
Reimplementation of Learning to Reweight Examples for Robust Deep Learning

Parth Patil * Ben Boardley * Jack Gardner * Emily Loiselle * Deerajkumar Parthipan *

Abstract
Deep neural networks (DNNs) have been used to
create models for many complex analysis prob-
lems like image recognition and medical diag-
nosis. DNNs are a popular tool within machine
learning due to their ability to model complex
patterns and distributions. However, the perfor-
mance of these networks is highly dependent on
the quality of the data used to train the models.
Two characteristics of these sets, noisy labels and
training set biases, are known to frequently cause
poor generalization performance as a result of
overfitting to the training set. This paper aims to
solve this problem using the approach proposed
by Ren et al. (2018) using meta-training and on-
line weight approximation. We will first imple-
ment a toy-problem to crudely verify the claims
made by the authors of Ren et al. (2018) and then
venture into using the approach to solve a real
world problem of Skin-cancer detection using im-
balanced image dataset.

1. Problem Statement
Label noise in the training of these models is caused
mainly by the lack of high-quality labels which can
only be produced by extensive human inspection. This
misclassification of data can be done either through attacks
or unintentional classification. Deep neural networks
can be prone to adversarial attacks intended to make
the model respond inaccurately, typically in the form of
dataset poisoning which is done by inputting carefully
crafted data to make the model behave in unintended
ways. Additionally, Frenay’s research summarizes the main
sources for unintentional noise: insufficient information,
subjective classification, and general mistakes (Frénay
& Verleysen, 2014). As for training set biases, they are
often caused by a disproportionate representation of certain
classes in the labeled dataset which lead to the model
weighting these classes differently. This can be formulated
as the training set distribution P (x, y) not aligning with
the real world or evaluation distribution P (xk, yk) (Ren
et al., 2018). Training set biases can also take place when
the nature of the data is imbalanced, an example of this is

in autonomous driving, where, although very important in
classification, emergency vehicles and animals are not seen
as frequently in the dataset, and thus the model may not be
well fine-tuned to these classes.

Current solutions to these issues involve small and costly ad-
justments of hyperparameters to increase or decrease the im-
portance of certain types of labels. Reweighting of training
examples has its roots in classical statistical algorithms used
to downplay the loss generated by outliers. This methodol-
ogy of reweighting is also useful in various areas of machine
learning like LSTMs and curriculum learning. These meth-
ods often have contradictory solutions because they are loss
based. These loss based methods optimize hyperparameters
by solving the equation below

λ∗ = argmin
λ

f(λ,Dtrain, Dtest) (1)

where the function f() measures the loss of a model
generated by a specific algorithm with hyperparameters λ
on training data Dtrain and evaluated on validation data
Dtest.

This hyper-parameter tuning is not only expensive but it
can have contradictions when correcting for noise versus
training set biases. When trying to correct for label noise
many of these algorithms put a larger weight on examples
that have smaller training losses as those are typically the
cleaner images. However, when accounting for imbalance
in datasets, common solutions will aim to give more
weight to examples with larger training loss as those are
commonly the underrepresented class, which can be seen
in many boosting algorithms (e.g. AdaBoost). Due to
the contradiction of the solutions, there are large chal-
lenges posed by datasets that are both noisy and imbalanced.

The effects of noise on an imbalanced data set is explored
in an experiment in which Medicare Part B fraud detection
data is injected with label noise (Kennedy et al., 2021).
This experiment showed that amongst different machine
learning algorithms (Linear Regression, Multi-layer
Perception, Random Forest and XGBoost) all of them saw

1

ar
X

iv
:2

40
5.

06
85

9v
1

 [
cs

.L
G

]
 1

1
M

ay
 2

02
4

Submission and Formatting Instructions for ICML 2023

significant decreases in performance with injected label
noise, including a 20% drop in Area Under Precision Recall
Curve (AUPRC) by the linear regression and an 8% drop
in both XGBoost and Random Forest. The paper being
reviewed aims to help provide an efficient solution for
datasets of this nature.

The proposed solution will aim to provide a more robust
approach to solving the problems faced when using lower-
quality datasets under the assumption that there is a small
high quality validation set that is representative of the task.
This validation set is used to guide the example weight-
ing through each training iteration by finding the optimal
example weights that minimize the validation loss (Ren
et al., 2018). This solution helps solve a research gap as
many current solutions to this issue require extensive learned
hyper-parameters (1) which can be expensive during train-
ing as fine-tuning hyper-parameters is an offline procedure.
The proposed solution will help create an online training
approach without any additional hyper-parameters.

2. Method
The proposed solution aims to provide a more robust
approach to solving the problems faced when using biased
or noisy labeled dataset, under the assumption that there
is a small high quality validation set that is representative
of the task. This validation set is used to guide the
example weighting through each training iteration by
finding the optimal example weights that lead to model pa-
rameters that minimize the validation loss (Ren et al., 2018).

More formally, the model fits a meta-learning objective that
can be implemented along with traditional supervised learn-
ing. Assume that there are both a training set {(xi, yi, 1 <=
i <= N} and a validation set {(xv

i , y
v
i , 1 <= i <= M}

in which M << N . (Ren et al., 2018). The objective of
this method is to minimize the weighted expected loss of
the model in which θ∗(w) is the optimal model parameters
given the weight vector ŵ and a loss function J(θ).

θ∗(w) = argmin
θ

N∑
i=1

wiJi(θ), (2)

The weighted vector ŵ is another optimized parameter. The
objective is to find optimal example weights that will lead to
the θ that minimizes the loss on the validation set. In which
Jv
i is the loss with respect to the validation set and θ∗(w) is

with respect to equation 1.

w∗ = argmin
w,w≥0

1

M

M∑
i=1

Jv
i (θ

∗(w))). (3)

However, as currently formulated this meta learning ob-
jective can be interpreted as nested optimization loops as
shown in equation 3, which can be quite expensive as it
requires iterations over the dataset for every single loop.

w∗ = argmin
w,w≥0

1

M

M∑
i=1

Jv
i (argmin

θ

N∑
i=1

wiJi(θ)). (4)

In order to solve this inefficiency, the paper adopts an online
approach to calculating the weights using gradient descent.
Following a similar approach to traditional Stochastic Gradi-
ent Descent (SGD), this training method involves a descent
step for both θ and the weights, which will be represented
by ϵ. Allow Je,n(θ) = ϵn ∗ Jn(θ) and allow B to be the
current training batch at timestep t. Thus allowing us to
manipulate traditional SGD to the below equation.

θt+1 = θt − α · 1

B

B∑
n=1

∇θJϵ,n(θ) (5)

The optimal weight for example n at time step t can then be
estimated by a gradient descent step on ϵn at the same time
step with respect the to loss on the validation set of size M .

xn,t = −η ∗ ∂

∂ϵn,t

1

M

M∑
i=1

Jv
n(θt+1(ϵ)) (6)

However negative weights can create instability during opti-
mization so w is estimated by.

w̃n,t = max(xn,t, 0) (7)

Due to the fact that example weights need to add to 1, the
weight can be normalized to provide this functionality. In
which δ is the Dirac delta function to prevent an undefined
estimate.

wn,t =
w̃n,t

||w̃t||1 + δ(||w̃t||1)
(8)

Using the gradient descent step on Jv(θ) with respect to
the weights it is possible to reweight examples in a single
iteration allowing us to convert the previous meta-learning
objective into an online learning procedure. Helping create
a robust training implementation without the need to tune
hyperparameters offline.

2.1. Related Work

This solution helps solve a research gap as many current
meta-learning solutions to this issue, such as MAML

2

Submission and Formatting Instructions for ICML 2023

(Finn et al., 2017) and few-shot learning (Ren et al.,
2018), require learned hyper-parameters which can be
expensive during training and thus must be trained offline.
The proposed solution will help create an online training
approach without any additional hyper-parameters.

Another issue among current algorithms that are used
to address these distorted datasets is the contradicting
approaches for problems with training sets that are noisy
and sets that have imbalanced classes. To solve noisy label
training sets, classical algorithms tend to favor examples
with less training loss because they are more likely to be
clean, but solutions to fix class imbalance in datasets, such
as hard negative mining (Malisiewicz, 2011), give more
weight to examples with higher training loss because they
are usually the underrepresented class. By requiring a small
unbiased validation set to guide training, so as not to rely on
loss calculated completely with the biased training set to set
weights, this method allows the proposed solution to resist
overfitting noise better compared to previous literature.

2.2. Learning to reweight examples in a MLP
(Multi-Layer Perceptron Network)

This example gives an algorithm to compute wn,t within a
MLP network, for which we calculate the gradients of the
validation loss w.r.t the local perturbation (ϵ). The MLP is
defined for parameters for each layer, θ = (θl)

L
l=1, where

L is the number of layers. For each layer, zl is the pre-
activation value computed as a weighted sum of inputs, then
a non-linear activation function σ is applied to obtain the
post-activation z̃l

zl = θT z̃l−1

z̃l = σ(zl)

Now, the algorithm computes the gradients of the validation
loss with respect to the perturbation (ϵ). This calculation in-
volves how adjusting the weights of examples can optimise
the training process. These gradients of the validation loss
are approximated by local dot products of the gradients of
loss w.r.t. zl (gl) and the gradients w.r.t. θl (z̃l−1g

T
l).

∂

∂ϵn,t
E[Jv(θt+1(ϵ)|ϵi,t=0]

= − 1

m

∑∑
(z̃vj,l−1T z̃i,l−1)(g

vj,lT gi,l)

This equation shows that the gradient is composed on two
terms, the difference in pre-activation values between vali-
dation and training, and the difference in gradient directions
(gl) for validation and training. This helps us to conclude
that, if a pair of training and validation examples are similar
and provide similar gradient directions, then the training

example is considered to be beneficial and is up-weighted
and conversely, if they provide opposite gradient directions,
it is down weighted.

2.3. Implementation using Automatic Differentiation

The unnormalized weights of examples can be determined
by summing up the correlations between the gradients. It
leverages automatic differentiation to calculate the gradient
of validation loss w.r.t. the example weights in the current
batch. This method unrolls the gradient graph of the training
batch and employs backward on backward differentiation to
obtain second order gradients. The process followed by the
learning to reweight examples usingautomatic differentia-
tion algorithm is as follows:

• Perform a forward pass

• Calculate training loss

• Perform backward pass and compute gradients w.r.t.
model parameters

• Calculate validation loss and gradients using automatic
differentiation

• Update the example weights based in these gradients

• Update the model parameters using gradients from the
training loss.

Because the automatic differentiation method calls for extra
computational steps such as two full forward and backward
passes on both the validation and training sets to calculate
losses and gradients. Also the back on backward pass adds
extra complexity. Due to this the total training period is
about 3 times longer than with ordinary training, since back-
ward passes also takes the same time as a forward pass.

2.4. Proof of Convergence of the Reweighted Training

The paper put forth two theorems to prove the convergence
properties of the proposed method. The discussion on proofs
can be found in the Appendix section of the paper.

1. Theorem 1: The proposed algorithm converges.

2. Theorem 2: The rate of convergence within ϵ is less
than O(1/ϵ2)

3. Experiment
3.1. Toy Problem: Implementation Summary

Sections 3.1-3.4 aim to reimplement the reweighted model
using a toy problem. The toy example we use to display the
robust effects of this algorithm is an image classification task

3

Submission and Formatting Instructions for ICML 2023

using the CIFAR-10 dataset. We use a simple convolutional
neural network (CNN) model with two different training
schemes: the reweighting algorithm and the more traditional
stochastic gradient descent (SGD) algorithm. Upon analysis,
our replication of the proposed model was able to accurately
reproduce the results and generate a more robust model than
the traditional model.

3.2. Toy Problem: Dataset

The CIFAR-10 dataset includes ten classes, each with 6,000
images. This dataset is commonly used as a benchmark
because of its low-resolution images which pose a challenge
for models to learn features. Also its diverse set of classes
make it suitable for testing the generalization capabilities
of models. In our analysis, the distribution of these images
were manipulated to simulate biased training sets.

3.3. Toy Problem: Implementation Details

The architecture of our simple CNN model consists of three
convolutional layers followed by a max pooling layer to
downsample the number of datapoints in the feature map to
reduce computational complexity. This is then followed by
two fully connected layers.

In our implementation we compare the performance of tra-
ditional SGD with that of the paper, learning to reweight
model parameters. In this experiment we utilize an imbal-
anced CIFAR10 dataset. In the traditional SGD approach
we use 60 epochs with a learning rate of 0.001 and momen-
tum of 0.9. Similarly, the model trained with reweighting
uses the same SGD learning rate and momentum. However,
in each epoch the algorithm different from the traditional
SGD, before we take descent steps on the model param-
eters we utilize meta-learning to optimize the weights of
each sample’s loss to minimize the error on the represen-
tative validation set. In order to implement meta-learning
we leveraged the higher library which allows us to create a
meta model that can be used to optimize the weight vector,
without effecting the true model’s parameters. After opti-
mizing the weights, we then took a gradient descent step on
the true model, using the weighted loss. Our code for the
implementation can be found in the citations here (Team19,
2024).

3.4. Toy Problem: Results

We analyzed the effects of the reweighting algorithm by
simulating different amounts of training set bias for a given
class. In Figure 1, the reweighting trained model’s accuracy
is compared to the SGD trained model as the percentage
of the training dataset for a single class is increased. For
example, at the 60% mark, 60% of the training data is

associated with a single class while the remaining 40% is
split evenly among the other nine classes. The model that
used the reweighting training algorithm was able to out
perform the control SGD trained model’s accuracy in each
test between 50-90%. It can also be seen that as the amount
of class bias increases, the difference in accuracy increases
even further.

Figure 1. Accuracy of Model Trained with SGD vs Model Trained
with Reweighting Algorithm

3.5. Toy Problem: Conclusion

The implementation demonstrates the ability of the
reweighted method to produce better results on improperly
scaled datasets compared to traditional methods. While the
accuracy attained by the model in this paper was much lower
than the one proposed by Ren et al. (2018), this discrepancy
can be explained by the fact that our resources only allowed
us to train and test on the CIFAR-10 dataset rather than
larger equivalent datasets like CIFAR-1000. Additionally,
the model in Ren et al. (2018) was only trained and tested
on image recognition tasks with 2 classes rather than 10.
Going forward, our next step would be to demonstrate how
our model can perform better than traditional models on
datasets with increased noise.

3.6. Real-world Problem Description

Sections 3.6-3.10 aims to reimplement the reweighted
model using a real-world problem. Skin cancer can be
deadly if not detected and treated early and accurately.
Thus, an accurately trained model that automates diagnosis
of suspicious lesions would be able to help patients seek
medical intervention sooner, decreasing the risks for
patients earlier on. Additionally, automatic diagnosis of
skin lesions can help with consistency, healthcare resource
allocation, and ease of access to quick diagnoses.

4

Submission and Formatting Instructions for ICML 2023

Oftentimes, human diagnosis can be subjective and prone
to errors, leading to both overdiagnosis and underdiagnosis.
Using automated diagnosis models will allow for more
consistent and objective assessment. This automated
system can then also be easily deployed widely, allowing
patients to quickly obtain initial diagnoses without needing
appointments. This in turn would be able to help hospitals
optimize resource usage, as the need for extensive manual
review of screenings and tests is decreased.

One issue faced oftentimes when creating an automated
diagnosis model is class imbalance in the datasets available.
This imbalance is caused because several types of lesions
are much more rare compared to other types. In many of the
modern algorithms used to train models, this imbalance may
cause much higher inaccuracy for these minority classes.
Additionally, these datasets can be prone to inaccurate
labelling due to human error which can further hurt the
accuracy of the model.

In order to deal with this class imbalance, we will use the
training algorithm described by Ren et al. (2018) to dynami-
cally adjust the loss function during training.

3.7. Real-world Dataset

The dataset employed for this task is the HAM10000 (”Hu-
man against Machine with 10000 training images”) dataset.
This dataset consists of 10015 dermatoscopic images that
contain a characteristic set of 7 different diagnostic classes,
collected from multiple populations. These classes in-
clude ”Actinic keratoses and intraepithelial carcinoma /
Bowen’s disease (akiec), basal cell carcinoma (bcc), benign
keratosis-like lesions (solar lentigines / seborrheic keratoses
and lichen-planus like keratoses, bkl), dermatofibroma (df),
melanoma (mel), melanocytic nevi (nv) and vascular lesions
(angiomas, angiokeratomas, pyogenic granulomas and hem-
orrhage, vasc)” (Tschandl, 2018). This dataset was chosen
as our algorithm for reweighting examples should be well
equipped to handle a dataset that has the imbalanced nature
seen in this dataset. The training samples per class can be
seen in Figure 2.

3.8. Real-world: Intended Outcome

Through this experimentation we would like to prove that
learning to reweight examples can provide results beyond
that of traditional Stochastic Gradient Descent (SGD) and
other reweighting algorithms (e.g. boosting algorithms). In
addition we hope that our re-implemented model can be
competitive with the top 10 performances of task 3, lesion
diagnosis, in the 2018 ISIC Competition, as the testing
ground truth has been released. The balanced multi class
accuracy in the top 10 range from 78% to 88% on the leader-

Figure 2. Distribution of training dataset

board (Com).

3.9. Real-world Problem: Experimental Setup

In our implementation of models built to solve this classifi-
cation, we use three schemes for training: the reweighting
algorithm described in (Ren et al., 2018), a conventional
stochastic gradient descent (SGD) algorithm without any
weighting, and an algorithm with a static weighted sampler
implemented using Pytorch’s weighted RandomSampler.
For all of these schemes, our models were built by fine-
tuning a pretrained Resnet50 model. The un-weighted and
weighted sampler schemes were trained with 20 epochs
while the model trained with the reweighting algorithm un-
derwent 8 epochs. All 3 models had a learning rate of 0.001
and momentum of 0.9 and used stochastic gradient descent
to optimize their parameters. In the weighted sampler model,
the imported algorithm ensures that all data points are used
during training but adjusts the probability of selecting each
class in each of the training batches based on the distribution
of classes in the training set. These weights differ from our
reweighting implementation as it is an offline process with
pre-calculated probabilities selected before training while
our implementation adjusts the weights during the training
process. The comparison between these three approaches
will help demonstrate the effectiveness of the learning to
reweight parameters algorithm.

The reweighting algorithm was implemented using a similar
approach as was previously described in the toy problem
in subsection 3.3. Additionally, we extracted two different
validation sets for training purposes. The first validation
set was a small balanced subset used to train our example
weighting, consisting of 3 samples per class. The second
validation subset was used to test the generalization of our
model after each epoch. This subset was also balanced in
order to impartially generalize the overall accuracy of the
model with 15 samples per class.

5

Submission and Formatting Instructions for ICML 2023

For testing, we utilized the 2018 ISIC challenge’s test data
set and ground truth. We used a balanced multi-class accu-
racy function to match the metric used by the challenge’s
official submission website. This involves averaging the in-
dividual accuracy of each class. Our Implementation can be
found at the github repository cited in this paper (Gardner
et al., 2024).

3.10. Real-world Problem: Results

The balanced multi-class accuracy of the different training
methods can be seen in Table 1. The performance of our im-
plemented algorithm exceeds the performance of weighted
random sampler and the unweighted training by 48.87% and
51.49% respectively. The implemented method can be seen
to be an effective approach for handling class imbalance.
However, we were unable to produce results competitive
with the top 10 in the leader-board of the ISIC Challenge
in which the cutoff was 78%, however with more resources,
training time, and experimentation with different models
the performance may have been able to improve.

Table 1. Balanced Multi-class Accuracy

Model Learning Method Accuracy(%)

ResNet50 Learning to Reweight 65.56
ResNet50 Weighted Sampler 16.69
ResNet50 Unweighted Training 14.07

In Table 2 we can see that the learning to reweight algo-
rithm has a better distribution of class accuracy than the
other methodologies. The other two training techniques had
several classes with a 0% accuracy, which is most likely
attributed to the imbalanced nature of the problem. Our
algorithms dynamic adjustment of weights during training
seems to be an effective way of dealing with this difficulty.
Additionally, our algorithms success can also be attributed
to the small balanced validation set that the example weights
are trained on.

In figure 3 and 4 we can see the confusion matrices of the
unweighted learning algorithm and the learning to reweight
algorithm. In these figures we can see the diagonal (correct
predictions) of the reweight algorithm is more dominant
than in the unweighted algorithm. We can also see that the
unweighted algorithm commonly mistook the nv class for
bkl and bcc classes while the reweighting algorithm seemed
to correct this misconception.

Table 2. Summary of Testing Accuracy for Different Classes
Class Learning to Reweight (%) Unweighted Training (%) Weighted Sampler (%)

nv 74.48 7.04 86.25
mel 69.59 0.0 0.0
bkl 54.38 39.63 26.27
bcc 80.65 49.46 4.30
akiec 55.81 2.33 0.0
vasc 62.86 0.0 0.0
df 61.3 0.0 0.0

Figure 3. Confusion Matrix for Unweighted Training

Figure 4. Confusion Matrix for Learning to Reweight Training

6

Submission and Formatting Instructions for ICML 2023

4. Conclusion
Our results show that the re-weighting algorithm we have
re-implemented is able to effectively handle class imbal-
ance. We have demonstrated that this approach signifi-
cantly outperforms traditional training methods like SGD
and Weighted Random Sampling. Potential progressions
of our implementation would be to test the effectiveness of
handling a dataset with a combination of both label noise
and class imbalance and compare it more thoroughly with
other possible solutions. The main feature of the real-world
problem addressed in this paper is class imbalance, although
label noise could have also been introduced into the dataset
from incorrect diagnosis caused by human error. Finding
a dataset with natural label noise or creating one through
random poisoning could help us better see the effects of the
reweighting algorithm.

Additionally, our algorithm, as mentioned previously, was
unable to achieve competitive results compared to the top
performers of the official 2018 ISIC Challenge. This dis-
plays the fact that even with a training algorithm that is
able to do well against issues like class imbalance and label
noise, there are still many other variables and approaches
that need to be refined when creating a model. Still, with
more resources and experimentation, we believe that our
approach could achieve higher accuracy and improve its
standing in the leader-board.

In conclusion, our study contributes to the growing body of
literature on addressing class imbalance in machine learn-
ing applications, particularly in medical diagnosis. By re-
implementing and validating the learning to reweight algo-
rithm’s findings, we provide a valuable tool for researchers
to improve the accuracy and reliability of automated diag-
nostic systems.

References
ISIC Challenge 2018. https://challenge.
isic-archive.com/data/#2018. Accessed:
2024-04-09.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. CoRR,
abs/1703.03400, 2017. URL http://arxiv.org/
abs/1703.03400.

Frénay, B. and Verleysen, M. Classification in the presence
of label noise: A survey. Neural Networks and Learning
Systems, IEEE Transactions on, 25:845–869, 05 2014.
doi: 10.1109/TNNLS.2013.2292894.

Gardner, J., Boardley, B., et al. Ece 50024 final project
code. https://github.com/jgardner21/
MLProject, 2024.

Kennedy, R. K. L., Johnson, J. M., and Khoshgoftaar, T. M.
The effects of class label noise on highly-imbalanced big
data. In 2021 IEEE 33rd International Conference on
Tools with Artificial Intelligence (ICTAI), pp. 1427–1433,
2021. doi: 10.1109/ICTAI52525.2021.00227.

Malisiewicz, T. Exemplar-based representations for object
detection, association and beyond, 2011.

Ren, M., Zeng, W., Yang, B., and Urtasun, R. Learning
to reweight examples for robust deep learning. In Dy,
J. and Krause, A. (eds.), Proceedings of the 35th Inter-
national Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pp.
4334–4343. PMLR, 10–15 Jul 2018. URL https://
proceedings.mlr.press/v80/ren18a.html.

Team19. Reweighting for Deep Learning. https:
//github.com/Parth1811/reweighting_
for_deep_learning, 2024.

Tschandl, P. The HAM10000 dataset, a large collection
of multi-source dermatoscopic images of common pig-
mented skin lesions, 2018. URL https://doi.org/
10.7910/DVN/DBW86T.

7

https://challenge.isic-archive.com/data/#2018
https://challenge.isic-archive.com/data/#2018
http://arxiv.org/abs/1703.03400
http://arxiv.org/abs/1703.03400
https://github.com/jgardner21/MLProject
https://github.com/jgardner21/MLProject
https://proceedings.mlr.press/v80/ren18a.html
https://proceedings.mlr.press/v80/ren18a.html
https://github.com/Parth1811/reweighting_for_deep_learning
https://github.com/Parth1811/reweighting_for_deep_learning
https://github.com/Parth1811/reweighting_for_deep_learning
https://doi.org/10.7910/DVN/DBW86T
https://doi.org/10.7910/DVN/DBW86T

Submission and Formatting Instructions for ICML 2023

5. Appendix
5.1. Theorem 1

Assuming the loss function is Lipschitz-smooth with con-
stant L, have σ-bounded gradients and learning rate αt =
2n
Lσ2 , it can be shown that,

G(θt + 1) ≤ G(θt) (9)

Where,G(θt) =
1

M

M∑
i=1

Jv
i (θt+1(ϵ)) (10)

Further, the theorem also states a strong relation for the
expectation of the loss function. It says that for any time
step, the expectation of loss function is equal to the value of
the previous time step if and only if the gradient of loss is
equal to zero; that is, convergence only happens at a minima.
Mathematically E[G(θt+1) = G(θt)] ⇔ ∇G(θt) = 0

The proof for this theorem is two parts. First, the authors use
the Lipschitz-smoothness of the loss function to establish
this inequality

G(θt + 1) ≤ G(θt) +∇GT∆θ +
L

2
||θ||2 (11)

This equation, upon simplifications using the algorithm’s
∆θ, yields the equation (12) below. Here τt is positive and
so is 1−Lαtσ

2

2n because of the assumption regarding learning
rate.

G(θt + 1) ≤ G(θt)−
αt

n
τt

(
1− Lαtσ

2

2n

)
(12)

Next the authors, use of τt to show that E[τt] = 0 ⇔
∇G(θt) = 0. This fact is then used to prove the second part
of the theorem.

5.2. Theorem 2

The following proof is used to determine the convergence
rate of the method. If we assume G is Lipschitz-smooth with
constant L and the training loss function fi has σ-bounded
gradients, it can be proven that E[∥∇G(θt)∥2] ≤ ϵ within
O(1/ϵ2) steps.

Beginning from the gradient descent update rule:

θt+1 = θt − αt∇G(θt), (13)

and αt ≤ 2n
Lσ2 as per the given conditions.

Since G is known to be Lipschitz-smooth,

G(θt+1) ≤ G(θt)+∇G(θt)
⊤(θt+1−θt)+

L

2
∥θt+1−θt∥2.

(14)

We can substitute the update rule into the inequality:

G(θt+1) ≤ G(θt)− αt∥∇G(θt)∥2 +
Lα2

t

2
∥∇G(θt)∥2.

(15)

Next we use the bound on αt to solve for ∥∇G(θt)∥2

∥∇G(θt)∥2 ≤ 2

αt(2− Lαt)
(G(θt)−G(θt+1)). (16)

From there, we can take the expectation of both sides. Af-
ter summing both sides of the equation over T steps and
dividing by T , we are left with the following result:

min
0<t<T

E[∥∇G(θt)∥2] ≤
1

T

T−1∑
t=0

E[∥∇G(θt)∥2], (17)

Since the right side of the equation is independent of con-
vergence, we can express it as a constant C, divided by

√
T .

The
√
T represents the diminishing impact of each step on

reducing the gradient norm as T increases.

min
0<t<T

E[∥∇G(θt)∥2] ≤
C√
T
. (18)

Thus, it has been shown that the algorithm can converge to
a constant ϵ in O(1/ϵ2) steps.

8

