
Stable Signature is Unstable: Removing Image

Watermark from Diffusion Models

Yuepeng Hu, Zhengyuan Jiang, Moyang Guo, Neil Gong
Duke University

{yuepeng.hu, zhengyuan.jiang, moyang.guo, neil.gong}@duke.edu

Abstract

Watermark has been widely deployed by industry to detect AI-generated images.
A recent watermarking framework called Stable Signature (proposed by Meta) roots
watermark into the parameters of a diffusion model’s decoder such that its gener-
ated images are inherently watermarked. Stable Signature makes it possible to
watermark images generated by open-source diffusion models and was claimed to
be robust against removal attacks. In this work, we propose a new attack to remove
the watermark from a diffusion model by fine-tuning it. Our results show that our
attack can effectively remove the watermark from a diffusion model such that its
generated images are non-watermarked, while maintaining the visual quality of the
generated images. Our results highlight that Stable Signature is not as stable as
previously thought.

1 Introduction

With the rapid development of generative AI (GenAI), it becomes increasingly more
difficult to distinguish AI-generated and non-AI-generated images. The misuse of AI-
generated images presents a significant risk of spreading misinformation. Watermark-
ing [1–6] has emerged as a crucial technology for detecting AI-generated images and been
widely deployed by industry. For instance, OpenAI incorporates a watermark into im-
ages generated by DALL-E [7]; Stability AI deploys a watermarking technique in Stable
Diffusion [8]; and Google has introduced SynthID as a watermarking solution for images
generated by Imagen [9]. In watermark-based detection, a watermark is embedded in
AI-generated images before they are accessed by users. During detection, if the same
watermark can be extracted from an image, it is identified as AI-generated.

Image watermark can be categorized into three groups based on the timing when wa-
termark is embedded into AI-generated images: post-generation, pre-generation, and in-
generation. Post-generation watermark [1–4, 10, 11] embeds a watermark into an image
after the image has been generated, while pre-generation watermark [6] embeds a water-
mark into the initial noisy latent vector of a diffusion model. However, these watermarking
methods are vulnerable when the diffusion models are open-source. In particular, an at-
tacker can easily remove the watermarking components from the open-source diffusion
model to generate non-watermarked images. In contrast, in-generation watermark (e.g.,
Stable Signature [5]) roots watermark directly into the parameters of a diffusion model’s

1

ar
X

iv
:2

40
5.

07
14

5v
1

 [
cs

.C
R

]
 1

2
M

ay
 2

02
4

(a) Clean (b) Watermarked (c) MP (d) E-aware (e) E-agnostic

Figure 1: An example of image generated by (a) the clean Stable Diffusion 2.1, (b) Stable
Diffusion 2.1 watermarked by Stable Signature, (c) watermarked Stable Diffusion 2.1 fine-
tuned by MP, (d) watermarked Stable Diffusion 2.1 fine-tuned by our attack with access to
the encoder, and (e) watermarked Stable Diffusion 2.1 fine-tuned by our attack without access
to the encoder. The same denoised latent vector is used by all diffusion models’ decoders to
generate the images. The watermark can only be detected in the image generated by (b).
The image generated by (c) has significant loss of details.

decoder. It enables the images generated by the diffusion model to be inherently wa-
termarked without introducing any external watermarking components. This method is
particularly suited for watermarking images generated by open-source diffusion models.

Watermark removal attacks aim to remove watermarks from watermarked images, and
can be divided into two main types: per-image-based andmodel-targeted. Per-image-based
attacks [12–16] add a carefully crafted perturbation to each watermarked image individ-
ually. These removal attacks need to process watermarked images one by one, which is
highly inefficient when removing watermarks from a large volume of watermarked im-
ages. In contrast, model-targeted attacks directly modify a diffusion model’s parameters
to make its generated images non-watermarked. For instance, the authors of Stable Sig-
nature [5] also proposed a model-targeted removal attack, called model purification (MP),
to attack Stable Signature. However, MP requires access to the diffusion model’s encoder
and is not applicable when the encoder is not open-source. Moreover, MP significantly
deteriorates image quality [5], based on which Stable Signature was claimed to be robust
against model-targeted removal attacks.

In this work, we propose a new model-targeted attack to remove in-generation watermark
from open-source diffusion models. Our attack fine-tunes a diffusion model’s decoder using
a set of non-watermarked images, which we call attacking dataset. Specifically, our attack
consists of two steps. In Step I, we propose different methods to estimate a denoised latent
vector for each non-watermarked image in the attacking dataset in two settings, i.e., with
and without access to the diffusion model’s encoder. The open-source diffusion model’s
decoder takes a denoised latent vector as input and outputs a watermarked image that
is visually similar to the corresponding non-watermarked image. In Step II, we leverage
the non-watermarked images in the attacking dataset and their corresponding estimated
denoised latent vectors to fine-tune the diffusion model’s decoder to remove the watermark
from it. Our key idea is to fine-tune the decoder such that its generated images based on
the denoised latent vectors are close to the corresponding non-watermarked images in the
attacking dataset.

We empirically evaluate our attack on the open-source diffusion model, i.e., Stable Dif-
fusion 2.1, that is watermarked by Stable Signature. Our results show that our attack

2

Generation

Conditioning

Figure 2: The main components of a latent diffusion model.

can effectively remove the watermark from the diffusion model such that its generated
images are non-watermarked, while maintaining image quality. Moreover, our attack sub-
stantially outperforms MP, the only existing model-targeted removal attack [5], in the
scenario in which it is applicable. As shown in Figure 1, our attack can retain most
information in the image after removing the watermark, while MP results in a blurry
image with significant loss of details. Our results suggest that Stable Signature is not
as robust as previously thought, and the design of a robust watermarking strategy for
images generated by open-source diffusion models remains an open challenge.

2 Related Works

2.1 Latent Diffusion Model

Diffusion models [17–20] exhibit exceptional capability in generating images. A latent
diffusion model [21] performs the diffusion process in the latent space, enhancing efficiency
in both training of the diffusion model and image generation. A latent diffusion model
has four main components: an encoder E to encode an image x into a latent vector
E(x), diffusion process DP to add Gaussian noise to the latent vector to obtain a noisy
latent vector zT = DP (E(x)) where T denotes the number of steps in diffusion process,
denoising layers DN to obtain a denoised latent vector z = DN(zT , c) where c denotes
the conditioning such as a text prompt or a depth map, and a decoder D to reconstruct
an image D(z) from z. The diffusion process is a predefined probabilistic process that
iteratively adds Gaussian noise to a latent vector, while the remaining three components
are learnt using an image dataset. During image generation, a noisy latent vector z′T is
sampled from Gaussian distribution, and the denoising layers DN and decoder D are used
to generate an image D(DN(z′T , c)). The main components of a latent diffusion model
are shown in Figure 2.

2.2 Image Watermark

Post-generation watermark: Post-generation watermarking methods [1, 2, 4, 10,
11, 22, 23] embed watermarks into images after the image generation process. These
methods typically consist of three main components: a watermark (represented as a
bitstring), a watermarking encoder for embedding the watermark into an image, and a
watermarking decoder for extracting the watermark from an image. These methods can be
categorized into two groups based on how the encoder and decoder are designed: learning-
based and non-learning-based. Learning-based methods [2–4, 10] leverage deep learning

3

techniques, utilizing neural networks for both encoding and decoding, while non-learning-
based methods [1, 11, 22, 24] rely on manually crafted encoding and decoding algorithms.
In closed-source setting, where the diffusion model is proprietary and users can only
interact with it through API, learning-based watermarking methods exhibit significant
robustness against various attacks [4, 12, 13]. In open-source setting, however, such
robustness is compromised. An attacker can easily remove the watermarking components
from the open-source diffusion model, thus generating non-watermarked images without
constraints.

Pre-generation watermark: Pre-generation watermarking methods [6] embed water-
mark into images before the image generation process. In diffusion models, for instance,
a watermark can be incorporated into the noisy latent vector zT [6]. Subsequently, the
image generated from this watermarked noisy latent vector contains the watermark. The
watermark retrieval process involves an inverse operation of DDIM sampling [25], which re-
constructs the noisy latent vector from the generated image. However, such pre-generation
watermark is also vulnerable in open-source setting. An attacker can substitute the water-
marked noisy latent vector with a non-watermarked one, which is drawn from a Gaussian
distribution. Consequently, image generated from this non-watermarked noisy latent vec-
tor does not contain the watermark.

In-generation watermark: In-generation watermarking methods [5] modify the pa-
rameters of the diffusion model’s decoder to ensure that all images generated by this
diffusion model inherently contain a watermark. This method seamlessly incorporates
the watermarking components into the image generation process. For instance, Stable
Signature [5] fine-tunes the diffusion model’s decoder using a HiDDeN [2] watermark-
ing decoder. After fine-tuning, each generated image carries a predetermined watermark
which can be decoded by the watermarking decoder, i.e., directly incorporating the wa-
termark into the diffusion model’s parameters. This method is well-suited for open-source
diffusion models, because it prevents attackers from removing the watermark by simply
discarding the model’s watermarking components.

2.3 Watermark Removal Attacks

Per-image-based: Per-image-based removal attacks [12–16] involve adding a carefully
crafted perturbation on each watermarked image to remove the watermark. Common
image processing techniques, such as JPEG compression and contrast adjustment, can
introduce a perturbation for the watermarked image to remove the watermark. Further-
more, more sophisticated per-image-based removal attacks can be employed if the attacker
has access to the watermarking decoder or detection API. For instance, Jiang et al. [12]
proposed a white-box attack that assumes the attacker has access to the watermarking
decoder, and a black-box attack that strategically manipulates the watermarked image
based on detection API query results to remove the watermark. These per-image-based
removal attacks are applicable to all three groups of watermarks mentioned above as they
do not require access to the image generation process. However, they are inefficient when
applied to a large volume of images due to the individualized design of perturbations for
each watermarked image.

Model-targeted: Model-targeted removal attacks [5] are specifically designed for re-
moving in-generation watermark. Such attacks involve modifying the diffusion model’s

4

parameters such that its generated images are non-watermarked. For instance, Stable
Signature [5] proposed MP to attack their Stable Signature in-generation watermark.
This method aims to purify the diffusion model’s decoder using non-watermarked images.
However, it encounters challenges in effectively removing the watermark without signif-
icantly degrading image quality. Model-targeted removal attacks show high efficiency
in removing watermark from numerous watermarked images, as it only requires a one-
time modification of the diffusion model and images generated by the modified diffusion
model are non-watermarked. These methods offer much higher efficiency compared to
per-image-based removal attacks when handling numerous watermarked images.

3 Problem Formulation

3.1 Watermarked Diffusion Model Decoder Dw

We denote by Dc a clean diffusion model decoder without watermark. Dc is fine-tuned
as a watermarked diffusion model decoder Dw such that its generated images are in-
herently embedded with a ground-truth watermark wg. Formally, any generated image
Dw(DN(zT , c)) is embedded with wg, where zT is a noisy latent vector sampled from a
Gaussian distribution, DN is the denoising layers, and c is the conditioning. Dw is made
open-source, allowing users to generate watermarked images.

3.2 Threat Model

Attacker’s goals: Given a watermarked diffusion model decoderDw, an attacker aims to
fine-tune it as a non-watermarked diffusion model decoder Dnw. Specifically, the attacker
aims to achieve two goals: 1) effectiveness goal, and 2) utility goal. The effectiveness goal
means that images generated by Dnw do not have the watermark wg embedded; while the
utility goal means that the images generated by Dnw maintain visual quality, compared
to those generated by Dw.

Attacker’s knowledge: A watermarked latent diffusion model consists of an encoder E,
diffusion process DP , denoising layers DN , and a watermarked decoder Dw. The denois-
ing layers DN and decoder Dw are involved when generating images, i.e., Dw(DN(zT , c))
is a generated image, where zT is a noisy latent vector sampled from Gaussian distribution
and c is the conditioning. We assume DN and Dw are open-source, and thus the attacker
has access to them. Depending on whether E and DP are open-source, we consider the
following two scenarios:

• Encoder-aware (E-aware). In this scenario, the model provider also makes E
and DP open-source. Therefore, the attacker has access to them. For instance,
Stable Diffusion model makes its E and DP open-source.

• Encoder-agnostic (E-agnostic). In this scenario, E andDP are not open-source,
e.g., because image generation only requires DN and Dw. Therefore, the attacker
does not have access to E and DP in this setting.

Additionally, we assume the attacker has access to a set of non-watermarked images,
which we call attacking dataset. For instance, the attacker can simply use popular bench-

5

Step I Step II

Update based on loss function

Encoder-agnostic

Update based on loss function

Discriminator

Encoder-aware

Text prompt

V

Generation

Figure 3: Overview of our attack. The solid arrows represent the direction of data flow and
the dashed arrows represent the direction of gradient flow.

mark images (e.g., ImageNet) as the attacking dataset. The attacking dataset is used to
remove watermark from the watermarked diffusion model decoder Dw.

Attacker’s capability: We assume the attacker can modify the parameters of the
open-sourced watermarked latent diffusion model decoder Dw. The denoising layers DN ,
which are much larger than the decoder, requires much more computational resources
to modify. For instance, in Stable Diffusion 2.1, the denoising layers have about 10
times more parameters than the decoder. Therefore, we assume the attacker modifies the
decoder.

4 Our Attack

4.1 Overview

We propose a two-step method to fine-tune the decoder Dw to make the diffusion model’s
generated images non-watermarked using an attacking dataset of size n, as illustrated in
Figure 3. In Step I, we estimate the denoised latent vector zi for each non-watermarked
image xi in the attacking dataset, where i = 1, 2, . . . , n. In Step II, by utilizing these
images and their estimated denoised latent vectors, we fine-tune the decoder Dw to en-
sure that the reconstructed images closely match the non-watermarked images when the
inputs are the corresponding estimated denoised latent vectors. Our intuition is that
a watermarked decoder will transform a denoised latent vector zi to the watermarked
version of xi, denoted as xi

w. Therefore, through fine-tuning the decoder to reconstruct
xi from the input zi, the decoder is trained to map any given denoised latent vector to
the non-watermarked version of its corresponding image, effectively removing watermarks
from images generated by the diffusion model.

6

4.2 Step I: Estimate the Denoised Latent Vector z

To estimate the denoised latent vector zi for the non-watermarked image xi, we propose
different methods in different scenarios.

E-aware: In this scenario, an attacker has access to the encoder E, diffusion process DP ,
denoising layers DN , and watermarked decoder Dw. Based on the pipeline of the diffusion
model, the denoised latent vector zi can be represented as zi = DN(DP (E(xi)), ci).
However, since we don’t have access to the ground-truth conditioning ci to reconstruct
zi, we cannot directly compute zi even though we have access to E, DP , and DN . We
observe that the denoising layers DN are trained to denoise the noisy latent vector zT
such that DN(zT , c) is close to E(x). Therefore, the attacker can utilize the encoder to
encode the non-watermarked image xi into the latent space to get an estimation of the
denoised latent vector zi, denoted by ẑi, as follows:

ẑi = E(xi), ∀i. (1)

E-agnostic: In this scenario, an attacker only has access to the denoising layers DN and
watermarked decoder Dw. The most straightforward way to estimate the denoised latent
vector zi is to train a new encoder based on DN and Dw and use the method in E-aware
scenario. However, training an encoder from scratch for a latent diffusion model to achieve
good encoding performance requires a large number of data and computational resources,
which is very time-consuming and infeasible for an attacker with limited resources. Recall
that our goal is to estimate the denoised latent vector zi which will be mapped to the
watermarked image xi

w by the watermarked decoder Dw. Formally, we can formulate an
equation as follows:

Dw(z
i) = xi

w,∀i. (2)

This equation is difficult to solve since there are two variables in it, the denoised latent
vector zi and watermarked image xi

w. To reduce the number of variables, we use the
known xi as an approximation of xi

w since the watermarked version of an image should be
highly perceptually close to the non-watermarked version. Therefore, to get an estimation
of zi, we can reformulate the equation as follows:

Dw(ẑ
i) = xi,∀i. (3)

We can easily get an estimation of zi for Equation 3 if Dw is invertible, i.e., ẑi =
D−1

w (xi), ∀i. However, since the diffusion model’s decoder is a complicated neural network
and it is usually infeasible to get its inverse function, solving the Equation 3 directly
is challenging. To address the challenge, we can treat ẑi as a trainable variable and
reformulate Equation 3 into an optimization problem as follows:

min
ẑi

lp(Dw(ẑ
i), xi),∀i, (4)

where lp(·, ·) denotes the perceptual loss between two images to ensure the visual similarity.
However, it is still challenging to make Dw(ẑ

i) closely resemble the non-watermarked
image xi since ẑi is randomly initialized and Dw(ẑ

i) is completely different from xi at the
early stage of the optimization process.

7

Therefore, we propose a two-stage optimization method to solve the optimization prob-
lem described in Equation 4. At the first stage, for each ẑi, we randomly initialize it
using a standard Gaussian distribution. Then we employ gradient descent to find an
initial point ẑiinit for ẑ

i that minimizes the mean square error between Dw(ẑ
i
init) and xi.

This stage ensures that Dw(ẑ
i
init) roughly resembles xi, though with a significant loss of

detailed information. At the second stage, we initialize ẑi with the initial point ẑiinit ob-
tained from the first stage. Then we set lp(·, ·) to be the Watson-VGG perceptual loss
introduced by Czolbe et al. [26] and use gradient descent to further optimize ẑi, enabling
it to capture and reconstruct the detailed information of the non-watermarked image xi.
The detailed method to estimate the denoised latent vector zi in E-agnostic scenario is
shown in Algorithm 1 in Appendix.

4.3 Step II: Fine-tune the Decoder Dw

Given a set of estimated denoised latent vectors ẑi and non-watermarked images xi, our
goal is to modify the parameters of the watermarked decoder Dw to make the diffusion
model’s generated images non-watermarked. The main idea is to modify the decoder’s
parameters to enable it to map the denoised latent vector zi, which is originally mapped
to the watermarked image xi

w, to the non-watermarked image xi. To achieve this, we use
the estimated denoised latent vectors ẑi and non-watermarked images xi to fine-tune the
decoder, ensuring that the reconstructed images closely resemble the non-watermarked
images at the pixel level to effectively remove the watermark signal from each pixel.
Formally, we can formulate the optimization problem as follows:

min
Dw

1

n

n∑︂
i=1

∥Dw(ẑ
i)− xi∥2. (5)

However, since the mean square error measures the average difference between the non-
watermarked and reconstructed images, it tends to penalize large errors more severely
than small ones, leading to a smoothing effect where the reconstructed images may lose
lots of detailed information. To solve this challenge, a perceptual loss that measures the
distance of the high-level features produced by a pre-trained neural network between two
images is employed to ensure the visual quality of the reconstructed images. Formally,
we can reformulate the optimization problem as follows:

min
Dw

1

n

n∑︂
i=1

∥Dw(ẑ
i)− xi∥2 + λ

1

n

n∑︂
i=1

lp(Dw(ẑ
i), xi), (6)

where λ denotes the weight for the perceptual loss. To solve the optimization problem,
we employ gradient descent to optimize the parameters of Dw to minimize the objective
function in Equation 6. During the optimization, we adopt a convolution neural network
introduced by Zhu et al. [2] as a discriminator to perform adversarial training. The
discriminator is trained to distinguish Dw(ẑ

i) from xi and the decoder Dw is trained to
fool the discriminator. Formally, we reformulate the optimization problem as follows:

min
Dw

1

n

n∑︂
i=1

∥Dw(ẑ
i)− xi∥2 + λ

1

n

n∑︂
i=1

lp(Dw(ẑ
i), xi)

+ µ
1

n

n∑︂
i=1

log(1− disc(Dw(ẑ
i))),

(7)

8

where disc denotes the discriminator and µ denotes the weight for the adversarial loss.
The detailed method to fine-tune the decoder Dw is shown in Algorithm 2 in Appendix.

5 Evaluation

5.1 Experimental Setup

Datasets: We employ public non-AI-generated images as our attacking datasets. Specif-
ically, we utilize three datasets: ImageNet [27], MS-COCO [28], and Conceptual Cap-
tions [29]. From each dataset, we randomly select 4,000 images as an attacking dataset
to fine-tune the watermarked decoder. The images in the attacking datasets are resized
to 256 × 256. For testing, we evaluate the effectiveness and utility goals using images
generated by an open-source watermarked diffusion model and its versions fine-tuned by
watermark removal attacks. These images are produced using text prompts from the Sta-
ble Diffusion Prompts dataset created by MagicPrompt [30]. Specifically, we randomly
sample 100 text prompts from the dataset to generate 100 images for testing.

Detecting watermark in an image: A watermarking decoder Wd is used to detect
whether wg is in an image x. Specifically, Wd is used to decode a watermark, represented
as Wd(x), from the image x. The bitwise accuracy BA(w1, w2) between two watermarks
w1 and w2 is the proportion of bits that are identical in w1 and w2. x is detected as
watermarked with wg if the bitwise accuracy BA(Wd(x), wg) exceeds a detection threshold
τ or falls below 1− τ , i.e., BA(Wd(x), wg) > τ or BA(Wd(x), wg) < 1− τ . Such detector
is known as double-tail detector [12], which is more robust than single-tail detector that
detects the image x as watermarked if the bitwise accuracy BA(Wd(x), wg) exceeds τ .
Therefore, we use double-tail detector in this work.

Diffusion model and watermarking decoder: We use the open-source clean Stable
Diffusion 2.1 and its watermarked version obtained by Stable Signature [5]. For the
watermarked version, the watermarked decoder Dw is fine-tuned from the Stable Diffusion
2.1’s clean decoder Dc with the MS-COCO dataset by Stable Signature. The images
generated by the watermarked Stable Diffusion 2.1 are embedded with a ground-truth
watermark wg that has 48 bits. For the watermarking decoder Wd, we use the open-
source one [5] in Stable Signature, which aims to detect whether wg is embedded in an
image.

Different variants to estimate the denoised latent vector z: In our experiments,
we compare our two-stage optimization method (denoted by 2S) with the following vari-
ants to estimate the denoised latent vector z. All of these methods initialize ẑ with a
standard Gaussian distribution and treat it as a trainable variable.

• One-stage mean square error (1S-M) This method optimizes ẑ to minimize the
mean square error between the reconstructed imageDw(ẑ) and the non-watermarked
image x.

• One-stage perceptual loss (1S-P) This method optimizes ẑ to minimize the
perceptual loss calculated by the Watson-VGG model between Dw(ẑ) and x.

• One-stage mixed loss (1S-Mix) This method optimizes ẑ to minimize the mixed
loss consisting of mean square error and perceptual loss calculated by the Watson-

9

VGG model between Dw(ẑ) and x. The weights for different loss functions are set
to be 1.

Per-image-based removal attacks: In our experiments, we compare our attack with
five commonly used per-image-based removal attacks, including the state-of-the-art one
proposed by Jiang et al. [12]. The details of the per-image-based removal attacks we
use are shown in Appendix A. It should be emphasized that all of these per-image-based
attacks require to craft a perturbation for each watermarked image individually to remove
watermark.

Model-targeted removal attack: For model-targeted attacks, we compare our at-
tack with MP introduced in Stable Signature [5]. Specifically, MP involves fine-tuning
the diffusion model’s encoder and decoder with the encoder’s parameters fixed to recon-
struct non-watermarked images using mean square error as the reconstruction loss. Note
that this method requires the access to the diffusion model’s encoder and is only appli-
cable in the E-aware scenario. The parameter setting follows the configuration by Stable
Signature [5] as shown in Appendix B.

Evaluation metrics: To evaluate whether our attack achieves the effectiveness goal,
we utilize two metrics: evasion rate and bitwise accuracy. Evasion rate is the proportion
of generated images (or perturbed images for per-image-based removal attacks) detected
as watermarked by the watermark-based detector. Bitwise accuracy is the proportion of
bits in the watermark decoded from a generated (or perturbed) image that matches with
wg. Additionally, to evaluate whether our attack achieves the utility goal, we use a com-
monly used metric for the generation quality of generative models, i.e., Fréchet Inception
Distance (FID). Specifically, we compute the FID in the testing set between generated
(or perturbed) images and the watermarked images generated by the watermarked Stable
Diffusion 2.1 with the same random seed. Note that the bitwise accuracy is averaged
across 100 images in the testing set.

Parameter settings: In the E-aware scenario, we use the Watson-VGG [26] model
to measure the perceptual loss in Step II. However, in Step I of our attack, we use the
Watson-VGG model to measure the perceptual loss in the E-agnostic scenario. To avoid
potential local minima issues that could emerge from using the same perceptual loss
model, we use VGG-16 [31] to measure the perceptual loss in E-agnostic scenario in Step
II. For the discriminator disc, we employ the discriminator in HiDDeN [2].

To estimate the denoised latent vector z in the E-agnostic scenario, 2S is employed
as the default method and we execute 500 epochs for each stage. In each stage, the
Adam optimizer, with a learning rate of 0.1, is used to optimize ẑ. For other variants
to estimate z, we execute 1,000 epochs–equivalent to the total epoch count in 2S–and
maintain consistent optimizer settings.

For decoder fine-tuning, we execute 1 epoch in the E-aware scenario and 2 epochs in
the E-agnostic scenario. We set the parameters λ = 1 and µ = 0.1. Additionally, the
AdamW optimizer is used, with a base learning rate of 0.0005 with a linear warm-up
period of 20 iterations followed by a half-cycle cosine decay. The batch size is set to be
4. For optimizing the discriminator, the Adam optimizer is used with a learning rate of
0.001.

The detection threshold τ is set to ensure that the false positive rate of the double-tail
detector does not exceed 10−4. Given that the watermark length in our experiments is

10

ImageNet MS-COCO CC
0.0

0.2

0.4

0.6

0.8

1.0
E

va
si

on
R

at
e

No attack MP E-aware E-agnostic

(a) Evasion rate

ImageNet MS-COCO CC
0.5

0.6

0.7

0.8

0.9

1.0

B
it

w
is

e
A

cc
u

ra
cy

No attack MP E-aware E-agnostic

(b) Bitwise accuracy

ImageNet MS-COCO CC
0

10

20

30

40

50

F
ID

MP E-aware E-agnostic

(c) FID

Figure 4: Effectiveness and utility of MP and our attack with the three attacking datasets.

Table 1: Utility and processing time of per-image-based attacks and our attack.

Utility Time
Method FID ↓ PSNR ↑ SSIM ↑ Fine-tuning (min) ↓ Removal (s/img) ↓
JPEG 61.48 28.57 0.84 0 0.036

Brightness 223.67 5.15 0.40 0 0.005
Contrast 172.44 10.10 0.32 0 0.002

GN 228.51 13.10 0.11 0 0.017
WEvade-W-II 5.80 38.94 0.99 0 651.034

E-aware 18.15 29.50 0.86 14.197 0
E-agnostic 25.68 29.40 0.86 8777.885 0

48, τ is set to be 0.77.

5.2 Experimental Results

Our attack achieves both the effectiveness and utility goals: Figure 4 shows the
evasion rate, bitwise accuracy, and FID of MP and our attack with the three attacking
datasets. First, we observe that our attack is successful in evading watermark-based
detection in both E-aware and E-agnostic scenarios. The evasion rate is higher than 94%
and the bitwise accuracy is lower than 66%, while maintaining an FID lower than 27.5.
Second, we observe that our attack outperforms MP in both scenarios. In the E-aware
scenario, our attack has a higher evasion rate and lower bitwise accuracy while maintaining
a much lower FID in all the three attacking datasets. In the E-agnostic scenario, our
attack still has a comparable or higher evasion rate and comparable bitwise accuracy while
maintaining a much lower FID in all the three attacking datasets. Note that MP assumes
the attacker has access to the encoder while our attack in the E-agnostic scenario doesn’t.
Figure 8 in Appendix shows some image examples of our attack compared with the clean
and watermarked ones. We observe that the images produced by our non-watermarked
decoder are almost the same as those produced by the clean and watermarked decoder.

Comparing with per-image-based removal attacks: Table 1 shows the utility and
the processing time of our attack compared with five per-image-based removal attacks
when achieving similar evasion rate and bitwise accuracy. Figure 9 in Appendix shows
the comparison of the generated (or perturbed) images by different attacks. We also show
the Peak signal-to-noise ratio (PSNR) and Structural Similarity Index Measure (SSIM)
which are the commonly used metrics for assessing per-image-based attacks’ utility. For

11

1S-M 1S-P 1S-Mix 2S
Variant

0

25

50

75

100

125

F
ID

(a) FID (b) NW (c) 1S-M (d) 1S-P (e) 1S-Mix (f) 2S

Figure 5: Image reconstruction performance for different variants to estimate z on ImageNet.
NW denotes the non-watermarked image.

the processing time, we divide it into two phases: decoder fine-tuning and watermark
removal for each image. It is important to note that the fine-tuning time of our attack
is on a single NVIDIA A6000 GPU. It can be significantly reduced when using multiple
GPUs since the process of estimating z which is the most time-consuming part in E-
agnostic scenario can be parallelized. For instance, with four NVIDIA A6000 GPUs, it
only takes about 2K minutes for fine-tuning in E-agnostic scenario.

First, we observe that the utility of our attack is much higher than most per-image-based
removal attacks. Second, the removal time of our attack is 0 once the decoder is fine-tuned.
Therefore, our attack shows much higher efficiency of removing watermark when the
number of generated images is large. For instance, the efficiency of our attack outperforms
WEvade-W-II when processing more than 1 image in E-aware scenario and 809 images
in E-agnostic scenario. Note that WEvade-W-II requires the access to the watermarking
decoder Wd to perform a white-box attack, and it represents the upper bound of the
utility that can be achieved by a removal attack. Though our attack maintains a slightly
worse utility than WEvade-W-II when compared to the watermarked images, it is still
difficult for human’s eyes to notice their differences with the watermarked images, as
shown in Figure 9 in Appendix. It is worthwhile to mention that our attack maintains a
similar utility as WEvade-W-II when compared to the clean non-watermarked images. It
is because we optimize the decoder’s output close to the non-watermarked image rather
than the watermarked one in the optimization problem we formulate.

Different variants to estimate z: Figure 5 shows the FID and the examples of
reconstructed image by different variants to estimate the denoised latent vector z for a
non-watermarked image. The FID is computed between 100 images randomly selected
from ImageNet dataset and their reconstructed version by different variants. We observe
that the images reconstructed by 2S are more similar to the original ones than those
reconstructed by other variants. 2S achieves a much lower FID compared with other
variants. Additionally, from the examples of reconstructed image shown, we observe that
z produced by our method can reconstruct more detail information in the original image
and achieve a higher level of visual similarity to the original one.

Different λ: Figure 6 shows the evasion rate, bitwise accuracy, and FID for different
λ in our attack. First, we observe that the effectiveness of our attack decreases when
λ increases. This trend can be attributed to the loss function placing greater empha-
sis on perceptual loss, thereby reducing the mean square error’s capability in removing
watermarks. Second, we observe that the utility of our attack first increases and then
slightly decreases when λ increases. The early improvement in utility results from a higher
weighting on perceptual loss, which enhances image fidelity. However, when λ continues
increasing, the reconstructed image starts to deviate from the non-watermarked image

12

0.001 0.01 0.1 1 5 10
λ

0.8

0.9

1.0
E

va
si

on
R

at
e

E-aware

E-agnostic

(a) Evasion rate

0.001 0.01 0.1 1 5 10
λ

0.5

0.6

0.7

B
it

w
is

e
A

cc
u

ra
cy

E-aware

E-agnostic

(b) Bitwise accuracy

0.001 0.01 0.1 1 5 10
λ

10

20

30

40

50

F
ID

E-aware

E-agnostic

(c) FID

Figure 6: Effectiveness and utility of our attack with different λ on ImageNet.

0.0001 0.001 0.01 0.1 0.5 1
µ

0.8

0.9

1.0

E
va

si
on

R
at

e

E-aware

E-agnostic

(a) Evasion rate

0.0001 0.001 0.01 0.1 0.5 1
µ

0.5

0.6

0.7
B

it
w

is
e

A
cc

u
ra

cy

E-aware

E-agnostic

(b) Bitwise accuracy

0.0001 0.001 0.01 0.1 0.5 1
µ

10

20

30

40

F
ID

E-aware

E-agnostic

(c) FID

Figure 7: Effectiveness and utility of our attack with different µ on ImageNet.

pixel-wisely since the loss function focus more on the perceptual loss than the mean
square error, which results in a worse utility.

Different µ: Figure 7 shows the evasion rate, bitwise accuracy, and FID for different
µ in our attack. First, we observe that the effectiveness of our attack remains constant,
subsequently decreasing, while utility does not change in the E-aware scenario as µ in-
creases. This phenomenon occurs because the reconstructed image is sufficiently similar
to the non-watermarked image when µ is small; thus, increasing µ does not decrease
their distance further to aid in watermark removal. Additionally, a larger weighting on
perceptual loss reduces the mean square error’s capability in removing watermark, re-
sulting in decreased effectiveness of our attack. Conversely, in the E-agnostic scenario,
both effectiveness and utility begin unchanged but later improve as µ increases. This
improvement is attributed to the initial significant difference between the reconstructed
and non-watermarked images. Increasing µ makes the reconstructed image closer to the
non-watermarked one, thereby improving effectiveness and utility.

6 Conclusion and Future Work

In this work, we find that image watermark for open-source diffusion model is not robust
as previously thought. Given a watermarked diffusion model, an attacker can remove
the watermark from it by strategically fine-tuning its decoder. Our results show that
our attack achieves both the effectiveness and utility goals in removing watermark from
diffusion models in both E-aware and E-agnostic scenarios, and outperforms the existing
model-targeted attack which is only applicable to E-aware scenario. Interesting future
work is to design a more robust image watermarking method for open-source diffusion
models.

13

References

1. Bi, N., Sun, Q., Huang, D., Yang, Z. & Huang, J. Robust image watermarking based
on multiband wavelets and empirical mode decomposition. IEEE Transactions on
Image Processing (2007).

2. Zhu, J., Kaplan, R., Johnson, J. & Fei-Fei, L. Hidden: Hiding data with deep networks
in European Conference on Computer Vision (2018).

3. Zhang, C., Benz, P., Karjauv, A., Sun, G. & Kweon, I. S. UDH: Universal Deep
Hiding for Steganography, Watermarking, and Light Field Messaging in Conference
on Neural Information Processing Systems (2020).

4. Tancik, M., Mildenhall, B. & Ng, R. StegaStamp: Invisible Hyperlinks in Physical
Photographs in IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2020).

5. Fernandez, P., Couairon, G., Jégou, H., Douze, M. & Furon, T. The Stable Signa-
ture: Rooting Watermarks in Latent Diffusion Models in IEEE/CVF Conference on
Computer Vision and Pattern Recognition (2023).

6. Wen, Y., Kirchenbauer, J., Geiping, J. & Goldstein, T. Tree-Ring Watermarks: Fin-
gerprints for Diffusion Images that are Invisible and Robust in Conference on Neural
Information Processing Systems (2023).

7. Ramesh, A. et al. Zero-shot text-to-image generation in International Conference on
Machine Learning (2021).

8. Rombach, R. stable-diffusion-watermark-decoder https://github.com/CompVis/

stable-diffusion/blob/main/scripts/tests/test_watermark.py. 2022.

9. Saharia, C. et al. Photorealistic text-to-image diffusion models with deep language
understanding in Conference on Neural Information Processing Systems (2022).

10. Luo, X., Zhan, R., Chang, H., Yang, F. & Milanfar, P. Distortion agnostic deep wa-
termarking in IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2020).

11. Al-Haj, A. Combined DWT-DCT digital image watermarking. Journal of computer
science (2007).

12. Jiang, Z., Zhang, J. & Gong, N. Z. Evading Watermark based Detection of AI-
Generated Content in ACM Conference on Computer and Communications Security
(CCS) (2023).

13. An, B. et al. Benchmarking the Robustness of Image Watermarks. arXiv preprint
arXiv:2401.08573 (2024).

14. Lukas, N., Diaa, A., Fenaux, L. & Kerschbaum, F. Leveraging optimization for adap-
tive attacks on image watermarks in International Conference on Learning Repre-
sentations (2024).

15. Zhao, X. et al. Invisible Image Watermarks Are Provably Removable Using Gener-
ative AI. arXiv preprint arXiv:2306.01953 (2023).

16. Saberi, M. et al. Robustness of ai-image detectors: Fundamental limits and practical
attacks. arXiv preprint arXiv:2310.00076 (2023).

14

https://github.com/CompVis/stable-diffusion/blob/main/scripts/tests/test_watermark.py
https://github.com/CompVis/stable-diffusion/blob/main/scripts/tests/test_watermark.py

17. Dhariwal, P. & Nichol, A. Q. Diffusion Models Beat GANs on Image Synthesis in
Conference on Neural Information Processing Systems (2021).

18. Ho, J., Jain, A. & Abbeel, P. Denoising Diffusion Probabilistic Models in Conference
on Neural Information Processing Systems (2020).

19. Kingma, D., Salimans, T., Poole, B. & Ho, J. Variational Diffusion Models in Con-
ference on Neural Information Processing Systems (2021).

20. Ho, J. et al. Cascaded diffusion models for high fidelity image generation. The Jour-
nal of Machine Learning Research (2022).

21. Rombach, R., Blattmann, A., Lorenz, D., Esser, P. & Ommer, B. High-resolution
image synthesis with latent diffusion models in IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2022).

22. Wang, Q. invisible-watermark https : / / github . com / ShieldMnt / invisible -

watermark. 2021.

23. Jing, J., Deng, X., Xu, M., Wang, J. & Guan, Z. HiNet: Deep Image Hiding by Invert-
ible Network in IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2021).

24. Pereira, S. & Pun, T. Robust template matching for affine resistant image water-
marks. IEEE Transactions on Image Processing (2000).

25. Song, Y. & Ermon, S. Improved techniques for training score-based generative models
in (2020).

26. Czolbe, S., Krause, O., Cox, I. & Igel, C. A loss function for generative neural
networks based on watson’s perceptual model in Conference on Neural Information
Processing Systems (2020).

27. Russakovsky, O. et al. ImageNet Large Scale Visual Recognition Challenge. Inter-
national Journal of Computer Vision (2015).

28. Lin, T.-Y. et al. Microsoft coco: Common objects in context in European Conference
on Computer Vision (2014).

29. Sharma, P., Ding, N., Goodman, S. & Soricut, R. Conceptual Captions: A Cleaned,
Hypernymed, Image Alt-text Dataset For Automatic Image Captioning in Annual
Meeting of the Association for Computational Linguistics (2018).

30. Santana, G. magic-prompt https://huggingface.co/datasets/Gustavosta/

Stable-Diffusion-Prompts. 2023.

31. Falbel, D. torch-vgg https://github.com/pytorch/vision/tree/main/references/
classification. 2024.

15

https://github.com/ShieldMnt/invisible-watermark
https://github.com/ShieldMnt/invisible-watermark
https://huggingface.co/datasets/Gustavosta/Stable-Diffusion-Prompts
https://huggingface.co/datasets/Gustavosta/Stable-Diffusion-Prompts
https://github.com/pytorch/vision/tree/main/references/classification
https://github.com/pytorch/vision/tree/main/references/classification

Algorithm 1 Estimate the denoised latent vector z

Input: Non-watermarked images {xi}ni=1, watermarked decoder Dw, number of iteration
for the first stage n iter1, number of iteration for the second stage n iter2, learning
rate α, perceptual loss function lp

Output: Estimated denoised latent vectors {ẑi}ni=1

1: Q← ∅
2: for i = 1 to n do
3: ẑi ∼ N (0, 1)
4: for j = 1 to n iter1 do
5: g ← ∇ẑi∥Dw(ẑ

i)− xi∥2
6: ẑi ← ẑi − α · g
7: for j = 1 to n iter2 do
8: g ← ∇ẑilp(Dw(ẑ

i), xi)
9: ẑi ← ẑi − α · g

10: Q← Q ∪ {ẑi}
11: return Q

Algorithm 2 Fine-tune the decoder Dw

Input: Non-watermarked images {xi}ni=1, estimated denoised latent vectors {ẑi}ni=1, wa-
termarked decoder Dw, number of epoch n epoch, decoder learning rate α, discrimi-
nator learning rate β, perceptual loss function lp, discriminator disc, weight for per-
ceptual loss λ, weight for adversarial loss µ

Output: Non-watermarked decoder Dnw

1: Dnw ← Dw

2: for i = 1 to n epoch do
3: gdisc ← −∇disc

1
n

∑︁n
i=1[log(1− disc(Dnw(ẑ

i))) + log(disc(xi))]
4: disc← disc− β · gdisc
5: g ← ∇Dnw

1
n

∑︁n
i=1 ∥Dnw(ẑ

i) − xi∥2 + λ 1
n

∑︁n
i=1 lp(Dnw(ẑ

i), xi) + µ 1
n

∑︁n
i=1 log(1 −

disc(Dnw(ẑ
i)))

6: Dnw ← Dnw − α · g
7: return Dnw

A Details of the per-image-based removal attacks

• JPEG It is a commonly used image compression technique that can significantly
decrease the size of image files while preserving high image quality. The quality of
images processed by JPEG is governed by a quality factor. Using a smaller quality
factor to post-process watermarked images can make the detection of watermarks
within the image more difficult.

• Brightness This method modifies the brightness of an image by initially converting
the image to a color space that includes a brightness-related channel. It then isolates
this channel, adjusts its intensity by multiplying it with a specified factor, and finally
converts the image back to its original color space. This method may disrupt the
watermark patterns in watermarked images to evade watermark detection.

16

• Contrast This method alters the contrast of an image by modifying its pixel values.
Specifically, for each pixel, it subtracts 127 from the pixel’s value, multiplies the
result by a factor k, and then adds 127 to the outcome. The factor k determines the
level of contrast enhancement or reduction, with values greater than 1 increasing
contrast and values between 0 and 1 decreasing it.

• Gaussian noise (GN) This method adds a noise that follows a Gaussian distri-
bution with a zero mean and a standard deviation of σ to the watermarked image.
It simulates the noise effects commonly encountered in the real world. A larger σ
value makes it more challenging to detect watermarks, simultaneously compromising
image quality.

• WEvade-W-II [12] This method employs projected gradient descent (PGD) to
optimize a perturbation applied to the watermarked image such that the decoded
watermark from the perturbed image by the model provider’s watermarking decoder
closely matches a randomly generated watermark, with each bit uniformly sampled
from {0, 1}. We assume that the attacker has access to the watermarking decoder
for this method.

B Parameter settings for MP

Following the configuration by Fernandez et al. [5], we employ AdamW and a learning
rate of 0.0005 with a linear warm-up period of 20 iterations followed by a half-cycle cosine
decay to fine-tune the decoder with a batch size of 4 to achieve similar bitwise accuracy
on the attacking dataset as our attack in the E-aware scenario.

17

Figure 8: Image generated by the clean Stable Diffusion 2.1 (first row), Stable Diffusion 2.1
watermarked by Stable Signature (second row), watermarked Stable Diffusion 2.1 fine-tuned
by our attack in E-aware scenario (third row), and watermarked Stable Diffusion 2.1 fine-tuned
by our attack in E-agnostic scenario (fourth row). The same denoised latent vector is used
by all diffusion models’ decoders to generate the images in the same column. The watermark
can only be detected in the images generated by Stable Diffusion 2.1 watermarked by Stable
Signature (second row).

18

(a) Clean (b) Watermarked (c) JPEG (d) Brightness (e) Contrast

(f) GN (g) WEvade-W-II (h) E-aware (i) E-agnostic

Figure 9: An example of generated image (a) with clean decoder, (b) with watermarked
decoder, (c) with watermarked decoder attacked by JPEG, (d) with watermarked decoder
attacked by Brightness, (e) with watermarked decoder attacked by Contrast, (f) with water-
marked decoder attacked by GN, (g) with watermarked decoder attacked by WEvade-W-II,
(h) with non-watermarked decoder fine-tune by our attack in E-aware scenario, (i) with non-
watermarked decoder fine-tune by our attack in E-agnostic scenario. The watermark can only
be detected in (b).

19

	Introduction
	Related Works
	Latent Diffusion Model
	Image Watermark
	Watermark Removal Attacks

	Problem Formulation
	Watermarked Diffusion Model Decoder Dw
	Threat Model

	Our Attack
	Overview
	Step I: Estimate the Denoised Latent Vector z
	Step II: Fine-tune the Decoder Dw

	Evaluation
	Experimental Setup
	Experimental Results

	Conclusion and Future Work
	Details of the per-image-based removal attacks
	Parameter settings for MP

