
Host-Based Allocators for Device Memory
1st Oren Bell

Washington University in St Louis
St Louis, USA

oren.bell@wustl.edu

2nd Ashwin Kumar
Washington University in St Louis

St Louis, USA
ashwinkumar@wustl.edu

3rd Chris Gill
Washington University in St Louis

St Louis, USA
cdgill@wustl.edu

Abstract—Memory allocation is a fairly mature field of com-
puter science. However, we challenge a prevailing assumption in
the literature over the last 50 years which, if reconsidered, ne-
cessitates a fundamental reevaluation of many classical memory
management algorithms. We pose a model where the allocation
algorithm runs on host memory but allocates device memory
and so incur the following constraint: the allocator can’t read
the memory it is allocating.

This means we are unable to use boundary tags, which is
a concept that has been ubiquitous in nearly every allocation
algorithm. In this paper, we propose alternate algorithms to work
around this constraint, and discuss in general the implications
of this system model.

Index Terms—GPU, FPGA, hardware acceleration, heteroge-
neous computing, memory management

I. INTRODUCTION

This paper concerns itself with conventional dynamic mem-
ory management, i.e., algorithms to manage a heap of memory
that clients can request and free blocks from at any time. The
field of dynamic memory management could be said to have
been started by Knuth [1]. Some 30 years of progress is well
summarized by Wilson and Johnstone [2][3] in their compre-
hensive survey. Since then, further improvements have been
made [4][5][6][7], but overall the subject can be considered to
be highly mature.

Most existing memory management algorithms include
metadata as headers or footers within allocated blocks. In
contrast, our system model assumes that the allocator is
running on a host system, managing device memory. This may
occur, for example, if part of a computation is offloaded to
a GPU or FPGA device while the rest of the computation
runs on a multicore processor. This in turn implies that the
compute device cannot (conveniently and efficiently) access
the memory it manages. Therefore, any data needed by the
allocation algorithm cannot be stored in its allocated blocks.

We motivate this system model by considering the usecases
surrounding how device memory is managed. In the current
state of the art, memory allocation/deallocation is either done
on the peripheral compute device in often proprietary device
drivers. This causes memory allocators to be treated as a fixed
black box.

However, different applications may have differing needs
to manage their memory. The most optimal allocator may
be high performant, real-time constrained, or have domain-
specific characteristics catering to the application. Fixing the
allocator choice in proprietary drivers and hardware denies

developers the choice to optimize this aspect of their program
through selective mapping of portions of the application and
its supporting libraries to different computational devices. Ex-
amples of such applications include drone cinematography [8]
and real-time hybrid simulation experiments in earthquake
engineering [9].

For our work, we assume that existing hardware and drivers
are used to allocate arbitrarily large blocks of memory, but
finer-grained memory allocation is then done in userspace
by the host machine. As was mentioned previously, these
allocators are constrained by the inability to read the memory
they are managing and cannot store metadata in allocated
blocks. We present alternative algorithms that overcome this
constraint.

In Section III, we propose alternative measures to overcome
this constraint of being unable to read managed memory.
In Sections IV and V, we present our updated alternative
allocation algorithms. We compare the performance of one
of our algorithms to the default CUDA memory allocation
functions in Section VI. Finally, we conclude in Section VII
with thoughts on implementations and usecases for this work.

II. BACKGROUND AND RELATED WORK

Before introducing our new algorithms, we present a brief
survey on existing memory allocation algorithms. Broadly
speaking, these fall into 4 categories[2].

Sequential Fits
Free and allocated blocks of memory are linked to-
gether using header information within the allocated
block itself. The resulting structure is called a free
list. Examples include first fit, next fit, and best fit.

Segregated Lists
Portions of free data are grouped by size to aid
in the lookup of a suitable block, including simple
segregated storage, segregated fit, and TLSF.

Buddy Systems
Free blocks are only allowed to coalesce with a
preassigned buddy. Generally sized in strictly powers
of 2. Examples include binary buddy[10] and double
buddy[10][11]

SIMD Allocators
Allocators designed for massively parallel programs
[5][7][12] where multiple threads may be requesting
memory simultaneously. These are typically used in

ar
X

iv
:2

40
5.

07
07

9v
1 

 [
cs

.S
E

] 
 1

1 
M

ay
 2

02
4



device code. In this paper, we consider memory is
preallocated by host code, prior to a kernel launch.

A. Sequential Algorithms

Although there are a multitude of sequential algorithms,
they all boil down to the same idea: all free blocks are kept in
a free list, which is iterated through until a suitable block is
identified for allocation. The only difference is what qualifies
as a ”suitable block”.

The following are some of the most common sequential
algorithms.

Best Fit
The entire free list is iterated and the smallest block
that is greater than the requested size is used. The
search is terminated if a candidate block is exactly
of the requested size.

First Fit
The first block that is large enough to accommodate
the requested size is used.

Next Fit
Like first fit, except each traversal of the free list
resumes from the last position, instead of starting
over from the beginning.

In real world scenarios, tests have shown that next fit
performs the best in terms of allocation time, although it
suffers a fragmentation penalty compared to the others.

B. Segregation Algorithms

In segregation algorithms, multiple free lists are maintained
for different size classes. There are three primary types.

Simple Segregated Storage
Under this algorithm, every allocation request is
rounded up to the next power of two. Free blocks
are not split, and freed blocks are not coalesced. If
a requested allocation has no available blocks in the
free list for its size class, then a new block is created
from the free heap.

Segregated Fit
This variation allows blocks to be split. Since not
all blocks within a given size class are the same
size, allocation requests are always serviced using
the class size that is one degree of magnitude larger.
Since all blocks in the larger class size are guaranteed
to be large enough to accommodate the request,
it is unnecessary to perform iteration. These free
lists are then treated like queues, only interacting
with the front element. This prevents the frivolous
search of a free list with no viable candidates, and
reduces the allocation time to O(1). Additionally, it
can perform deallocation in O(1) time, making it
highly suitable for real-time systems, which require
bounded execution.
One commonly used implementation is Doug Lea’s
Malloc[13]. It is a segregated fit algorithm that uses a
combination of logarithm and linear spacing between

its bins, achieving very low fragmentation in real-
world evaluations[2]. It serves as the basis for the
default allocator in the C programming language.

Two-Level Segregated Fit (TLSF)[14][15][6]
Two-level segregated fit builds on the idea of seg-
regated fit. As with segregated fit, TLSF has log-
arithmic size classes, but each size class is further
divided into linear size classes. This retains the O(1)
allocation and coalescence time complexity of seg-
regated fit, but drastically reduces the fragmentation
problem.

C. Buddy Systems

Buddy Systems[16][10] can be considered a subclass of
segregation algorithms[2], in that memory is sorted into size
classes. However, they bear the additional constraint that freed
blocks cannot be coalesced with any neighbor, only with a
preordained buddy.

When an allocation request is made, it is rounded up to the
size class. The heap is then split into two buddy blocks. The
first is split further, and so on recursively until the desired size
class is created. Like with segregated fit, each size class has
a free-list allowing allocation in O(1) time.

After deallocation, if two buddies are both free, they are
coalesced. This operation can be performed recursively up the
binary heap, possibly taking O(logn) time.

This unbounded deallocation time means that applications
with real-time constraints are often better served by a conven-
tional segregated fit algorithm (such as TLSF).

Like with simple segregated storage, the commitment to
block classes at strict sizes by this algorithm can result in a
great deal of internal fragmentation within allocations. This
can be somewhat assuaged by variants to the algorithm, listed
below.

Binary Buddies[1][10]
The traditional and simplest implementation. It op-
erates exactly as described above.

Double Buddies[10][11]
To partially resolve the internal fragmentation issue
of conventional buddies, double buddies keeps two
heaps with staggered class sizes, e.g., one heap with
sizes of 2, 4, 8, ... and another with 3, 6, 12, ...

Fibonacci Buddies[17]
This approach assumes the heap size is a Fibonacci
number. Since every Fibonacci number is the sum
of two other Fibonacci numbers, blocks can be split
recursively. This split is uneven, helping address
the internal fragmentation caused by using strictly
powers of 2. The ratio between consecutive size
classes using Fibonacci buddies is approximately
ϕ ≈ 1.618

D. SIMD Allocators

This is a broad class of allocators designed for use specifi-
cally in SIMD systems, where many allocation requests may



be made in parallel, creating risk for contention. A survey of
currently available work is done in [12].

Such allocators are often designed to avoid or eliminate
locking overhead and are typically useful when threads in
a GPU need to simultaneously allocate small amounts of
memory in device code. This doesn’t align with our model
of host-based allocation code, and caters to a different use-
case.

Our work is useful for parallel applications that are highly
heterogeneous, intermixing both unaccelerated and accelerated
tasks. The accelerated tasks operate on memory allocated prior
to kernel launch. In such a system, all the memory allocation
calls, both for host and device memory, would be done from
host code.

Meanwhile, these SIMD allocators require execution of
device code to run, leaving them outside the scope of the inter-
sectional memory model we put forward. Furthermore, it has
been demonstrated[18] that invoking device calls the manage
CUDA memory causes implicit device-wide synchronization
operations, impacting unrelated processes on the system. This
presents a motivation to avoid device calls where possible.
Managing device memory on the host achieves this.

III. ALTERNATIVES TO FREE LISTS

Our paper explores a model in which the host device man-
ages allocation of device memory. This prevents the allocator
from reading the memory being managed, which presents new
challenges not encountered in traditional memory allocation
schemes. A key hurdle is that we cannot use boundary tags,
a standard approach that was first mentioned by Knuth [1].

The traditional usage of boundary tags is illustrated in
Figure 1. A free list is formed by a linked list of blocks that
are available for reuse. The header points to the next element
in the free list, and the footer points to the header of the
same block, which enables coalescence between two adjacent
blocks in O(1) time. After a block is freed, one can subtract
the footer size from the block’s address to obtain the address
of the header of the prior block. From there, one can check if
that prior block is in the free list, and if so, the two will be
coalesced. The next block in the free list can also be checked
to see if it’s adjacent in memory, possibly coalescing a total
of three blocks.

These free lists are used in all Sequential Fit and Segregated
Fit algorithms and a replacement mechanism will be needed
to implement these in device memory.

A. Arrays and Hybrid Array Lists

Array-based implementations of a free list for Sequential Fit
algorithms using sub-pagesize allocations have high overhead,
due to the potentially large number of small allocations. If we
assume the smallest allocation size is 8 bytes, and an additional
8 bytes is needed to point at the free block, then the allocator
would need a quantity of host memory equal to the device
memory it is supposed to be managing. However, this is true
even for conventional sequential fit allocations. Between the

Fig. 1: Demonstration of Boundary Tags

header and footer boundary tags, the worst case overhead is
potentially 75%.

With an array-based approach, we track all blocks, free
or in-use. So each allocation of device memory only needs
a single word (8 bytes) as overhead in host memory. We
assume that we can spare a bit to indicate whether the block
is free or not. Allocation and coalescence would naively be
O(n) operations, corresponding to array insertion and deletion
respectively, but we can reduce this by using Hybrid Array
Lists (HALs)[19]

Our implementation is informed from prior literature[19],
and detailed in Appendix A, which describes insertion, re-
moval, and searching of a HAL. Two separate HALs are
maintained: one to track free blocks, and another to track in-
use blocks.

Algorithm 1: Memory Allocation
Data: used list tail, free it, size ≥ 0
addr ← free it.addr;
if free it.size > size then

▷ Split entry to only use space needed
free it.address+ = size;
free it.size− = size;

else
remove(free it);

it← search(used list tail, addr);
insert(it+ 1, {addr, size});
return addr;

The allocation algorithm (Algorithm 1) assumes that a can-
didate free block has already been identified: see Section IV
for discussion on that selection process. Given a candidate
block in the free list, it must be moved to an in-use list, and
possibly may be split if the block is larger than the request.

The free list is also guaranteed to always have at least one
entry: the heap itself.

During deallocation (Algorithm 2), a block is removed from
the in-use list and added to the free list. It will check the prior



and subsequent blocks in the free list and perform coalescence
if it is possible.

Partial deallocation is supported, e.g., freeing the last 2kB
of a 10kB block. In the event of a partial deallocation, the in-
use block will be shrunk, and otherwise it is simply removed
from the in-use list.

When inserting into the free list, the previous and subse-
quent (aka left and right) blocks are checked and coalesced if
either (or both) is adjacent to the block being inserted.

Algorithm 2: Memory Deallocation
Data: free list tail, used list tail, addr ≥ 0

▷ Find chunk in used list
it← search(used list tail, addr);
size← it.size;
▷ Remove the chunk from the used list (or shrink it, in

the case of partial deallocation)
if it.addr = addr then

remove(it);
else

it.size = addr − it.addr;
size− = it.size;

left← search(free list tail, addr);
right← left+ 1;
if left.address+ left.size ≥ addr then

if right.address ≤ addr + size then
end← right.address+ right.size;

else
end← addr + size;

left.size← end− left.address
else if right.address ≤ addr + size then

right.size← right.address+ right.size− addr;
right.address← addr;

else
insert(right, {addr, size});

B. Bitmasks
Assuming O(n) searches are acceptable, one way to mini-

mize overhead is through the use of bitmasks. In this approach,
device memory is divided into its smallest allocatable size
(e.g., 8 bytes), and the only overhead is a single bit in host
memory to indicate whether that block is free or not. If we
consider an allocation size lower bound of 8 bytes to be the
worst case scenario, this creates an overhead of only 1.5%
(one bit for 8 bytes). That produces 16MB of overhead for a
gigabyte of device memory.

Allocation is done by finding a contiguous string of set bits
in the bitmask corresponding to the desired size. For example,
to allocate 1kB of memory, it is necessary to find a string of
128 bits that are all ones, incurring an O(n) cost for allocation,
on the order of the address space size. The clz and ffs
hardware instructions can be used to accelerate a bitsearch
such as this.

All these bits must then be set to zero to indicate their
corresponding blocks are in use. When the block is freed,

they are all returned to ones (coalescence is implicit here).
This means allocation and deallocation operations also incur
an O(s) cost, on the order of the block size.

Bitmasks have low overhead and relatively high time com-
plexity on the order of allocation size. Because of the low
overhead, a potential use-case is to use bitmasks to manage
a pool of small memory chunks, either of the same size (as
in an object pool) or commingled varying sizes, as described
above.

We can optimize the allocation search complexity by using
the next-fit method. Prior work[20][1] has shown that next-
fit improves on temporal performance over other sequential
searches.

C. Hash Tables

Another strategy is to use a hashtable, keyed by device
memory address, to store all the information typically found
in the header and footer of an allocated block.

The traditional algorithms for free-list traversal and coales-
cence operation would need to be modified to accommodate
an extra step to lookup data in the hashtable. Additionally, the
in-use blocks would also need to be tracked in the hashtable as
well, as they also have necessary information in their header
and footer.

With the use of hash tables, we aim to achieve O(1)
allocation and deallocation, so co-mingling free and in-use
blocks will not be a major performance concern.

The key for the hash table is the address of a block. The
value contains i) the block size, ii) the address of the next
block in a free list, iii) the address of a previous block in
a free list, iv) the address of the previous block adjacent in
address space. Thus we can create, in effect, free lists that span
across a hash table. The ability to easily maintain multiple free
lists is useful for segregated fit algorithms.

The primary downside of this approach is the overhead.
Each entry contains 6 words (the key, block size, two refer-
ences for a doubly linked list, one reference for a prior adjacent
block, and a reference for a separate list linking collisions in
the hash table). This means that in the worst case scenario,
minimum allocation size of one word, the overhead is ∼ 83%.
This is comparable to the worst case overhead of 80% seen in
doubly linked free lists in conventional host-only algorithms.
However, we only recommend this approach for applications
with a fewer small allocations, such as those with a larger
minimum block size, or any applications for which segregated
fit algorithms are applicable.

D. Comparison

Below is a comparison of the three different strategies for
replacing free lists. For allocation time of HALs and Hash
Table lists, we ignore traversal when considering allocation.
When these approaches are used in segregation algorithms
(discussed later in Section V), they are often treated as stacks,
with the head of the list always being a viable candidate.
Bitmasks do not have this benefit. Searching for an allocation
candidate will always require traversal of the memory space.



Approach WC Overhead Allocation Coalescence
HALs 50% O(1) O(n/m + m)

Bitmasks 1.5% O(n) O(s)
Hash Table 87% O(1) O(1)

n is the size of memory being managed. m is the size of an
array block in a hybrid-array-list. s is the size of the allocated
block.

Hybrid array lists are distinguished by their unbounded
deallocation time. Even if an allocation algorithm doesn’t
require traversal to allocate a block, it may require traversal
to coalesce. Since these hybrid array lists are intended to
be sorted, entries are not guaranteed to remain in the same
location in the list.

Allocation takes constant time, assuming all free blocks are
eligible candidates, as is the case in segregation algorithms,
which maintain multiple free lists for different size classes.
Under this assumption, the last address in the list can be
removed, which is as simple as decrementing a counter in
the corresponding block. If the list must be traversed, as is
the case of sequential algorithms (discussed in Section IV),
then allocation becomes a O(n/m + m) process. This speed
up in traversal, combined with lower overhead, makes HALs
an ideal replacement for free lists where sequential algorithms
are concerned.

Bitmasks always a require a traversal to identify an allo-
cation candidate. This can be substantially sped up using the
find-first-set command, which can search for 1-bit in a 64-bit
word in a single machine-level instruction. This is still O(n),
but offers a reasonable strategy for managing smaller object
pools.

Storing linked lists in Hash Tables incurs a substantial
overhead, so it is not recommended for smaller allocations. It
does permit constant-time algorithms to retain their constant-
time execution, which is crucial for real-time systems. This
makes hash table stored lists the ideal replacement for free
lists where segregation algorithms are concerned.

IV. SEQUENTIAL ALGORITHMS

All sequential algorithms are essentially the same, except
for their stopping criteria. Below we include an algorithm for
using best fit on device memory with hybrid array lists. This
is followed by a description of the modifications needed for
next-fit and first-fit.

Best-fit tries to find the smallest block that is large enough
to accommodate the requested size. If a block with an identical
size is found, the search can stop. However, it often requires
traversing the entire list.

Contrarily, next-fit and first-fit select the first free block
that is greater than or equal to the requested size. Next-fit
is distinct from first-fit because it resumes the next allocation
search where the last one left off. First-fit is memoryless and
always restarts from the beginning of the free list.

All of the sequential algorithms use the same deallocation
process, illustrated in Algorithm 2.

Algorithm 3: Best Fit Allocation
Data: free list tail, used list tail, size ≥ 0
it← free list tail;
candidate← it;
it++;
while it.size ̸= size & it ̸= free list tail do

if it.size < candidate.size & it.size ≥ size
then

candidate← it;
end
it++;

end
▷ Invoke Algorithm 1 on candidate block

return allocate(used list tail, candidate, size);

V. SEGREGATION ALGORITHMS

A. Segregated Fit

Algorithm 4: Allocate memory in segregated fit
Data: free lists, bitmask, hashtable, size ≥ 0
▷ Find available free list large enough to accommodate
requested bins← 1≪ ceil(log2(size));
order ← ffs(requested bins);

▷ Lookup head of candidate list in hashtable
it = ht[free lists[order]];
free lists[order]← it.next free;
it.free = False;

▷ Split off surplus portion of block
if size < it.size then

new block.size← it.size− size;
new block.free← True;
new block.addr ← it.addr + size;
new block.prev adj ← it.addr;
new block.prev ← 0;
it.size← size;

▷ Place new block at head of free list in its size
class bin idx← floor(log2(new block.size));
new block.next = free lists[bin idx];
new block.prev = 0;
ht[new block.next].prev = new block.addr;
free lists[bin idx] = new block.addr;
bitmask ← bitmask | (1≪ binidx);
ht[new block.addr+new block.size].prev adj ←
new block.addr;

▷ Insert into the hashtable
ht[new block.addr] = new block;

ht[it.addr] = it;
return it.addr;

In segregated fit, multiple free lists are maintained in size
buckets for different powers of 2. Unlike sequential fit, the
lists aren’t searched. Instead, the first block is always selected.
Given a requested size, it is rounded up to the nearest order of



magnitude, and then the first block from that list is selected.
This means (assuming no empty free lists) the selected block
may be nearly 4x larger than the requested size, causing 75%
fragmentation, as discussed in prior literature [2] [3].

Algorithm 5: Deallocate memory in segregated fit
Data: free lists, bitmask, hashtable, addr ≥ 0
it← ht[addr];
left← ht[it.prev adj];
right← ht[it.addr + it.size];
if left.free then

if right.free then
▷ Coalesce all 3, erase it and right

left.size+ = it.size+ right.size;
ht[right.addr + right.size].prev adj ←
left.addr;

▷ Update bitmask
if right.prev = right.next then

unset bit← 2floor(log2(right.size));
bitmask ← bitmask & ¬unset bit;

remove(right);
else

▷ Coalesce left block, erase it
left.size+ = it.size;
right.prev adj ← left.addr;

if it.prev free = it.next free then
unset bit← 2ceil(log2(it.size));
bitmask ← bitmask & ¬unset bit;

remove(it);
it = left;

else if right.free then
▷ Coalesce right block

it.size+ = right.size;
ht[right.addr + right.size].prev adj ← it.addr;

▷ Update bitmask
if right.prev = right.next then

unset bit← 2floor(log2(right.size));
bitmask ← bitmask & ¬unset bit;

remove(right);
▷ Put coalesced block in free list in its size class

bin idx← floor(log2(it.size));
it.next = free lists[bin idx];
ht[it.next].prev = it.addr;
it.prev = 0;
free lists[bin idx] = it.addr;
it.free = True;
ht[it.addr] = it;
bitmask ← bitmask | 2bin idx;

All lists are initialized pointing at a null block: an invalid
block in the hashtable is meant to indicate the end of a free
list. Accompanying this array of lists is an availability bitmap
that can indicate which lists are non-empty. If the free list for
a desired size class is empty, the next eligible list can be found
by using the find-first-set (ffs) bit operation on the bitmap.

Our implementation stores the free lists in a hashtable, as
discussed in Section III-C. Algorithm 4 and 5 show pseu-
docode for allocation and deallocation, respectively.

B. Two-Level Segregated Fit for Device Memory

Two-Level Segregated Fit[14][15][6] (TLSF) is a real-time
dynamic memory allocation algorithm. Its primary benefits are
reduced fragmentation and O(1) allocation and deallocation. It
is an extension of segregated fit, dividing class sizes not only
logarithmically, but also linearly, in a two-tiered system.

The allocation and deallocation steps are functionally the
same, except the lookup step requires consulting 2 bitmasks.
One is logarithmic and functions just as detailed in Algorithm
4 and Algorithm 5. TLSF differs in that this points at another
bitmask which subdivides the space linearly, as illustrated in
Figure 2. This tier then points to a free list of blocks in that
size class. If the free list is non-empty the linear bitmask will
have a corresponding 1 set. If the linear bitmask is non-zero,
then the logarithmic bitmask will have a corresponding 1 set.

Fig. 2: TLSF Data Structure[15]

Free list manipulations are done the same way as in segre-
gated fit, so Algorithms 4 and 5 only need to be modified
to account for this two-tiered lookup process and bitmask
manipulation.

C. Hybrid Allocators and Object Buffers

Hybrid approaches may also be employed, using object
buffers to manage object pools for allocations smaller than
a page (<4kB), and segregated lists for larger allocations.

Object pools allow for the efficient allocation of vast
amounts of small allocations, but are not a practical approach
for larger allocations. A hybrid approach can permit the best
of both worlds.

But it is important to consider the practical use of such
a hybrid approach in this context. A host-based allocator
for device memory is unlikely to allocate large numbers of
small objects, but rather large memory blocks that are passed
to a kernel call for a hardware-accelerated device. If small
allocations are created, they would be intermediary memory



Fig. 3: Latency of malloc and free

allocated by device code, likely using a SIMD allocator such as
XMalloc[5] or ScatterAlloc[7]. These allocators are designed
to handle many allocation requests in parallel without the need
for locks, a usecase that doesn’t apply to the host-based model
we have presented in our paper.

So, our usecase would be best served by limiting the
smallest granularity to a medium sized value, such as 4kB,
and exclusively using a segregated fit algorithm.

VI. EVALUATION

Evaluating the nuanced use cases that this work targets is
challenging. SIMD allocators do not offer a proper target for
comparison since our allocators are run from the host and
not intended for parallelization. Many good memory allocator
benchmarks also exist for host memory[21], including real-
world applications. However, they too are unsuitable for
comparison since the device memory we are allocating is
inaccessible.

Instead, we compare our work to the default cuda allocator.
We adapted the malloc-large benchmark from the MiMalloc
benchmark suite[21] to use an implementation of our seg-
regated fit algorithm. This algorithm randomly allocates and
frees blocks 1kB and 16MB in size, several thousand times.

As a baseline, we also ran the benchmark with ordinary
calls to cudaMalloc and cudaFree. The order and size of the
alloc and free operations was consistent between our work and
the baseline. Latency comparisons between the two are shown
in Figure 3.

Our work outperforms the default CUDA allocator by 2
orders of magnitude. There are some outliers during program
initialization where the segeregated fit malloc can take up-
wards of 2ms, but these disappear as the program settles into
a steady state.

We measure fragmentation in our experiments (Figure 4) by
tracking not only the memory in use by the benchmark, but
also the physical device memory provisioned to the benchmark
process. In our segregated fit allocator, we observe a roughly
50% fragmentation ratio. This is consistent with prior work[2]

Fig. 4: Memory usage during benchmark

on segregated fit. A Two-Level Segregated Fit allocator would
see improved fragmentation[6].

VII. CONCLUSION

We note that prior work on dynamic memory allocation
relies on free lists and boundary tags. We’ve posed a hetero-
geneous system model where memory is stored on one device
and managed from another. After observing that existing al-
gorithms are no longer applicable, we’ve provided alternatives
to free lists and updated versions of classic sequential and
segregated fit algorithms.

An implementation of our segregated fit algorithm was
tested against conventional calls to cudaMalloc and cudaFree.
It was found that, after a warmup period, our work consistently
outperformed the CUDA calls by two orders of magnitude.
This is mainly due to its implicit and efficient memory
recycling.

We do not claim to outperform established GPU allocators
[12] at scale, nor to address their highly parallelized use-
cases. However, in specific circumstances where kernels are
not expected to allocate memory and diverse accelerated com-
putation is combined into a large heterogeneous application,
performance benefits can be achieved by managing memory
on the host. It is unnecessary to invoke device calls to free
memory, and instead it can be dynamically recycled.

ACKNOWLEDGEMENTS

This work was sponsored by NSF Grant 2229290
This work was edited with the assistance of ChatGPT

REFERENCES

[1] D. E. Knuth, “The art of computer programming, vol 1: Fundamental,”
Algorithms. Reading, MA: Addison-Wesley, 1968.

[2] M. S. Johnstone and P. R. Wilson, “The memory fragmentation problem:
Solved?” ACM Sigplan Notices, vol. 34, no. 3, pp. 26–36, 1998.

[3] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles, “Dynamic stor-
age allocation: A survey and critical review,” in International Workshop
on Memory Management. Springer, 1995, pp. 1–116.

[4] S. S. Craciunas, C. M. Kirsch, H. Payer, A. Sokolova, H. Stadler,
and R. Staudinger, “A compacting {Real-Time} memory management
system,” in 2008 USENIX Annual Technical Conference (USENIX ATC
08), 2008.



[5] X. Huang, C. I. Rodrigues, S. Jones, I. Buck, and W.-m. Hwu, “Xmalloc:
A scalable lock-free dynamic memory allocator for many-core ma-
chines,” in 2010 10th IEEE International Conference on Computer and
Information Technology. IEEE, 2010, pp. 1134–1139.

[6] M. Masmano, I. Ripoll, A. Crespo, and J. Real, “Tlsf: A new dynamic
memory allocator for real-time systems,” in Proceedings. 16th Euromi-
cro Conference on Real-Time Systems, 2004. ECRTS 2004. IEEE, 2004,
pp. 79–88.

[7] M. Steinberger, M. Kenzel, B. Kainz, and D. Schmalstieg, “Scatteralloc:
Massively parallel dynamic memory allocation for the gpu,” in 2012
Innovative Parallel Computing (InPar). IEEE, 2012, pp. 1–10.

[8] R. Bonatti, W. Wang, C. Ho, A. Ahuja, M. Gschwindt, E. Camci,
E. Kayacan, S. Choudhury, and S. Scherer, “Autonomous aerial cine-
matography in unstructured environments with learned artistic decision-
making,” Journal of Field Robotics, vol. 37, no. 4, pp. 606–641, 2020.

[9] J. Condori, A. Maghareh, J. Orr, H.-W. Li, H. Montoya, S. Dyke, C. Gill,
and A. Prakash, “Exploiting parallel computing to control uncertain
nonlinear systems in real-time,” Experimental Techniques, vol. 44, pp.
735–749, 2020.

[10] J. L. Peterson and T. A. Norman, “Buddy systems,” Communications of
the ACM, vol. 20, no. 6, pp. 421–431, 1977.

[11] D. S. Wise, “The double buddy-system,” 1978.
[12] M. Winter, M. Parger, D. Mlakar, and M. Steinberger, “Are dynamic

memory managers on gpus slow? a survey and benchmarks,” in Proceed-
ings of the 26th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, 2021, pp. 219–233.

[13] D. Lea and W. Gloger, “A memory allocator,” 1996.
[14] M. Masmano, I. Ripoll, P. Balbastre, and A. Crespo, “A constant-time

dynamic storage allocator for real-time systems,” Real-Time Systems,
vol. 40, no. 2, pp. 149–179, 2008.

[15] M. Masmano, I. Ripoll, and A. Crespo, “Dynamic storage allocation
for real-time embedded systems,” Proc. of Real-Time System Simposium
WIP, 2003.

[16] K. C. Knowlton, “A fast storage allocator,” Communications of the ACM,
vol. 8, no. 10, pp. 623–624, 1965.

[17] D. S. Hirschberg, “A class of dynamic memory allocation algorithms,”
Communications of the ACM, vol. 16, no. 10, pp. 615–618, 1973.

[18] M. Yang, “Avoiding pitfalls when using nvidia gpus for real-time tasks in
autonomous systems,” in Proceedings of the 30th Euromicro Conference
on Real-Time Systems, 2018.

[19] M. R. A. Sara, M. F. Klaib, and M. Hasan, “Hybrid array list: An
efficient dynamic array with linked list structure,” Indonesia Journal on
Computing (Indo-JC), vol. 5, no. 3, pp. 47–62, 2020.

[20] C. Bays, “A comparison of next-fit, first-fit, and best-fit,” Communica-
tions of the ACM, vol. 20, no. 3, pp. 191–192, 1977.

[21] D. Leijen, B. Zorn, and L. de Moura, “Mimalloc: Free list sharding in
action,” in Programming Languages and Systems: 17th Asian Sympo-
sium, APLAS 2019, Nusa Dua, Bali, Indonesia, December 1–4, 2019,
Proceedings 17. Springer, 2019, pp. 244–265.



Fig. 5: Structure of Hybrid Array List

APPENDIX

A hybrid array list (HAL) is a series of fragmented chunks
of an array linked together in a linked list. This allows for
accelerated lookup times while retaining the O(1) insertion
and deletion times of conventional linked lists. Incorporating
hashtables can reduce lookup time to O(1) as well.

Each chunk is not assumed to be full, but it is assumed
to have contiguous entries. The entries are references to free
blocks and are stacked in the front half of the chunk, with the
rear half leaving room for expansion. The entries are assumed
to be sorted. A diagram of our HAL design is presented in
Figure 5.

Insertion and removal operations do not trigger a full sort
within the chunk. Since the chunk is already sorted, all entries
after that point are shifted to create or occupy the empty space.
The insertion/deletion point can be easily identified with a
O(logn) binary search of the chunk.

If insertion would cause the chunk to overflow, then it is
split in two. If a removal would cause the chunk to be empty,
then it is removed from the larger linked list.

As in prior work, the time complexity of insertion and
removal operations from Hybrid Array Lists scales only on
the size of the array chunk, not the length of the entire list.

An algorithm is shown for initialization, Algorithm 6.
Interactions with the HAL are described below.

A. Insert

Once an insertion point has been identified, every item in
the chunk at and past that point must be shifted over. If the
chunk is already completely full, it is first split, with half its
contents going to a new chunk.

After the shifting process, the item is inserted into its
selected location. Insertion time is linear with respect to the
maximum size of the chunk, but does not scale with the size
of the wider list.

B. Remove

To remove an item from a chunk, every item after that point
is shifted over to overwrite it.

If the item to be removed is the last item in the chunk,
the chunk is removed from the HAL by standard linked-list
procedure.

C. Search

It is worth noting that, for our memory management
purposes, search is done in reverse order. Given that x is the
requested deallocation address, yd is the corresponding block

to be deallocated, and y is the set of all blocks, we say

yd = max(yi ∈ y) | yi ≤ x

As we iterate over the free list, we check the first (smallest)
entry in each chunk. If it is larger than x, clearly yd is
not present, and we can continue checking the next previous
chunk. Once an entry yi ≤ x, then we know that yd is
somewhere in the current chunk. At this point, a simple binary
search can identify it.

In a more general sense, search over a sorted HAL is done
linearly over each chunk until one is confirmed to contain the
element. Then a binary search is done within the chunk.

D. Iterators

As with any container, we can define iterators for a hybrid-
array list to abstract the container into an ordered range. An
iterator is implemented as the pair of a chunk reference and
an index within that chunk.

The increment operation is normally as simple as increment-
ing the index. However, if doing so would push it past the end
(index ≥ count), then we perform

chunk ← chunk.next

index← 0
(1)

Decrement operations are very similar but in reverse. The
index is normally decremented, but if doing so would cause
it to be negative, then we perform

chunk ← chunk.prev

index← chunk.count− 1
(2)

Algorithm 6: Initialize Hybrid-Array List
free list head← alloc page
used list head← alloc page
free list head.count← 1
free list head.prev ← NULL
free list head.next← NULL
free list head.blocks[0].address← heap start
free list head.blocks[0].size← heap size
used list head.count← 0
used list head.prev ← NULL
used list head.next← NULL


	Introduction
	Background and Related Work
	Sequential Algorithms
	Segregation Algorithms
	Buddy Systems
	SIMD Allocators

	Alternatives to Free Lists
	Arrays and Hybrid Array Lists
	Bitmasks
	Hash Tables
	Comparison

	Sequential Algorithms
	Segregation Algorithms
	Segregated Fit
	Two-Level Segregated Fit for Device Memory
	Hybrid Allocators and Object Buffers

	Evaluation
	Conclusion
	References
	Appendix
	Insert
	Remove
	Search
	Iterators


