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In this article we consider the influence of a periodic sequence of Gaussian pulses on a chimera state in a ring of
coupled FitzHugh-Nagumo systems. We found that on the way to complete spatial synchronization one can observe a
number of variations of chimera states that are not typical for the parameter range under consideration. For example, the
following modes were found: breathing chimera, chimera with intermittency in the incoherent part, traveling chimera
with strong intermittency, and others. For comparison, here we also consider the impact of a harmonic influence on
the same chimera, and to preserve the generality of the conclusions, we compare the regimes caused by both a purely
positive harmonic influence and a positive-negative one.
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In ensembles of coupled elements, various complex spa-
tiotemporal regimes can arise, including chimera states.
These regimes represent the coexistence of coherent and
incoherent clusters, and have been observed not only in
experiments but also in real systems of different natures.
One notable example is the dynamics of neurons in the
brain during seizures of epilepsy and Parkinson’s disease.
This highlights the importance of understanding and man-
aging such dynamic regimes. Since neural activity involves
impulse dynamics, it is crucial to study the stability of
modes under this type of external influence. This work
focuses on investigating the influence of impulse signals on
an ensemble of nonlocally coupled FitzHugh-Nagumo neu-
rons, in which chimeras can occur.

I. INTRODUCTION

In complex multicomponent systems with nonlinear sub-
systems, different spatiotemporal regimes can be established.
These regimes can have either a favorable or destructive effect
on the systems. The simplest and most common regimes in-
clude synchronization of subsystems in amplitude, frequency,
and phase, as well as complete desynchronization of subsys-
tems. In 2002, Y. Kuramoto and D. Battogtokh demonstrated
that in an ensemble of nonlocally coupled phase oscillators, it
is possible to establish a spatiotemporal regime characterized
by the coexistence of a cluster with incoherent dynamics of
elements and a cluster with coherent dynamics of elements1.
Two years later, D.M. Abrams and S.H. Strogatz called this
dynamic regime a “chimera state”2. This term sparked ad-
ditional research interest in this phenomenon, and this inter-
est remains active to this day. The importance of studying
this phenomenon is evidenced by its occurrence not only in
computer modeling3–14 but also in real systems of various na-
ture15–19, including neural networks20–28.

Neural networks contain a large number of neurons with
complex connections, which makes the direct study of such

systems difficult. Currently, neural ensembles are initially
studied using model systems in computer experiments. In this
case, various models of neurons are used, which, to some ex-
tent, replicate the processes occurring in real neurons. These
include the Hodgkin-Huxley model29, FitzHugh–Nagumo
model30,31, Morris–Lecar model32, Hindmarsh–Rose model33

and their various modifications. One of the most com-
monly used neuron models is the FitzHugh–Nagumo oscilla-
tor, which is a simplified modification of the Hodgkin–Huxley
model. This model not only reproduces the main effects ob-
served in neurons but also consists of only two equations and
a few control parameters, making mathematical and computer
studies of the dynamics of this model easier.

Studies have shown that ensembles of nonlocally coupled
FitzHugh-Nagumo oscillators can exhibit chimera states when
partial elements are in both oscillatory and excitable modes.
In an ensemble of excitable FitzHugh-Nagumo oscillators in-
fluenced by noise, coherence-resonance chimeras34–36 and
self-induced-stochastic-resonance chimeras37,38 have been
discovered. However, previously chimera states were found
in ensembles of FitzHugh-Nagumo models operating in the
oscillatory regime. This was achieved through cross coupling
between an activator and an inhibitor4,39,40

The inherent nature of neurons and neural ensembles is
characterized by impulsivity, making impulse action a long-
standing method for operating and controlling neural activity.
An illustrative example of this is the use of electrical stim-
ulation via deep brain stimulation (DBS) electrodes, which
are implanted to treat motor problems in Parkinson’s disease
and dystonia41–45. Additionally, DBS is employed in the
treatment of various neurological disorders such as Tourette
syndrome46,47, depression48,49, and even in the treatment of
epilepsy50,51, which serves as a prime example of a chimera
state in the brain.

In this paper, we consider the effect of pulse exposure on a
chimera state in a ring of coupled FitzHugh-Nagumo systems.
This is the first work in a series of works in which we plan to
study the destruction of spatio-temporal regimes that arise in
ensembles of neuron models under external influence. Here
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we are mainly focused on periodic pulse exposure, but later
this list will be expanded to noisy pulse action and Lévy noise.

II. SYSTEM UNDER STUDY

A. Ring of FHN systems

Here we consider the ring of nonlocally coupled FHN sys-
tems under external influence I(t). The autonomous part of
system is set in the same way as was in Ref.4:

ε
dui
dt = ui −

u3
i

3 − vi + I(t)+
σ

2R

i+R
∑

j=i−R
[buu(u j −ui)+buv(v j − vi)],

dvi
dt = ui +ai+

σ

2R

i+R
∑

j=i−R
[bvu(u j −ui)+bvv(v j − vi)],

(1)

where ui and vi are the activator and inhibitor variables, re-
spectively, the oscillator’s number is set by i = 1, ...,N with
N = 500 being the total number of elements in the network
with periodic boundary conditions. A small parameter ε > 0
sets the time scale separation of fast activator and slow in-
hibitor variables, while a defines the excitability threshold.
For each partial FHN system, it determines whether the sys-
tem is in the excitable (|a|> 1), or oscillatory (|a|< 1) regime.

The parameter R indicates the number of nearest neigh-
bours in each ring direction coupled with ith element. For
convenience, we additionally introduce the coupling range set
by r = R/N . The strength of the coupling is characterized
by σ . For our simulations we use initial conditions randomly
distributed on circle u2 + v2 ≤ 22.

Equation. (1) contains not only direct, but also cross cou-
plings between activator (u) and inhibitor (v) variables, which
can be modeled by a rotational coupling matrix4 to reduce the
number of parameters:

B =

(
buu buv
bvu bvv

)
=

(
cosφ sinφ

−sinφ cosφ

)
(2)

where φ ∈ [−π;π) is the parameter allowing to simultane-
ously control the contribution of all four connection types in
(1).

In this study, we are mainly focused on chimera state
regime arising when partial elements demonstrate periodic
spiking. Therefore, here we use the same parameters as was
in Ref.4 for chimera state ε = 0.05, a = 0.5, φ = π/2− 0.1,
r = 0.35, σ = 0.2 fixed throughout the article. One iso-
lated FHN system demonstrates oscillatory regime and peri-
odic spiking behaviour for these a and ε values. At the same
time, the network parameters r, σ and φ lead to chimera state
with one incoherent and one coherent domains. Every partial
element of the network demonstrates spikes, and in coherent
domain these spikes are periodic. The regime typical for con-
sidered autonomous system (I(t) = 0) is given in Fig. 1.

Now, after introduction of the system, let us consider ways
to visualize various modes. On the one hand, we can consider
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FIG. 1. Chimera state observed in autonomous system (1) illus-
trated by the instantaneous snapshot (a) and space-time plot (b) of
variable u, space-time plot of local order parameter (d) and averaged
local order parameter with mean phase velocity given in panel (c).
Parameters: ε = 0.05, a = 0.5, φ = π/2− 0.1, r = 0.35, σ = 0.2,
I(t) = 0.

just one of the variables, for example the variable u, and visu-
alize it via the instantaneous snapshot of this variable in space
(Fig. 1(a)) and its spatiotemporal evolution using the space-
time plot (Fig. 1(b)).

On the other hand, it is impossible to analyze these im-
ages for a long time, so in addition to this we will also use
such statistical characteristics as the local order parameter Zi
and the mean phase velocity ωi. The local order parameter
Zi = | 1

2δ
∑

| j−i|≤δ

eiΘ j | is a real number in the range from 0 to

1, where 1 corresponds to coherent behavior in a certain area,
while 0 to incoherent behavior. Here Θi = arctan(vi/ui) is the
geometric phase of ith FHN unit. The spatiotemporal evolu-
tion of local order parameter is given in Fig. 1(d). The absence
of fluctuations in the local order parameter allows to analyze
the state of the system over a long time interval, and get an
information about the stationarity or non-stationarity of the
coherent and incoherent domains. Figure 1(c) shows the lo-
cal order parameter averaged throughout all integration time
⟨Zi⟩ (red points). The mean phase velocity (black points in
Fig. 1(c)) is calculated as the number of spikes Mi divided by
the integration time wi = 2πMi/∆T . It is calculated separately
for each ith oscillator. However, for analyzing the entire sys-
tem regime, we use the local order parameter and the mean
phase velocity, which are averaged over space and denoted as
⟨Z⟩ and ⟨ω⟩, respectively.

B. Pulse exposure

In order to introduce a pulse exposure and maintain the in-
tegrability of the system, here we consider Gaussian pulses
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shaped as a Gaussian function52,53:

P(t) = A · exp
(
− t2

2∆t2

)
, (3)

where A is the amplitude of pulse, parameter ∆t controls the
width of Gaussian pulse. Its smaller values make the pulse
narrower. At the same time, it is important to ensure that
when integrating a system with pulse exposure, the integration
step is sufficient to adequately simulate pulses, so the pulses
should not be made too narrow.

In this paper we are mainly interested in pulse-periodic ex-
posure. Equation 3 describes only one impulse. In order to
make the influence periodic, it is necessary to replace t with a
periodic function of t:

I(t) = A · exp
(
− 1

2s
sin2 wt

2

)
. (4)

This is how the external pulse-periodic exposure I(t) is set in
(1). It describes periodic pulses with amplitude A, frequency
w and pulse width controlled by the parameter s. Further, we
will consider the impact of external influence depending on its
amplitude A and period T = 2π/w.

III. RESULTS

A. Regimes induced by periodic Gaussian pulses

In this section we consider the impact of periodic Gaussian
pulses (4) on the ensemble of FHN systems (1) in chimera
state regime. Figure 2(a) contains the map of regimes in the
parameter plane of external influence period and amplitude.
This map of regimes was prepared for four initial conditions.
Half of the initial conditions were set randomly, and the other
half were chimera states already stabilized in the system. The
color scheme of the map Fig. 2 will be discussed further. In
addition to the map of regimes, Fig. 2 contains also averaged
local order parameter ⟨Z⟩ (b) and mean phase velocity (c) av-
eraged throughout all integration time t = 3000.

With a weak external influence A ⪅ 0.1, the system demon-
strates the original chimera state, marked in red on the map
Fig. 2(a). When the amplitude of influence becomes strong,
complete synchronization is observed. The regions of com-
plete spatial synchronization are show in middle-blue color in
Fig. 2(a) and look like Arnold tongues. They correspond to
⟨Z⟩ ≈ 1 in Fig.2(b). As can be seen from the averaged mean
phase velocity (c), the frequency of oscillations in ensemble
are controlled by the frequency of external influence in these
areas.

There are several modes observed between these two ones.
They are given in Fig. 3 using the same scheme of panels as
was for original chimera in Fig. 1. Below we will describe
each of these regimes separately.

There are two often found regimes between original
chimera (Fig. 1) and complete spatial synchronization. The
first one looks like original chimera state but there are chaoti-
cally appeared and disappeared small coherent domains inside
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FIG. 2. Impact of periodic Gaussian pulses on chimera state regime.
Figure contains the map of regimes (a) in the parameter plane (T,A),
mean local order parameter ⟨Z⟩ averaged over the integration time
and space (b), and mean phase velocity ⟨ω⟩ averaged in the same
way (c). Parameters: s = 0.1, the rest parameters are the same as in
Fig. 1.

the large incoherent domain (see Fig. 3(a) and compare inco-
herent clusters here and in Fig. 1). On the space-time plot of
variable ui and local order parameter Zi (2nd and 3rd subpan-
els in Fig. 3(a)) this regime looks like original chimera state,
but when analysing the snapshot (first subpanel in Fig. 3(a))
one can see, that incoherent domain is not so incoherent as
was previously. We will call this regime “chimera with inter-
mittency”. This mode is stable and does not disappear with a
long integration time. The position of the incoherent domain
remains in the same place (3rd and 4th subpanels in Fig. 3(a)).
This regime can be observed in the dark-orange area of the
map Fig. 2(a).

When parameters A and T come closer to complete spatial
synchronization, the regime of chimera with intermittency is
significantly transformed (Fig. 3(b)). In the incoherent part,
the appearance of coherent subsets becomes more frequent
and increased in space, at the same time its position does not
stay in one place. This is especially clearly seen from the lo-
cal order parameter and averaged phase velocity (3rd and 4th
subpanels in Fig. 3(b)). This regime can be found in yellow
regions of the map Fig. 2(a).

The light-orange regions in the map Fig. 2(a) correspond to
a breathing chimera given in Fig. 3(c). The breathing chimera
is characterized by the oscillating boundary between coherent
and incoherent domains54. This regime has been already ob-
served in different systems55–57, mainly in ensembles of phase
oscillators, but for the ring of autonomous FHN systems this
regime have not been previously observed.

On the border between two synchronization tongues
(Fig. 2(a), dark-blue region), the another chimera may appear
(Fig. 3(d)). This chimera contains two incoherent domains
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FIG. 3. Different regimes observed between original chimera state and complete synchronization in the case of periodic-pulse exposure. The
first column of fragments shows the snapshots of variables ui at time t = 3000, while their space-time plots are given in panels of the second
column. The third column shows the space-time plots of the local-order parameter. The fourth column contains local order parameter and
mean phase velocity averaged over time. Parameters: A = 0.15, T = 3.5 (a), A = 0.15, T = 4.9 (b), A = 0.15, T = 3.2 (c), 0.3, T = 3.9 (d),
A = 0.8, T = 3.8 (e). The parameter s = 0.1, while the rest parameters are the same as in Fig. 1.

and corresponds to multi-chimera states58. The same chimera
has been also found in a ring of coupled FHN systems in ex-
citable regime36.

With a large amplitude of external influence, another inter-
esting mode appears (see chimera* in Fig. 3(e)). This mode
looks like an origin chimera when considering only snap-
shots or local-order parameter, but the mean phase velocity

is the same for all oscillators, therefore it cannot be called as
a chimera in its common form. Essentially, there is a spa-
tial synchronization with a phase shift. For periodic-pulse ex-
posure, chimera* is mainly observed for small period T (see
hatched regions on the map Fig. 2), and there it can be ob-
served from only specially prepared initial conditions of sta-
bilized chimera. The random initial conditions lead to spatial
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synchronization with a phase shift without any clear domains.
This regime of spatial synchronization with a phase shift is
shown in light-blue color on the map Fig. 2; the hatched areas
overlaid on top of them indicate the appearance of chimera*.

All the above regimes have not been observed for the ring of
autonomous FHN systems, therefore we can assume that these
regimes are induced by external periodic-pulse influence. The
question is: are these modes caused precisely by pulsed in-
fluence or by any periodic influence? In the next section we
will consider the impact of harmonic influence on the same
chimera, as well as the influence of purely positive harmonic
influence.

B. Regimes induced by harmonic influence

In this section we consider the impact of harmonic influence
on chimera state:

I(t) = A · sinwt, (5)

where A and w are amplitude and frequency of external force
I(t).

Figure 4(a) contains the map of regimes in parameter plane
of harmonic external influence (period and amplitude). This
map of regimes was prepared in the same way as was before
for Fig. 2(a) with the same color scheme and designations. In
addition, Fig. 4 contains the values of averaged local order pa-
rameter (b) and mean phase velocity (c) in the same parameter
plane (T,A).

As was for periodic-pulse exposure, the large amplitude
leads synchronization areas forming Arnold tongues on the
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FIG. 4. Impact of harmonic external force on chimera state. Fig-
ure contains the map of regimes (a) in the parameter plane (T,A),
mean local order parameter (b) averaged over the integration time,
and mean phase velocity (c) averaged in the same way. The rest pa-
rameters are the same as was in Fig. 1.

map, but their position and size differ from the ones ob-
served previously. The transition to complete synchroniza-
tion occurs for smaller amplitude values. In between orig-
inal chimera (red areas in Fig. 4(a)) and synchronization
(middle-blue), chimera with intermittency (Fig. 3(a)) can be
observed in dark-orange regions. Strong intermittency (yel-
low in Fig. 4(a)) occurs much less frequently than for pulsed
exposure. The breathing chimera (light-orange regions) is also
less common and occurs mainly at period T ≈ 5. This value
of period in pulsed exposure corresponded to a synchroniza-
tion tongue. At the same time, there are several large areas of
chimera* (Fig. 3(e)) shown as hatched area in Fig. 4(a), and
this regime is observed not only for small T values. How-
ever, for T ≈ 5.5, chimera* can be obtained also from random
initial conditions that was not in the case of periodic-pulse ex-
posure.

C. Regimes induced by positive harmonic influence

Comparing the influences set by (4) and (5), one can see
that the first I(t) can only contain positive values, while the
second covers both positive and negative values. Therefore, it
would be correct to consider the harmonic influence shifted to
the positive range:

I(t) =
A
2
(
1+ sinwt

)
, (6)

where A and w are amplitude and frequency of external influ-
ence.

Figure 5 contains the map of regimes in the parameter plane
of positive harmonic external influence (period and ampli-
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FIG. 5. Impact of positive harmonic external force on chimera state.
Figure contains the map of regimes (a) in the parameter plane (T,A),
mean local order parameter (b) averaged over the network and time,
and mean phase velocity (c) averaged in the same way. The rest
parameters are the same as was in Fig. 1.
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tude). This figure was prepared in the same way as was before
for Fig. 2 and 4 with same color scheme and designations.

Comparing the maps prepared for harmonic and positive
harmonic influences, it becomes clear that the areas of syn-
chronization become more tiny and shifted to higher ampli-
tude A in the case of positive exposure, and this effect is sim-
ilar to what was observed for pulse exposure. The values of
T corresponding to Arnold tongues are similar for both posi-
tive/negative and pure positive harmonic influence.

As the synchronization regions are reduced, the free space
is covered by chimera with intermittency. However, strong
intermittency is rarely observed, so we can assume that this
mode is mainly caused by exposure with impulsive nature.
Breathing chimera is mainly occurred by the positiveness of
periodic influence, so it can be observed for both periodic
pulse exposure and positive harmonic influence but not so pro-
nounced for positive/negative harmonic influence.

There are two areas of chimera* observed for small T ≈ 1.1
values and for T ≈ 5.5. The first area becomes larger than for
positive/negative harmonic influence from the previous sec-
tion, while the second area remains approximately the same.
For pulsed exposure, the first area of chimera* looks more
like for positive harmonic influence, but the second area is
completely absorbed by the synchronization tongue.

CONCLUSION

In this paper, we have considered the impact of periodic
pulse and harmonic exposure on the chimera state observed
in the ring of nonlocally coupled FitzHugh-Nagumo sys-
tems. Here we have found that there are several different
chimera states induced by this influence: breathing chimera,
chimera with intermittency in the incoherent domain, travel-
ling chimera with strong intermittency and finally chimera*
with spatial synchronization and phase shift in the areas where
incoherent domain is observed for original chimera. The last
one regime is mainly induced by the periodic property of ex-
ternal influence, since it can be found much more often with
simply periodic harmonic influence than for periodic pulses.
And in general, the structure of the regime map for pulse ex-
posure differs from the map for harmonic influence.

The pulsed exposure leads to an interesting regime of
breathing chimera with periodically changing boundary be-
tween coherent and incoherent domains. This regime can be
also found for harmonic influence, but in the case of periodic
pulse action, several areas of this regime appear in the param-
eter plane (T,A).

In this work, we showed the main special modes that can
arise in the system due to pulse action. This work opens a
series of works on studying the influence of pulsed action on a
chimera. In subsequent works, we will show how noisy pulse
influence affects the chimera state and what modes Lévy noise
can lead to.

ACKNOWLEDGMENTS

This work was supported by the Russian Science Founda-
tion (project No. 23-72-10040)

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

1Y. Kuramoto and D. Battogtokh, “Coexistence of coherence and incoher-
ence in nonlocally coupled phase oscillators,” Nonlinear Phenomena in
Complex Systems 5, 380–385 (2002).

2D. M. Abrams and S. H. Strogatz, “Chimera states for coupled oscillators,”
Physical review letters 93, 174102 (2004).

3I. Omelchenko, Y. Maistrenko, P. Hövel, and E. Schöll, “Loss of coherence
in dynamical networks: spatial chaos and chimera states,” Physical Review
Letters 106, 234102 (2011).

4I. Omelchenko, O. E. Omel’chenko, P. Hövel, and E. Schöll, “When non-
local coupling between oscillators becomes stronger: Patched synchrony or
multichimera states,” Phys. Rev. Lett. 110, 224101 (2013).

5M. J. Panaggio and D. M. Abrams, “Chimera states: coexistence of coher-
ence and incoherence in networks of coupled oscillators,” Nonlinearity 28,
R67 (2015).

6Y. Maistrenko, O. Sudakov, O. Osiv, and V. Maistrenko, “Chimera states in
three dimensions,” New Journal of Physics 17, 073037 1367–2630 (2015).

7N. Semenova, A. Zakharova, E. Schöll, and V. Anishchenko, “Does hy-
perbolicity impede emergence of chimera states in networks of nonlocally
coupled chaotic oscillators?” EPL (Europhysics Letters) 112, 40002 (2015).

8E. Schöll, “Synchronization patterns and chimera states in complex net-
works: Interplay of topology and dynamics,” The European Physical Jour-
nal Special Topics 225, 891–919 (2016).

9F. P. Kemeth, S. W. Haugland, L. Schmidt, I. G. Kevrekidis, and
K. Krischer, “A classification scheme for chimera states,” Chaos: An In-
terdisciplinary Journal of Nonlinear Science 26, 094815 (2016).

10S. Ulonska, I. Omelchenko, A. Zakharova, and E. Schöll, “Chimera states
in networks of van der Pol oscillators with hierarchical connectivities,”
Chaos: An Interdisciplinary Journal of Nonlinear Science 26, 094825
(2016).

11I. A. Shepelev, A. V. Bukh, G. I. Strelkova, T. E. Vadivasova, and V. S. An-
ishchenko, “Chimera states in ensembles of bistable elements with regular
and chaotic dynamics,” Nonlinear Dynamics 90, 2317–2330 (2017).

12S. A. Bogomolov, A. V. Slepnev, G. I. Strelkova, E. Schöll, and V. S. An-
ishchenko, “Mechanisms of appearance of amplitude and phase chimera
states in ensembles of nonlocally coupled chaotic systems,” Communica-
tions in Nonlinear Science and Numerical Simulation 43, 25–36 (2017).

13A. Bukh, E. Rybalova, N. Semenova, G. Strelkova, and V. Anishchenko,
“New type of chimera and mutual synchronization of spatiotemporal struc-
tures in two coupled ensembles of nonlocally interacting chaotic maps,”
Chaos: An Interdisciplinary Journal of Nonlinear Science 27, 111102
(2017).

14A. Zakharova, Chimera patterns in networks: Interplay between dynamics,
structure, noise, and delay (Springer Nature, 2020).

15P. J. Menck, J. Heitzig, J. Kurths, and H. J. Schellnhuber, “How dead ends
undermine power grid stability,” Nature communications 5, 1–8 (2014).

16A. E. Motter, S. A. Myers, M. Anghel, and T. Nishikawa, “Spontaneous
synchrony in power-grid networks,” Nature Physics 9, 191–197 (2013).

17B. Wang, H. Suzuki, and K. Aihara, “Enhancing synchronization stability
in a multi-area power grid,” Scientific reports 6, 1–11 (2016).

18J. C. González-Avella, M. G. Cosenza, and M. San Miguel, “Localized
coherence in two interacting populations of social agents,” Physica A: Sta-
tistical Mechanics and its Applications 399, 24–30 (2014).

19S. Hong and Y. Chun, “Efficiency and stability in a model of wireless com-
munication networks,” Social Choice and Welfare 34, 441–454 (2010).

20R. Levy, W. D. Hutchison, A. M. Lozano, and J. O. Dostrovsky, “High-
frequency synchronization of neuronal activity in the subthalamic nucleus

http://dx.doi.org/10.1103/PhysRevLett.110.224101


Impact of pulse exposure on chimera state 7

of parkinsonian patients with limb tremor,” Journal of Neuroscience 20,
7766–7775 (2000).

21N. C. Rattenborg, C. J. Amlaner, and S. L. Lima, “Behavioral, neurophys-
iological and evolutionary perspectives on unihemispheric sleep,” Neuro-
science & Biobehavioral Reviews 24, 817–842 (2000).

22R. G. Andrzejak, C. Rummel, F. Mormann, and K. Schindler, “All together
now: Analogies between chimera state collapses and epileptic seizures,”
Scientific reports 6, 23000 (2016).

23C. Lainscsek, N. Rungratsameetaweemana, S. S. Cash, and T. J. Sejnowski,
“Cortical chimera states predict epileptic seizures,” Chaos: An Interdisci-
plinary Journal of Nonlinear Science 29 (2019).

24S. Huo, C. Tian, M. Zheng, S. Guan, C. Zhou, and Z. Liu, “Spatial
multi-scaled chimera states of cerebral cortex network and its inherent
structure-dynamics relationship in human brain,” National Science Review
8, nwaa125 (2021).

25P. C. Bressloff, “Spatiotemporal dynamics of continuum neural fields,”
Journal of Physics A: Mathematical and Theoretical 45, 033001 (2011).

26K. Zhang, “Representation of spatial orientation by the intrinsic dynamics
of the head-direction cell ensemble: a theory,” Journal of Neuroscience 16,
2112–2126 (1996).

27K. Bansal, J. O. Garcia, S. H. Tompson, T. Verstynen, J. M. Vettel, and
S. F. Muldoon, “Cognitive chimera states in human brain networks,” Sci-
ence advances 5, eaau8535 (2019).

28E. Schöll, “Partial synchronization patterns in brain networks,” Europhysics
Letters 136, 18001 (2022).

29A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane
current and its application to conduction and excitation in nerve,” The Jour-
nal of physiology 117, 500 (1952).

30R. Fitzhugh, “Thresholds and plateaus in the Hodgkin-Huxley nerve equa-
tions,” The Journal of general physiology 43, 867–896 (1960).

31J. Nagumo, S. Arimoto, and S. Yoshizawa, “An active pulse transmission
line simulating nerve axon,” Proceedings of the IRE 50, 2061–2070 (1962).

32C. Morris and H. Lecar, “Voltage oscillations in the barnacle giant muscle
fiber,” Biophysical journal 35, 193–213 (1981).

33J. L. Hindmarsh and R. Rose, “A model of neuronal bursting using three
coupled first order differential equations,” Proceedings of the Royal society
of London. Series B. Biological sciences 221, 87–102 (1984).

34N. Semenova, A. Zakharova, V. Anishchenko, and E. Schöll, “Coherence-
resonance chimeras in a network of excitable elements,” Physical Review
Letters 117, 014102 (2016).

35A. Zakharova, N. Semenova, V. Anishchenko, and E. Schöll, “Time-
delayed feedback control of coherence resonance chimeras,” Chaos: An
Interdisciplinary Journal of Nonlinear Science 27, 114320 (2017).

36N. Semenova, “Chimera states in ensembles of excitable FitzHugh–
Nagumo systems,” The European Physical Journal Special Topics 229,
2295–2306 (2020).

37J. Zhu and M. E. Yamakou, “Self-induced-stochastic-resonance breathing
chimeras,” Physical Review E 108, L022204 (2023).

38T. Khatun and T. Banerjee, “Genesis of chimera patterns through self-
induced stochastic resonance,” Chaos, Solitons & Fractals 174, 113846
(2023).

39I. Omelchenko, A. Provata, J. Hizanidis, E. Schöll, and P. Hövel, “Robust-
ness of chimera states for coupled FitzHugh-Nagumo oscillators,” Physical
Review E 91, 022917 (2015).

40J. Ramadoss, S. Aghababaei, F. Parastesh, K. Rajagopal, S. Jafari, and
I. Hussain, “Chimera state in the network of fractional-order FitzHugh–
Nagumo neurons,” Complexity 2021, 1–9 (2021).

41A. L. Benabid, P. Pollak, D. Hoffmann, C. Gervason, M. Hommel, J. Per-
ret, J. De Rougemont, and D. Gao, “Long-term suppression of tremor
by chronic stimulation of the ventral intermediate thalamic nucleus,” The
Lancet 337, 403–406 (1991).

42M. J. Armstrong and M. S. Okun, “Diagnosis and treatment of Parkinson
disease: a review,” Jama 323, 548–560 (2020).

43A. T. Hale, M. A. Monsour, J. D. Rolston, R. P. Naftel, and D. J. Englot,
“Deep brain stimulation in pediatric dystonia: a systematic review,” Neuro-
surgical review 43, 873–880 (2020).

44H. Fan, Z. Zheng, Z. Yin, J. Zhang, and G. Lu, “Deep brain stimula-
tion treating dystonia: a systematic review of targets, body distributions
and etiology classifications,” Frontiers in Human Neuroscience 15, 757579
(2021).

45M. Hariz and P. Blomstedt, “Deep brain stimulation for Parkinson’s dis-
ease,” Journal of internal medicine 292, 764–778 (2022).

46W. Xu, C. Zhang, W. Deeb, B. Patel, Y. Wu, V. Voon, M. S. Okun, and
B. Sun, “Deep brain stimulation for Tourette’s syndrome,” Translational
neurodegeneration 9, 1–19 (2020).

47N. Szejko, Y. Worbe, A. Hartmann, V. Visser-Vandewalle, L. Ackermans,
C. Ganos, M. Porta, A. F. Leentjens, J.-H. Mehrkens, and D. Huys, “Eu-
ropean clinical guidelines for Tourette syndrome and other tic disorders—
version 2.0. Part IV: deep brain stimulation,” European Child & Adolescent
Psychiatry 31, 443–461 (2022).

48M. Figee, P. Riva-Posse, K. S. Choi, L. Bederson, H. S. Mayberg, and
B. H. Kopell, “Deep brain stimulation for depression,” Neurotherapeutics
19, 1229–1245 (2022).

49Y. Wu, J. Mo, L. Sui, J. Zhang, W. Hu, C. Zhang, Y. Wang, C. Liu, B. Zhao,
and X. Wang, “Deep brain stimulation in treatment-resistant depression: a
systematic review and meta-analysis on efficacy and safety,” Frontiers in
neuroscience 15, 655412 (2021).

50A. Vetkas, A. Fomenko, J. Germann, C. Sarica, C. Iorio-Morin, N. Samuel,
K. Yamamoto, V. Milano, C. Cheyuo, and A. Zemmar, “Deep brain stim-
ulation targets in epilepsy: systematic review and meta-analysis of anterior
and centromedian thalamic nuclei and hippocampus,” Epilepsia 63, 513–
524 (2022).

51R. S. Fisher, “Deep brain stimulation of thalamus for epilepsy,” Neurobiol-
ogy of Disease 179, 106045 (2023).

52B. Chomycz, “Gaussian pulse characteristics,” (McGraw-Hill Education,
New York, 2009) 1st ed.

53C. Bauer, R. Freeman, T. Frenkiel, J. Keeler, and A. Shaka, “Gaussian
pulses,” Journal of Magnetic Resonance (1969) 58, 442–457 (1984).

54M. I. Bolotov, L. A. Smirnov, G. V. Osipov, and A. S. Pikovsky, “Breath-
ing chimera in a system of phase oscillators,” JETP Letters 106, 393–399
(2017).

55D. M. Abrams, R. Mirollo, S. H. Strogatz, and D. A. Wiley, “Solvable
model for chimera states of coupled oscillators,” Phys. Rev. Lett. 101,
084103 (2008).

56R. Ma, J. Wang, and Z. Liu, “Robust features of chimera states and the im-
plementation of alternating chimera states,” Europhysics Letters 91, 40006
(2010).

57F. P. Kemeth, S. W. Haugland, L. Schmidt, I. G. Kevrekidis,
and K. Krischer, “A classification scheme for chimera
states,” Chaos: An Interdisciplinary Journal of Nonlinear Sci-
ence 26, 094815 (2016), https://pubs.aip.org/aip/cha/article-
pdf/doi/10.1063/1.4959804/14615487/094815_1_online.pdf.

58I. Omelchenko, A. Zakharova, P. Hövel, J. Siebert, and E. Schöll, “Non-
linearity of local dynamics promotes multi-chimeras,” Chaos: an interdis-
ciplinary journal of nonlinear science 25, 083104 (2015).

http://dx.doi.org/ 10.1103/PhysRevE.108.L022204
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2023.113846
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2023.113846
http://dx.doi.org/ https://doi.org/10.1016/0022-2364(84)90148-3
http://dx.doi.org/10.1134/S0021364017180059
http://dx.doi.org/10.1134/S0021364017180059
http://dx.doi.org/10.1103/PhysRevLett.101.084103
http://dx.doi.org/10.1103/PhysRevLett.101.084103
http://dx.doi.org/ 10.1209/0295-5075/91/40006
http://dx.doi.org/ 10.1209/0295-5075/91/40006
http://dx.doi.org/10.1063/1.4959804
http://dx.doi.org/10.1063/1.4959804
http://arxiv.org/abs/https://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/1.4959804/14615487/094815_1_online.pdf
http://arxiv.org/abs/https://pubs.aip.org/aip/cha/article-pdf/doi/10.1063/1.4959804/14615487/094815_1_online.pdf

	Impact of pulse exposure on chimera state in ensemble of FitzHugh-Nagumo systems
	Abstract
	Introduction
	System under study
	Ring of FHN systems
	Pulse exposure

	Results
	Regimes induced by periodic Gaussian pulses
	Regimes induced by harmonic influence
	Regimes induced by positive harmonic influence

	Conclusion
	Acknowledgments
	Data Availability Statement


