B. Condition 1: does a child approve their parent

Let us proceed by formalising the most crucial criterion:
whether a child will approve the parent that named them. There
are three stages in the process of an approval, as depicted in
Figure 7.

1) Initial Parent State: First, consider the probability of the
parent being in state su in equation 8. The vector in equation
14 summarises the probability of the parent being in any of
the initial states.

I1 = [P (s1), P (s2), P (s3), P (s4), P (s5), P (s6)]
T (14)

where P (su) is short for P (parent ∈ Su) with
∑6

k=1 P (sk) =
1.

2) Picking a child, given a parent: In the next step, we
determine the probability of picking a child in a given state,
provided the parent is in another state. Let us denote the child
as agent c and the parent as agent p. We then summarise the
probability that a parent p in a state su will select a child c
in state sv in Table I.

Note: Certain parent to child combinations are not possible
by defintion. This is shown by the entries of the Table I that
are 0. For example, a non-coerced parent will never name
a dishonest child in their claimed (fake) position. This is
because non-coerced agents do not ‘see’ agents in a their fake
positions.

We summarise the information in Table I as a matrix:

M =


m1,1 m1,2 m1,3 m1,4 m1,5 m1,6

m2,1 m2,2 m2,3 m2,4 m2,5 m2,6

m3,1 m3,2 m3,3 m3,4 m3,5 m3,6

m4,1 m4,2 m4,3 m4,4 m4,5 m4,6

m5,1 m5,2 m5,3 m5,4 m5,5 m5,6

m6,1 m6,2 m6,3 m6,4 m6,5 m6,6

 (15)
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Parent

Child
H ∩ C ∩ T H ∩ C ∩ T H ∩ C ∩ T H ∩ C ∩ T H ∩ C ∩ T H ∩ C ∩ T

H ∩ C ∩ T 0 m1,2 m1,3 m1,4 0 m1,5

H ∩ C ∩ T 0 0 0 0 0 0

H ∩ C ∩ T 0 m3,2 m3,3 m3,4 0 m3,6

H ∩ C ∩ T m4,1 0 m4,3 m4,4 m4,5 0

H ∩ C ∩ T m5,1 0 m5,3 m5,4 m5,5 0

H ∩ C ∩ T 0 0 0 0 0 0

TABLE I: Parent to Child Witness Selections

where the entry mu,v is defined as:

mu,v = P [x(c) = sj)|(x(p) = si)] (16)

and

x(c) = sj = {αc, βc, γc}

x(p) = si = {αp, βp, γp}

To compute mi,j it suffices to evaluate:

mu,v = P (αc)P (βc)P (γc) (17)

P (αc) and P (βc) are known through equations 10a and 10b
respectively. To evaluate P (γc) we begin with the prover agent,
which has no parents by definition. In this case, P (γp) =
P (γp|αp), and we simply refer to equations 12 or 11 and pick
the correct case. We then consider that parent’s child agent,
and to compute P (γc), we evaluate

P (γc) = P (γc|αc)P (βp)

using equations 13 or 11 accordingly. If the tree architecture
has more than one depth level, the child agent then becomes
the parent, and the process is repeated for its children until
the leaves of the tree are reached.

It can be observed that P (γc) is therefore a binary coef-
ficient in Equation 17. We evaluate this coefficient for every
possible parent to child state combinations in equations 18.

P [child ∈ H ∩ T |parent ∈ H ∩ C ∩ T ] = 0 (18a)

P [child ∈ H ∩ T )|parent ∈ H ∩ C ∩ T ) = 1 (18b)

P [child ∈ H ∩ T |parent ∈ H ∩ C ∩ T ] = 1 (18c)

P [child ∈ H ∩ T )|parent ∈ H ∩ C ∩ T ] = 0 (18d)

P [child ∈ H ∩ T |(parent ∈ H ∩ C ∩ T ] = 0 (18e)

P [child ∈ H ∩ T |parent ∈ H ∩ C ∩ T ] = 1 (18f)

P [child ∈ H ∩ T |parent ∈ H ∩ C ∩ T ] = 0 (18g)

P [child ∈ H ∩ T )|parent ∈ H ∩ C ∩ T )] = 1 (18h)

P [child ∈ H ∩ T |parent ∈ H ∩ C ∩ T ] = 0 (18i)

P [child ∈ H ∩ T |parent ∈ H ∩ C ∩ T ] = 0 (18j)

P [child ∈ H ∩ T )|parent ∈ H ∩ C ∩ T ] = 1 (18k)

P [child ∈ H ∩ T |parent ∈ H ∩ C ∩ T ] = 0 (18l)

Remark: We adopt a different notation in equations 18 to
aid with readability. For example, equation 18a is equivalent
to expressing said probability as:

P [γc = t, αc = h|βp = c] = 0

. Note that only the coercion attribute of the parent affects the
result of equations 18. We include all three attributes to ease
exposition, to show all possible state combinations.

3) Child to parent approval: The final stage shown in
Figure 7 is whether the child will approve the parent. This
approval is also entirely dependent on the state of both the
parent and the child, and is summarised in Table II. This table
can be expressed as a matrix:

A =


0 0 0 1 0 0
0 0 0 0 0 0
0 0 1 1 0 0
1 0 1 1 1 0
0 0 0 1 1 0
0 0 0 0 0 0

 (19)

Thus, all components necessary to characterise whether a
parent will receive an approval from their child have been
mathematically formalised. We define Pu,d as the probability
that a prover p, with state x(p) = su will receive an approval
from a witness at depth level d of the witness tree. It is easy
to verify that Pu,d can be expressed as follows:

Pu,d = eTu (M ⊙A)d1 (20)

where eu is the u-th element of the canonical base of
R6 and ⊙ represents the element-wise matrix multiplication
(Hadamard product) and 1 = [1, 1, 1, 1, 1, 1]T . Then, the
probability that a prover p, with state x(p) = su will have
enough approvals is equivalent to the probability that, for each
level d of the tree, Dd ≥ t · nd, where Dd is the number of
depth level approvals at a given depth level d. The number of
approval Dd can be modeled as a Binomial distribution with
parameter Pu,d. Therefore, we can formalize the probability
of satisfying criterion 1 as

P (Criteria 1 = True|su, θ) = P (Dd ≥ t · nd,∀d ∈ {1, ..., h})

Which in turn can be expressed as:

h∏
d=1

nd∑
k=⌈tnd⌉

(
nd

k

)
Pk
u,d(1− Pu,d)

nd−k. (21)
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Child

Parent
H ∩ C ∩ T H ∩ C ∩ T H ∩ C ∩ T H ∩ C ∩ T H ∩ C ∩ T H ∩ C ∩ T

H ∩ C ∩ T 0 0 0 1 0 0

H ∩ C ∩ T 0 0 0 0 0 0

H ∩ C ∩ T 0 0 1 1 0 0

H ∩ C ∩ T 1 0 1 1 1 0

H ∩ C ∩ T 0 0 0 1 1 0

H ∩ C ∩ T 0 0 0 0 0 0

TABLE II: Approvals of a child to a parent.

Fig. 8: Theoretical performance of TPoP with θ = {t = 1, h =
1, w1 = 6}.

Equation 21 allows us to quickly simulate the behaviour of
T-PoP for different values of θ (under the assumption of an
infinite density of agents). As an example, consider Figures
8 and 9 which show, for values of ph and pc ranging in the
interval [0, 1], the performance of the T-PoP for two set of
parameters, respectively: θ = {t = 1, h = 1, w1 = 6} and
θ = {t = 1, h = 2, w1 = 2, w2 = 2}. Later, in Section IX
we show that the theoretical behavior matches perfectly the
behaviour of a detailed agent-based simulator of TPoP.

Furthermore, we can define the probability that a child will
confirm that they see the parent that selected them (i.e., that
an edge exists between a parent and child). This probability
can be expressed as follows:

Id+1 = Id(M ⊙A) (22)

where Id is the probability vector of a parent being in any
given state, at depth level d of the tree. Using the initial starting
state in equation 14, we can then compute the expected number
of edges, E(e), in a tree of any given height, h, and branching

Fig. 9: Theoretical performance of TPoP with θ = {t = 1, h =
2, w1 = 2, w2 = 2}.

factor, wd:

v⃗ =

h∑
d=1

d · nd(Id−1(M ⊙A)d) (23)

E(e) = 1⊺v⃗ (24)

Using equations 21 and 23, we can compute the expected
number of edges in a prover’s tree as the values of ph and pc
range from 0 to 1. Figure 10 shows the results of equation 24.

We then conduct 423,500 Monte-Carlo agent-based simu-
lations, shown in Figure 11, that count the number of edges
in each agent’s tree after running T-PoP. In them, we create a
uniform grid of 5 by 5 square units, and a total of 3500 agents,
meaning the density is 140 agents per unit square. Each agent
is set to have a range of sight equivalent to the size of the unit
square, meaning there are 140 agents within their range of
sight. If the density of agents is not sufficiently high, an agent
will not have enough edges in their tree because it does not
have sufficient agents in its vicinity to name as children. We
therefore purposefully select a high value of agents, to ensure
that the probability of a tree not having sufficient edges is
not due to a lack of nearby agents being available, but rather
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(a) Tree of height 2 and branching factor
2, with threshold = 100%.

(b) Tree of height 1 and branching fac-
tor 6, with threshold = 100%.

Fig. 10: Expected number of edges in the tree.

because the agents do not approve each other. This is precisely
what we are modelling in equation 24. These simulations are
conducted with a threshold 100%. The results obtained are in
complete agreement with the mathematical model presented,
thereby demonstrating its validity.

C. Condition 2: The tree has sufficient nodes
The second condition is modeled by considering the follow-

ing assumptions:
• We assume a constant average density of agents µ;
• We assume that agents are scattered uniformly across the

environment.
Accordingly, let Na be the amount of neighbours of agent a.
This random variable can be approximated by a Poisson Point
Process [24] of parameter λ = µ ·πr2, where r is the range of
sight of the agent. It follows then that the probability that there
are at least nd neighbours around agent a can be immediately
computed as

P (Na > nd) = 1− P (Na ≤ nd) = 1−
nd−1∑
k=0

e−λλ
k

k!
(25)

D. Condition 3: all the nodes in the tree are unique
In this subsection we analyze the probability of constructing

a tree with distinct nodes given a certain density of agents.

(a) Tree of height 2 and branching factor
2, with threshold = 100%.

(b) Tree of height 1 and branching fac-
tor 6, with threshold = 100%.

Fig. 11: Number of edges in agent’s trees after running T-PoP.

Specifically we focus on the two structures that are presented
in Section IX:

• A tree with height h = 1 and branching factor w = 6.
• A tree with height h = 2 and branching factor w = 2.

We denote this probability as P (h,w). In the remainder
of this section we make the assumption that each agent
selects witnesses among its neighbours without replacement.
Although it may be an unrealistic assumption (as in practice
each prover would select distinct witnesses and they would
not deliberately try to hinder their own proof), it allows us to
provide a lower bound on the probability of selecting a tree
made of unique nodes.

Let us now assume that a population of N agents are
distributed uniformly at random on a plane of size l× l, with
every agent’s range of sight set to constant r. We can view
agents as nodes in a graph, where there exists a link between
two nodes if and only if the distance between corresponding
agents is less than or equal to r. This graph structure is called
a Random Geometric Graph and it has a known mean node-
degree ⟨k⟩ ≃ πNr2/l2 [25]. The mean node-degree ⟨k⟩ of the
graph is equivalent to the expected number of neighbours in
the population of agents.

For our calculations we make use of a function κn,y defined



JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 12

Fig. 12: A) A tree of height h = 2 and branching factor w = 2,
with agents and levels labeled. B) Two separated scenarios
visualized, when agents a2 and a3 selected at random in the
field of view of a1 are δ < r nearby (top) versus δ > r far
apart (bottom).

as:

κn,y =

(⟨k⟩−n
y

)
⟨k⟩y/y

, (26)

representing the probability of picking n + y unique agents
from a set of ⟨k⟩ neighbours, given that n options are picked
beforehand (eliminated) and y new agents are to be picked.

For the case of h = 1 and w = 6, P (h,w) is straightforward
to compute and it is equal to P (1, 6) = κ0,6.

For the tree of h = 2 and w = 2, finding the probability
that all nodes are unique is more complex. Let us consider a
tree started by a prover a1 at the root, tree height of h = 2,
and branching factor of w = 2, i.e., each parent choosing two
of its neighbours at random (with replacement) as its children
(i.e., the nodes at level 1 will not choose themselves).

Let a2 and a3 (at depth level 1 in the tree) be the children of
a1 (which is at level 0) in the tree, selected at random within
a1’s field view; a2, a3 ∈ D1. Agents a4, . . . , a7 are the leaves
of the tree (forming level 2); see Fig. 12A. We denote the
probability of 7 distinct agents forming the three levels of the
tree (L0, L1, L2) as P (L0, L1, L2), which can be written as:

P (L0, L1, L2) = P (L0)P (L1|L0)P (L2|L0, L1), (27)

with P (L0) = 1, P (L1|L0) denoting the probability that
a1 ̸= a2 ̸= a3, and P (L2|L0, L1) being the probability that
a1, . . . , a7 are different agents given that a1, a2, a3 are distinct.

The probability of having a1 ̸= a2 ̸= a3 can be calculated in
a straightforward manner, since a1 has an expected number of
⟨k⟩ neighbours with none of them eliminated as options. Thus,
using Eq. (26), we get the probability of picking two different
agents at random from a set of size ⟨k⟩, i.e., P (L1|L0) = κ0,2.
Now, with a2 and a3 picked at random within the field of
view of a1, which is a disk of radius r, we use the probability
density function for the distance between the two agents δ =
∥p2−p3∥2. This is simply the probability density function for
the distance between two random points in a disk:

f(δ) =
4δ

πr2
cos−1(

δ

2r
)− 2δ2

πr3

√
1− δ2

4r2
. (28)

If δ < r then a1 is a neighbour of a2 and vice versa, thus
for each agent, one neighbour out of the expected number of
neighbours is eliminated (in order to have distinct agents in the
tree). See Fig. 12B (top panel). Also, for all possible values
of δ, i.e., 0 < δ < 2r, the probability of selecting a common
neighbour by either a1 or a2 equals the fraction of their field
of view that is overlapping. This can be calculated by Aδ , a
function of δ, defined as below:

Aδ =

[
2r2cos−1(

δ

2r
)− δ

2

√
4r2 − δ2

]
/πr2, (29)

where the numerator of the RHS is the overlapping area of
two circles with radius r with centers δ far apart, and the
denominator is the area of the circle with radius r.

Without loss of generality, assume that a2 picks two random
neighbours a4 and a5 as its children (starting with a1 ̸= a2 ̸=
a3). The Prover agent a1 is certainly a neighbor of a2, and
if δ < r (δ > r) then a3 is (is not) a neighbor of a2, and
a1, . . . , a5 are distinct with probability κ2 (κ1). Also, with
probability Aδ , a4 is in the intersection between the fields of
view of a2 and a3 and thus reducing the number neighbours
from which a3 can pick (for its children to be distinct from
the agents already appearing in the tree). With probability A2

δ ,
both a4 and a5 are neighbours of a3 and reducing a3’s options
by two, and with probability Aδ(1−Aδ), a4 is a neighbour of
a3 and a5 is not. Using the above logic we can approximate
the probability of having 7 distinct agents in the tree, given
that a1 ̸= a2 ̸= a3, i.e.:

P (L2|L0, L1) =∫ r

0

f(δ)κ2,2

·
[
(1−Aδ)

2κ2,2 + 2(1−Aδ)Aδκ3,2 +A2
δκ4,2

]
dδ

+

∫ 2r

r

f(δ)κ1,2

·
[
(1−Aδ)

2κ1,2 + 2(1−Aδ)Aδκ2,2 +A2
δκ3,2

]
dδ.
(30)

Finally, inserting equation (30) into equation (27), we have
the theoretical approximation for the probability of the tree
(h = w = 2) being comprised of strictly distinct agents, i.e.,
P (2, 2) = P (L0, L1, L2) = κ0,2 · P (L2|L0, L1). This value
of P (L0, L1, L2), given a constant range of sight r, is only
dependent on the density of agents N/l2 and can be calculated
numerically.

The theoretical approximation of P (L0, L1, L2) can be
validated via a numerical experiment. To do so, we uniformly
scatter N agents on a unit 2-dimensional square, at random.
A tree is then sampled, by randomly drawing a prover from
the population, which then picks draws two agents at random
(with replacement) within its field of view (here, r is set
to 0.1). We vary N from 200 to 10,000, and for each N
sample 10,000 trees at random and count those made up of 7
distinct agents. Figure 13, compares the fraction of sampled
trees with all distinct agents (red curve) with the theoretical
approximation given by equations (27)-(30). As demonstrated
by the results, the approximation performs well, converging
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Fig. 13: Validation of theoretical approximation for probability
of a randomly sampled tree (h = w = 2) containing 7
distinct agents. The results show the probability as a function
of the number of agents N uniformly distributed at random
over a unit square plane. The red curve shows the probability
calculated through a numerical experiment, where a tree is
generated following the tree-building algorithm 1, starting
with a randomly selected prover. The dashed curve shows the
value of the theoretical approximation denoted P (L0, L1, L2)
calculated by equations (27)-(30).

fast to the numerical observation as the density of agents
increases.

As a final remark we note that while it may be possible
to obtain a a recursive formula to compute the probability of
finding distinct agents in a tree with depth h and branching
factor w, this might prove very complicated and it is quite
straightforward to approximate P (h,w), for a given ⟨k⟩ and
a given r, by making use of a large number of Monte-Carlo
simulations.

VIII. DETECTING PLATOON ATTACKS

Given T-PoP’s collaborative nature, it is susceptible to a
platooning attack. In it, one dishonest agent coerces a subset
of agents to approve their (fake) claimed position. This cluster
of agents cruise together and because the dishonest agent has
sufficient approvals, T-PoP will consistently fail in detecting
that this claim is dishonest. To address this attack vector, we
construct an alternative mathematical model that defines the
behaviour of these agents. With this model, it is possible to
determine the likelihood that a prover tree is formed by a
group of malicious platooning agents. We follow the same
steps outlined in VII.

A. Initial Agent State

Given that a platoon is always initiated by an dishonest
agent in their claimed position, and not their real position, the
probability of an agent being in a given state is:

Ĩ1 = [P (s1),P (s4), P (s5)] (31a)
P (s4) = 0 (31b)

Remark: We include state s4 in the set of possible agent states,
since the agent is coerced, so it may be part of the set of

agents approving the platoon prover, however, it may never
be the prover, since it is honest.

M̃ =

m1,1 m1,4 m1,5

m4,1 m4,1 m4,5

m5,1 m5,4 m5,5

 (32)

where the entries of M̃ are computed following equation 17,
but we only consider parent to child combinations where the
agents are in states {s1, s4, s5}, so u, v ∈ {1, 4, 5}.

Similarly, to create the platoon approvals matrix, Ã, we
sample the entries ai,j , of A that correspond to the approvals of
all the possible agent pair combinations in states {s1, s4, s5}.

Ã =

0 1 0
1 1 1
1 1 1

 (33)

With these components, we can proceed to compute the
expected number of edges in a platoon tree by substituting Ĩd,
M̃ and Ã into the corresponding terms in equation 23 and 24.

We then show the model behaviour in Figures 14 and 15.

Fig. 14: Expected number of edges in a platoon tree of height
1 and branching factor 6, with threshold = 100%.

Fig. 15: Expected number of edges in a platoon tree of height
2 and branching factor 2, with threshold = 100%.

We highlight that to detect honest trees, it does not suffice
with simply counting the number of edges. These edges must
be connecting nodes that are honest, i.e., agents in states s3
and s4. The challenge is that the state of a node is not known
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mi,j Parent Child Optimal Point
m3,3 s3 s3 P (H) = 1, P (C) = 0

m3,4 s3 s4 P (H) = 1, P (C) = 0.5

m4,3 s4 s3 P (H) = 1, P (C) = 0.5

m4,4 s4 s4 P (H) = 1, P (C) = 1

or observable when a tree is assessed. However, we may find
the optimal conditions such that the probability of an edge
connection between agents in states s3 and s4 are maximised.
The elements of the matrix M that encode child to parent
approvals that are honest are entries m3,3,m3,4,m4,3,m4,4.
The optimal values of ph and pc that maximise the probability
of these edges existing is denoted in Table VIII-A.

IX. AGENT BASED SIMULATIONS

We simulate the performance of T-PoP in both high density
and low density cases, under varying operating conditions. Our
purpose is to determine the security and reliability guarantees
that T-PoP provides in both scenarios.

We construct an agent-based simulator, coded in Python,
which is available in our GitHub Repository. In it, we create
an environment of a given size, and instantiate a fixed number
of agents with a fixed value for their range of sight. Agents
are assigned an honesty, αi, and a coercion, βi, attribute
independently and at random, following equations 10a and
10b. All agents are given a real position, within the bounds
of the defined environment, and dishonest agents also have
a claimed position that is different to their real position.
These positions are uniformly and randomly distributed across
the environment. We first simulate a low-density scenario,
as shown in Figures 17, 16, 19 and 18. We initialise an
environment of size 10 by 10 arbitrary square units, and
instantiate 350 agents, such that each has a range of sight
of 1 unit. Thus, agents have an average of 3.5 agents within
their field of view. Each agent constructs a tree, and then
runs the T-PoP algorithms to obtain a proof-of-position. These
simulations are carried out across the ranging values of ph
and pc, starting from 0 to 100% in intervals of 10%. At each
combination of ph and pc, 5 Monte Carlo simulations are run
for every agent. In total, that is 211,750 T-PoP simulations4.
We test the performance of T-PoP for the following operating
conditions:

threshold = 100%, wd = 2, h = 2

threshold = 100%, wd = 6, h = 1

threshold = 40%, wd = 2, h = 2

threshold = 40%, wd = 6, h = 1

We measure the recall rate of true positives, true negatives,
false positives and false negatives. Each classification instance
is described below:

4There are 121 possible combinations of ph and pc when varying the values
at intervals of 10%, 350 agents and 5 simulations per possible combination
of ph and pc yields 5 ∗ 121 ∗ 350.

• A true positive (TP ) instance means TPoP correctly
labelled an agent as honest.

• A true negative (TN ) means TPoP correctly labelled an
agent as dishonest.

• A false positive (FP ) means TPoP incorrectly classified
a dishonest agent as honest.

• A false negative (FN ) means TPoP incorrectly classified
an honest agent as dishonest.

TP% =
TP

TP + FN
× 100 (34a)

FN% = 100− (TP%) (34b)

TN% =
TN

TN + FP
× 100 (34c)

FP% = 100− (TN%) (34d)

We consider recall over precision, since we are particularly
interested in the sensitivity of the algorithm. Namely, it is of
utmost importance that the number of False Positives is low,
as this is the most dangerous possible outcome.

We then consider a high-density scenario, as shown in
Figures 21, 20, 23 and 22. We run these simulations with the
density at which the probability of selecting all unique agents
in the tree tends to 1. From Figure 13, this density is found to
be 50 agents per unit squared, when each agent has a range of
sight of 1 square unit. In these simulations we create a grid of 5
by 5 arbitrary square units, with 1250 agents in total, each with
a range of sight of 1 square unit. We again run simulations for
each possible combination of ph and pc values, at intervals of
10%. In each combination of ph and pc values, we run T-PoP
for each of the 1250 agents and repeat this process 5 times.
In total, the number of simulations is 756,250. We do so for
the same operating conditions previously outlined.

Fig. 16: Performance of TPoP with a tree of height 2 and
branching factor 2, and a threshold = 100%.
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Fig. 17: Performance of TPoP with a tree of height 1 and
branching factor 6, and a threshold = 100%.

Fig. 18: Performance of TPoP with a tree of height 2 and
branching factor 2, and a threshold = 40%.

X. PERFORMANCE OF TPOP

From the results obtained, it can be observed that the
performance of TPoP does not vary greatly when using a tree
of h = 1, w = 6 versus h = 2, w = 2. The prior slightly out-
performs the latter in both thresholds tested. This is consistent
with the results shown in Figures 10. The main difference in
performance is observed when varying the threshold parame-
ter, and when varying the density. Increasing density increases
the number of True Positives, given that honest agents will not
be classified as dishonest for not having sufficient nodes in
their tree. Decreasing the threshold improves the rate of True

Fig. 19: Performance of TPoP with a tree of height 1 and
branching factor 6, and a threshold = 40%.

Positives (Reliability) of T-PoP in very low density scenarios,
but this comes at the expense of Security. A lower threshold
makes it easier for dishonest agents to submit a valid tree.
As such, users may tune the threshold parameters to obtain
a desired level of Security or Reliability, depending on the
expected density of their system.

XI. CONCLUSION

In summary, we provide an algorithm for agents to prove
their position in a decentralised, collaborative and privacy
preserving manner. Our algorithm is robust to powerful ad-
versaries, and we make no assumption of honest behaviour
in the system. We provide a simple mathematical model to
aid users to select the most suitable operating conditions of T-
PoP, provided the security and reliability guarantees they wish
to achieve, and the expected agent density in their system.
We validate the model through the use of extensive Monte-
Carlo agent-based simulations, and find these are in complete
agreement with our model. Our code base is open-source, and
the results along with the mathematical model and the agent-
based simulator can be found in our GitHub Repository. For
future work, we consider implementing this protocol in useful
applications.
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