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Abstract— JavaScript has become the most popular program-
ming language for not only web front-end development but
also a wide range of server-side applications. Many of such
applications handle sensitive information such as financial
transactions and private conversions. Errors in such appli-
cations not only affect user experiences, but also endanger
the safety, security, and privacy of users. While the reliabil-
ity of JavaScript code will be of more importance, testing
techniques for the language remain insufficient, compared
to other languages. In-situ concolic testing of JS scripts is
a framework that enables concolic testing of JS scripts in
their native environments and is able to automatically generate
test cases. However, its Qemu based execution tracing engine
is slow in capturing traces, which is also not portable and
involves two translation stages, which is a complex and error-
prone process. In this paper, our approach proposed to deploy
a new execution tracer leveraging V8’s Sparkplug baseline
compiler to improve the tracing process and a new assembly to
LLVM IR using remill libraries. We evaluated its effectiveness
and efficiency by comparing the coverage, bug detection,
and time consumption with the in-situ approach on the same
test set, which are 160 Node.js libraries that heavily utilize
the String type and its operations. The results show our
approach achieves similar statement coverage on these libraries
within no more than 10% difference on average and is able
to detect all bugs that are detected by the in-situ method and
more, which only use a fraction of the time needed by the
in-situ approach.

1. INTRODUCTION

Since its emergence as a scripting language for dynamic
web elements, JavaScript (JS) has experienced a surge in
popularity and has evolved into a versatile and extensively uti-
lized application programming language. The Node.js runtime,
leveraging Chrome’s V8 JS engine as its foundation, empowers
developers to create a diverse range of server-side and client-
side browser-less applications using pure JavaScript [1]. An
entire ecosystem of Node.js libraries has been cultivated,
accessible via the Node Package Manager (NPM), and ex-
tensively employed in the development of applications [2]. As
JavaScript continues to gain significance in the web, mobile,
and cloud infrastructure of modern systems, the repercussions
of bugs and security vulnerabilities in JS scripts become
increasingly severe [3]. JS scripts, whether browser or Node.js
based, are often perceived by many developers as significant
security vulnerabilities. Common security concerns associated
with browser-based JS scripts include cross-site scripting
(XSS) and SQL injection (SQLi) [4], etc. Errors and failures

in JS scripts executed on Node.js can result in server crashes
or compromises. Among the most prevalent security issues in
Node.js are NPM phishing and denial of service (DoS) attacks
targeting regular expressions. NPM provides developers with
the capability to develop and distribute JS libraries for reuse,
yet this flexibility introduces notable security risks [5]. Devel-
opers face a pressing demand to construct comprehensive test
suites capable of early bug and security vulnerability detection.
However, manually crafting such suites has become a costly
and time-consuming bottleneck in software development [6].
Symbolic execution is a powerful technique for automating
the generation of test cases and identifying bugs in real-world
software. It entails executing a program using symbolic values,
monitoring program path conditions via symbolic expressions,
and producing test cases to explore these paths by solving
symbolic path conditions [7]. Concolic testing is a hybrid
verification technique designed to address the challenge of
path explosion often encountered in symbolic execution [8].
Concolic testing employs symbolic execution to traverse only
the branches along a concrete execution path determined by
a concrete input of the program being tested. This approach
effectively reduces the explored path space, mitigating the
issue of path explosion [9]. Traditional symbolic or concolic
execution engines primarily focus on analyzing code written
in languages like C/C++ or those that compile to low-level
intermediate representations (LLVM) [10] or binary code, e.g.,
KLEE [11], BitBlaze [12], S2E [13], DART [14], CUTE [15],
SAGE [16], and CRETE [17].
In-situ concolic testing of JS scripts is a novel framework
that enables concolic testing of JS scripts in their native
environments and can automatically generate test cases that
achieve comparable, if not better, code coverage than manually
crafted unit test suites for Node.js libraries and discovered
previously unknown bugs in these libraries [18]. Most ap-
proaches of concolic testing on JavaScript typically take JS
scripts out of their native execution environments and analyze
them in artificial test harnesses. For example, the Kudzu
engine addresses the problem of client-side code injection
vulnerabilities for JavaScript [19]. It involves modifying the
JS interpreter to build a new symbolic execution engine, which
requires significant effort in implementation and maintenance.
Such JS-specific symbolic engines have not demonstrated the
effectiveness and efficiency that warrants wide adoption [20].
In-situ concolic testing for JavaScript using JavaScript’s native
execution environments becomes its biggest strength. How-
ever, it has several limitations [18]. It utilized the tracing
engine of CRETE, which leverages the interpreted mode of
Qemu, a dynamic translator [21], to capture the execution
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trace of JS scripts and uses KLEE as the backend symbolic
execution engine. The concrete execution trace is converted
from a piece of code to the host instruction set, and the
instruction set is then translated to qemu-ir by the tiny code
generator (TCG) of Qemu dynamic translation backend. This
process hinders the efficiency of the tracing process greatly
since the in-situ approach uses the interpreted mode with TCG
to enable tracing. The execution tracer of CRETE takes 3
minutes to trace a JS function with 12 lines of code on average,
which is inefficient. The execution traces are then translated
from qemu-ir to LLVM IR by an offline translator based on
S2E. This workflow involves two stages of translation for the
execution traces, which gives more chances for introducing
errors and mistakes.
To improve the efficiency of the execution tracer, reduce the
number of translation stages, and conduct concolic testing
in their native environments like the in-situ approach at the
same time, our approach proposed to deploy a new execution
tracer leveraging V8’s Sparkplug baseline compiler to improve
the tracing process and a new assembly to LLVM IR using
remill libraries in this paper. We evaluated its effectiveness
and efficiency by comparing the coverage, bug detection,
and time consumption with the in-situ approach on the same
test set, which are 160 Node.js libraries that heavily utilize
the String type and its operations. The results show our
approach achieves similar statement coverage on these libraries
within no more than 10% difference on average and is able to
detect all bugs that are found by the in-situ method, which only
uses a fraction of the time needed by the in-situ approach.

2. BACKGROUND

1. Sparkplug
Sparkplug is a non-optimizing JavaScript compiler of V8 [22].
It is engineered for swift compilation. Its speed is remarkable,
enabling us to compile at our convenience, thereby facilitating
a more aggressive tiering up to Sparkplug code [22]. There are
a couple of techniques employed by the Sparkplug compiler to
achieve its impressive speed. Firstly, it utilizes a shortcut; the
functions it compiles are already processed into bytecode by a
prior stage, which handles complex tasks such as variable res-
olution and parsing arrow functions. Sparkplug bypasses these
intricate processes by compiling JavaScript from bytecode
rather than directly from source code. Secondly, Sparkplug
adopts a unique approach by skipping the generation of an
intermediate representation (IR), a step typical in most compil-
ers. Instead, it directly translates bytecode into machine code
in a single linear pass using bytecode handlers [22], aligning
the emitted code with the execution flow of the bytecode. We
will discuss the bytecode handler in detail in Section 4. This
feature guarantees that the emitted machine code execution
trace we used for concolic analysis represents the execution
flow of the source code. Remarkably, the entire Sparkplug
compiler operates within a switch statement nested within a
for loop, efficiently dispatching to predetermined bytecode
handlers, the machine code generation functions based on
the bytecode encountered. The absence of an IR restricts
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Figure 1: Sparkplug Restricted optimization feature

optimization opportunities to localized peephole optimizations
as shown in Figure 1, we heavily utilize this feature of
Sparkplug.

2. Interpreter Stack Frame Mirroring

V8 JavaScript engine supports two modes for executing a
JS script, namely interpreted mode and optimized just-in-
time compilation mode. The interpreted mode is where the JS
bytecode [23] translated from the JS script is interpreted by
its interpreter, Ignition [24], which is the foundation of in-situ
concolic execution for JavaScript [?]. The optimized just-in-
time compilation mode is where the bytecode is compiled by
the V8 engine into optimized machine code using its just-in-
time compiler, Turbofan [25], and then executed on the target
machine. Sparkplug as a baseline JavaScript compiler can re-
strict JS script from being optimized to mitigate complexity for
later concolic execution. Furthermore, Sparkplug mirrors the
execution of Ignition for JavaScript. Sparkplug intentionally
aligns its stack frame layout with that of Ignition, ensuring
that when Ignition stores a value in a register, Sparkplug does
the same. This design choice simplifies Sparkplug compilation
by allowing it to mirror the behavior of Ignition without the
need for complex mappings between interpreter registers and
Sparkplug’s state. Therefore, it also allow us to improve the
efficiency for the in-situ approach and keep its effectiveness
at the same time. Sparkplug primarily consists of bytecode
handler calls, which are short sequences of machine code
embedded within the binary, along with control flow. Ignition
and Sparkplug share significant portions of the bytecode
handlers. In essence, Sparkplug serves as a serialization of
Ignition execution, invoking the same built-ins and maintaining
identical stack frames. This feature allows us to trace JS
bytecode execution in its corresponding machine code like the
execution in Ignition. Futhermore, Sparkplug effectively pre-
compiles certain unavoidable interpreter overheads, such as



operand decoding and dispatching to the next bytecode. This
streamlined strategy contributes to Sparkplug’s efficiency and
performance. Therefore, Sparkplug can generate machine code
that contains the same control flow as JS script, which can be
used for code translation from machine code (assembly code)
to LLVM.

3. Remill

McSema is an executable lifter that specializes in converting
executable binaries from their machine code into LLVM. This
process enables the translation of low-level binary instruc-
tions into a higher-level intermediate representation. Within
McSema [26], the instruction translation functionality is pow-
ered by the Remill library. Unlike some other tools, Remill
exclusively handles machine code translation into LLVM [27].
The versatility of Remill extends to both static and dynamic
binary translation scenarios. Notably, it has been employed in
symbolic execution workflows alongside tools like KLEE [11].
KLEE, which performs symbolic execution, typically operates
on the LLVM IR generated from source code using the LLVM
toolchain [10]. By utilizing Remill to machine code into the
LLVM IR, previously inaccessible targets become available
for analysis with KLEE, thus expanding the range of symbolic
execution capabilities.
Remill delegates the implementation of memory accesses
and specific types of control flow to the consumers of
the generated LLVM. This deferral is facilitated through
Remill intrinsics, which are special functions representing
various actions within the translated program. For instance,
the __remill_read_memory intrinsic function symbol-
izes the act of reading 8 bits of memory. By leveraging
these intrinsics, downstream tools can differentiate between
LLVM load and store instructions and access to the modeled
program’s memory. Moreover, downstream tools have the flex-
ibility to implement memory intrinsics using LLVM’s native
memory access instructions. This approach allows us to create
a seamless integration of Remill generated LLVM into existing
LLVM-based workflows while providing the necessary flexi-
bility for custom memory access implementations tailored to
specific analysis requirements. We utilized this feature to adapt
the output to LLVM-based symbolic analysis tools.

3. APPROACH

1. Overview of goals

Our approach aims to make improvements in efficiency for
the in-situ approach mainly in generating execution traces
and execution trace translation. Our approach strives to apply
concolic testing on JS scripts in their native environment to
generate effective test data for unit testing of these scripts.
The workflow of concolic execution on JS scripts contains the
following steps. As shown in Figure 2, the concrete execution
step in the leftmost box of concolic testing is conducted in the
native execution environment for JS scripts, where the trace
of this concrete execution is captured using the JS execution
tracer. The trace is then analyzed in the symbolic execution

step in the rightmost box of concolic testing to generate test
cases automatically.

• Execution trace capture. Concrete execution traces of
JS scripts are captured with a JS execution tracer, which
is the interpretation of JavaScript bytecode. The concrete
execution traces are in the form of assembly code, which
represents the interpretation of JS bytecode execution.

• Translation. In this step, our approach uses a translator to
translate assembly code generated by the JS execution tracer
into LLVM bitcode.

• Symbolic Analysis. The execution trace represented by
LLVM is fed into a symbolic execution engine to generate
test cases.

2. Improvement

In-situ concolic testing offers the capability of tracing in-
side the V8 JS engine to capture the execution trace that
closely matches the JS bytecode interpretation [18], [23]. The
conciseness of an execution trace determines the efficiency
and effectiveness of later symbolic analysis and test case
generation. Therefore, we intend to preserve such traits and
achieve improvement of execution efficiency at the same
time. Our approach improves in-situ concolic testing in 2
aspects. In Figure 2, the in-situ approach is represented by
the diagram in the red box and our approach in the green box.
Firstly, compared to the in-situ approach of concolic testing
for scripting languages, our approach frees the execution tracer
from dependence on an emulator, which is normally slow. The
concrete execution is obtained by the execution tracer, which
leverages V8’s Sparkplug engine instead of CRETE execution
tracer based on qemu in the in-situ approach. This speeds up
the execution trace capture process since qemu is based on
an emulator. At the same time, it preserves the character that
the execution trace capture happens in the native execution
environment for JS script because we leverage the native
Sparkplug baseline engine as the execution tracer.
a) Why we choose Sparkplug?
Sparkplug disables the Turbofan path naturally. It compiles
from bytecodes that Ignition emits as shown in Figure 3. JS
bytecode preserves all necessary control flow JS source code
has. Therefore, execution traces captured by Sparkplug have
a one-to-one correspondence to the JS source code. The exe-
cution tracer based on Sparkplug directly traces the bytecodes
translated from JS source code inside of V8. Furthermore,
as mentioned in Section 2-B, Sparkplug mirrors Ignition’s
execution for JavaScript, Sparkplug and Ignition have almost
identical stack frame [22]. This simplifies the design by
removing the deep tracing control interface used in the in-
situ approach shown in the red box by actually tracing within
Sparkplug. To retrieve the most concise execution trace for JS
script, our approach only extracts bytecodes that contribute
to the control flow of JS script execution with Instruction
Extraction component, which removes the stack verification-
related bytecodes in the generated execution trace without
influencing the verification workflow of Sparkplug.
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Figure 3: Workflow of Execution Tracer between In-situ
Approach and Our Approach

Secondly, the in-situ approach uses an offline translator to
translate qemu-ir to LLVM IR. Qemu, the emulator first
translates assembly code to the intermediate presentation of
qemu-ir and then uses an offline translator to translate
qemu-ir to LLVM IR. LLVM is a widely used intermediate
presentation for symbolic analysis. Our approach simplifies
this process by directly translating the captured execution
traces from assembly code to LLVM IR shown in the middle
box in Figure 2. In this process, we introduce a helper
component in the translator. This helper component aims to
make the translated execution trace amenable to symbolic
analysis tools by providing the main entry point and marking
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Symbolic Execution Engine
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helper_functions

Test cases

Helper Component
::AddEntryFunc()
::MarkSymbolic()
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(assembly code)

Figure 4: Workflow of the Translator

symbolic variables as shown in Figure 4. As a result, the output
of the translator produces a complete concrete execution trace
for later symbolic execution engine to generate test cases.

4. IMPLEMENTATIONS

In this section, we demonstrate the feasibility of our ap-
proach by implementing its complete workflow with an exe-
cution tracer based on V8’s Sparkplug, a translator leveraging
Remill, and a symbolic execution engine using KLEE [11].



Interpreted JS Bytecode Array of Concrete Execution Trace Captured execution trace

6b f9 04          TestEqual r1, [4]

                    [ VerifyFrame
                      [ VerifyFrameSize
0x555e65804430   3f0  4989e2               REX.W movq r10,rsp
0x555e65804433   3f3  4983c240             REX.W addq r10,0x40
0x555e65804437   3f7  4c3bd5               REX.W cmpq r10,rbp
0x555e6580443a   3fa  740d                 jz 0x555e65804449  <+0x409>]

                   -- Verify feedback vector
0x555e65804449   409  4c8b45d8             REX.W movq r8,[rbp-0x28]
0x555e6580444d   40d  41f6c001             testb r8,0x1
0x555e65804451   411  0f8424000000         jz 0x555e6580447b  <+0x43b>
0x555e6580446a   42a  458b48ff             movl r9,[r8-0x1]
0x555e6580446e   42e  4181f91d030000       cmpl r9,0x31d
0x555e65804475   435  0f840d000000         jz 0x555e65804488  <+0x448>

                    [ CallBuiltin
0x555e65804488   448  488b55c8             REX.W movq rdx,[rbp-0x38]
0x555e6580448c   44c  bb04000000           movl rbx,0x4 ]

99 0f             JumpIfFalse [15]

                    [ VerifyFrame
                      [ VerifyFrameSize
0x555e65804496   456  4989e2               REX.W movq r10,rsp
0x555e65804499   459  4983c240             REX.W addq r10,0x40
0x555e6580449d   45d  4c3bd5               REX.W cmpq r10,rbp
0x555e658044a0   460  740d                 jz 0x555e658044af  <+0x46f> ]

                   -- Verify feedback vector
0x555e658044af   46f  4c8b45d8             REX.W movq r8,[rbp-0x28]
0x555e658044b3   473  41f6c001             testb r8,0x1
0x555e658044b7   477  0f8424000000         jz 0x555e658044e1  <+0x4a1>
0x555e658044d0   490  458b48ff             movl r9,[r8-0x1]
0x555e658044d4   494  4181f91d030000       cmpl r9,0x31d
0x555e658044db   49b  0f840d000000         jz 0x555e658044ee  <+0x4ae>]

 [ CallBuiltin
0x555e658044ee   4ae  3de10d0000           cmp rax,0xde1
0x555e658044f3   4b3  7505                 jnz 0x555e658044fa  <+0x4ba>
0x555e658044f5   4b5  e96a020000           jmp 0x555e65804764 
<+0x724>]

99 0f           JumpIfFalse [15]
 [ CallBuiltin
0x555e658044ee  4ae  3de10d0000     cmp rax,0xde1
0x555e658044f3   4b3  7505                 jnz 0x555e658044fa  <+0x4ba>
0x555e658044f5   4b5  e96a020000     jmp 0x555e65804764 <+0x724>]

6b f9 04          TestEqual r1, [4]
[ CallBuiltin
0x555e65804488   448  488b55c8      REX.W movq rdx,[rbp-0x38]
0x555e6580448c   44c  bb04000000   movl rbx,0x4 ]

Figure 5: How the execution tracer only extracts the execution traces that contribute to the main control flow of JS scripts

a) Modification on Bytecode Handlers of Sparkplug

To capture the most concise execution trace, we implemented
the function extract_function_instr to filter out the
stack verification-related compilation from Sparkplug and only
extract the execution trace for bytecodes that contribute to the
control flow of JS scripts. The left column of Figure 5 shows
an example of an interpreted JS bytecode array of a concrete
execution trace. Before interpreting each bytecode, Sparkplug
verifies frame size and feedback vector. The execution tracer
based on Sparkplug only removes the corresponding interpre-
tation from the execution trace without changing Sparkplug’s
behavior. The green box indicates the bytecode extracted by
the function and its correspondence assembly code generated
by the bytecode handler of Sparkplug. The red box indicates
the assembly instructions that are filtered out, which corre-
sponds to stack frame verification. A special bytecode handler
PIN_SYMBOLIC is implemented to cache the symbolic value
in the execution trace for later symbolic analysis.

b) Implementation on Remill translator

We utilized remill library to implement an assembly-to-LLVM
translator. Figure 6 shows the important components we im-
plemented for the translator. It first checks if an instruction is
valid as in whether the memory is executable and readable. In
this process, it identifies the symbolic memory we cached by
the execution tracer based on Sparkplug. After the correctness
check, the translator translates remill basic blocks to LLVM
basic blocks. A helper component is added to create a main en-
try function to make the trace a self-contained LLVM module
and mark symbolic memory for later symbolic analysis. The
main function then calls into the basic blocks LLVM functions.
At last, the resulting trace is readily consumable by the KLEE.
We tested the execution tracer to ensure its correctness on
16 combinations of instructions such as math functions, basic
arithmetic, for loop, if-else, etc.

During the symbolic execution stage, KLEE is modified to rec-
ognize the remill intrinsic function for log error and exception.
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The execution trace is fed into KLEE to generate test cases.
Test cases are used as a seed for the next iteration of symbolic
execution to generate a comprehensive set of test cases, which
is done by execution harness scripts.

5. EVALUATIONS

For evaluations, we targeted 160 Node.js libraries used in the
in-situ approach to show the effectiveness and efficiencies after
improvement. For effectiveness, we calculated the average
time used for executing all libraries between the two methods.
For efficiency, we evaluated the code coverage achieved by
two methods. This evaluation is carried out on a Ubuntu OS
Version 18.04 with 4-core Intel(R) Core(TM) i7-4790 CPU @
3.60GHz and 16G memory.
To compare the two methods with these libraries, we built a
test harness to systematically exercise all exported (public)
methods in a given library with arguments whose type is
String. The seed test cases are generated randomly within
the test harness. We implemented an automation pipeline that
helps set up the concolic testing environment for each Node.js
library automatically. Coverage for all libraries is calculated
using istanbul, a popular JS coverage tool used by V8 [28]
and compatible with most JavaScript testing frameworks, e.g.,
Mocha [29] and Node-Tap [30]. Coverage may vary slightly
due to the randomness of the seed test case generation.
By default, the coverage that we show in this evaluation is
statement coverage. Table I shows the demographics of the

Metric Range Average
Line of Code [93, 16910] 1687
Weekly Downloads [3, 37491350] 9552965
Dependencies [3, 18154] 282

TABLE I: Demographics for Libraries under Test

selected libraries. The LoC (lines of code) for a library under
test is calculated with github-loc [31]. The number of weekly

downloads of a library under test is calculated with npm-
stats-api [32]. The number of dependencies is the number
of dependent libraries that the library under test has. We
calculated it with dependent-counts [33].

1. Coverage Analysis

Figure 7 shows the comparison of statement coverage achieved
between our approach and the in-situ approach. The red line
presented the statement coverage of the in-situ approach and
the blue line indicates the statement coverage of our approach
of improvement. We can see that they represent a similar trend
of achieving statement coverage over 160 Node.js libraries
under test. Figure 8 indicates the distribution of statement
coverage between the two approaches, where the red dots
represent the result of the in-situ approach and the blue dots
indicate that of our approach. We can see major dots of both
colors fall above the line of coverage of 75%. Only 9 libraries
achieved a coverage below 25% and the reason is that it is a
function with multiple arguments of String type, which can
be made symbolic. Our test harness did not catch all of the
arguments and only managed to set one of them as symbolic
input. Therefore, it only explored the branches that are related
to that one argument we set as symbolic input within the test
harness. Among the libraries achieved below the coverage of
75%, the red dots appear more times than the blue dots, which
indicates our approach achieved higher coverage on average.

Figure 7: Statement Coverage Comparison between our ap-
proach and In-situ approach

Figure 8: Coverage Distribution Comparison between our
approach and In-situ approach



functions Bugs Known
formatNumber No boundary check for empty string No
encodeDate No NULL check for function argument No
regexExec Unhandled input syntax error No
isVAT Mishandled country code No
chalkClass Deprecated constructor invoked Yes
stringify Incorrect parsing of separators Yes

TABLE II: Bugs detected in functions

We also compared our approach with an existing tool, Ex-
poSE [34], by testing the same set of libraries as shown in
Figure ??, on which ExpoSE has been applied. Our method
and the in-situ approach achieved similar higher coverage con-
sistently. This comparison only partially reflects our method’s
ability to achieve higher coverage since ExpoSE mainly targets
solving regular expression problems for its symbolic execution
engine JALANGI.

0

25

50

75

100

minimist validator semver querystring

ExpoSE Our Approach In-situ

Figure 9: Statement Coverage Comparison among our ap-
proach, In-situ approach and ExpoSE

2. Bug Detection Efficiency

As the test cases generated by our approach are replayed
on the libraries under test, our method detected all the bugs
that the in-situ method found. At the same time, our method
only uses a fraction of the time that the in-situ approach
needs. Typically, the in-situ approach takes about 3 to 5
minutes to complete an iteration of test case generation and
it only needs about 5 seconds to complete an iteration with
our approach. Exceptions are thrown during execution. There
are two types of exceptions: unhandled and handled. The
unhandled exceptions tend to indicate potential valuable bugs.
The handled exceptions often indicate that the developers are
aware of these exceptions, but want to deal with them later.
Such exceptions are also valuable to both the developers and
potential hackers, albeit less valuable than unhandled ones.
Table ?? shows a summary of the bugs that we discovered.
The bug from benchmarkify is a missing boundary check for
empty string. It causes the formatNumber function to return
a NULL object. When another function is later invoked on

this NULL Object, it throws a TypeError exception. In the
encodeDate function of msgpack5, a parameter, dt, is used
directly without checking for NULL value. In is-regex, an
input syntax error is not handled in the regexExec function.
In validator, a particular country code is not handled and leads
to the execution of a catch block in the isVAT function.
In chalk, a deprecated constructor is used in an else
branch in the chalkClass function, causing an unhandled
exception. In stringify, incorrect parsing of separators in the
stringify function causes an unhandled exception.

6. RELATED WORK

Our approach is closely aligned with prior research on exe-
cution tracing within native execution environments and en-
hancing trace translation in symbolic execution for JavaScript.
Typically, the focus is on JavaScript scripts, including those
running in browsers and browser-less runtimes like Node.js.
Many symbolic execution techniques for JavaScript involve
the development of application-specific symbolic execution
engines or substantial modifications to JavaScript execution
engines to facilitate symbolic execution. These methods often
rely on intermediate representations during trace translation.
For instance, SymJS is an example of a framework designed
for testing client-side JavaScript scripts using symbolic exe-
cution [35]. It modifies Rhino JS engine for symbolic execu-
tion [36]. For browser-less JavaScript, JALANGI is a frame-
work for writing heavy-weight dynamic analysis, which can
be enabled on JavaScript as a symbolic execution engine [37].
COSETTE is another symbolic execution engine for JavaScript
using an intermediate representation, namely JSIL, translated
from JavaScript [38]. ExpoSE applies symbolic execution on
standalone JavaScript and uses JALANGI as its symbolic
execution engine. ExpoSE’s contribution is in addressing the
limitation that JALANGI does not readily support regular
expressions for JavaScript [34]. Kudzu targeted AJAX appli-
cations by implementing a dynamic symbolic interpreter that
takes a simplified intermediate language for JavaScript [19].
To the best of our knowledge, no symbolic execution frame-
work for JavaScript has directly utilized JavaScript’s native
execution environments for execution tracing [39].

7. CONCLUSIONS

In this paper, our approach introduced improvements to the in-
situ concolic testing of JavaScript. We have deployed a new
execution tracer leveraging V8’s Sparkplug baseline compiler
to improve the tracing process and a new assembly to LLVM



IR using remill libraries. It improves the efficiency and effec-
tiveness of the infrastructure of the in-situ concolic testing for
JavaScript while keeping the native execution environments
for JS scripts under test. We evaluated its effectiveness and
efficiency by comparing the coverage, bug detection, and
time consumption with the in-situ approach on the same
test set, which are 160 Node.js libraries that heavily utilize
the String type and its operations. The results show our
approach achieve similar statement coverage on these libraries
within no more than 10% difference on average and is able to
detect all bugs that are detected by the in-situ method, which
only use a fraction of the time needed by the in-situ approach.
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