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Abstract

Successive Convex approximation (SCA) methods have shown to improve the empirical convergence of non-

convex optimization problems over proximal gradient-based methods. SCA uses a strongly convex surrogate and

offers a more flexible framework to solve such optimization problems. Further, in decentralized optimization, which

aims to optimize a global function using only local information, the SCA framework has been successfully applied to

achieve improved convergence. Still, the stochastic first order (SFO) complexity decentralized SCA algorithms have

remained under-studied. While non-asymptotic convergence analysis has been studied for decentralized deterministic

settings, its stochastic counterpart has only been shown to converge asymptotically.

We have analyzed a novel accelerated variant of the decentralized stochastic SCA that minimizes the sum of

non-convex (possibly smooth) and convex (possibly non-smooth) cost functions. The algorithm viz. Decentralized

Momentum-based Stochastic SCA (D-MSSCA), iteratively solves a series of strongly convex subproblems at each

node using one sample at each iteration. The key step in non-asymptotic analysis involves proving that the average

output state vector moves in the descent direction of the global function. This descent allows us to obtain a bound

on average iterate progress and mean-squared stationary gap. The recursive momentum-based updates at each node

contribute to achieving stochastic first order (SFO) complexity of O(ǫ−3/2) provided that the step sizes are smaller

than the given upper bounds. Even with one sample used at each iteration and a non-adaptive step size, the rate is at

par with the SFO complexity of decentralized state-of-the-art gradient-based algorithms. The rate also matches the

lower bound for the centralized, unconstrained optimization problems. Through a synthetic example, the applicability

of D-MSSCA is demonstrated.
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I. INTRODUCTION

We consider the following decentralized stochastic non-convex composite optimization problem:

U⋆ = min
x∈Rd

U(x) :=
1

n

n
∑

i=1

ui(x) + h(x) (P)

s.t. g(x) ≤ 0

* both the authors have equal contribution
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where ui(x) = E [fi(x, ξi)]. Local objective function fi : R
d → R is assumed to be non-convex, smooth and known

only to agent i. Regulariser h : Rd → R is a convex and possibly non-smooth function and constraint g : Rd → R

is a convex function. Also, both g, h are publicly known. The form of problem (P) arises in multiple areas, such

as statistical inference, decision-making in sensor networks, and machine learning problems [1].

Existing methods to solve (P) include projected and proximal stochastic gradient methods [2]–[7] and Successive

Convex Approximation (SCA) [8], [9] methods. The performance of these algorithms is measured in terms of the

number of stochastic first order (SFO) oracle calls required to reach a ǫ- Karush-Kuhn Tucher (KKT) point. While

[2] proposes a projected DSGD-type algorithm for problems with a compact constraint set, [3] goes ahead and

establishes the asymptotic convergence of DSGD for a family of non-convex, non-smooth functions. Further, in [4],

a decentralized stochastic proximal primal-dual method called SPPDM is proposed, assuming that the epigraph of

h is a polyhedral set. Only three works address non-asymptotic iteration complexity analysis for stochastic non-

convex composite problems with a general convex non-differentiable regularizer h. While DProxSGT [6] achieves

sub-optimal rate of O(ǫ−2) without mean-squared smoothness assumption, ProxGT-SR-O/E [5] and DEEPSTORM

[7] achieve an optimal convergence rate of O(ǫ−3/2). However, the problem with ProxGT-SR-O/E [5] is that it

uses large batches and more communication rounds at each iteration. Even though DEEPSTORM [7] overcomes

the use of more communications rounds, it still uses small batches to achieve the optimal rate.

Unlike the above methods, SCA methods offer a more flexible framework to solve non-convex optimization

problems since the first work done by [10]. At each iteration, SCA solves a convexified sub-problem formed by

approximating the non-convex functions using convex functions called surrogates. Different from other competitive

algorithms like Expectation-Minimization (EM) and Majorization-Minimization (MM) SCA offers more freedom

in the choice of surrogates which can be tailored to a specific problem at hand [11], [12]. Even though there is

a rich body of work on SCA [13]–[23], their non-asymptotic analysis has largely remained understudied. Under

stochastic centralized settings, through non-asymptotic convergence analysis of SCA it was shown that AsySCA

[22] archives a rate of O(ǫ−2). Further, combining accelerated momentum-based updates with SCA has improved

the rate to O(ǫ−3/2) in [23].

Under decentralized settings, there are only a handful of SCA algorithms [8], [9], [24] including both deterministic

and stochastic cases. In [24], the authors proposed an SCA-based decentralized algorithm, NEXT, . A stochastic

variant, S-NEXT, was proposed in [9]; however, they did not apply the momentum to the update steps. In both

works, only asymptotic convergence has been proven. Recently, [8] introduced a decentralized momentum-based

algorithm that employs Nesterov-like momentum, providing the first non-asymptotic analysis of decentralized SCA

methods for deterministic case. However, their analysis introduced a new metric tailored to SCA, and the detailed

proofs were only provided for the case where the functions ui-s are convex. To the best of our knowledge, there is

no comprehensive non-asymptotic convergence analysis for decentralized consensus stochastic non-convex problems

within the SCA rubric in the literature.

In this work, we have analyzed a novel Decentralized Momentum-based Stochastic SCA (D-MSSCA) algorithm

to solve decentralized stochastic non-convex composite optimization problems. The D-MSSCA hinges on SCA

techniques and iteratively solves a convexified subproblem at each node using recursive momentum [25] type local
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TABLE I

COMPARISON OF ORACLE COMPLEXITIES OF DECENTRALIZED CONSENSUS STOCHASTIC NON-CONVEX COMPOSITE OPTIMIZATION

ALGORITHMS FOR EXPECTATION (POPULATION RISK) PROBLEMS. (TO MAKE COMPARISONS FAIR, WE HAVE CONVERTED THE

SFO-COMPLEXITIES OF ALL THE ALGORITHMS TO MATCH OUR DEFINITION OF (6))

Algorithm SFO complexity Asymptotic/ Non-Asymptotic Remarks

projected DSGD [2] - Asymptotic compact constraint set

[3] - Asymptotic family of non-convex nonsmooth functions

SPPDM [4] O(ǫ−2) Non-Asymptotic epigraph of h is polyhedral

ProxGT-SR-O/E [5] O(ǫ−3/2) Non-Asymptotic Multiple communication, larger batches per iteration

S NEXT [9] - Asymptotic SCA based

DProxSGT [6] O(ǫ−2) Non-Asymptotic without MSS assumption

DEEPSTORM [7] O(ǫ−3/2) Non-Asymptotic gradient-based, small batches per iteration

D-MSSCA (This work) O(ǫ−3/2) Non-Asymptotic SCA based

gradient updates to reach the ǫ−KKT point with an optimal convergence rate of O(ǫ−3/2). Our analysis extends

the methods used in gradient-based approaches [5], [7] to SCA framework. The key challenge in the convergence

analysis was to form a descent inequality for the global function U at the average state-vector of D-MSSCA in

terms of iterate progress, which we have overcome by utilizing the strong convexity of the surrogate. This descent

helped us in bounding the mean-squared stationary gap, a more general metric than that used in [8] for analyzing

non-convex functions. Unlike the Nesterov updates used in [8], our use of recursive momentum-type updates

significantly contributes to this advancement. Finally, simulations on a synthetic problem empirically validate the

theoretical findings.

A comparative performance of various state-of-the-art algorithms that can be used to solve (P) has been provided

in Table I. It can be observed that even with one sample per iteration, the proposed D-MSSCA algorithm is able

to achieve the optimal convergence rate. Additional remarks are also provided in the table.

A. Notations

We denote vectors (matrices) using lowercase (uppercase) bold font letters. For a vector x, we denote its transpose

by xT and its i-th element by [x]i. Likewise, the (i, j)-th component of A is given by Aij . An n-dimensional identity

matrix is denoted by In. The n-dimensional all-one vector is denoted by 1n. The Kronecker product is denoted using

⊗. The d-dimensional average of any nd−dimensional vector a ∈ R
nd, is represented by ā = 1

n

(

1T

n ⊗ Id
)

a ∈ R
d.

For a vector y, ‖y‖ denotes its ℓ2 (Euclidean) norm, Maximum eigenvalue of A is represented by λmax(A). The

set of neighbours of node i is denoted by Ni. For a non-smooth function h+ 11X , ∂ (h+ 11X ) |x=a represents the

set of sub-gradients of h(x) + 11X (x) at x = a. For the ease of writing we have defined ∇xf̃(x,x
t
i, ξ

t
i) |x=a:=

∇f̃(a,xt
i, ξ

t
i).

The rest of the paper is organized as follows. Section II discusses the proposed algorithm, and the assumptions

on the problem are discussed. In Section III, the convergence proof of the proposed algorithm is presented. Section

IV briefly describes the proposed algorithm’s applicability to a synthetic problem.
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II. PROPOSED METHOD

A. Problem

Consider a network of n agents or nodes communicating over a fixed undirected graph G = (V , E), where V

is the set of nodes and E is a set of edges or links. An edge (i, j) ∈ E represents a communication link between

nodes i and j. Now we re-write the decentralized problem (P) as,

min
x∈X

1

n

n
∑

i=1

ui(x) + h(x) (Pc)

where X = {x ∈ R
d | g(x) < 0}.

B. Proposed Algorithm

We will now state the proposed algorithm. Each node is initialized at an arbitrary feasible point x1
i ∈ X , which

satisfies g(x1
i ) ≤ 0. Each node i constructs a strong convex surrogate f̂i and solves the following optimization

problem based upon the private knowledge of fi and public knowledge of h and g;

x̂t
i = argmin

xi∈X
f̃i
(

xi,x
t
i, ξ

t
i

)

+ πt
i

(

xi − xt
i

)

+ h(xi) (1)

where f̂ is strongly convex and

f̃i
(

xi,x
t
i, ξ

t
i

)

= f̂i
(

xi,x
t
i, ξ

t
i

)

+ (1− β)
(

zt−1
i −∇fi(x

t−1
i , ξti)

) (

xi − xt
i

)

(2)

with πt
i = yt

i−zti and β is the step size. One choice of f̂ can be f̂i (xi,x
t
i, ξ

t
i ) = fi (x

t
i, ξ

t
i)+∇fi (x

t
i, ξ

t
i) (xi − xt

i)+

µ
2 ‖xi − xt

i‖
2
. Each node then performs the following two updates

xt+1
i =

n
∑

j=1

Wi,jv
t
j =

n
∑

j=1

Wi,j

(

xt
j + α

(

x̂t
j − xt

j

))

. (3)

zt+1
i = ∇fi(x

t+1
i , ξt+1

i ) + (1− β)
(

zti −∇fi(x
t
i, ξ

t+1
i )

)

(4)

This update is inspired from [26]. It should be noted that in (4) we have used local momentum-based gradient

estimator zti [25], [27]. Also, it is noteworthy that the update (4) can also be seen as a convex combination of

vanilla SGD and SARAH-type gradient estimator [28]. Finally, we perform a global gradient update:

yt+1
i =

n
∑

j=1

Wi,j

(

yt
j + zt+1

j − ztj
)

. (5)

The D-MSSCA algorithm is summarised in Algorithm 1:

C. Assumptions

We will now state the assumptions required for the proposed algorithm. The assumptions are divided among the

following 3 heads, viz assumption on (P), those on the surrogate, and those on the network,

May 14, 2024 DRAFT
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Algorithm 1 Decentralized -Momentum based Stochastic SCA (D-MSSCA) at each node i

1: Require x1
1 = x1

2 = · · · = x1
n, α, β > 0, τi, {wij}nj=1, Sample ξ1i , z

0
i = ∇fi(x

0
i , ξ

1
i ) = 0,y1

i = z1i =

∇fi(x
1
i , ξ

1
i ),

2: for t = 1 to T do

3: Minimize local surrogate as per (1)

4: Obtain local update of the solution as per (3)

5: Sample ξt+1
i and update the local gradient estimates as per (4)

6: Update the global gradient estimates as per (5)

7: end for

8: Output x̃T selected uniformly at random from {x̂t
i}

i∈V
0≤t≤T

1) Assumptions on (P):

A1. U is bounded below, i.e., inf
x∈Rd

U(x) > −∞

A2. Let Ht represent the history of the system generated by {ξτi }
τ≤t−1
i={1,2,..,n}, then

E
[

∇fi(x
t, ξti | H

t)
]

= ∇ui(x
t);

A3. Bounded Variance: E
[

‖∇fi(x, ξ
t
i )−∇ui(x)‖

2
]

≤ σ2
i ∀x ∈ R

d, σ̄2 =
∑n

i=1 σ
2
i

A4. Each local function fi is Li− smooth;

E
∥

∥∇fi(x
t, ξt)−∇fi(y

t, ξt)
∥

∥ = LiE
∥

∥xt − yt
∥

∥ ;

Global function u is L−smooth, and Lmax = maxi{Li}, where
∑n

i=1 Li ≤ L ≤ nLmax

Assumptions A1- A4 are standard in the context of distributed optimization [29]. A direct consequence of A1 is

that for an initial point x1
i ∈ X we have U(x̄1) − U⋆ ≤ B1. Assumption A4 implies that U is also L-smooth. is

introduced to simplify the analysis.

2) Assumptions on the surrogate: Two assumptions on the surrogate choice are:

A5. Tangent matching: ∇f̂i(x
t,xt, ξti) = ∇fi(x

t, ξti);

A6. Each surrogate f̂i of local function fi is µi− strongly convex.

Assumptions A5 and A6 are standard in the context of SCA and restrict the choice of surrogates. A consequence

of A5 is that ∇f̃i (x
t
i,x

t
i, ξ

t
i) = zti .

3) Assumption on Network:

A7. Graph G (V , E) is undirected, connected and communication matrix W is doubly stochastic. Wi,i > 0 for all

i in N and for i 6= j, wij > 0 wherever (i, j) ∈ E , Wi,j = 0 otherwise.

May 14, 2024 DRAFT
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D. Approximate optimality

The performance of the proposed algorithm is studied in terms of its SFO complexity. We define the following

metric, viz mean-squared stationary gap [30], that provides the number of calls to the SFO oracle to achieve an

ǫ-KKT point in expectation.

1

n

n
∑

i=1

1

T

T
∑

t=1

E

[

∥

∥∇u(x̂t
i) + ŵt

i

∥

∥

2
]

≤ ǫ (6)

where ŵt
i ∈ ∂(h+ 11X )(x̂t

i). If (6) holds then the output x̃ of D-MSSCA is chosen uniformly at random from the

set {x̂t
i}

i∈V
0≤t≤T then we have E

[

‖∇u(x̃) + ŵx̃‖
2
]

≤ ǫ.

III. CONVERGENCE ANALYSIS

In this section, we will provide a detailed convergence analysis of the D-MSSCA algorithm and compare its rate

with other state-of-the-art algorithms. For the analysis, we have defined the concatenated vectors x,y, z, x̂ ∈ R
nd

by concatenating corresponding local vectors {xi ∈ R
d}i∈V , {yi ∈ R

d}i∈V , {zi ∈ R
d}i∈V , {x̂i ∈ R

d}i∈V of all the

nodes. Utilizing these concatenated vectors, we can write the update equation (3) and (5) in a more compact form

as below,

xt+1 = W
(

xt + α
(

x̂t − xt
))

, (7)

yt+1 = W
(

yt + zt+1 − zt
)

, (8)

where, W = W ⊗ Id ∈ R
nd×nd. Furthermore, we have defined the concatenated local gradient vector ∇u(xt) :=

[∇u1(x
t
1)

T,∇u2(x
t
1)

T, · · · ,∇un(x
t
n)

T]T ∈ R
nd, where ∇ui(x

t
i) ∈ R

d for all i ∈ V . For the sake of brevity, we

define for all t

θt =

∥

∥

∥

∥

xt −
1

n
(1n ⊗ Id) x̄

t

∥

∥

∥

∥

(consensus error), (9)

δt = x̂t − xt (iterate progress), (10)

φt = E

[

∥

∥z̄t − ∇̄u(xt)
∥

∥

2
]

(global gradient variance), (11)

υt = E

[

∥

∥zt −∇u(xt)
∥

∥

2
]

(network gradient variance), (12)

εt = E

[

∥

∥

∥

∥

yt −
1

n
(1n ⊗ Id) ȳ

t

∥

∥

∥

∥

2
]

(gradient tracking error). (13)

We began our analysis by stating some standard results used in decentralized optimization in Lemma 1 [5], [26], [31].

Next, Lemmm 2, Lemma 3 and Lemma 4 establish the contraction relations for θt, φt, υt and εt. Proceeding further,

using these contraction results, we bounded the cumulative error accumulation
∑T

t=1 E [θt] ,
∑T

t=1 φ
t,
∑T

t=1 ε
t and

∑T
t=1 υ

t in Lemma 6, Lemma 7, and Lemma 8. Lemma 7, then extends these findings to provide bounds on the

accumulated average iterate progress
∑T

t=1 E [δt] under certain step-size conditions. Finally, Theorem 1 uses all

these results to quantify the SFO complexity of D-MSSCA.

The results presented in Lemma 2-8 are can be obtained by applying the findings of [26] to SCA. However,

our bounds are different as we have defined the quantities in terms of δ rather than υ, and the variations in the
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intermediate steps are detailed in the proof. The results in Lemma 9 and Lemma 10 are different from [26] due to

our focus on average progress ∆T = 1
T

∑T
t=1 E

[

∥

∥δt
∥

∥

2
]

. Results similar to those in Lemma 10 are presented in [8];

however, in that work, the bounds are achieved for a deterministic case. The results of Lemma 10 and Theorem 1

are entirely novel to the considered class of problem.

Lemma 1. Under Assumptions A4 and A7, we have the following results for all t ≥ 1, where xt,yt, zt are

variables of D-MSSCA at iterate t.
∥

∥

∥

∥

Wx−
1

n

(

1n1
T

n ⊗ Id
)

x

∥

∥

∥

∥

≤ λW

∥

∥

∥

∥

x−
1

n

(

1n1
T

n ⊗ Id
)

x

∥

∥

∥

∥

∀x ∈ R
nd, (14a)

∥

∥

∥

∥

∥

n
∑

i=1

∇ui(x̄
t)−

1

n

(

1T

n ⊗ Id
)

∇u(xt)

∥

∥

∥

∥

∥

2

≤
L2

n

∥

∥

∥

∥

xt −
1

n

(

1n1
T

n ⊗ Id
)

xt

∥

∥

∥

∥

2

, (14b)

ȳt = z̄t, (14c)

‖x̄− ȳ‖2 ≤
1

n
‖x− y‖2 for any x,y ∈ R

nd, (14d)

where λW := λmax(W− 1
n11

T). The proofs of the above results are straightforward and can be found in [12],

[32]. In the proof of (14a), the contraction property of doubly stochastic symmetric matrices is used; in (14b), the

smoothness of the functions ui (i ∈ V); in (14c), the special initialization condition of vt and the doubly stochastic

property of W; and in (14d), the property of norm with the Cauchy-Schwarz inequality. The next Lemma bounds

the consensus errors in the xt−updates (7) of the D-MSSCA algorithm.

Lemma 2. Under Assumption (A7), for the xt− updates of D-MSSCA algorithm, the following inequality holds

for all t ≥ 2 and η1 > 0

(θt)2 ≤ (1 + η1)λW
2
(

θt−1
)2

+

(

1 +
1

η1

)

α2λW
2
∥

∥δt−1
∥

∥

2
.

The proof of Lemma 2 is provided in Appendix A and follows by applying update step (7), then separating

the terms using Young’s inequality. Finally, by utilizing the properties of the communication matrix W (14a); we

obtain the desired results. Similar contraction bounds on θt have been achieved in various gradient-tracking based

decentralized optimization algorithms [26], [32]. However, our bound is slightly different because we define it

in terms of θt−1 and
∥

∥δt−1
∥

∥

2
instead of θt−1 and υt−1, as seen in literature. Next, we will bound the gradient

variances.

Lemma 3. Under Assumptions A2-A4, and Assumption A7, The following inequalities hold for the iterates produced

by D-MSSCA algorithm, where t ≥ 2, 0 < α < 1, η1, η2, η3 > 0

φt ≤ (1 − β)2φt−1 +
3L2(1− β)2

n2

(

1 +
1

η2

)

E

[

(

θt
)2

+ nα2

∥

∥

∥

∥

(

1

n
1T ⊗ Id

)

δt−1

∥

∥

∥

∥

2

+
(

θt−1
)2

]

+
(1 + η2)β

2σ̄2

n2
, (15)

and

υt ≤ (1− β)2υt−1 + 3L2(1− β)2
(

1 +
1

η3

)

[

(

θt
)2

+ nα2

∥

∥

∥

∥

(

1

n
1T ⊗ Id

)

δt−1

∥

∥

∥

∥

2

+
(

θt−1
)2

]

May 14, 2024 DRAFT
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+ (1 + η3)β
2σ̄2. (16)

The proof of Lemma 3 proceeds along the similar lines as the proof in [26, Lemma 3]. However, our final

bounds are in terms of δ̄
t−1

rather than z̄t−1 in [26]. This difference is due to the x−update of D-MSSCA (3),

which differs from GT-HSGD algorithm proposed in [26]. The proof uses the unbiased nature of the local gradient

estimate zti . Furthermore, as the gradient estimate at each node is independent of those at other nodes given the

history sequence Ht, we can omit the cross terms of inner products appearing in the intermediate steps to obtain

simplified expressions. Finally, by applying Assumption A4 alongside xt
i updates, we get the desired result.

Lemma 4. Under Assumptions A2-A4 and A7, the following inequality holds for β ∈ (0, 1), ∀t ≥ 2,

εt ≤
1 + λW

2

2
εt−1 +

4β2λW
2

1− λW
2 υ

t−1 + 3λW
2β2σ̄2 +

36λW
2L2

1− λW
2 E

[

(θt−1)2
]

+
36α2λW

2L2

1− λW
2 E

[

∥

∥δt−1
∥

∥

2
]

.

The above lemma bounds the error in local estimation of the global gradient. The proof uses the yt−update (8),

applies conditional expectation, and simplifies intermediate steps using Assumptions A2,A3, and A4. Finally, by

utilizing the consensus error bound in Lemma 2 and few mathematical simplification we achieved the desired result.

The elaborated proof can be found in Appendix B. The next Lemma provides the basic results of non-negative

sequences, which are necessary to bound the error accumulation in subsequent lemmas.

Lemma 5. The recursions of well-defined sequences can be bound as below:

1) Let {V t}t≥0, {Qt}t≥0 be non-negative sequences and C > 0 be some constant such that V t ≤ qV t−1 +

Qt−1 + C for some q ∈ (0, 1) and for all t ≥ 1. Then the following inequality holds ∀T ≥ 1

T
∑

t=0

V t ≤
V 0

1− q
+

∑T−1
t=0 Qt

1− q
+

CT

1− q
. (17)

2) Let {V t}t≥1, {Qt}t≥1 be non-negative sequences and C > 0 be some constant such that V t ≤ qV t−1 +

Qt−1 + C for some q ∈ (0, 1) and for all t ≥ 2. Then the following inequality holds ∀T ≥ 1

T
∑

t=1

V t ≤
V1

1− q
+

∑T
t=2 Q

t−1

1− q
+

CT

1− q
. (18)

The above mentioned recursion results align with [26, Lemma 6], and the proof follows a similar approach. For

the complete proof, refer to [26]. Using the stated lemmas, we can now establish upper bounds for the cumulative

errors up to iteration T , as detailed in the following lemmas.

Lemma 6. For the proposed D-MSSCA algorithm, following inequality holds: ∀T > 1, α ∈ (0, 1),

T
∑

t=1

E

[

(

θt
)2
]

≤
4α2λW

2

(

1− λW
2
)2

T−1
∑

t=1

E

[

∥

∥δt
∥

∥

2
]

.

The above result can be obtained by summing both sides of the bound obtained in Lemma 2, for 1 ≤ t ≤ T and

applying (18). The detailed proof is provided in Appendix C.

Lemma 7. For the proposed D-MSSCA algorithm, following inequality holds: ∀T > 1, β, α ∈ (0, 1),

T
∑

t=1

φt ≤
σ̄2

n2b0β
+

2βσ̄2T

n2
+

6L2α2

n2β

T−1
∑

t=1

E

[

∥

∥δt
∥

∥

2
]

+
12L2

βn2

T
∑

t=1

E

[

(

θt
)2
]

,
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T
∑

t=1

υt ≤
σ̄2

b0β
+ 2βσ̄2T +

6L2α2

β

T−1
∑

t=1

E

[

∥

∥δt
∥

∥

2
]

+
12L2

β

T
∑

t=1

E

[

(

θt
)2
]

.

To prove Lemma 7, we have applied the results of Lemma 3, Lemma 5 and (A3). The proof of Lemma 7 is

provided in Appendix D.

Lemma 8. The following inequality holds for all t > 0

T
∑

t=1

εt ≤
24α2λW

2L2

(

1− λW
2
)2 (3 + 2β)

T−1
∑

t=1

E

[

∥

∥δt
∥

∥

2
]

+
24λW

2L2

(

1− λW
2
)2 (3 + 4β)

T
∑

t=1

E

[

(

θt
)2
]

+
2λW

2β2σ̄2

1− λW
2

(

4
(

1− λW
2
)

b0β
+

8βT
(

1− λW
2
) + 3T

)

+
2

1− λW
2 ε

1.

To prove Lemma 8, we have applied the results of Lemma 4,5 and 7. The proof of Lemma 8 is provided in

Appendix E.

The next Lemma is a key result in the analysis of D-MSSCA algorithm, offering a descent inequality for average

(over the network) D-MSSCA updates with respect to the global function U .

Lemma 9. Under Assumptions A4 and A7, the following inequality holds for all T > 1, γ1 > 0, µ > 0 and

0 < α < 1, where xt,yt, zt are iterate variables of D-MSSCA at iterate t,

U(x̄T+1)− U(x̄1) ≤
3L2αγ1

2n

T
∑

t=1

E
[

(θt)2
]

+
3αγ1
2

T
∑

t=1

φt +
α

n

(

−µ+
1

2γ1
+

αL

2

) T
∑

t=1

E

[

∥

∥δt
∥

∥

2
]

+
3αγ1
2n

T
∑

t=1

εt.

The proof of Lemma 9 begins by defining the optimality condition of (1), and utilizing it with the properties of

surrogate to get the descent direction. Further by using the convexity of h and the properties of the communication

matrix W, along with some mathematical simplifications, we achieve the desired result. The complete proof of

Lemma 9 is detailed in Appendix F.

Now, we will use Lemma 6-9 to upper bound the average progress ∆T = 1
T

∑T
t=1 E

[

∥

∥δt
∥

∥

2
]

.

Lemma 10. Under considered assumption A1-A7, if 0 < β = α2 < 1, µ ≥ 6
√
3L
n

(

1 + 8λW
2

(1−λW
2)

)

and 0 < α ≤

min

{

1
114 ,

(1−λW
2)2

432λW
2 ,

(1−λW
2)2/3

8λW
2/3 , µ

6L ,
µ2(1−λW

2)2

48L2λW
2

}

then the average progress of D-MSSCA algorithm is upper

bounded for all T ≥ 2 as below

∆T ≤
4n

αTµ
U(x̄1)−

4n

αTµ
U⋆ +

24

Tµ2
(

1− λW
2
)

∥

∥∇u(x1)
∥

∥

2
+

12σ̄2

2Tµ2

(

1

b0α2n
+

2α2T

n
+

4

b20
(

1− λW
2
)

+
2λW

2α4

1− λW
2

(

4
(

1− λW
2
)

b0α2
+

8α2T
(

1− λW
2
) + 3T

))

.

Proof: We begin by substituting the bound of
∑T

t=1 φ
t from Lemma 7 into Lemma 9 and obtain,

U(x̄T+1)− U(x̄1) ≤
3L2αγ1

2n

T
∑

t=1

E
[

(θt)2
]

+
α

n

(

−µ+
1

2γ1
+

αL

2

) T
∑

t=1

E

[

∥

∥δt
∥

∥

2
]
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+
3αγ1
2n

T
∑

t=1

εt +
3αγ1
2

(

σ̄2

n2b0β
+

2βσ̄2T

n2
+

6L2α2

n2β

T−1
∑

t=1

E

[

∥

∥δt
∥

∥

2
]

+
12L2

βn2

T
∑

t=1

E

[

(

θt
)2
]

)

.

On combining the common terms and substituting the bound of
∑T

t=1 ε
t from Lemma 8, we get

U(x̄T+1)−U(x̄1) ≤
3L2αγ1

2n

(

1 +
12

βn

) T
∑

t=1

E
[

(θt)2
]

+
α

n

(

−µ+
1

2γ1
+

αL

2
+

9L2α2γ1

nβ

) T
∑

t=1

E

[

∥

∥δt
∥

∥

2
]

+
3αγ1σ̄

2

2n2

(

1

b0β
+ 2βT

)

+
3αγ1
2n

[

24α2λW
2L2

(

1− λW
2
)2 (3 + 2β)

T−1
∑

t=1

E

[

∥

∥δt
∥

∥

2
]

+
2

1− λW
2 ε

1

+
24 (3 + 4β)λW

2L2

(

1− λW
2
)2

T
∑

t=1

E

[

(

θt
)2
]

+
2λW

2β2σ̄2

1− λW
2

(

4
(

1− λW
2
)

b0β
+

8βT
(

1− λW
2
) + 3T

)]

.

By combining the common terms and substituting the bound of
∑T

t=1 E

[

(θt)
2
]

from Lemma 6, we obtain

U(x̄T+1)− U(x̄1) ≤
α

n

[

6α2λW
2γ1L

2

(

1− λW
2
)2

(

19 + 12β +
12

βn
+

24λW
2

(

1− λW
2
)2 (3 + 4β)

)

− µ+
1

2γ1
+

αL

2

+
9L2α2γ1

nβ

]

T
∑

t=1

E

[

∥

∥δt
∥

∥

2
]

+
3αγ1

n
(

1− λW
2
)ε1 +

3αγ1σ̄
2

2n

(

1

b0βn
+

2βT

n

+
2λW

2β2

1− λW
2

(

4
(

1− λW
2
)

b0β
+

8βT
(

1− λW
2
) + 3T

))

.

On defining Cµ =

[

6α2λW
2γ1L

2

(1−λW
2)2

(

19 + 12β + 12
βn + 24λW

2

(1−λW
2)2

(3 + 4β)
)

µ+ 1
2γ1

+ αL
2 + 9L2α2γ1

nβ

]

, we have:

Cµ

T

T
∑

t=1

E

[

∥

∥δt
∥

∥

2
]

≤
n

αT
U(x̄1)−

n

αT
U(x̄T+1) +

3γ1

T
(

1− λW
2
)ε1 +

3γ1σ̄
2

2T

(

1

b0βn
+

2βT

n

+
2λW

2β2

1− λW
2

(

4
(

1− λW
2
)

b0β
+

8βT
(

1− λW
2
) + 3T

))

.

Also, from the initialization of z1i and the update (5) of the D-MSSCA algorithm, we have:

ε1 = E

∥

∥

∥

∥

(I−
1

2
11T ⊗ Id)y

1

∥

∥

∥

∥

2

≤ E
∥

∥y1
∥

∥

2
= E

∥

∥∇f(x1, ξ1)−∇u(x1) +∇u(x1)
∥

∥

2

≤ 2

n
∑

i=1

E

∥

∥

∥

∥

∥

1

b0

b0
∑

r=1

(

∇fi(x
1
i , ξ

1,r
i )−∇ui(x

1
i )
)

∥

∥

∥

∥

∥

2

+ 2E
∥

∥∇u(x1)
∥

∥

2
,

(i)

≤
2

b20

n
∑

i=1

b0
∑

r=1

E

∥

∥

∥∇fi(x
1
i , ξ

1,r
i )−∇ui(x

1
i )
∥

∥

∥

2

+ 2E
∥

∥∇u(x1)
∥

∥

2
,

(ii)

≤
2σ̄2

b20
+ 2

∥

∥∇u(x1)
∥

∥

2
, (19)

where in (i), we used the fact that ξ
1,l
i , ξ

1,m
j are independent for l 6= m and in (ii), we applied (A3). On substituting

the bound ε1 ≤ 2σ̄2

b2
0

+ 2
∥

∥∇u(x1)
∥

∥

2
, and U⋆ < U(x̄T+1), we obtain:,

Cµ

T

T
∑

t=1

E

[

∥

∥δt
∥

∥

2
]

≤
n

αT
U(x̄1)−

n

αT
U⋆ +

6γ1

T
(

1− λW
2
)

∥

∥∇u(x1)
∥

∥

2
+

3γ1σ̄
2

2T

(

1

b0βn
+

2βT

n
+

4

b20
(

1− λW
2
)

+
2λW

2β2

1− λW
2

(

4
(

1− λW
2
)

b0β
+

8βT
(

1− λW
2
) + 3T

))

.
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Further if we consider β = α2,γ1 = 1
µ , and 0 < α ≤ min

{

1
114 ,

(1−λW
2)

2

432λW
2 ,

(

(1−λW
2)

24λW

)2/3

, µ
6L ,

µ2(1−λW
2)

2

48L2λW
2

}

,

and if µ ≥ 6
√
3L
n

(

1 + 8λW
2

(1−λW
2)

)

, then after further simplification we get Cµ ≥ µ
4 > 0, utilizing which we get the

desired result.

Finally, we are ready to state the main theorem regarding the existence of ǫ-KKT point. Specifically, we will

bound 1
n

∑n
i=1

1
T

∑T
t=1 E

[

‖∇u(x̂t
i) + ŵt

i‖
2
]

(6).

Remark. It is remarked that combining the results of Lemma 6 and 10 proves that the consensus is achieved

Theorem 1. Under the considered Assumptions A1-A7, if 0 < β = α2 < 1, µ ≥ 6
√
3L
n

(

1 + 8λW
2

(1−λW
2)

)

, and

0 < α ≤ min

{

1
116 ,

(1−λW
2)

2

432λW
2 ,

(

(1−λW
2)

24λW

)2/3

, µ
6L ,

µ2(1−λW
2)

2

48L2λW
2

}

, then the mean squared stationary gap of the

proposed D-MSSCA algorithm is upper bounded for all T ≥ 2 as below:

1

n

n
∑

i=1

1

T

T
∑

t=1

E

[

∥

∥∇u(x̂t
i) + ŵt

i

∥

∥

2
]

≤

(

8L2

T

(

2 +
9

n
+

72λW
2

n(1− λW
2)2

))

4

αµ

(

U(x̄1)− U⋆
)

+
48
∥

∥∇u(x1
1)
∥

∥

2

nT (1− λW
2)

P

+
48σ̄2

nTb20(1− λW
2)
P +

12σ̄2

Tn2b0α2
P +

24α2σ̄2

n
P

(

4λW
2

Tb0(1− λW
2)2

+
1

n

)

+
72α4λW

2σ̄2

n(1− λW
2)
P +

192α6λW
2σ̄2

n(1 − λW
2)2

P, (20)

where, P = 8L2

µ2 + 36L2

nµ2 + 288L2λW
2

nµ2(1−λW
2)2

+ 1.

Proof: We will start the proof by using the optimality condition of (1) to bound the mean squared stationary

gap (6).

From the update equation(1) and the definition of the surrogate function f̃ , there exists ŵt
i ∈ ∂(h(x̂t

i) + 11X ) for

all t ≥ 1 such that;

∇f̂i
(

x̂t
i,x

t
i, ξ

t
i

)

+ (1 − β)
(

vt−1
i −∇fi(x

t−1
i , ξti)

)

+ πt
i + ŵt

i = 0.

On adding and subtracting ∇f̂i (x
t
i,x

t
i, ξ

t
i ), applying the definition of πt

i and update zti (4), we obtain

∇f̂i
(

x̂t
i,x

t
i, ξ

t
i

)

−∇f̂i
(

xt
i,x

t
i, ξ

t
i

)

+ yt
i + ŵt

i = 0.

By substituting ŵt
i = −∇f̂i (x̂

t
i,x

t
i, ξ

t
i ) +∇f̂i (x

t
i,x

t
i, ξ

t
i)− yt

i , into the definition of mean squared stationary gap,

we get

1

n

n
∑

i=1

1

T

T
∑

t=1

E

[

∥

∥∇u(x̂t
i) + ŵt

i

∥

∥

2
]

=
1

n

n
∑

i=1

1

T

T
∑

t=1

E

[

∥

∥

∥∇u(x̂t
i)−∇f̂i

(

x̂t
i,x

t
i, ξ

t
i

)

+∇f̂i
(

xt
i,x

t
i, ξ

t
i

)

− yt
i

∥

∥

∥

2
]

.

Now, by adding and subtracting ∇u(xt
i)−∇u(x̄t) and separating the terms using the properties of the norm, we

obtain:

1

n

n
∑

i=1

1

T

T
∑

t=1

E

[

∥

∥∇u(x̂t
i) + ŵt

i

∥

∥

2
]

≤
4

n

n
∑

i=1

1

T

T
∑

t=1

(

E

[

∥

∥∇u(x̂t
i)−∇u(xt

i)
∥

∥

2
]

+ E

[

∥

∥∇u(xt
i)−∇u(x̄t)

∥

∥

2
]

+ E

[

∥

∥∇u(x̄t)− yt
i

∥

∥

2
]2
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+ E

[

∥

∥

∥
∇f̂i

(

xt
i,x

t
i, ξ

t
i

)

−∇f̂i
(

x̂t
i,x

t
i, ξ

t
i

)

∥

∥

∥

2
]

)

,

(i)

≤
4

n

n
∑

i=1

1

T

T
∑

t=1

(

2L2
E

[

∥

∥x̂t
i − xt

i

∥

∥

2
]

+ L2
E

[

∥

∥xt
i − x̄t

∥

∥

2
]

)

+
4

nT

T
∑

t=1

E

[

∥

∥(1⊗ Id)
(

∇u(x̄t)− ∇̄u(xt) + ∇̄u(xt)− ȳt + ȳt
)

− yt
∥

∥

2
]

,

≤
8L2

nT

T
∑

t=1

E

[

∥

∥x̂t − xt
∥

∥

2
]

+
4L2

nT

T
∑

t=1

E

[

∥

∥xt − (1⊗ Id)x̄
t
∥

∥

2
]

+
4

nT

T
∑

t=1

(

3nE
[

∥

∥∇̄u(xt)− ȳt
∥

∥

2
]

+ 3E
[

∥

∥(1⊗ Id)
(

∇u(x̄t)− ∇̄u(xt)
)∥

∥

2
]

+ 3E
[

∥

∥yt − (1⊗ Id)ȳ
t
∥

∥

2
]

)

,

(ii)

≤
8L2

nT

T
∑

t=1

E

[

∥

∥δt
∥

∥

2
]

+
4L2

nT

T
∑

t=1

E

[

(

θt
)2
]

+
12L2

nT

T
∑

t=1

E
[(

θt
)]

+
12

T

T
∑

t=1

E

[

∥

∥∇̄u(xt)− z̄t
∥

∥

2
]

+
12

nT

T
∑

t=1

εt.

In (i), we have utilized assumption A4, and in (ii), applied (14b) and (14c). Now, by substituting the value of
∑T

t=1 E

[

∥

∥∇̄u(xt)− z̄t
∥

∥

2
]

, from Lemma 7, we get

1

n

n
∑

i=1

1

T

T
∑

t=1

E

[

∥

∥∇u(x̂t
i) + ŵt

i

∥

∥

2
]

≤
8L2

nT

T
∑

t=1

E

[

∥

∥δt
∥

∥

2
]

+
16L2

nT

T
∑

t=1

E

[

(

θt
)2
]

+
12

nT

T
∑

t=1

εt

+
12

T

(

σ̄2

n2b0β
+

2βσ̄2T

n2
+

6L2α2

n2β

T−1
∑

t=1

E

[

∥

∥δt
∥

∥

2
]

+
12L2

βn2

T
∑

t=1

E

[

(

θt
)2
]

)

.

Further on combining the common terms and substituting the bound of εt from Lemma 8, we get

1

n

n
∑

i=1

1

T

T
∑

t=1

E

[

∥

∥∇u(x̂t
i) + ŵt

i

∥

∥

2
]

≤
8L2

nT

(

1 +
9α2

nβ

) T
∑

t=1

E

[

∥

∥δt
∥

∥

2
]

+
16L2

nT

(

1 +
9

βn

) T
∑

t=1

E

[

(

θt
)2
]

+
12

T

(

σ̄2

n2b0β
+

2βσ̄2T

n2

)

+
12

nT

[

24α2λW
2L2

(

1− λW
2
)2 (3 + 2β)

T−1
∑

t=1

E

[

∥

∥δt
∥

∥

2
]

+
2

1− λW
2 ε

1

+
24λW

2L2

(

1− λW
2
)2 (3 + 4β)

T
∑

t=1

E

[

(

θt
)2
]

+
2λW

2β2σ̄2

1− λW
2

(

4
(

1− λW
2
)

b0β
+

8βT
(

1− λW
2
) + 3T

)]

.

On combining the common terms and substituting the bound of
∑T

t=1 E

[

(θt)
2
]

from Lemma 6, we can further

simplify as follows:

1

n

n
∑

i=1

1

T

T
∑

t=1

E

[

∥

∥∇u(x̂t
i) + ŵt

i

∥

∥

2
]

≤
8L2

n

(

1 +
9α2

nβ
+

36α2λW
2

(

1− λW
2
)2 (3 + 2β)

)

T
∑

t=1

E

[

∥

∥δt
∥

∥

2
]

+
12

T

(

σ̄2

n2b0β
+

2βσ̄2T

n2

)

+
12

nT

[

2

1− λW
2 ε

1 +
2λW

2β2σ̄2

1− λW
2

(

4
(

1− λW
2
)

b0β
+

8βT
(

1− λW
2
) + 3T

)]

+
16L2

nT

(

1 +
9

βn
+

18λW
2

(

1− λW
2
)2 (3 + 4β)

)

4α2λW
2

(

1− λW
2
)2

T−1
∑

t=1

E

[

∥

∥δt
∥

∥

2
]

.
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Further using the bound of 1
T

∑T−1
t=1 E

[

∥

∥δt
∥

∥

2
]

obtained in Lemma 10, and applying (19), we get

1

n

n
∑

i=1

1

T

T
∑

t=1

E

[

∥

∥∇u(x̂t
i) + ŵt

i

∥

∥

2
]

≤
8L2

n

(

1 +
9α2

nβ
+

4α2λW
2

(

1− λW
2
)2

(

29 + 18β +
18

nβ
+

36λW
2

(1− λW
2)2

(3 + 4β)

)

)[

4n

αTµ
U(x̄1)

−
4n

αTµ
U⋆ +

24

Tµ2
(

1− λW
2
)

∥

∥∇u(x1)
∥

∥

2
+

12σ̄2

2Tµ2

(

1

b0α2n
+

2α2T

n
+

4

b20
(

1− λW
2
)

+
2λW

2α4

1− λW
2

(

4
(

1− λW
2
)

b0α2
+

8α2T
(

1− λW
2
) + 3T

))]

+
12

T

(

σ̄2

n2b0β
+

2βσ̄2T

n2

)

+
12

nT

[

2λW
2β2σ̄2

1− λW
2

(

4
(

1− λW
2
)

b0β
+

8βT
(

1− λW
2
) + 3T

)

+
2

1− λW
2

(

2σ̄2

b20
+ 2

∥

∥∇u(x1)
∥

∥

2
)

]

.

Further on substituting β = α2, considering α ≤ min

{

1
116 ,

(1−λW
2)

2

432λW
2 ,

(1−λW
2)

2/3

8λW
2/3 ,

(1−λW
2)

2

4λW
2

}

, and rearranging,

we get the desired result.

Remark. It can be noted from the Theorem 1 that the mean squared stationary gap of the proposed D-MSSCA

algorithm reaches to a steady state-error at a sublinear rate. Where the steady-state error is defined as

lim sup
T→∞

1

n

n
∑

i=1

E

[

∥

∥∇u(x̂t
i) + ŵt

i

∥

∥

2
]

≤
24α2σ̄2

n2
P

From this expression, it is evident that the steady-state error can be reduced by selecting smaller values of α and

β. Additionally, the error decreases as the number of nodes increases, which is expected since n nodes function as

n oracles (SFO) for estimating the gradient.

Finally, the next corollary provides the convergence rate in terms of the SFO complexity of the proposed D-

MSSCA algorithm for fixed values of α, β, and b0.

Corollary 1. Under the conditions such that Theorem 1 holds, if we further consider α = O(T−1/3), β = O(T−2/3),

and b0 = O(T 1/3), The proposed D-MSSCA algorithm achieves an ǫ− KKT point in O(ǫ−3/2) oracle calls.

Proof: By substituting α = T−1/3, b0 = T 1/3 in (20), we get

1

n

n
∑

i=1

1

T

T
∑

t=1

E

[

∥

∥∇u(x̂t
i) + ŵt

i

∥

∥

2
]

≤

(

8L2

T 2/3

(

2 +
9

n
+

72λW
2

n(1− λW
2)2

))

4

µ

(

U(x̄1)− U⋆
)

+
48
∥

∥∇u(x1
1)
∥

∥

2

nT (1− λW
2)

P +
48σ̄2

nT 5/3(1− λW
2)
P +

12σ̄2

n2T 2/3
P

+
24T−2/3σ̄2

n
P

(

4λW
2

T 4/3(1 − λW
2)2

+
1

n

)

+
72T−4/3λW

2σ̄2

n(1− λW
2)

P

+
192T−6/3λW

2σ̄2

n(1− λW
2)2

P,

In order to reach ǫ−KKT point, we require

1

T 2/3

[

32L2

µ

(

2 +
9

n
+

72λW
2

n(1− λW
2)2

)

(

U(x̄1)− U⋆
)

+
48P

∥

∥∇u(x1
1)
∥

∥

2

nT 1/3(1− λW
2)

+
48P σ̄2

nT (1− λW
2)

+
12P σ̄2

n2
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+
24P σ̄2

n

(

4λW
2

T 4/3(1− λW
2)2

+
1

n

)

+
72PλW

2σ̄2

nT 2/3(1− λW
2)

+
192T−6/3λW

2σ̄2

n(1− λW
2)2

P

]

< ǫ, (21)

which gives T = O(ǫ−3/2).

The SFO complexity of Corollary 1 matches that of DEEPSTORM [7] and ProxGT-SR-O/E [5]. It should be

noted that, unlike DEEPSTORM and ProxGT-SR-O/E which require small and large batch sizes respectively, our

algorithm is batchless and uses one sample at each iteration. Also, this rate matches the SFO complexity lower

bound for centralized unconstrained stochastic non-convex optimization problems.

IV. EXPERIMENTAL DATA AND RESULTS

In this section, we will demonstrate the applicability of D-MSSCA. Let us consider a simple distributed opti-

mization problem, which is a stochastic version of the synthetic problem in [8], [33] over a network of n = 3

nodes:

U(x) = min

3
∑

i=1

E [fi(x, ξi)] (22)

Each local objective function fi is defined as

f1(x, ξ1) =























(x3 − 16x)(x+ 2) + n1x, |x| ≤ 10

4248x− 32400 + n1x, x > 10

−3112x− 25040 + n1x, x < −10

(23)

f2(x, ξ2) =























(0.5x3 + x2)(x− 4) + n2x, |x| ≤ 10

1620x− 12600 + n2x, x > 10

−2220x− 16600 + n2x, x < −10

(24)

f3(x, ξ3) =























(x3 − 16x)(x+ 2) + n3x, |x| ≤ 10

288x− 2016 + n3x, x > 10

228x− 2624 + n3x, x < −10

(25)

where ξi = ni ∼ N (0, 1). The objective function is non-convex, and its surrogate can be constructed using (2).

First, D-MSSCA is used to demonstrate the effect of communication topology in Fig 1. We observe that the fully

connected network performs better than the Tree network, which is how the behavior is expected. Next, setting

α = 0.8 and β = 0.16 and µ = 5000, we plot the evolution of local variable xt
i with different initial values in Fig

2 for a fully connected graph with λW = 0.5. We observe the nodes converge to local minima. Finally, we plot the

evolution of local variables of each node given a global constraint set |xi| ≤ 2.25, when all the nodes are initialized

at xt
i = 0 in Fig 3. It can be observed that all the local variables get as close as possible to the true minima.

V. CONCLUSION AND FUTURE WORK

In this work, we consider decentralized consensus stochastic non-convex optimization to minimize the sum of

non-convex (possibly smooth) and convex (possibly non-smooth) cost functions over a network of nodes. While
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Fig. 1. Evolution of residual ‖x− 1x̄‖2 over different networks.

0 500 1000 1500 2000

Iterations

-20

-15

-10

-5

0

5

10

x
i

0
 = 20

x
i

0
 = 0

x
i

0
 = 10

x
i

0
 = 3

x
i

0
 = -4

x
i

0
 = -6

x
i

0
 = 1.2

Fig. 2. Evolution of local variable for varying initialization.

this problem is well studied, comprehensive convergence analysis under the stochastic SCA rubric has remained

an open problem. We have analyzed and proposed D-MSSCA that achieves the optimal rate of O(ǫ−3/2). The rate

matches the SFO rate of the state-of-the-art decentralized gradient-based algorithm while processing a single sample

at each iteration. The algorithm uses strong convex surrogates and leverages recursive momentum-based updates at

each node, achieving faster convergence. The applicability of D-MSSCA is demonstrated on a synthetic stochastic

problem. One interesting future direction of this paper is under investigation, wherein we simplify the optimization

problem (1) in Algorithm 1 by linearizing the global constraint g making it (1) easier to solve than proximal-based

methods. By reducing the complexity of each iteration, this modification could improve convergence rates and

expand the applicability of the D-MSSCA algorithm to broader classes of optimization problems, especially those

where proximal methods face scalability and efficiency challenges.
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Fig. 3. Evolution of local variable when each node is initialized at xt
i = 0 given a global constraint |xi| ≤ 2.25.
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APPENDIX A

PROOF OF LEMMA 2

Proof: From the definition of θt(9) and xt-update (7), we have

(

θt
)2

=

∥

∥

∥

∥

xt −
1

n
(1n ⊗ Id) x̄

t

∥

∥

∥

∥

2

,

=

∥

∥

∥

∥

(

I−
1

n
1n1

T

n ⊗ Id

)

W
(

xt−1 + α
(

x̂t−1 − xt−1
))

∥

∥

∥

∥

2

,

(a)
=

∥

∥

∥

∥

(

W −
1

n
1n1

T

n ⊗ Id

)

xt−1 + α

(

W −
1

n
1n1

T

n ⊗ Id

)

(

x̂t−1 − xt−1
)

∥

∥

∥

∥

2

,

(b)

≤ (1 + η1)

∥

∥

∥

∥

Wxt−1 −

(

1

n
1n1

T

n ⊗ Id

)

xt−1

∥

∥

∥

∥

2

+

(

1 +
1

η1

)

α2

(

λmax

(

W −
1

n
1n1

T

n ⊗ Id

))2
∥

∥x̂t−1 − xt−1
∥

∥

2
,

(c)

≤ (1 + η1) λW
2

∥

∥

∥

∥

xt−1 −

(

1

n
1n1

T

n ⊗ Id

)

xt−1

∥

∥

∥

∥

2

+

(

1 +
1

η1

)

α2λW
2
∥

∥x̂t−1 − xt−1
∥

∥

2
,

= (1 + η1) λW
2
(

θt−1
)2

+

(

1 +
1

η1

)

α2λW
2
∥

∥δt−1
∥

∥

2
.

In (a), we have applied the property of W, i.e., 1TW = 1T. In (b), Young’s inequality and the property of norm

are utilized, i.e., for any square matrix A and vector x of compatible size, ‖Ax‖2 ≤ λmax(A)2 ‖x‖2. In (c), we

have utilized (14a) and the definition of λW.

APPENDIX B

PROOF OF LEMMA 4

Proof: From the definition of εt and (8)

εt = E

[

∥

∥

∥

∥

W
(

yt−1 + zt − zt−1
)

−
1

n

(

1n1
T

n ⊗ Id
)

W
(

yt−1 + zt − zt−1
)

∥

∥

∥

∥

2
]

,

(i)
= E

[

∥

∥

∥

∥

W
(

yt−1 + zt − zt−1
)

−
1

n

(

1n1
T

n ⊗ Id
) (

yt−1 + zt − zt−1
)

∥

∥

∥

∥

2
]

,

= E

[

∥

∥

∥

∥

Wyt−1 −
1

n

(

1n1
T

n ⊗ Id
)

yt−1

∥

∥

∥

∥

2

+

∥

∥

∥

∥

(

W −
1

n
1n1

T

n ⊗ Id

)

(

zt − zt−1
)

∥

∥

∥

∥

2

+

〈

Wyt−1 −
1

n

(

1n1
T

n ⊗ Id
)

yt−1,

(

W −
1

n
1n1

T

n ⊗ Id

)

(

zt − zt−1
)

〉

]

,

(14a)

≤ λW
2
E

[

∥

∥

∥

∥

yt−1 −
1

n
(1n ⊗ Id) ȳ

t−1

∥

∥

∥

∥

2
]

+ λW
2
E

[

∥

∥zt − zt−1
∥

∥

2

]

+ 2E

[

〈

Wyt−1 −
1

n

(

1n1
T

n ⊗ Id
)

yt−1,

(

W −
1

n
1n1

T

n ⊗ Id

)

(

zt − zt−1
)

〉

]

. (26)

Now we will simplify each term in the above equation separately, starting with
∥

∥zt − zt−1
∥

∥

2
we have

∥

∥zt − zt−1
∥

∥

2
=

n
∑

i=1

∥

∥zti − zt−1
i

∥

∥

2
,
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(4)
=

n
∑

i=1

∥

∥∇fi(x
t
i, ξ

t
i) + (1− β)

(

zt−1
i −∇fi(x

t−1
i , ξti)

)

− zt−1
i

∥

∥

2
,

=

n
∑

i=1

∥

∥∇fi(x
t
i, ξ

t
i )−∇fi(x

t−1
i , ξti)− βzt−1

i + β∇fi(x
t−1
i , ξti)

∥

∥

2
. (27)

On adding and subtraction by β∇ui(x
t−1) and simplifying further we get

∥

∥zt − zt−1
∥

∥

2

=

n
∑

i=1

∥

∥∇fi(x
t
i, ξ

t
i)−∇fi(x

t−1
i , ξti)− β

(

zt−1
i −∇ui(x

t−1)
)

+ β∇fi(x
t−1
i , ξti)− β∇ui(x

t−1)
∥

∥

2
,

≤
n
∑

i=1

3
∥

∥∇fi(x
t
i, ξ

t
i)−∇fi(x

t−1
i , ξti )

∥

∥

2
+

n
∑

i=1

3β2
∥

∥

(

zt−1
i −∇ui(x

t−1)
)∥

∥

2

+

n
∑

i=1

3β2
∥

∥∇fi(x
t−1
i , ξti )−∇ui(x

t−1)
∥

∥

2
.

On taking expectation on both sides and further utilizing Assumptions A3 and A4 we get

E

[

∥

∥zt − zt−1
∥

∥

2
]

≤ 3L2
E

[

∥

∥xt − xt−1
∥

∥

2
]

+ 3β2
E

[

∥

∥

(

zt−1 −∇u(xt−1)
)∥

∥

2
]

+ 3β2σ̄2. (28)

By using conditional expectation, we can further simplify the last term of (26) as

2E

[

〈

Wyt−1 −
1

n

(

1n1
T

n ⊗ Id
)

yt−1,

(

W −
1

n
1n1

T

n ⊗ Id

)

(

zt − zt−1
)

〉

]

,

= 2E

[

E

[

〈

Wyt−1 −
1

n

(

1n1
T

n ⊗ Id
)

yt−1,

(

W −
1

n
1n1

T

n ⊗ Id

)

(

zt − zt−1
)

〉

∣

∣

∣

∣

∣

Hk

]]

,

= 2E

[

〈

Wyt−1 −
1

n

(

1n1
T

n ⊗ Id
)

yt−1,

(

W −
1

n
1n1

T

n ⊗ Id

)

E
[

zt − zt−1|Hk

]

〉

]

.

By applying (27) and utilizing Assumption A2, we have E
[

zt − zt−1|Hk

]

= ∇u(xt) − ∇u(xt) − β(zt−1 −

∇u(xt−1)) . Substituting this and applying the Cauchy-Schwarz inequality, we get

2E

[

〈

Wyt−1 −
1

n

(

1n1
T

n ⊗ Id
)

yt−1,

(

W −
1

n
1n1

T

n ⊗ Id

)

(

zt − zt−1
)

〉

]

= 2E

[

∥

∥

∥

∥

Wyt−1 −
1

n

(

1n1
T

n ⊗ Id
)

yt−1

∥

∥

∥

∥

×

∥

∥

∥

∥

(

W −
1

n
1n1

T

n ⊗ Id

)

(

∇u(xt)−∇u(xt)− β(zt−1 −∇ut−1)
)

∥

∥

∥

∥

]

,

(14a)

≤ 2E

[

λW
2

∥

∥

∥

∥

yt−1 −
1

n
(1n ⊗ Id) ȳ

t−1

∥

∥

∥

∥

∥

∥∇u(xt)−∇u(xt)− β(zt−1 −∇ut−1)
∥

∥

]

.

On further applying Young’s inequality and a few mathematical simplifications, we get

E

[

〈

Wyt−1 −
1

n

(

1n1
T

n ⊗ Id
)

yt−1,

(

W −
1

n
1n1

T

n ⊗ Id

)

(

zt − zt−1
)

〉

]

≤ λW
2γ1E

[

∥

∥

∥

∥

yt−1 −
1

n
(1n ⊗ Id) ȳ

t−1

∥

∥

∥

∥

2
]

+
2λW

2L2

γ1
E

[

∥

∥xt − xt−1
∥

∥

2
]

+
2λW

2β2

γ1
E

[

∥

∥(zt−1 −∇ut−1)
∥

∥

2
]

. (29)
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By substituting equations (28), (29) in (26), we can write

εt ≤ λW
2 (1 + γ1) ε

t−1 + λW
2β2

(

2

γ1
+ 3

)

υt−1 + 3λW
2β2σ̄2

+ λW
2L2

(

3 +
2

γ1

)

E

[

∥

∥xt − 1⊗ Idx̄
t + 1⊗ Idx̄

t − 1⊗ Idx̄
t−1 + 1⊗ Idx̄

t−1 − xt−1
∥

∥

2
]

.

We can further simplify the last term as follows

∥

∥xt − xt−1
∥

∥

2
=
∥

∥xt − 1⊗ Idx̄
t + 1⊗ Idx̄

t − 1⊗ Idx̄
t−1 + 1⊗ Idx̄

t−1 − xt−1
∥

∥

2
,

≤ 3
∥

∥xt − 1⊗ Idx̄
t
∥

∥

2
+ 3

∥

∥1⊗ Idx̄
t − 1⊗ Idx̄

t−1
∥

∥

2
+ 3

∥

∥1⊗ Idx̄
t−1 − xt−1

∥

∥

2
,

(7)

≤ 3
(

θt
)2

+ 3nα2
∥

∥

∥

¯̂x
t−1

− x̄t−1
∥

∥

∥

2

+ 3
(

θt−1
)2

,

Lemma 2

≤ 3

[

(1 + η1)λW
2
(

θt−1
)2

+

(

1 +
1

η1

)

α2λW
2
∥

∥δt−1
∥

∥

2
]

+ 3α2
∥

∥δt−1
∥

∥

2
+ 3

(

θt−1
)2

,

= 3α2

((

1 +
1

η1

)

λW
2 + 1

)

∥

∥δt−1
∥

∥

2
+ 3((1 + η1)λ

2 + 1)
(

θt−1
)2

.

Finally, we get

εt ≤ λW
2 (1 + γ1) ε

t−1 + λW
2β2

(

2

γ1
+ 3

)

υt−1 + 3λW
2L2((1 + η1)λW

2 + 1)

(

2

γ1
+ 3

)

E
[

(θt)2
]

+ 3λW
2β2σ̄2 + 3α2λW

2L2

(

2

γ1
+ 3

)(

λW
2

(

1 +
1

η1

)

+ 1

)

E

[

∥

∥δt−1
∥

∥

2
]

,

where γ1, η1 > 0 are Young’s parameters. By considering γ1 = 1−λW
2

2λW
2 , η1 = 1, we get the desired bound.

APPENDIX C

PROOF OF LEMMA 6

Proof: On substituting η1 = 1−λW
2

2λW
2 in Lemma 2, we get

(θt)2 ≤

(

1 + λW
2

2

)

(

θt−1
)2

+
2α2λW

2

(

1− λW
2
)

∥

∥δt−1
∥

∥

2
.

Applying Lemma 5, we get

T
∑

t=1

(θt)2 ≤
2

1− λW
2 (θ

1)2 +
4α2λW

2

(

1− λW
2
)2

T−1
∑

t=1

∥

∥δt
∥

∥

2
.

From the initialization, we have θ1 = 0 and substituting this yields the desired result.

APPENDIX D

PROOF OF LEMMA 7

Proof: On summing (15) for 1 ≤ t ≤ T and applying (18) with η2 = 1, we obtain,

T
∑

t=1

φt ≤
φ1

1− (1− β)2
+

6L2(1− β)2α2

n2(1− (1 − β)2)

T−1
∑

t=1

E

[

∥

∥δt
∥

∥

2
]

+
12L2(1− β)2

(1− (1− β)2)n2

T
∑

t=0

E

[

(

θt
)2
]

May 14, 2024 DRAFT



21

+
2β2σ̄2T

n2(1− (1− β)2)
.

Observing that 1
1−(1−β)2 ≤ 1

β for β ∈ (0, 1) we have,

T
∑

t=1

φt ≤
φ1

β
+

2βσ̄2T

n2
+

6L2α2

n2β

T−1
∑

t=1

E

[

∥

∥δt
∥

∥

2
]

+
12L2

βn2

T
∑

t=0

E

[

(

θt
)2
]

.

Also, based on the initialization of z1i and Assumption (A3), we have:

φ1 = E





∥

∥

∥

∥

∥

1

n

n
∑

i=1

z1i −
1

n

n
∑

i=1

∇ui(x
1
i )

∥

∥

∥

∥

∥

2


 = E





∥

∥

∥

∥

∥

1

n

n
∑

i=1

1

b0

b0
∑

r=1

(

∇fi(x
1
i , ξ

1,r
i )−∇ui(x

1
i )
)

∥

∥

∥

∥

∥

2


 ,

(i)

≤
σ̄2

n2b0
.

In (i), we have applied Assumption A3 and the fact that stochastic local gradient oracles at each node are independent.

Substituting φ1 yields the desired result. The second result can also be obtained by starting from (16) and following

similar steps.

APPENDIX E

PROOF OF LEMMA 8

Proof: On summing the bound obtained in Lemma 4 for 1 ≤ t ≤ T and applying (18), we have

T
∑

t=1

εt ≤
2

1− λW
2 ε

1 +
8β2λW

2

(

1− λW
2
)2

T
∑

t=2

υt−1 +
6λW

2β2σ̄2T

1− λW
2 +

72λW
2L2

(

1− λW
2
)2

T
∑

t=2

E
[

(θt−1)2
]

+
72α2λW

2L2

(

1− λW
2
)2

T
∑

t=2

E

[

∥

∥δt−1
∥

∥

2
]

,

Lemma (7)

≤
2

1− λW
2 ε

1 +
72α2λW

2L2

(

1− λW
2
)2

T
∑

t=2

E

[

∥

∥δt−1
∥

∥

2
]

+
72λW

2L2

(

1− λW
2
)2

T
∑

t=2

E
[

(θt−1)2
]

+
8β2λW

2

(

1− λW
2
)2

(

σ̄2

b0β
+ 2βσ̄2T +

6L2α2

β

T−1
∑

t=1

E

[

∥

∥δt
∥

∥

2
]

+
12L2

β

T
∑

t=1

E

[

(

θt
)2
]

)

+
6λW

2β2σ̄2T

1− λW
2 .

On further combining the common terms, we get the desired result.

APPENDIX F

PROOF OF LEMMA 9

Proof: Since the surrogate f̃ is a strongly convex function, solving (1) is equivalent to solving a simple convex

optimization problem. The optimality condition of convex optimization problem (1) implies:

〈∇f̃
(

x̂t
i,x

t
i, ξ

t
i

)

+ πt
i + ŵt

i,x
t
i − x̂t

i〉 ≥ 0,

where ŵt
i ∈ ∂(h+11X ) |x=x̂t

i
, and 11X (x) is an indicator function. 11X (x) = 0 if x ∈ X , otherwise 11X (x) = ∞. As

per the definition of f̃ (xi,x
t
i, ξ

t
i) given in (2) and using (4), we have ∇f̃(xt

i,x
t
i, ξ

t
i) = zti. Furthermore, by adding

and subtracting ∇f̃(xt
i,x

t
i, ξ

t
i) = zti and substituting πt

i = yt
i − zti , we get

〈∇f̃
(

x̂t
i,x

t
i, ξ

t
i

)

+ yt
i − zti + zti −∇f̃

(

xt
i,x

t
i, ξ

t
i

)

+ ŵt
i,x

t
i − x̂t

i〉 ≥ 0.
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From the definition of f̃ (xi,x
t
i, ξ

t
i ) (2), and utilizing (4), we have ∇f̃ (x̂t

i,x
t
i, ξ

t
i )− zti = µi(x̂

t
i − xt

i), substituting

this gives us:

〈µi(x̂
t
i − xt

i) + yt
i + ŵt

i, x̂
t
i − xt

i〉 ≤ 0,

〈yt
i + ŵt

i, x̂
t
i − xt

i〉 ≤ −µ
∥

∥x̂t
i − xt

i

∥

∥

2
.

Further, on summing the above inequality over all i we get

1

n

n
∑

i=1

〈yt
i , x̂

t
i − xt

i〉+
1

n

n
∑

i=1

〈ŵt
i , x̂

t
i − xt

i〉 ≤
−1

n

n
∑

i=1

µ
∥

∥x̂t
i − xt

i

∥

∥

2
. (30)

From the update equation (3), convexity of h+ 11X and Assumption (A7) we obtain

1

n

n
∑

i=1

[

h(xt+1
i ) + 11X (x

t+1
i )

]

=
1

n

n
∑

i=1

h





n
∑

j=1

Wi,j

(

xt
j + α

(

x̂t
j − xt

j

))





+
1

n

n
∑

i=1

11X





n
∑

j=1

Wi,j

(

xt
j + α

(

x̂t
j − xt

j

))



 ,

(i)

≤
1

n

n
∑

i=1

n
∑

j=1

Wi,jh
(

xt
j + α

(

x̂t
j − xt

j

))

+
1

n

n
∑

i=1

n
∑

j=1

Wi,j11X
(

xt
j + α

(

x̂t
j − xt

j

))

,

=
1

n

n
∑

j=1

(

n
∑

i=1

Wi,j

)

h
(

(1− α)xt
j + αx̂t

j

)

+
1

n

n
∑

j=1

(

n
∑

i=1

Wi,j

)

11X
(

(1− α)xt
j + αx̂t

j

)

,

(ii)

≤
1

n

n
∑

j=1

(

(1− α)h
(

xt
j

)

+ αh
(

x̂t
j

))

+
1

n

n
∑

j=1

(

(1− α)11X
(

xt
j

)

+ α11X
(

x̂t
j

))

.

=
(1− α)

n

n
∑

j=1

(

h
(

xt
j

)

+ 11X
(

xt
j

))

+
α

n

n
∑

j=1

(

h
(

x̂t
j

)

+ 11X
(

x̂t
j

))

.

In (i) and (ii), we have utilized the convexity of h+ 11X , property of W being doubly stochastic, and Wi,j > 0

for all i, j ∈ V ((A7)).

From the first order convexity condition of h(x) + 11X (xt
i), we have

h(x̂t
i) + 11X (x̂

t
i) ≤ h(xt

i) + 11X (x
t
i) + 〈ŵt

i , x̂
t
i − xt

i〉,

Using this we can simplify further as below:

1

n

n
∑

i=1

[

h(xt+1
i ) + 11X (x

t+1
i )

]

≤
(1− α)

n

n
∑

j=1

(

h
(

xt
j

)

+ 11X
(

xt
j

))

+
α

n

n
∑

j=1

(

h(xt
j) + 11X (xt

j) + 〈ŵt
j , x̂

t
j − xt

j〉
)

,

1

n

n
∑

i=1

[

h(xt+1
i ) + 11X (x

t+1
i )

]

≤
1

n

n
∑

j=1

(

h
(

xt
j

)

+ 11X
(

xt
j

))

+
α

n

n
∑

j=1

〈ŵt
j , x̂

t
j − xt

j〉. (31)

On dividing (31) by α and adding in (30) we get

1

αn

n
∑

i=1

[

h(xt+1
i ) + 11X (x

t+1
i )

]

+
1

n

n
∑

i=1

〈yt
i , x̂

t
i − xt

i〉+
1

n

n
∑

i=1

〈ŵt
i , x̂

t
i − xt

i〉
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≤
1

αn

n
∑

i=1

(

h
(

xt
i

))

+
1

n

n
∑

j=1

〈ŵt
j , x̂

t
i − xt

i〉+
−1

n

n
∑

i=1

µ
∥

∥x̂t
i − xt

i

∥

∥

2
.

Furthermore, as X is a convex set (g(x) is convex), x̂t
i ∈ X (1), Algorithm 1 is initialized with a feasible point,

and update equation (7) is a convex combination of vectors within the set X . Therefore, we conclude that xt
i ∈ X

and 11X (xt
i) = 0 for all i ∈ V and t > 0. Using this, we obtain:

1

n

n
∑

i=1

〈yt
i , x̂

t
i − xt

i〉 ≤
−1

n

n
∑

i=1

µ
∥

∥x̂t
i − xt

i

∥

∥

2
−

1

αn

n
∑

i=1

h(xt+1
i ) +

1

αn

n
∑

i=1

h
(

xt
i

)

. (32)

From the smoothness of u(x) (Assumption A4), we have

u(x̄t+1) ≤ u(x̄t) + 〈∇u(x̄t),
(

x̄t+1 − x̄t
)

〉+
L

2

∥

∥x̄t+1 − x̄t
∥

∥

2

Furthermore, pre-multiplying the update equation (7) by 1
n

(

1T ⊗ Id
)

gives

x̄t+1 = x̄t + α
(

¯̂x
t
− x̄t

)

(As, 1
n

(

1T ⊗ Id
)

W = 1
n

(

1T ⊗ Id
)

)

Using this we can further simplify the quadratic upper bound of u(x), as below:

u(x̄t+1) ≤ u(x̄t) + α

〈

∇u(x̄t)− yt
i + yt

i ,

(

1

n

n
∑

i=1

x̂t
i −

1

n

n
∑

i=1

xt
i

)〉

+
α2L

2

∥

∥

∥

¯̂x
t
− x̄t

∥

∥

∥

2

,

= u(x̄t) +
α

n

n
∑

i=1

〈∇u(x̄t)− yt
i ,
(

x̂t
i − xt

i

)

〉+
α

n

n
∑

i=1

〈yt
i ,
(

x̂t
i − xt

i

)

〉+
α2L

2

∥

∥

∥

¯̂x
t
− x̄t

∥

∥

∥

2

,

(32)

≤ u(x̄t) +
α

n
〈(1⊗ Id)∇u(x̄t)− yt, x̂t − xt〉+

α2L

2

∥

∥

∥

¯̂x
t
− x̄t

∥

∥

∥

2

+
α

n

(

−
n
∑

i=1

µ
∥

∥x̂t
i − xt

i

∥

∥

2
−

1

α

n
∑

i=1

h(xt+1
i ) +

1

α

n
∑

i=1

h
(

xt
i

)

)

,

u(x̄t+1) +
1

n

n
∑

i=1

h(xt+1
i )− u(x̄t)−

1

n

n
∑

i=1

h
(

xt
i

)

≤
α

n
〈(1⊗ Id)∇u(x̄t)− yt, x̂t − xt〉+

α2L

2

∥

∥

∥

¯̂x
t
− x̄t

∥

∥

∥

2

−
αµ

n

n
∑

i=1

∥

∥x̂t
i − xt

i

∥

∥

2
.

On further applying Cauchy Schwartz inequality and peter-paul’s inequality for γ1 > 0 we get,

u(x̄t+1) +
1

n

n
∑

i=1

h(xt+1
i )− u(x̄t)−

1

n

n
∑

i=1

h
(

xt
i

)

≤
αγ1

2n

∥

∥(1⊗ Id)∇u(x̄t)− yt
∥

∥

2
+

α

2nγ1

∥

∥x̂t − xt
∥

∥

2
+

α2L

2

∥

∥

∥

¯̂x
t
− x̄t

∥

∥

∥

2

−
αµ

n

∥

∥x̂t − xt
∥

∥

2

(14d)

≤
αγ1

2n

∥

∥(1⊗ Id)∇u(x̄t)− (1⊗ Id)∇̄u(xt) + (1⊗ Id)∇̄u(xt)− (1⊗ Id)ȳ
t + (1⊗ Id)ȳ

t − yt
∥

∥

+
α

n

(

−µ+
1

2γ1
+

αL

2

)

∥

∥x̂t − xt
∥

∥

By further applying the Cauchy-Schwarz inequality and the Peter-Paul inequality for γ1 > 0, we obtain:

u(x̄t+1) +
1

n

n
∑

i=1

h(xt+1
i )− u(x̄t)−

1

n

n
∑

i=1

h
(

xt
i

)

≤
α

2n
γ1

(

3L2
∥

∥xt − 1x̄t
∥

∥

2
+ 3n

∥

∥∇̄u(xt)− z̄t
∥

∥

2
+ 3

∥

∥yt − 1ȳt
∥

∥

2
)

+
α

n

(

−µ+
1

2γ1
+

αL

2

)

∥

∥x̂t − xt
∥

∥

2
.
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On taking the Expectation on both side and summing for all 1 ≤ t ≤ T

T
∑

t=1

u(x̄t+1) +
1

n

T
∑

t=1

n
∑

i=1

h(xt+1
i )−

T
∑

t=1

u(x̄t)−
1

n

T
∑

t=1

n
∑

i=1

h
(

xt
i

)

≤
α

2n
γ1

(

3L2
T
∑

t=1

E

[

∥

∥xt − 1x̄t
∥

∥

2
]

+ 3n

T
∑

t=1

E

[

∥

∥∇̄u(xt)− z̄t
∥

∥

2
]

+ 3

T
∑

t=1

E

[

∥

∥yt − 1ȳt
∥

∥

2
]

)

+
α

n

(

−µ+
1

2γ1
+

αL

2

) T
∑

t=1

E

[

∥

∥x̂t − xt
∥

∥

2
]

.

which, on further simplifications, gives

u(x̄T+1) +
1

n

n
∑

i=1

h(xT+1
i )− u(x̄1)−

1

n

n
∑

i=1

h
(

x1
i

)

≤
α

2n
γ1

(

3L2
T
∑

t=1

E

[

∥

∥xt − 1x̄t
∥

∥

2
]

+ 3n

T
∑

t=1

E

[

∥

∥∇̄u(xt)− z̄t
∥

∥

2
]

+ 3

T
∑

t=1

E

[

∥

∥yt − 1ȳt
∥

∥

2
]

)

+
α

n

(

−µ+
1

2γ1
+

αL

2

) T
∑

t=1

E

[

∥

∥x̂t − xt
∥

∥

2
]

.

Further from the zeroth order convexity condition of h(x) we have h(x̄T+1) ≤ 1
n

∑n
i=1 h(x

T+1
i ) and from the

initialization of D-MSSCA we have x1
i = x̄1 for all i ∈ V , utilizing which we get the desired result.
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