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Continuous-variable (CV) quantum information processing is a promising candidate for large-
scale fault-tolerant quantum computation. However, analysis of CV quantum process relies mostly
on direct computation of the evolution of operators in the Heisenberg picture, and the features
of CV space has yet to be thoroughly investigated in an intuitive manner. One key ingredient
for further exploration of CV quantum computing is the construction of a computational model
that brings visual intuition and new tools for analysis. In this paper, we delve into a graphical
computational model, inspired by a similar model for qubit-based systems called the ZX calculus,
that enables the representation of arbitrary CV quantum process as a simple directed graph. We
demonstrate the utility of our model as a graphical tool to comprehend CV processes intuitively by
showing how equivalences between two distinct quantum processes can be proven as a sequence of
diagrammatic transformations in certain cases. We also examine possible applications of our model,
such as measurement-based quantum computing, characterization of Gaussian and non-Gaussian
processes, and circuit optimization.

I. INTRODUCTION

Quantum computing is expected to become the next-
generation technology by surpassing the performance of
ordinary computers for certain tasks. Recent experi-
ments have already demonstrated this in several plat-
forms [1, 2], though practical applications remain yet to
be demonstrated. Toward the ultimate goal of universal
quantum computing, further investigation into the ability
of quantum computation is needed, as well as construc-
tion of feasible computational architectures.

In the field of classical computational theory, various
computational models have been proposed [3], such as
the Turing machine, lambda calculus, and process al-
gebra, to name a few. These models not only provide
new perspectives from which to comprehend the theo-
retical nature of computation but also contribute to the
designs of real computer architectures and programming
languages. As the development of quantum devices is
progressing rapidly, the necessity for a high-level quan-
tum computational model has increased [4].

Most of the computational models for quantum com-
putation proposed so far are natural generalization of
conventional computational models, including the quan-
tum Turing machine [5] and the quantum lambda cal-
culus [6]. These models are based on a discrete-variable
(DV) approach based on qubits. In the quantum cir-
cuit model—the most widely used quantum computa-
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tional model—computing processes are represented as se-
quences of quantum gates [7], whose concept originates
from the logic circuit of classical bit registers and has
a natural interpretation as an array of physical unitary
transformations evolving under specific Hamiltonians.

Another interesting DV quantum model that emerged
from a different point of view is what is called a graphical
calculus model. This idea derives from categorical quan-
tum mechanics, a research field that investigates the gen-
eral mathematical structure of quantum information the-
ory, providing insights into the unique features of quan-
tum theory such as entanglement and superposition [8].
One of the most useful variations is called the ZX calcu-
lus [9, 10], proposed by Coecke and Duncan. It provides
a graphical language with which to visualize qubit pro-
cesses and manipulate them in an intuitive manner. In
the framework of the ZX calculus, any quantum process
is represented as a simple diagram consisting of and undi-
rected graph with parameters on the vertices. By follow-
ing clearly defined procedures, one can easily verify the
equivalence between two quantum processes via graph-
ical transformations of corresponding diagrams. Since
the ZX calculus cleverly exploits the algebraic properties
of the qubit Hilbert space, it has various applications
such as quantum circuit optimization [11, 12], analysis of
measurement-based quantum computing [13, 14], graph-
ical reasoning of the surface code [15], quantum machine
learning [16], and others.

Aside from the DV approach, a continuous-variable
(CV) approach [17] is attracting attentions in recent
years. Unlike DV computing with qubits, a CV approach
exploits the infinite-dimensional nature of bosonic sys-
tems. As the bosonic Hilbert space is much larger than
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two-dimensional qubit space, it is possible to build er-
ror resilience directly into the states used as the fun-
damental quantum information carriers. For instance,
the CV approach is considered to be compatible with
fault-tolerant quantum computation for various types of
logical qubit encoding, such as the Gottesman-Kitaev-
Preskill qubit [18] and the binomial code [19]. Exper-
imentally, the CV approach has been intensively inves-
tigated in recent years in multiple platforms, including
optics [20–23], trapped ions [24–26], and superconduct-
ing resonators [27–30].

However, the major difficulty with the CV approach
is the same as its main feature: the infinite-dimensional
Hilbert space at its core and the continuous nature of
the quantum variables used for computation. As DV
computing can be seen as natural expansion of classi-
cal computing, where bits are expanded to superposition
of bits (qubits), the operational semantics of qubit com-
puting is largely comprehensible. For example, some of
the DV quantum gates have a natural interpretation as
Boolean logic gates, such as the correspondences between
the quantum X gate and classical NOT gate, the quan-
tum CNOT gate and classical XOR gate, etc. The notion
of quantum circuits originally arose from classical logic
circuits [31], and nowadays it is used as the standard
tool to describe DV quantum computing. In contrast,
CV processes are often treated as purely physical opera-
tions, and their computational meanings are less obvious
to translate to computational language. This is part of
the reason that DV computing has been actively investi-
gated at the level of abstract algorithms and multi-qubit
quantum error correction, while most theoretical research
on CV computing either remains at the operational level
or includes a reduction into DV computing through log-
ical qubit encoding.

One of the greatest difficulties in studying the CV ap-
proach is the absence of useful tools for physicists to de-
scribe CV quantum processes. There is an established
way to represent Gaussian quantum states as graphs,
and Gaussian operations appear as well-defined graph
transformations [32]. We would like a graphical rep-
resentation, though, that goes beyond Gaussian to in-
clude all CV states and operations. Previous research
has also shown that the methodology of the ZX calculus
can be extended into three and higher Hilbert-space di-
mensions [33]. However, these attempts are confined only
to finite-dimensional spaces, partially due to complicated
properties of the CV space involving infinities.

Despite these obstacles, here we present the key alge-
braic structure for a ZX calculus in the case of CV sys-
tems. We give definitions for CV diagrams and rewrite
rules and demonstrate how various quantum protocols
can be expressed intuitively through diagram transfor-
mations. Moreover, we discuss the possibility of applica-
tions of our graphical model, such as CV quantum circuit
optimization, characterization of Gaussian processes, and
graphical representation of measurement-based quantum
computing. We expect that our model may serve as

education material for those not familiar with CV ap-
proaches, as well as a convenient calculation tool for ex-
perienced physicists and a high-level language for com-
puter scientists.

II. PRELIMINARIES

In this chapter we review the basics of CV quan-
tum computing [34] and the original ZX calculus [10].
Throughout this paper, we assume a natural unit system
where ℏ = 1.

A. Continuous-variable system and quadrature
eigenstates

In the CV (bosonic) quantum system, the quadrature
operators q̂ and p̂ are defined as

q̂ =
1√
2

(â† + â), p̂ =
i√
2

(â† − â) (1)

where â and â† represent the annihilation and creation
operators of a bosonic mode, respectively. By defini-
tion, these quadrature operators are canonical variables
that satisfy the canonical commutation relation [q̂, p̂] = i.
Quadrature operators are Hermitian operators, and their
eigenvalues ranges over all real numbers R. We shall de-
note corresponding eigenstates as |s⟩q and |t⟩p, respec-
tively, satisfying

q̂ |s⟩q =s |s⟩q , p̂ |t⟩p =t |t⟩p . (2)

Using the Fock basis, |s⟩q and |t⟩p can be expanded as

|s⟩q =

∞∑

n=0

1√
n!2n
√
π
Hn(s) exp

(
−1

2
s2
)
|n⟩ (3)

|t⟩p =

∞∑

n=0

in√
n!2n
√
π
Hn(t) exp

(
−1

2
t2
)
|n⟩ (4)

where Hn(x) denotes the n-th Hermite polynomial.
These Fock expansions are associated with the defini-
tions of quadrature operators (1) through the following
recurrence relation:

2xHn(x) = 2nHn−1(x) +Hn+1(x). (5)

Note that quadrature eigenstates are unphysical because
their norms are infinite. A Dirac δ normalization is thus
chosen for these states:

q⟨s|s′⟩q =δ(s− s′), p⟨t|t′⟩p =δ(t− t′). (6)

Also, each family of quadrature eigenstates forms a com-
plete orthonormal basis, satisfying

∫

R
ds |s⟩q q⟨s| =

∫

R
dt |t⟩p p⟨t| = Î . (7)
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For an arbitrary pure state |ψ⟩, its wave functions ψ(s)

and ψ̃(t) are defined as follows:

ψ(s) = q⟨s|ψ⟩, ψ̃(t) = p⟨t|ψ⟩ (8)

These definitions, along with (7), offer two representa-
tions of CV quantum states:

|ψ⟩ =

∫

R
ψ(s) |s⟩q =

∫

R
ψ̃(t) |t⟩p (9)

The eigenbases {|s⟩q} and {|t⟩p} are mutually associ-
ated via Fourier transform. In fact, the inner product of
the quadrature eigenstates satisfies

q⟨s|t⟩p =
1√
2π

exp(ist) (10)

and thus, using (7), we obtain

ψ̃(t) =
1√
2π

∫

R
ds exp(−ist)ψ(s) (11)

ψ(s) =
1√
2π

∫

R
dt exp(ist)ψ̃(t) (12)

which exactly corresponds to Fourier transform of com-
plex functions.

A CV quantum state has another convenient represen-
tation other than wave function and density operator:
the Wigner function. This is a quasi-probability function
defined on the phase space that depicts quantum state in
quadrature picture [35]. Importantly, a quantum state
is called a Gaussian state when its Wigner function is
a (single- or multi-variable) Gaussian function. For ex-
ample, the vacuum state, coherent states and squeezed
states are all Gaussian states.

B. Quantum gates in continuous-variable system

In a CV quantum system, any unitary transforma-
tion can be uniquely specified by the transformation of
quadrature operators it induces in the Heisenberg pic-
ture. That is, unitary operation on an n-mode CV sys-
tems uniquely corresponds to a 2n-variable function f
that transforms the quadrature operators as

x̂out = f(x̂in) (13)

where x̂ = (q̂1, p̂1, . . . , q̂n, p̂n)⊤. Note that f must
preserve the canonical commutation relations, namely
[q̂j , p̂k] = iδjk. When f is a linear affine map, then the
corresponding quantum operation is called a Gaussian
operation since it converts any Gaussian state only into
another Gaussian state.

As is shown in Table I, Gaussian operations correspond
to time evolution processes under (at most) quadratic
Hamiltonians. In contrast, non-Gaussian operations re-
quire Hamiltonians of cubic or higher order in the quadra-
ture operators. A non-Gaussian operation is also called

a non-linear operation because it adds non-linear terms
to the quadrature operators in the Heisenberg picture.

The relation between Gaussian and non-Gaussian op-
erations is analogous to that of Clifford and non-Clifford
operations in qubit systems. A CV quantum process
limited to starting with Gaussian states and using only
Gaussian operations and measurements can be efficiently
simulated by matrix multiplication [36]. Meanwhile, it
is also known that one can approximate an arbitrary
CV quantum operation if at least one single-mode non-
Gaussian operation is available, in addition to a universal
multi-mode Gaussian gate set [17]. In other words, the
availability of a single non-Gaussian operation is neces-
sary and sufficient for a multi-mode CV universal gate
set when arbitrary Gaussian operations are available.

C. Categorical quantum mechanics

Categorical quantum mechanics is a relatively new field
that investigates the mathematical backgrounds of quan-
tum theory in terms of monoidal category theory [8]. In
more detail, it focuses on the mathematical structures
and relations of quantum processes by regrading quan-
tum processes as linear maps between Hilbert spaces.
One of the most significant feature of categorical quan-
tum theory is that it comes already equipped with many
structures that occupy important places in quantum the-
ory, such as tensor product, dual space, transpose, ad-
joint, and superposition, to name a few. Another inter-
esting aspect of this field is that a monoidal category
is associated with a graphical language called a string
diagram [37], and thus it enables one to visualize quan-
tum processes as simple diagrams. These diagrams pro-
vide useful tools for finding intuitive reasoning for various
quantum processes, including quantum teleportation.

Complementarity and bialgebra [8] are the key math-
ematical features of quantum processes that must be
present in any faithful representation using a graph-
ical language. These two properties, collectively re-
ferred as strong complementarity, play important roles
in describing how different bases mutually relate to each
other. This is made explicit in the ZX calculus for finite-
dimensional systems. In the following definitions, let H
be a finite-dimensional Hilbert space with dimH = n.

Definition 1 (Swap operator). We define the swap op-
erator as a linear map σ̂ : H ⊗ H → H ⊗ H with
σ̂(|ψ⟩ ⊗ |ϕ⟩) = |ϕ⟩ ⊗ |ψ⟩.
Definition 2 (Complementary bases). Let {|ui⟩}ni=1 and
{|vj⟩}nj=1 each be an orthogonal basis in H. This pair of
bases is called complementary (or equivalently, unbiased)
when there exists a positive real number c > 0 such that

|⟨ui|vj⟩|2 = c (14)

for all i, j. In other words, this condition requires that the
inner products of the two bases have constant absolute
value—i.e., it is independent of the basis elements chosen.
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Table I. List of representative CV quantum gates and their properties. Each index on a quadrature operator in an entangling

gate specifies the mode it belongs to. The unitary action of each gate is given by Û = e−iĤ , and the quadrature transformation
is defined using the Heisenberg picture. Note that all parameters except α need to be real since Hamiltonians are Hermitian.

Gate Notation Number of modes Hamiltonian Quadrature transformation Gaussianity

Displacement gate D̂(α) 1 i(αâ† − α∗â)

(
q̂
p̂

)
7→

(
q̂ +
√
2Re(α)

p̂+
√
2 Im(α)

)
Gaussian

Phase rotation gate R̂(θ) 1 θâ†â

(
q̂
p̂

)
7→

(
cos θq̂ + sin θp̂
− sin θq̂ + cos θp̂

)
Gaussian

1-mode squeezing gate Ŝ(r) 1 − r
2
(q̂p̂+ p̂q̂)

(
q̂
p̂

)
7→

(
e−r q̂
erp̂

)
Gaussian

Controlled-sum gate ĈS1,2(g) 2 gq̂1p̂2


q̂1
p̂1
q̂2
p̂2

 7→


q̂1
p̂1 − gp̂2
gq̂1 + q̂2

p̂2

 Gaussian

Controlled-Z gate ĈZ(g) 2 −gq̂1q̂2


q̂1
p̂1
q̂2
p̂2

 7→


q̂1
p̂1 + gq̂2

q̂2
gq̂1 + p̂2

 Gaussian

Beamsplitter gate B̂S(θ) 2 θ(q̂1p̂2 − p̂1q̂2)


q̂1
p̂1
q̂2
p̂2

 7→

cos θq̂1 − sin θq̂2
cos θp̂1 − sin θp̂2
sin θq̂1 + cos θq̂2
sin θp̂1 + cos θp̂2

 Gaussian

Cubic phase gate ĈPG(γ) 1 −γq̂3
(
q
p

)
7→

(
q

p+ 3γq2

)
Non-Gaussian

To define a bialgebra, we first need to introduce the
notion of a monoid for a Hilbert space.

Definition 3 (Monoid and commutative monoid). Let
µ̂ : H ⊗H → H be a linear map and |η⟩ ∈ H be a (not
necessarily normalized) state. The pair (µ̂, |η⟩) is called
a monoid if the following two conditions are satisfied:

1. µ̂ ◦ (idH ⊗ µ̂) = µ̂ ◦ (µ̂⊗ idH) (associativity)

2. For arbitrary |ψ⟩ ∈ H, µ̂ |ψ⟩⊗|η⟩ = µ̂ |η⟩⊗|ψ⟩ = |ψ⟩
(unitality)

where idH denotes the identity map on H. If µ̂ = µ̂ ◦ σ̂,
then the monoid is called commutative.

The first condition implies that µ̂ induces an associa-
tive binary operation on H, while the second requires |η⟩
to be the identity element for that operation. Therefore,
the definition above matches that for a monoid on H. An
important example of a monoid is one that is induced by
an orthogonal basis:

Definition 4 (Monoid induced by a basis). Let {|ei⟩}ni=1

be an orthogonal basis in H. Then, the pair (µ̂, |η⟩), with

µ̂ =

n∑

i=1

1

⟨ei|ei⟩
|ei⟩ ⟨ei| ⟨ei| (15)

|η⟩ =

n∑

i=1

1

⟨ei|ei⟩
|ei⟩ (16)

forms a monoid induced by the basis {|ei⟩}ni=1.

We are now ready to define a bialgebra.

Definition 5 (Bialgebra). Let (µ̂1, |η1⟩) and (µ̂2, |η2⟩)
each be monoids induced by two different bases on the
same Hilbert space H. The pair of monoids is called a
bialgebra if the following four conditions are satisfied:

µ̂†
1 ◦ µ̂2 =(µ̂2 ⊗ µ̂2) ◦ (id⊗ σ̂ ⊗ id) ◦ (µ̂†

1 ⊗ µ̂†
1) (17)

µ̂†
1 |η2⟩ = |η2⟩ ⊗ |η2⟩ (18)

µ̂†
2 |η1⟩ = |η1⟩ ⊗ |η1⟩ (19)

⟨η1|η2⟩ =1 (20)

We will often refer to the bases that induced the monoids
within a bialgebra as bases that form a bialgebra.

Orthogonal bases that form a bialgebra can be charac-
terized by the next theorem.

Theorem 1. [38] Let {|ui⟩}ni=1 and {|vi⟩}ni=1 each be

orthogonal bases, and (α̂, |ϕ⟩) and (β̂, |χ⟩) be monoids
induced by the bases, respectively. Then the pair of
monoids forms a bialgebra if and only if there exists a
commutative group (G, ·) with |G| = n, and a bijective
map π : G → (1, . . . , n), with |ug⟩ =

∣∣uπ(g)
〉
(similarly

for |vg⟩), such that

α̂ =
∑

g,h∈G

1

∥|vg⟩∥2∥|vh⟩∥2
|vg·h⟩ ⟨vg| ⟨vh| (21)

β̂ =
∑

g,h∈G

1

∥|ug⟩∥2∥|uh⟩∥2
|ug·h⟩ ⟨ug| ⟨uh| (22)

and

|ϕ⟩ = |ve⟩ (23)
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|χ⟩ = |ue⟩ (24)

⟨ue|ve⟩ =1 (25)

where e ∈ G denotes the identity element of (G, ·).
Definition 6 (Strongly complementary bases). A pair
of bases is called strongly complimentary if it is both
complimentary and forms a bialgebra.

Typically, orthogonal bases satisfying

|uj⟩ =

n∑

k=1

exp

(
2πijk

n

)
|vk⟩ (26)

|vk⟩ =

n∑

j=1

exp

(
−2πijk

n

)
|vj⟩ (27)

correspond to the special case where (G, ·) is isomorphic

to Z/nZ, up to trivial scalar factor. In this case, α̂ and β̂
induced, respectively, by {|ui⟩}ni=1 and {|vi⟩}ni=1, satisfy
following relations

α̂ ∝
n∑

l,m=1

|vl⊕m⟩ ⟨vl| ⟨vm| (28)

β̂ ∝
n∑

l,m=1

|ul⊕m⟩ ⟨ul| ⟨um| (29)

where ⊕ denotes addition modulo n. These bases de-
fine the generalized Pauli Z-basis and generalized Pauli
X-basis in finite-dimensional Hilbert spaces, whose prop-
erties are fully exploited in the ZX calculus, as its name
represents.

D. ZX calculus for qubits

The ZX calculus for qubits mainly consists of two ele-
ments: (1) ZX diagrams and (2) rewrite rules. A ZX dia-
gram comprises generators that represent certain projec-
tive linear operators individually, and connecting wires
within these generators corresponds to composition of
linear maps. (Note that here we restrict to quantum
processes involving pure states only.) A generator com-
prises two types of “spiders” with an arbitrary number
of inputs and outputs,

... α
... := |0 . . . 0⟩ ⟨0 . . . 0|+ eiα |1 . . . 1⟩ ⟨1 . . . 1| (30)

... α
... := |+ . . .+⟩ ⟨+ . . .+|+ eiα |− . . .−⟩ ⟨− . . .−|

(31)

and a “box” denoted by a blank box,

:= |+⟩ ⟨0|+ |−⟩ ⟨1| (32)

representing the Hadamard gate. Though a ZX diagram
has no notion of direction, it should be read from left
to right according to standard conventions to explicitly
specify input-output relations.

Rewrite rules are formulated as equations between
ZX diagrams, identifying how a diagram can be trans-
formed into another one while preserving the quantum
process it represents. Below are examples of rewrite rules:

... α
...

...
... β

...

= ... α+β
... ,

... α
...

...
... β

...

= ... α+β
... (33)

...
... =

...
... (34)

Using rewrite rules, one may comprehend quantum dy-
namics by a simple graphical calculus. For instance, the
quantum circuit shown below is a schematic illustration
of qubit quantum teleportation using conventional quan-
tum circuits.

{|0⟩,|1⟩}

H
{|0⟩,|1⟩}

Z X

|ψ⟩

|0⟩

|+⟩ |ψ⟩

It is easy to verify that this process is equivalent to the
identity operation using the ZX calculus [10]:

aπ

bπ

bπ aπ

=

aπ

bπ

bπ aπ

(35)

= aπ 2bπ aπ (36)

= (37)

In the procedure of the ZX calculus, each diagram trans-
formation is a simple application of a rewrite rule onto
a fraction of the diagram, and thus one can straightfor-
wardly confirm that the quantum process remains un-
changed. This property is called soundness—i.e., equiv-
alence of diagrams implies equivalence of quantum pro-
cesses. Completeness of the ZX calculus is the converse—
i.e., whether two diagrams representing the same process
are always graphically convertible. The rewrite rules of
the ZX calculus (for qubits) are designed to represent
equations of the qubit system in the standard interpre-
tation, which means the qubit ZX calculus is sound. Al-
though the original proposal of the ZX calculus is not
complete [39], there are several variations of the model
equipped with additional diagrams and rewrite rules to
assure completeness [40, 41], making it an alternative for-
malism (to Hilbert space) for representing quantum pro-
cesses. Even without the assurance of completeness, one
can still intuitively manipulate diagrams and straightfor-
wardly simplify them by applying rewrite rules one by
one to prove two diagrams are equivalent. For more de-
tail, see [8, 42, 43].
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The infinite-dimensional nature of CV systems creates
challenges for proving soundness and completeness in a
mathematically rigorous way. In our proposal for a CV
ZX calculus below, we carefully design rewrite rules to
achieve soundness within the standard framework of CV
information processing and prove completeness of our
model when confined to one-mode Gaussian states and
operations. We discuss inherent limitations of the CV
graphcal model in the following sections, including sug-
gested avenues of investigation for overcoming them.

The ZX calculus has a helpful property of being topo-
logical, by which we mean that diagrams can be freely
deformed as long as the connectivity between nodes is
unchanged. This property lets us interpret and reshape
diagrams in any way to obtain a different perspective as
long as the input-output relationships are maintained.
The topological feature is a special feature of the two-
dimensional nature of the qubit space, which leads to the
Pauli operators (and entangling gates such as CNOT) be-
ing self-inverse. This degeneracy is a peculiarity of two-
dimensional Hilbert space and generally would not hold
for a higher-dimensional ZX calculus. It also does not
hold in our CV version. We will discuss this issue in the
following sections.

Thanks to the flexibility of diagrams, the ZX calculus
has been actively applied to multiple fields of quantum
computation. The most typical and successful applica-
tion is quantum circuit optimization, which seeks a sim-
plified quantum circuit for a given one so that the number
of quantum gates and circuit depth are reduced. It has
achieved a certain level of success so far [11, 12], and there
even exists a convenient Python library to demonstrate
this optimization [44]. Another interesting example is
diagrammatic reasoning of measurement-based quantum
computing (MBQC) using a diagramatic representation
of graph states and projective measurements. This was
the first use case of the ZX calculus [45]. Recent re-
search extends to the design and verification of quantum
error correcting codes [15], graphical reasoning of lattice
surgery [46], analysis of certain computational complex-
ity classes [47], an extended framework with diagram-
matic differentiation for quantum machine learning [16],
among others.

Our goal in the next section is to propose the basic
building blocks of a CV generalization of the ZX calculus.
In later sections, we will prove a set of rewrite rules for the
diagrams, discuss what properties of our construction can
be proven with the tools at hand, and offer suggestions
for eventually proving full soundness and completeness of
a CV ZX calculus based on the starting point we propose.

III. GRAPHICAL REPRESENTATION OF
CONTINUOUS-VARIABLE PROCESSES

Comparing (10) and (14), one might notice that posi-
tion and momentum eigenbases in CV space satisfy com-
plementarity. This is also true for bialgebra laws by tak-

ing an integral instead of finite sum. In fact, the following
relations hold:∫

R
ds |s⟩q1 q2,q3

⟨s, s| =
1√
2π

∫

R
dtdu |t+ u⟩p1 p2,p3

⟨t, u|
(38)∫

R
dt |t⟩p1 p2,p3

⟨t, t| =
1√
2π

∫

R
dsdu |s+ u⟩q1 q2,q3

⟨s, u|
(39)

|0⟩q =
1√
2π

∫

R
dt |t⟩p (40)

|0⟩p =
1√
2π

∫

R
ds |s⟩q (41)

This coincides with (21)–(24). For this reason, one
may regard the position and momentum eigenbases as
strongly complementary by the construction in Theo-
rem. 1 with the commutative group being (R,+). This
perspective suggests that a CV graphical computational
model theory may be constructed as well by simply re-
placing Pauli-Z and X eigenbases, respectively, with the
position and momentum bases.

In this section, we first introduce two phase spiders
as generators of our CV ZX calculus and their standard
interpretations with the definition of diagram contrac-
tion. Consequently, we show several example of repre-
sentation of quantum states and basic decompositions of
each quantum gate in Table I as an array of phase spiders.

A. Proper diagrams, operators, and their
equivalence relations

We begin with some important definitions.

Definition 7 (Diagram, inputs, outputs). A diagram D
is an open, directed graph with labeled nodes. An input
of D is an open edge pointing inward. An output of D is
an open edge pointing outward.

We choose to draw diagrams from right to left so that
input-output relations are matched with bra-ket nota-
tion (when the diagram does not contain loops). Note
this convention is only for readability and not substan-
tial since our model employs directed graphs and is, in
fact, topological. Wires in our diagrams are marked with
arrows unless their direction can be freely reversed (we
show examples later).

Definition 8 (Generator). A diagram is called a gener-
ator for the CV ZX calculus if it appears in Table II.

Diagrams can be combined in two important ways.

Definition 9 (Parallelization of diagrams). For two dia-
grams D1 and D2, let D1⊗D2 denote the parallelization
of D1 and D2. This is a new diagram where D1 and D2

are placed in parallel vertically as shown:

...
...

...
...

D1

D2

(42)
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Definition 10 (Composition of diagrams). Given two
diagrams D1, D2 with the number of outputs in D1 equal
to the number of inputs in D2, let D2 ◦ D1 denote the
composition of D2 and D1, which is a diagram with all
outputs of D1 connected to inputs of D2 as shown:

...
...D2 D1

... (43)

This lets us recursively define the important concept
of a proper diagram, which will be the main object of the
CV ZX calculus.

Definition 11 (Proper diagram). A diagram D is called
a proper diagram if any of the following hold:

1. D is a generator,

2. D is a parallelization of any two proper diagrams,
or

3. D is a composition of any two proper diagrams,

The purpose of proper diagrams is to represent opera-
tors, so we need the following definition.

Definition 12 (Operator represented by a proper dia-
gram). Given a proper diagram D, the operator repre-
sented by D is denoted JDK and defined as follows:

1. When D is a generator, JDK is defined in Table II.

2. JD1 ⊗ D2K is the tensor product of the opera-
tors representing the two parallelized diagrams, i.e.,
JD1K⊗ JD2K.

3. JD2 ◦D1K is the composition (operator multiplica-
tion) of the operators representing the two com-
posed diagrams, i.e., JD2K ◦ JD1K (or JD2KJD1K).

In order to relate diagrams to each other, we need the
following notions of equivalence for operators and dia-
grams.

Definition 13 (Equivalent operators). Two operators Â

and B̂ are called equivalent, denoted Â ∼ B̂, if there
exists nonzero c ∈ C\{0} such that Â = cB̂.

Definition 14 (Equivalent diagrams). Given two proper
diagrams D1 and D2 and a set of rewrite rules S for
proper diagrams, D1 and D2 are called equivalent (mod-
ulo S), denoted D1 =S D2, if D1 and D2 are mutually
rewritable using elements of S. (Note: we will typically
fix S to be the whole set of basic rewrite rules given in
Sec. IV A and drop the subscript S for simplicity.)

Finally, we can describe the important concept of
soundness, which we define with respect to sets of proper
diagrams.

Definition 15 (Soundness). Soundness of the calcu-
lus with respect to a set of diagrams D and a set of
rewrite rules S is represented formally by (D1 =S D2)⇒
(JD1K ∼ JD2K) for all D1, D2 ∈ D.

If the set of all possible proper diagrams is sound with
respect to a set of rewrite rules, then the entire calculus
is said to be sound with respect to those rewrite rules.

B. Phase spider and diagram contraction

Functions written inside of a q-spider or a p-spider are
what are called phase functions that add quadrature-
dependent phase factors. In this paper we impose a re-
striction for phase functions to be real polynomial func-
tions. We denote phase functions of zero by blank spi-
ders. Note that spiders are symmetric under mode per-
mutation, and thus combining swap diagrams with a sin-
gle spider can be absorbed in the following way:

= (44)

Using spiders, various quantum states can be drawn as
simple diagrams. For example, quadrature eigenstates
can be represented by linear phase functions as is shown
here:

J K =

∫

R
ds |s⟩q ∼ |0⟩p (45)

J K =

∫

R
dt |t⟩p ∼ |0⟩q (46)

As for multi-mode states, an EPR state and a GHZ state
can be represented as follows:

r z
∼
∫

R
ds |s, s⟩q1,q2 =

∫

R
dt |t,−t⟩p1,p2

(47)

r z
∼
∫

R
dt |t, t⟩p1,p2

=

∫

R
ds |s,−s⟩q1,q2 (48)

r z
∼
∫

R
ds |s, s, s⟩q1,q2,q3 (49)

r z
∼
∫

R
dt |t, t, t⟩p1,p2,p3

(50)

Reversing the direction of each arrow gives interconver-
sion between bra and ket, which can be understood as a
generalized Choi-Jamio lkowski isomorphism. For exam-
ple, reversing one of the two output arrows of (47) and
(48) yields the identity operation, and reversing both of
them yields the projection process onto an EPR state
that models a post-selected bell measurement. Also, the
two kinds of EPR states above correspond to q- and
p-correlated states respectively, both of which are anti-
correlated in the other basis.

Connecting the input(s) of one diagram to the out-
put(s) of another represents tensor contraction along
those indices, a simple example of which is operator mul-
tiplication. However, as our calculus model handles di-
rected diagrams and free connections, it is necessary to
establish a generalized rule to admit loops to appear in
the diagram. For this purpose, we define the following
contraction rule:

u

www
v

...
...

...
...

D1

D2

···j1 jm ···i1 in

}

���
~

=

∫
dsı̄ dsȷ̄ qı̄

⟨sı̄|JD1K|sȷ̄⟩qȷ̄
⊗ qȷ̄
⟨sȷ̄|JD2K|sı̄⟩qı̄

(51)
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Table II. List of generators for our graphical model and operators they represent. Note that a ket or bra subscript such as qm

is a shorthand for the q basis in m modes.

Name Diagram D Arity (outputs ← inputs) JDK

q-spider m ... f(x)
...n m← n

∫
R
ds eif(s) |s . . . s⟩qm qn⟨s . . . s|

p-spider m ... f(x)
...n m← n

∫
R
dt e−if(t) |t . . . t⟩pm pn⟨t . . . t|

Swap 2← 2

∫∫
R2

dsds′
∣∣s′, s〉

q1,q2 q1,q2

〈
s, s′

∣∣
Fourier F 1← 1

∫
R
du |u⟩p q⟨u|

Inverse Fourier F † 1← 1

∫
R
du |−u⟩p q⟨u|

Squared Fourier F 2 1← 1

∫
R
ds |−s⟩q q⟨s|

where ı̄ = i1, . . . , in and ȷ̄ = j1, . . . , jm are compound
subscripts representing multiple copies of the symbol
being subscripted, one for each item in the respective
list. Notice that the contractions along ı̄ can be done
in any basis across those modes (and similarly for ȷ̄).
This has an interpretation as a type of partial trace on
JD1K⊗ JD2K over the contracted modes, introducing gen-
eralized input-output relationship between the two oper-
ators. In fact, when D2 represents the identity operation,
the diagram exactly corresponds to partial trace on the
operator JD1K, which can be confirmed from the following
equation:

u

w
v

...
...D

A A

}

�
~ (52)

=

∫∫

R2

ds1 ds2 q1
⟨s1|JDK|s2⟩q2 q2

⟨s2|s1⟩q1 (53)

=

∫∫

R2

ds1 ds2 δ(s2 − s1) q1
⟨s1|JDK|s2⟩q2 (54)

=

∫

R
ds q ⟨s|JDK|s⟩q (55)

= TrA (JDK) (56)

where A denotes the qumode to be traced out. Composi-
ton of three or more diagrams can be defined by recur-
sively applying the above interpretation.

In some cases, the contraction rule may not function
properly because of infinite non-converging integrals. For
example, the rule suggests that J K = p⟨0|0⟩p =∫
R 1/
√

2πdt = δ(0), which is technically infinite. Nev-
ertheless, we will treat it as a global scalar that can be
ignored (for instance, when discussing operator equiv-
alence for corresponding diagrams). Issues like this are
ubiquitous when working with CV systems, as mentioned

in subsection II A, and solving them is beyond the scope
of this work. Our purpose is to introduce a toolbox that
can be the starting point for further exploration.

C. Graphical representation of CV quantum gates

By combining spiders defined above, one can obtain
graphical representation of a wide variety of quantum
gates. In this subsection, we show diagrams of the CV
quantum gates listed in Table. I. We verify the consis-
tency of the diagrammatic representations in Appendix
A 1.

1. Displacement gate

The displacement gate has a linear Hamiltonian and
thus can be decomposed into two displacements, one each
with respect to q and p. With this observation, we obtain
the following representation of the displacement gate:

D(α) :=
√

2 Re(α)x
√

2 Im(α)x (57)

Since any two displacement gates commute with each
other up to an irrelevant global phase factor, the order
of the q-spider and p-spider in the diagram above can
be reversed. In Sec. IV C, we provide diagrams that are
equivalent to the definitions of the quantum gates given
in this chapter with their derivations based upon rewrite
rules we define in the following sections.

2. Phase rotation gate

A phase rotation uses a quadratic Hamiltonian and can
be decomposed into three shear gates. For this reason,
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the diagram corresponding to a phase rotation gate is
described as three quadratic spiders:

R(θ) := tan(θ/2)
2

x2 − sinθ
2

x2 tan(θ/2)
2

x2

(58)
Note that this definition is not formally defined where θ
is an odd multiple of π since tan θ

2 is infinite in that case.
However, as a π rotation gate is equivalent to a squared
Fourier operation in Table II, we can employ its diagram
as the definition of π-rotation diagram.

3. 1-mode squeezing gate

Unlike the phase rotation gate, the 1-mode squeezing
gate requires at least four shear gates for its decomposi-
tion, as is shown in the following diagram:

Sq(τ) := τ(1−τ)
4

x2 − 1
τ
x2 (τ−1)

4
x2 x2

(59)

By setting Ŝq(τ) := Ŝ(r) with τ = e−r one obtains the
squeezing gate defined in Table I. However, here we allow
τ to be negative to represent general cases. In particular,
when τ = −1, this is equivalent to F̂ 2—i.e., the square
of Fourier transform. Thus, we can expand the definition
of rotation spiders for odd multiples of π using a 1-mode
squeezing gate, namely

R((2n+1)π) := Sq(−1)

= −1
2
x2

x2 −1
2
x2

x2

(60)

for all n ∈ Z.

4. Controlled-sum gate

The controlled-sum (CSUM) gate, also called a quan-
tum nondemolition (QND) gate in the context of exper-
imental operations for historical reasons, is called unbi-
ased when its gain g is equal to 1. In that case, the un-
biased CSUM gate e−iq̂1p̂2 can be represented as a com-
bination of two spiders as follows:

(61)

With the fact that the diagram for the unbiased CSUM
gate is interpreted as a CNOT gate in the original qubit
ZX calculus, one can naturally see the correspondence
between the CSUM gate for CV systems and the CNOT
gate for qubits. Another way of understanding the dia-
grams above is to interpret the wire in the middle of the
two spiders as if it conveyed information from the first
mode to the second mode. From this perspective, each

wire of the diagram can be regarded as the flow of infor-
mation, where the upper and lower wires correspond to
the first (control) mode and the second (target) mode,
respectively.

As for the general CSUM gate with gain g, the effects
of this gain can be equivalently represented by squeezing
one of the modes. Specifically, it can be represented by
the following diagram:

Sq(g−1)
Sq(g)

(62)

Substituting g = −1 into the diagram above yields the
inverse of (61). In the following sections, we will show
that the inverse of the CSUM gate is equal to its own
conjugation (which will be defined later).

5. Controlled-Z gate

As the Fourier transform interchanges q and p eigen-
states (up to a sign), the controlled-Z (CZ) operation can
be represented using Fourier diagram and two q-spiders.
For unbiased (g = 1) CZ gate, its diagrammatic repre-
sentation is given as

F (63)

Like for the CSUM gate, a general diagrammatic repre-
sentation of the CZ gate is given by simply inserting a
squeezing gate before and after the CZ gate, namely

Sq(g)

Sq(g−1)

F
(64)

The controlled-Z gate can also be regarded as a CSUM
gate being converted via appropriate Fourier transforms.
In addition, note that the controlled-Z gate is symmet-
ric and thus invariant under mode permutation. These
behaviors are also reflected in the diagrammatic represen-
tation, which will be proven via rewrite rules we define
later.

6. Beamsplitter gate

Displacement, phase rotation, squeezing and CSUM
gates form a universal gate set for Gaussian operations.
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Hence, a graphical representation of any Gaussian gate
can be obtained by combining the diagrams defined above
[17]. One such decomposition for the beamsplitter oper-
ation exp(−iθ(q̂1p̂− p̂1q̂2)) is given by

BS(θ) ≡ exp(θ(q̂1p̂2 − p̂1q̂2))

=Ŝq1

(
1

tan θ

)
· CS1,2 · Ŝq1

(
sin2 θ

cos θ

)

· Ŝq2
(

1

cos θ

)
· CS†

2,1 · Ŝq1
(

1

tan θ

)
(65)

up to irrelevant global phase factor, as is confirmed in
A 1 f. Thus, the beamsplitter gate can be represented by
the following diagram.

Sq
(

1
tanθ

)

Sq
(

sin2θ
cosθ

)

Sq
(

1
tanθ

)

Sq
(

1
cosθ

)

(66)
When θ = π

4 , the beamsplitter is often called a balanced
beamsplitter or a half-splitter because its reflectance and
transmittance are equal. In that case, its diagram can be
represented more compactly as follows:

Sq
(

1√
2

)

Sq(
√

2)

(67)

7. Cubic phase gate

By definition, the cubic phase gate (CPG) is repre-
sented by a single q-spider with a cubic phase function:

CPG(γ) := γx3 (68)

In our graphical model, the non-Gaussian feature of
quantum process lies not so much in the complexity of
the appearance of a diagram but rather in how they are
transformed by rewrite rules. In the following arguments,
we will also discuss the distinct property of Gaussian and
non-Gaussian properties of diagrams.

IV. PROPERTIES OF CV ZX CALCULUS

In this section, first we list the rewrite rules that con-
stitute the axioms of our CV graphical calculus. Each
rule depicts the corresponding equations of linear maps

over CV modes. Consequently, we derive basic proper-
ties of our graphical model and various equations utilized
in CV quantum information processing protocols based
upon the rules.

A. Basic rewrite rules

Before describing individual rewrite rules, we shall de-
fine a conjugate diagram.

Definition 16 (Conjugate diagram). Let D be a proper
diagram. The conjugate diagram of D, denoted by D†, is
the diagram obtained by inverting directions of all arrows
and multiplying −1 to all phase functions in D (this op-
eration interchanges Fourier diagram and inverse Fourier
diagram.)

Note that conjugation is compatible with parallelizing

and combining diagrams—i.e., (D1⊗D2)† = D†
1⊗D†

2 and

(D2 ◦D1)† = D†
1 ◦D†

2. This, together with the fact that
JGK† = JG†K for each generator G in Table II, it is easy
to see that JDK† = JD†K holds for any proper diagram D.

In our calculus model, we employ a meta-rule that a
rewrite rule is conserved under conjugation. More specif-
ically, for each rewrite rule claiming D1 = D2, we accept

D†
1 = D†

2 as rewrite rule, as well. Thus, whenever two di-
agrams are shown to be equal via sequential application
of rewrite rules, its conjugative counterpart also holds in
the same manner. Also, as we are only interested in the
quantum dynamics, and global scalars do not affect pro-
cesses for that purpose, so we will ignore closed diagrams
that appear in the derivations.The proof of soundness for
each rewrite rule is given in Appendix A 2.

1. Identity rule

The identity rule (id) states

a = b
(id)
= (69)

where a and b denotes arbitrary constant-valued func-
tions. Note that when the constants are zero, these dia-
grams are denoted by blank spiders.

2. Fusion rule

The fusion rule (f) states

n ... f(x)
...m

...

n′ ... g(x) ...m
′

(f)
= n+n′ ... (f+g)(x) ...m+m′ (70)

n ... f(x)
...m

...

n′ ... g(x) ...m
′

(f)
= n+n′ ... (f+g)(x) ...m+m′ (71)
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where the undirected lines between the spiders represent
an arbitrary number of wires (except zero), with arbi-
trary directions.

3. Bialgebra rule

The bialgebra rule (b) has two forms:

(b)
= (72)

Conjugating the above rule gives the following equation:

(b)
= (73)

Much of the power of the graphical calculus is contained
in this rule. (Recall the importance of the bialgebra prop-
erty in quantum mechanics discussed in Sec. II C.)

4. Fourier rule

The Fourier rule (F ) is

F
(F )
= R

(
−π

2

)
(74)

Conjugation gives

F †
(F )
= R

(
π
2

)
(75)

and composing this with the original gives

F 2
(F )
= R(π) = Sq(−1) (76)

5. Copy rule

The copy rule (c) has two forms:

... f(x)
(c)
=

... (77)

and

... f(x)
(c)
=

... (78)

where dotted lines denote arbitrary number of wires and
diagrams (and so on in the following equations).

6. Displacement rule

The displacement rule (d) also has two forms:

ax

... f(x)
...

ax

(d)
=

ax

... f(x+a)
...

ax

(79)

and

ax

... f(x)
...

ax

(d)
=

ax

... f(x+a)
...

ax

(80)

In the case that the diagram has no inputs (or no out-
puts), the linear spider disappears after acting on the
central spider function.

7. Antipode rule

The antipode rule (a) states

F 2
(a)
= (81)

The left-side diagram of the eqaution is called antipode
for its algebraic action to the phase space. We will inves-
tigate in its useful properties in the following sections.

8. Squeezing rule

The squeezing rule (s) also has two forms:

Sq(τ)

... f(x)
...

Sq(τ)

(s)
=

Sq(τ)

... f(τx)
...

Sq(τ)

(82)

and

Sq(τ)

... f(x)
...

Sq(τ)

(s)
=

Sq(τ)

... f
(
x
τ

) ...

Sq(τ)

(83)

In the case that the diagram has no inputs (or no out-
puts), the squeezing gate disappears after acting on the
spider function.

9. Quadratic rule

The quadratic rule (q) is

ax2 bx2 cx2 (84)
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(q)
= bc

4abc+a+c
x2 (4abc+a+c)x2 ab

4abc+a+c
x2 (85)

which can also be written

ax2 bx2 cx2 (86)

(q)
= bc

4abc+a+c
x2 (4abc+a+c)x2 ab

4abc+a+c
x2 (87)

Note that 4abc + a + c ̸= 0 must be satisfied whenever
applying the quadratic rule.

10. Inversion rule

The inversion rule (inv) can be used to change spider
types:

F F †

... f(x)
...

F F †

(inv)
=

... f(x)
... (88)

Sandwiching the above equation between F̂ † and F̂ , the
following equivalent form can also be derived:

F † F

... f(x)
...

F † F

(inv)
=

... f(x)
... (89)

B. Derived rewrite rules

The following rewrite rules can be derived using the
basic ones.

1. Commutative and associative property of displacement
gate

Direct calculation using the Baker-Campbell-
Hausdorff formula shows that the displacement
gates are commutative and hence associative—i.e.
D̂(α1)D̂(α2) ∼ D̂(α2)D̂(α1) ∼ D̂(α1 + α2) up to an
irrelevant global phase. This fact can be confirmed using
our graphical calculus. First, using displacement rule,
one obtains the following equation:

ax bx
(d)
= bx a(x+b) (90a)

(f)
= bx ax ab (90b)

(id)
= bx ax (90c)

By using this commutation rule, the associative property
can be confirmed as is shown below.

D(α1) D(α2) (91)

(57)
= √

2 Re(α1)x
√

2 Im(α1)x
√

2 Re(α2)x
√

2 Im(α2)x

(92)

(90)
= √

2 Re(α1)x
√

2 Re(α2)x
√

2 Im(α1)x
√

2 Im(α2)x

(93)

(f)
= √

2 Re(α1+α2)x
√

2 Im(α1α2)x (94)

(57)
= D(α1+α2) (95)

2. Self-conjugateness of antipode

As is mentioned in subsection IV A 7, the antipode di-
agram represents the square of Fourier transform, which
is self-conjugate—i.e. (F̂ 2)† = F̂ 2. The same property
holds for the diagram as well:

=

( )†

= (96)

This equation can be derived in the following way. First,
we have

(B22)
= Sq(−1) Sq(−1) (97)

(F )
= F 2 F 2 (98)

(99)

(a)
= (100)

in which we used multiplicativity of squeezing gate to be
shown in Appendix B 1. Consequently,

(100)
= (101)

(f,id)
= (102)

(f,id)
= (103)

holds.
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3. Antipode reversal

The antipode reversal rule (rev) is written in two
forms:

... f(x)
...

F 2

... g(x)
...

(rev)
=

... f(x)
...

... g(x)
...

(104)

... f(x)
...

F 2

... g(x)
...

(rev)
=

... f(x)
...

... g(x)
...

(105)

The antipode reversal rule claims that the squared
Fourier diagram between two spiders can be deleted by
reversing its input and output. The first equation can be
derived as follows:

... f(x)
...

F 2

... g(x)
...

(a)
=

... f(x)
...

... g(x)
...

(f)
=

... f(x)
...

... g(x)
...

(106)

The second equation can also be derived in the same way
by using Eq. (96).

4. Quadrature copy rule

By combining the copy rule (c) with the displacement
rule (d), one obtains a generalized copy rule represented
in two forms:

... f(x) ax
(qc)
=

ax

...

ax

(107)

and

... f(x) ax
(qc)
=

ax

...

ax

(108)

The first equation can be derived in the following way:

... f(x) ax
(f)
=

... f(x) ax (109)

(d)
=

ax

... f(x+a)

ax

(110)

(c)
=

ax

...

ax

(111)

(f)
=

ax

...

ax

(112)

and the same applies to the second one. The orientation
of wires can also be reversed with an additional factor of
−1. For example,

ax

f(x)

(f)
=

f(x) ax
(113)

(qc)
=

ax

ax (114)

(96)
= ax ax Sq(−1) (115)

(s)
= ax −ax (116)

holds.

5. Hopf rule

The Hopf rule (h) is

(h)
= (117)

which can be derived from basic rewrite rules as follows:

(118)

(rev)
=

F 2
(119)

(a)
= (120)

= (121)

(f)
= (122)

(b)
= (123)

(f)
= (124)

(c)
= (125)

(f)
= (126)

(a)
= F 2 F 2 (127)

(s)
= (128)
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Using the Hopf rule, one can show that conjugation of
the CSUM diagram yields its own inverse. In fact,

(f)
= (129)

(f)
= (130)

(h)
= (131)

(f)
= (132)

and

= (133)

holds.

6. Rotation rule

The rotation rule (rot) is

R(θ)
(rot)
= − tanθ

2
x2 (134)

which holds for any value of θ that is not an odd multiple
of π

2 . (In this exceptional case, the Fourier rule can be
applied instead.) The rotation rule can be shown in the
following way:

R(θ) (135)

(58)
= tan(θ/2)

2
x2 − sinθ

2
x2 tan(θ/2)

2
x2 (136)

(c)
= tan(θ/2)

2
x2 − sinθ

2
x2 (137)

(142)
= − tanθ

2
x2 cosθtan(θ/2)

2
x2 Sq(cosθ) (138)

(s)
= − tanθ

2
x2 cosθtan(θ/2)

2
x2 (139)

(c)
= − tanθ

2
x2 (140)

(f)
= − tanθ

2
x2 (141)

in which we used the following property

Sq(cosθ) (142a)

= − cosθtan(θ/2)
2

x2 tanθ
2

x2 tan(θ/2)
2

x2 − sinθ
2

x2

(142b)

to be proven in Lemma 1. Since conjugating the rotation
gate yields its own inverse, one also obtains

R(−θ) (rot)†

= tanθ
2

x2 (143)

and thus

R(θ) = − tanθ
2

x2 (144)

as well.
The rotation rule comes with another useful form of

equality as is shown below:

R(θ) (145)

(inv)
= R(θ) F (146)

(f)
= R(θ) R(−π/2) (147)

(B10)
= R(−π/2) R(θ) (148)

(f)
= F R(θ) (149)

(rot)
= F − tanθ

2
x2 (150)

(inv)
= − tanθ

2
x2 (151)

and

R(θ) (152)

(inv)
= R(θ) F (153)

(f)
= R(θ) R(−π/2) (154)

(B10)
= R(θ−π/2) (155)

(rot)
= − tan(θ−π/2)

2
x2 (156)

= cotθ
2

x2 (157)

thus one obtains

− tanθ
2

x2 = cotθ
2

x2 (158)

for any value of θ that is not a multiple of π
2 .

7. Symmetry of Controlled-Z gate

As is shown in Table. I, controlled-Z gate has a sym-
metric Hamiltonian over two modes and thus it is invari-
ant under swapping operation of the inputs. This fact
can also be easiry verified with graphical calculus:

F (159)
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(inv)
=

FF †

(160)

(rev)
= F 2

F †

F

(161)

=
F

F

F †

F

(162)

(inv)
= F (163)

This derivation reflects the symmetric property of the
controlled-Z gate in that its diagram remains identical
under a vertical flip.

8. Rotation self-loop removal

For any θ that is not multiple of π,

R(θ)

···
=

(tanθ
2
)x2

··· (164)

and

R(θ)

···
=

−(tanθ
2
)x2

··· (165)

holds. Eq. (164) can be shown as

R(θ)

···
(166)

(rot)
=

tan(θ/2)
2

x2 − sinθ
2

x2 tan(θ/2)
2

x2

···
(167)

(f)
=

− sinθ
2

x2

(tanθ
2
)x2

···
(168)

(f)
= (tanθ

2
)x2 − sinθ

2
x2

···
(169)

(h)
=

(tanθ
2
)x2 − sinθ

2
x2

··· (170)

(f)
=

(tanθ
2
)x2

··· (171)

in which we neglected scalar term − sinθ
2

x2 in the fi-

nal step. Note this is legal because J − sinθ
2

x2 K =∫
R dx exp

(
−i sin θ

2 x2
)

is a nonzero value in our standard
interpretation.

C. Completeness for 1-mode Gaussian unitary
gates

Since any Gaussian operation can be represented by its
symplectic action to the canonical operators, one can per-
fectly simulate arbitrary Gaussian quantum dynamics in
polynomial time classically [36]. Now the same question
arises for the graphical calculus: when given two Gaus-
sian diagrams representing the same process, is it possible
to find a way to convert one into the other? Though it is
hard to find such a transformation in the general case, we
can give a straightforward proof for when the diagrams
are limited to 1-mode Gaussian unitary gates. We start
with the following lemma.

Lemma 1. Let k and τ be an arbitrary nonzero real
numbers. Then, we have the following expansions of a
squeezing operator with squeezing factor τ :

Sq(τ) = τ(1−τ)
4k

x2 − k
τ
x2 τ−1

4k
x2 kx2

(172)

= τ−1
4kτ2 x

2 −kτx2 1−τ
4kτ

x2 kx2

(173)

Proof. The top equation can be shown as

Sq(τ) := τ(1−τ)
4

x2 − 1
τ
x2 τ−1

4
x2 x2 (174)

(f)
= τ(1−τ)

4
x2 − 1

τ
x2 τ−1

4
x2 (1−k)x2 kx2 (175)

(q)
= τ(1−τ)

4
x2 τ(τ−1)(k−1)

4k
x2 − k

τ
x2 τ−1

4k
x2 kx2 (176)

(f)
= τ(1−τ)

4k
x2 − k

τ
x2 τ−1

4k
x2 kx2 (177)

in which we applied quadratic rule under the constraint k ̸= 0. To obtain the second form, we make use of the first.
The statement of the lemma prescribes k. Now, let k′ be a nonzero real number such that (1 − 4k′k)τ ̸= 1, which
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always exists. Using k′ in the the result above, we have

Sq(τ) := τ(1−τ)
4k′ x2 −k′

τ
x2 τ−1

4k′ x2 k′x2 (178)

(f)
= τ(1−τ)

4k′ x2 −k′
τ
x2 τ−1

4k′ x2 k′x2 −kx2 kx2 (179)

(q)
= τ(1−τ)

4k′ x2 −k′
τ
x2 4k′2k

(4k′k−1)τ+1
x2 (1−4k′k)τ−1

4k′ x2 k′(1−τ)
(4k′k−1)τ+1

x2 kx2 (180)

(f)
= τ(1−τ)

4k′ x2 k′(τ−1)
τ(4k′kτ−τ+1)

x2 (1−4k′k)τ−1
4k′ x2 k′(1−τ)

(4k′k−1)τ+1
x2 kx2 (181)

(q)
= τ−1

4kτ2 x
2 −kτx2 (τ−1)2

4kτ(4k′kτ−τ+1)
x2 k′(1−τ)

(4k′k−1)τ+1
x2 kx2 (182)

(f)
= τ−1

4kτ2 x
2 −kτx2 1−τ

4kτ
x2 kx2 (183)

where application of quadratic rule is legal since k ̸= 0, k′ ̸= 0, and (1− 4k′k)τ ̸= 1.

We can also go in the other direction, as shown in the
following lemma.

Lemma 2. Let a, b, c, d be nonzero real values such that
4abc+ a+ c = 4bcd+ b+ d = 0. Then, 4ab+ 1 ̸= 0, and
both of the following hold:

ax2 bx2 cx2 dx2 = Sq(4ab+1) (184)

ax2 bx2 cx2 dx2 = Sq
(

1
4ab+1

)
(185)

Proof. By solving 4abc + a + c = 4bcd + b + d = 0 for
a, b, we obtain

a =− c(4cd+ 1), (186a)

b =− d(4cd+ 1)−1. (186b)

Let us define τ = 4cd+ 1. Then, these coefficients can be
written as follows:

a =− cτ =
τ−1 − 1

4dτ−2
=
τ(1− τ−1)

4d
(187a)

b =− d

τ
= dτ−1 (187b)

c =
τ − 1

4d
=

1− τ−1

4dτ−1
=
τ − 1

4d
(187c)

By comparing Eqs. (187) with Eqs. (172) and (173), we
obtain the result.

Finally, we have the main theorem for representing Gaus-
sian unitary gates.

Theorem 2. Any diagram written as a (finite) chain of
quadratic spiders such as

a1x2 a2x2 a3x2 a4x2 · · · aNx2 (188)

can be rewritten into at most four quadratic spiders, cor-
responding to one of the diagrams listed in Table III.

Proof. Without loss of generality, we can assume all co-
efficients are nonzero. Consider a generalized form of the

diagram composed of a squeezing part and a chain part
as shown here:

Sq(τ) a1x2 a2x2 a3x2 a4x2 · · · aNx2

(189)
By applying the quadratic rule repeatedly to the chain part
of (189), the colours of the spiders are reversed (three at
a time), and thus they can be merged with neighboring
spiders. Based on this approach, the number of spiders
of the chain spiders in (189) can be reduced to at most
three by repeating the following procedures.

1. If the first three spiders of the chain part are
convertible—i.e., 4a1a2a3 + a1 + a3 ̸= 0, then the
quadratic rule can be applied to these three, giving

Sq(τ) a1x2 a2x2 a3x2 a4x2 · · · aNx2

(190)

(q)
= Sq(τ) a′

1x
2 a′

2x
2 a′

3x
2 a4x2 · · · aNx2

(191)

(f)
= Sq(τ) a′

1x
2 a′

2x
2 (a′

3+a4)x2 · · · aNx2

(192)

where a′1, a
′
2, a

′
3 are determined by the quadratic

rule. Note the number of spiders in the chain part
is reduced by one in the procedure above.

2. (a) Otherwise, check whether 4a2a3a4+a2+a4 ̸= 0
holds or not. If it holds, then the quadratic
rule can be applied to the second, third and
fourth spiders, and thus the number of spiders
can be reduced in the same way as 1.

(b) If both 1 and 2a fails, then 4a1a2a3+a1+a3 =
4a2a3a4 + a2 + a4 = 0 holds and thus, due to
Lemma. 2, there exists a nonzero real value τ ′

such that

a1x2 a2x2 a3x2 a4x2 = Sq(τ ′) (193)
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is satisfied. In this case, the diagram can be
rewritten as

Sq(τ) a1x2 a2x2 · · · aNx2 (194)

(q)
= Sq(τ) Sq(τ ′) a5x2 · · · aNx2 (195)

(B1)
= Sq(ττ ′) a5x2 · · · aNx2 (196)

and reduction can be performed anyway.

Once the number of spiders in the chain part is reduced

to 3 or less, then the whole diagram looks like either of
the following two:

Sq(τ) c1x2 c2x2 c3x2 (197)

Sq(τ) c1x2 c2x2 c3x2 (198)

where we can assume c1 = 0 holds if and only if c1 = c2 =
c3 = 0 (and the diagram is equivalent to single squeezing
gate). When c1 ̸= 0, then Eq. (197) can be written as

Sq(τ) c1x2 c2x2 c3x2 (199)

(172)
= τ(τ−1)

4c1
x2 c1

τ
x2 1−τ

4c1
x2 −c1x2 c1x2 c2x2 c3x2 (200)

(f)
= τ(τ−1)

4c1
x2 c1

τ
x2

(
1−τ
4c1

+c2
)
x2 c3x2 (201)

and so is Eq. (198). It is easy to see that the last diagram
is either (1) equivalent to a squeezing gate or (2) convert-
ible by the quadratic rule, thereby reducing the number of
spiders to at most 3, which must coincide to one of the
diagrams specified in Table III (as the list is complete for
1-mode Gaussian operations).

This theorem assures any chain of quadratic spiders
can be uniquely rewritten into standard form given in
Table. III. As linear phase functions can be driven out to
the edge of the diagram using displacement rule (d), this
result immediately implies completeness of our rewrite
rules over 1-mode Gaussian diagrams written as sequence
of at most quadratic spiders. Also, 1-mode spiders are
interpreted as unitary operations that are well-defined on
the CV Hilbert space. Thus, soundness is assured by the
argument above, and we conclude that the ZX graphical
calculus provides a complete characterization of 1-mode
Gaussian gates.

By combining this theorem with Eq. (158), one can ob-
serve that completeness of the model is not only limited
to unitary operations but extends to infinitely-squeezed
1-mode Gaussian states and projections as well. Exten-
sion of the result to multi-mode diagrams awaits further
exploration. Recent work has shown that Gaussian quan-
tum mechanics can be treated within a graphical cal-
culus by an axiomization based on the Heisenberg pic-
ture [48, 49]. In these works, the authors avoid prob-
lems with infinite squeezing by confining the target of
their investigations to Gaussian processes and utilizing
a graphical calculus of affine transformations for these
cases. Although that work is applicable only to Gaussian
processes and has yet to deal with general CV processes,
for the purpose of establishing a CV ZX calculus, it is
a promising avenue of future research to integrate these

authors’ methodologies with our CV ZX calculus model.

V. EXAMPLES OF GRAPHICAL CALCULUS

In this section, we provide with several examples to
see how our diagrammatic calculus serves as a compre-
hensive tool for graphical reasoning about CV quantum
information processing.

Table III. Complete classification of 1-mode Gaussian unitary
gates. Each coefficient is nonzero.

Diagram Representation matrix(
1 0
0 1

)
cx2

(
1 0
2c 1

)
cx2

(
1 2c
0 1

)
c1x2 c2x2

(
1 2c2
2c1 1 + 4c1c2

)
c1x2 c2x2

(
1 + 4c1c2 2c2

2c1 1

)
c1x2 − c1+c2

4c1c2
x2 c2x2

(
− c2

c1
− c1+c2

c1c2
0 − c1

c2

)
c1x2 − c1+c2

4c1c2
x2 c2x2

( − c1
c2

0

− c1+c2
c1c2

− c2
c1

)
c1x2 c2x2 c3x2

(
1 + 4c2c3 2c2

8c1c2c3 + 2c1 + 2c3 1 + 4c1c2

)
Sq(τ)

(
τ 0
0 1

τ

)
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A. Measurement-induced universal squeezer

The measurement-induced universal squeezer is a de-
vice that implements, via measurement, a squeezing gate
with the aid of a squeezed state used as an ancilla and an
unbalanced beamsplitter [50, 51]. Its (idealised) experi-
mental architecture is illustrated in Fig. 1. Deriving the
function of this device is a good example of our graphical
formalism.

In this setup, the transmittance T of the beamsplit-
ter determines the squeezing parameter r acting on the
target mode, where the squeezing gain e−r is equal to√
T = sin θ. This procedure can be treated within the

framework of our graphical calculus.

Recall the representation of |0⟩q [Eq. (46)], a beam-

splitter [Eq. (66)], a displacement gate [Eq. (57)], and a
measurement in the p basis with outcome m (which is
just projection onto the bra p⟨m|) [first line of Table II,

arity 0 ← 1, with f(x) = −mx]. Combining these, we
can write the diagram corresponding to Fig. 1:

anc

−mx Sq
(

1
tanθ

)

Sq
(

sin2θ
cosθ

)

Sq
(

1
tanθ

)

D
(

im√
2tanθ

)

Sq
(

1
cosθ

)

in

out

HD

|0⟩q

FF

(202)
Now we can use rewrite rules to simplify this down to
its essential effect. Starting from the diagram above, we

Figure 1. Schematic illustration of measurement-induced
universal squeezer [50]. The measurement outcome of homo-
dyne detection is linearly feedforwarded to subsequent dis-
placement operation. The acronyms are as follows: HD =
homodyne detection, BS = beamsplitter, FF = feedforward,
anc = ancillary input.

have the following chain of equalities:

−mx Sq
(

1
tanθ

)

Sq
(

sin2θ
cosθ

)

Sq
(

1
tanθ

)

m
tanθ

Sq
(

1
cosθ

)

(203)

(c)
=

−mx Sq
(

1
tanθ

)

Sq
(

sin2θ
cosθ

)

Sq
(

1
tanθ

)

m
tanθ

Sq
(

1
cosθ

)

(204)

(s,f)
=

−mx Sq
(

1
tanθ

)

Sq
(

sin2θ
cosθ

)

Sq
(

1
tanθ

)

m
tanθ

(205)

(id)
=

−mx Sq
(

1
tanθ

)

Sq
(

sin2θ
cosθ

)
Sq
(

1
tanθ

)

m
tanθ

(206)

(s)
=

− m
tanθ

x

Sq
(

sin2θ
cosθ

)
Sq
(

1
tanθ

)

m
tanθ

(207)

(f,id)
= Sq

(
sin2θ
cosθ

)
Sq
(

1
tanθ

)
(208)

(B1)
= Sq(sinθ) (209)

B. Quantum teleportation

Among various CV processes, quantum teleporta-
tion [52] is regarded as one of the most fundamental
both conceptually and practically and is shown Fig. 2. In
quantum teleportation, performing a joint measurement
on an input state and half of an entangled state makes
the the input state appear in the remaining system—up
to an outcome-dependent displacement that can be cor-
rected by feeding forward the outcomes to the output
system and using that data to set the amount of a final
displacement.

In our graphical calculus, the quantum teleportation
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experiment in Figure 2 can be represented as follows:

FF

anc1

anc2

−m1x

Sq
(

1√
2

)

−m2x

Sq(
√

2)

D(m1+im2)

in

out

HD1

HD2

|EPR⟩

(210)

(qc)
=

−m1x

Sq
(

1√
2

)

−m2x

−m2x Sq(
√

2)

√
2m1x

√
2m2x

(211)

(f)
=

−m1x −m2x Sq
(

1√
2

)

−m2x Sq(
√

2)

√
2m1x

√
2m2x

(212)

Figure 2. Schematic illustration of quantum teleportation
protocol [52]. The measurement outcomes of the two homo-
dyne detections are jointly feedforwarded. The acronyms are
as follows: HD = homodyne detection, BS = beamsplitter,
FF = feedforward, anc = ancillary input.

(qc)
=

−m1x Sq
(

1√
2

)

−m2x Sq(
√

2)

√
2m1x

√
2m2x

(213)

(sq)
=

−√
2m1x

−√
2m2x

√
2m1x

√
2m2x

(214)

(f)
=

√
2m1x

√
2m2x −√

2m2x −√
2m1x (215)

(f)
= (216)

where m1 and m2 denotes each homodyne measurement
outcome. As the last line of the calculus implies, the
whole process of quantum teleportation is equivalent to
the identity operation.

C. Cubic state injection

Cubic state injection is one possible way to achieve
universal quantum computation in an MBQC scheme, as
it introduces non-Gaussianity of an ancilliary state to the
system only with Gaussian operations by implementing
the cubic phase gate onto an arbitrary input state. In an
MBQC protocol, it is necessary to conduct feedforward
operations so that errors induced by previous measure-
ment outcomes are properly corrected. In general, when
implementing nth order operations, one needs (n − 1)th

order feedforward to eliminate the effect of projection
onto the displaced quadrature eigenstates [53].

The simplest implementation of cubic state injection
is based on gate teleportation [55]. As illustrated on the
left side of Fig. 3, this consists of a CSUM operation, an
ancillary cubic phase state

|ψγ
CPG⟩ := eiγq̂

3 |0⟩p =
1√
2π

∫

R
ds eiγs

3 |s⟩q , (217)

a homodyne measurement, and a tunable Gaussian gate
Ĝγ(m) defined as

Ĝγ(m) = exp
(
−3iγ(m2x+mx2)

)
(218)

where m denotes the homodyne measurement outcome.

In our graphical calculus model, the total process of
cubic state injection can be graphically calculated as fol-
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Figure 3. Schematic illustration of (a) simplified cubic state injection and (b) its practical implementation with passive optical
components and nonlinear feedforward [54]. Green-colored gates represent feedforwarded operations with tunable parameters

and blue-colored gates represent constant opearations. (a) The operation Ĝγ is determined by the outcome of homodyne
detection. (b) The first homodyne measurement outcome determines the measurement angle of the second homodyne detection.
Then the two measurement outcomes are jointly feedforwarded to the displacement operation in the last step. The acronyms
are as follows: HD = homodyne detection, BS = beamsplitter, FF = feedforward, anc = ancillary input.

lows:

in

−3γ(mx2+m2x)

γx3

−mx

out

anc

HD

∣∣ψγ
CPG

〉
FF (219)

(f)
=

−3γ(mx2+m2x)

−mx γx3

(220)

(d)
=

−3γ(mx2+m2x)

γ(x+m)3
(221)

(f)
= γx3+γm3 (222)

(id)
= γx3 (223)

Thus, by operating the Gaussian feedforward operation
of Ĝγ(m) after the measurement, one can apply the cu-
bic phase gate of arbitrary γ by simply preparing the
ancilla |ψγ

CPG⟩ [Eq. 217] (or a suitable approximation
thereof).

Although this protocol is straightforward, it has two
drawbacks in practice. First, implementing the CSUM
gate is itself a demanding task in optical systems [56]
due to experimental constraints. Second, this scheme
requires a conditional shear operation for feedforward,
which is also challenging to realize, especially when aimed
at ultra-fast computation. In order to overcome these
difficulties and make the implementation practical, it is
necessary to construct a system with feasible operations
by an appropriate decomposition.

Such optical implementation of the cubic phase gate
has been proposed in Ref. [54] and recently demonstrated
in experiment [57]. In this scheme, as is shown on the
right side of Fig. 3, the CSUM gate is replaced with
two beamsplitters and one additional homodyne mea-
surement, and the feedforward is operated by adaptive
homodyne measurement and displacement. The rotation
angle before the second homodyne measurement θ1 is de-
termined by the first measurement outcome m1 as

θ1 = arctan
(

3
√

2γm1

)
(224)

to cancel out the effect of displacement due to the pre-
vious homodyne measurement. Effectively, the rotation
operation is equivalent to altering the angle of the mea-
sured basis q̂θ by −θ1. After obtaining the second mea-
surement outcome m2, the output mode is squeezed by
a constant factor of

√
2, and then a feedforwarded dis-

placement follows. The displacement amount in the last
step λ12 is given by the following equation

λ12 = m2

√
18γ2m2

1 + 1

2
(225)

so that the unwanted displacement introduced by the
two homodyne measurement is eliminated. As the con-
stant squeezing operation can be accomplished by the
measurement-induced scheme, the entire cubic phase
gate protocol is realizable only with passive optical com-
ponents and ancilliary states, which is a great advantage
for experimental implementation.

Again, one can follow its dynamics using our graphical
calculus. The protocol can be understood as follows:
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anc1

anc2

D(iλ12) Sq(
√

2)

Sq
(

1√
2

)

Sq(
√

2) Sq(
√

2)
−m2x R(θ1)

γx3

Sq
(

1√
2

)

−m1x

out

in

HD1

HD2

|0⟩q

|ψγ
CPG⟩

FF

FF

(226)

(qc)
=

√
2λ12x Sq(

√
2)

Sq
(

1√
2

)

Sq(
√

2) Sq(
√

2)
−m2x R(θ1)

m1x γx3

−m1x Sq
(

1√
2

)

(227)

(s,f)
=

√
2λ12x Sq(

√
2)

Sq
(

1√
2

)

Sq(
√

2)
−m2x R(θ1) m1x

−√
2m1x γx3

(228)

(f)
=

√
2λ12x Sq(

√
2) Sq

(
1√
2

)

−m2x R(θ1) m1x Sq(
√

2) −√
2m1x γx3

(229)

(f)
=

√
2λ12x Sq(

√
2) Sq

(
1√
2

)

−m2x R(θ1) m1x Sq(
√

2) −√
2m1x γx3

(230)

(s)
=

√
2λ12x

−m2x R(θ1) m1x Sq(
√

2) −√
2m1x γx3

(231)

(s)
=

√
2λ12x

−m2x R(θ1) m1x −2m1x
γ

2
√

2
x3

(232)
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(s)
=

√
2λ12x

−m2x R(θ1) m1x −2m1x
γ

2
√

2
x3

(233)

(239)
=

√
2λ12x

− tanθ1
2

x2− m2
cosθ1

x m1x −2m1x
γ

2
√

2
x3

(234)

(d)
=

√
2λ12x

− tanθ1
2

(x+m1)2− m2
cosθ1

(x+m1)
γ

2
√

2
(x+2m1)3

(235)

(f)
= γ

2
√

2
(x+2m1)3− tanθ1

2
(x+m1)2− m2

cosθ1
(x+m1)+

√
2λ12x (236)

= γ

2
√

2
x3 (237)

The last equation directly follows from the definitions
(224,225). As can be seen above, the whole process is
equivalent to a cubic phase gate with γ′ = γ√

2
. Here

we used the following commutation property to show the
equivalence between (233) and (234):

R(θ) ax (238a)

(58)
= tan(θ/2)

2
x2 − sinθ

2
x2 tan(θ/2)

2
x2 ax (238b)

(d)
= tan(θ/2)

2
x2 − sinθ

2
x2 ax tan(θ/2)

2
(x+a)2 (238c)

(f,id)
= tan(θ/2)

2
x2 − sinθ

2
x2 ax atan(θ/2)x tan(θ/2)

2
x2 (238d)

(f)
= tan(θ/2)

2
x2 ax − sinθ

2
x2 atan(θ/2)x tan(θ/2)

2
x2 (238e)

(d)
= tan(θ/2)

2
x2 ax atan(θ/2)x − sinθ

2
(x+atan(θ/2))2 tan(θ/2)

2
x2 (238f)

(90)
= tan(θ/2)

2
x2 atan(θ/2)x ax − sinθ

2
(x+atan(θ/2))2 tan(θ/2)

2
x2 (238g)

(f,id)
= tan(θ/2)

2
x2 atan(θ/2)x ax −asinθtan(θ/2)x − sinθ

2
x2 tan(θ/2)

2
x2 (238h)

(f)
= atan(θ/2)x tan(θ/2)

2
x2 (acosθ)x − sinθ

2
x2 tan(θ/2)

2
x2 (238i)

(d)
= atan(θ/2)x (acosθ)x tan(θ/2)

2
(x+acosθ)2 − sinθ

2
x2 tan(θ/2)

2
x2 (238j)

(f)
= atan(θ/2)x (acosθ)x acosθtan(θ/2)x tan(θ/2)

2
x2 − sinθ

2
x2 tan(θ/2)

2
x2 (238k)

(90)
= atan(θ/2)x acosθtan(θ/2)x (acosθ)x tan(θ/2)

2
x2 − sinθ

2
x2 tan(θ/2)

2
x2 (238l)

(f)
= (asinθ)x (acosθ)x tan(θ/2)

2
x2 − sinθ

2
x2 tan(θ/2)

2
x2 (238m)

(58)
= (asinθ)x (acosθ)x R(θ) (238n)

for arbitrary θ, a, (note that the equation holds when θ
is multiple of π as well) and thus

−m2x R(θ1) (239a)

(c)
= −(m2tanθ)x −m2x R(θ1) (239b)

(238)
= R(θ1) − m2

cosθ1
x (239c)

(144)
= − tanθ1

2
x2 − m2

cosθ1
x (239d)
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(f)
= − tanθ1

2
x2− m2

cosθ1
x (239e)

holds.

VI. DISCUSSIONS

A. Validity of canonical eigenstates and infinite
scalars

In this paper, we introduced a graphical calculus based
on directed graphs and explored its behavior under a
certain set of rewrite rules. As we mentioned earlier,
diagrams can be interpreted as CV operators by the
mapping J·K : D 7→ JDK, and each rewrite rule equates
two diagrams whose interpretation coincides. How-
ever, interpretations of q- and p-spiders given in Ta-
ble I are not well-defined (when n ̸= 1 or m ̸= 1).
This is due to the fact that canonical operators q̂, p̂ are
unbounded operators [58] and thus quadrature eigen-
states {|s⟩q}s∈R, {|t⟩p}t∈R are not formally defined in the
bosonic Hilbert space. One of the most evident example
of such trickiness emerges in the most simple diagram:

J K =

∫

R
ds 1 (240)

is not defined in C. This diagram can also be evaluated
as

J K = p⟨0|0⟩p = δ(0), (241)

in which the delta function emerges as Fourier transform
of the constant function. Because of these improper cal-
culation, our graphical model cannot assure soundness
in general cases. Even if two diagrams have proper in-
terpretation themselves, the graphical proof of two dia-
grams being rewritable may include improper transfor-
mation and thus leaves ambiguity at the formal level.
The reverse is also true: Among our rewrite rules, the
identity rule (id), fusion rule (f), squeezing rule (s), dis-
placement rule (d), inversion rule (inv), and quadratic
rule (q) do not contain undefinable diagrams when all
the inputs and outputs are restricted to a single mode.
Since our argument on completeness for 1-mode Gaus-
sian gates, Sec. IV C, relies only on these rules, the proof
is strictly valid.

Generally, it is already known that a compact struc-
ture does not exist in the category of infinite-dimensional
Hilbert spaces [8], which presents a barrier for naive gen-
eralization of the framework of the ZX calculus for a
standard CV system. This issue raises another prob-
lem deeply associated with the standard architecture of
CV quantum computing. As we did in this paper, the
canonical eigenstates are widely used when exploring the
CV systems. Just as we emphasized in the introduction,
these eigenstates themselves require a sensitive handling,
since they are out of the Hilbert space H and need care-
ful justification for their expected behaviors in the CV

system. Nevertheless, quadrature eigenstates are often
regarded as infinitely-squeezed vacuum, and so are other
ideal processes such as homodyne projection and prepa-
ration of perfectly correlated EPR states. Although these
intuitive interpretations may not suffice to ensure formal
mathematical rigor, this is an issue with all of CV quan-
tum information, and these problems are inherited by
our formalism. Nevertheless, the quadrature expansion
is quite useful to capture the essence of quantum pro-
cesses in phase space, and canonical eigenstates serve as
a handy tool for analysis of ideal processes with infinitely-
squeezed states.

For example, a physical EPR state has uncertainty
in the quadrature distribution of the two modes due to
its finite correlation. By contrast, an ideal EPR state
has perfect correlation, thus the homodyne measurement
outcome of the first mode exactly coincides to the dis-
placed amount of the residual quantum state in the sec-
ond mode. By using this property, one can easily show
how the quantum teleportation protocol retrieves the
original input state without any disturbance, which is
essentially what we did through the graphical calculus.

With this perspective, the graphical calculus model
proposed in this paper does not achieve the level of rigour
used in formal mathematics, but it does so to a stan-
dard appropriate for theoretical physics. To wit, it relies
on the standard framework of CV quantum computing,
and we elucidated how the generalization of the ZX cal-
culus should behave based on it. In order to overcome
these ambiguities, an additional framework or structure
is needed so that one can handle the infinitely squeezed
states in a rigorous way while preserving its expected
properties.

One possible approach to deal with these problems is
to introduce infinite objects, such as unbounded scalars,
quantum states with infinite norms, and others in a rig-
orous way. Recent research has proposed the applica-
tion of non-standard analysis [59], a mathematical field
of logic that formalizes unbounded scalars and infinitesi-
mals, for illustration of infinite-dimensional quantum me-
chanics [60, 61] and its categorical representation [62, 63].
Using this approach, one can consider linear algebras on
infinite-dimensional Hilbert spaces where infinities and
infinitesimals can be treated as normal numbers and
where most features of standard Hilbert spaces are trans-
ferred without losing mathematical rigor. Further refine-
ments of this approach may help to formalize our graph-
ical model with infinite scalars so that its soundness is
strictly guaranteed. The current presentation stands as a
useful starting point for a CV ZX calculus, with its more
formal analysis—using more sophisticated tools—left to
future work.
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B. Representation of physical states and error
correcting codes

As mentioned in Sec. VI A, our graphical calculus is
based on canonical eigenstates which cannot be normal-
ized. This causes another problem in the other direc-
tion: Though the model can deal with certain unphysical
states, such as infinitely squeezed states and the ideal cu-
bic phase states |ψCPGγ ⟩ [Eq. (217)], as we illustrated in
this paper, it cannot give a diagrammatic representation
for any physical (finite-norm) state, including Fock eigen-
states, displaced vacuum, and finitely-squeezed states.

One possible extension of the model to deal with this
problem is to admit complex phase functions for each
spider. Since the vacuum state, for instance, can be ex-
panded with regard to the position basis as

|0⟩ =

∫
ds

1

π1/4
exp

(
−s

2

2

)
|s⟩q , (242)

it can also be regarded as a momentum eigenstate
|0⟩p ∝

∫
ds |s⟩q perturbed under imaginary time evolu-

tion. With this perspective, one can interpret the follow-
ing diagram

−ix
2

2 = −ix
2

2 (243)

as representing the vacuum state. Most of the rewrite
rules proposed in this paper can be generalized to com-
plex spiders. The properties of non-unitary Gaussian
operators can also be studied using extended rewrite
rules including the quadratic rule (q) and the diplace-
ment rule (q), which may aassociate our calculus model
with graphical symplectic algebra for general Gaussian
processes [48, 49]. Another potential proposal is to intro-
duce diagrams representing non-unitary operations such
as damping operatorN (γ) = exp

(
−γâ†â

)
. Using this op-

erator, the correspondence between infinite- and finitely
squeezed states is given by the equation below [64]:

N (γ) |0⟩q ∝ Ŝq
(
− log tanh γ

2

)
|0⟩ (244)

and thus the damping operation transforms an unphysi-
cal state into physical state (up to some infinite scalar fac-
tor). Since the damping operation could be interpreted as
a type of decoherece, this process may also be formalized
in an extensive framework of ZX calculus generalized for
representation of mixed states, decoherence, and classical
information [65, 66].

A different extension of the graphical calculus may be
found in the direction of quantum error correction codes.
As we mentioned in the introduction, CV information
processing is highly compatible with error correction, and
it is natural to expect the CV calculus model to be unifed
with DV computing. One possible approach for such ap-
plication is to introduce new diagrams representing en-
coded qubit states. For example, the code space of the

Gottesman-Kitaev-Preskill qubit [18] is stabilized by op-
erators

{
exp
(
−2i
√
πp̂
)
, exp

(
2i
√
πx̂
)}
. (245)

Thus, one could define the notion of a GKP diagram,
denoted as a yellow diamond in the following equation,
such that

= 2
√

π = 2
√

π (246)

holds. Moreover, the logical state |0GKP⟩ is uniquely
characterized by the following relation

|0GKP⟩ = Ŝq(2)F̂ |0GKP⟩ , (247)

thus it can be specified with an additional axiom as fol-
lows:

= Sq(2) F (248)

These equations represent the principal properties of the
GKP qubit and thus would be sufficient for graphical
reasonings of the fundamental error correction schemes
proposed in Ref. [18]. It is an interesting question to
consider how these non-unitary diagrams and code states
could interact with other elements through rewrite rules
to be derived in future work.

C. Incompleteness of the set of rewrite rules

The set of rewrite rules we presented in Sec. IV A are
determined not only as an extension of the framework of
the ZX calculus but also as a handy rule set to conduct
diagrammatic calculus operations for what we consider
to be the principal processes in CV quantum information
processing. Though we have investigated various proper-
ties of the CV system within our rule set, it is unknown
what rule set can achieve a wider range of application
for more general processes. In fact, in the last section,
we discussed the completeness of the graphical calculus
for 1-mode Gaussian processes in Sec. IV C, but in the
discussion we restricted attention to diagrams composed
only of 1-to-1 quadratic spiders, and it cannot be directly
extended to a general form of Gaussian diagrams includ-
ing multi-mode spiders. For instance, direct calculation
suggests

u

ww
v

Sq(τ)

Sq(τ ′)

}

��
~ =

r
Sq(τ+τ ′)

z
(249)

should hold. However, rewritability of the two diagrams
under the rule set given in this paper is unclear so far.

Previous research has revealed that the qubit ZX cal-
culus is complete for Clifford processes and that all Clif-
ford diagrams can be efficiently rewritten into a stan-
dard form [67, 68], and this fact is used in various appli-
cations, including graphical characterization of Clifford
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process and circuit extraction. As properties of Gaus-
sian processes in a CV system are analogous to that of
Clifford operations for qubits in some ways [34], it is an
interesting question whether completeness for Gaussian
diagrams can be boiled down to similar graphical manip-
ulations.

VII. CONCLUSION

In this paper, we proposed a graphical calculus to
model CV dynamics by convertibility of simple diagrams
that represent each quantum process under a set of
rewrite rules. Although the model contains subtle issues
regarding infinities, the framework we propose is a start-
ing point for further investigations. As with the original
ZX calculus, we expect our model to have numerous ap-
plications in CV quantum information processing.

One potential application is as the foundation of com-
puter software for automated circuit optimization and
interactive theorem proving. Recently, the ZX calculus
has been used in computing packages that treat DV com-
putations, such as PyZX [44], Quantomatic [69], Pen-
nyLane [70] and others. Similar tools for CV quantum
computing are far more sparse. As we have seen in this
paper, our graphical calculus is powerful enough to in-
terpret various CV protocols, and it may be utilized as
a language for abstraction of CV quantum information
processing.

Another interesting possibility might be found in the
reasoning of MBQC and quanutm error-correcting codes.
Since one-way quantum computing and topological codes
are highly compatible with diagrammatic representation
[13–15], a number of investigations reported advanta-
geous in using the (qubit) ZX calculus as a graphical
language. Our CV version may be helpful in the analysis
and design of CV measurement-based quantum comput-
ing architectures [21, 22] and applications.
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Appendix A: Consistency of graphical calculus and
CV operators

1. Quantum gates

In this section, we will confirm that the graphical rep-
resentations of CV quantum gates given in Sec. III C is
consistent with the definitions listed in Table I.

a. Displacement gate

q √
2Re(α)x

√
2Im(α)x

y
(A1)

=

(∫

R
dt e−i

√
2Re(α)t |t⟩p p⟨t|

)(∫

R
ds ei

√
2 Im(α)t |s⟩q q⟨s|

)

(A2)

=e−i
√
2Re(α)p̂ei

√
2 Im(α)q̂ (A3)

∼ei(−
√
2Re(α)p̂+

√
2 Im(α)q̂) (A4)

=ei(α
∗â−αâ†) (A5)

Here we used Baker-Campbell-Hausdorff formula under
the canonical commutation relation [q̂, p̂] = i.

b. Phase rotation gate

Instead of directly calculating operator multiplications
in the Schrödinger picture, here we employ the Heisen-
berg picture and compute the quadrature transformation
function defined in Eq. (13). For a quadratic Gaussian
operator without displacement, one only needs to com-
pute its representation matrix for a unique identification
of the operator (up to global scalar factor). Let M(Â)
denote the symplectic matrix representing the Heisen-
berg action of an operator Â with respect to the vector
of quadratures (q̂, p̂)T . Then,

M
(q

tan(θ/2)
2

x2 − sinθ
2

x2 tan(θ/2)
2

x2
y)

(A6)

=

(
1 tan θ

2
0 1

)(
1 0

− sin θ 1

)(
1 tan θ

2
0 1

)
(A7)

=

(
cos θ sin θ
− sin θ cos θ

)
(A8)

This is the rotation matrix for the quadrature operators
as is defined in Table I.

c. 1-mode squeezing gate

M
(q

τ(1−τ)
4

x2 − 1
τ
x2 (τ−1)

4
x2 x2

y)
(A9)

=

(
1 τ(1−τ)

2
0 1

)(
1 0
− 2

τ 1

)(
1 τ−1

2
0 1

)(
1 0
2 1

)
(A10)
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=

(
τ 0
0 1

τ

)
(A11)

This matrix transformation achieves a squeezing trans-
formation for the quadrature operators, as defined in Ta-
ble I with τ = e−r.

d. Controlled-sum gate

For the unbiased (g = 1) controlled-sum gate,

u

v

}

~ (A12)

=

(∫

R
dt |t⟩p2 panc,p2

⟨t, t|
)(∫

R
ds |s, s⟩q1,qanc q1

⟨s|
)

(A13)

=

∫

R
ds

∫

R
dt panc

⟨t|s⟩qanc
|s, t⟩q1,p2 q1,p2

⟨s, t| (A14)

=

∫

R
ds

∫

R
dt e−ist |s, t⟩q1,p2 q1,p2

⟨s, t| (A15)

=e−iq̂1p̂2 (A16)

realizes the unitary transformation defined in Table I. For
biased gates, sandwiching the unbiased CSUM gate with

squeezing gates yields

u

ww
v

Sq(g−1)
Sq(g)

}

��
~ (A17)

=

(∫

R
ds |s⟩q q⟨gs|

)
e−iq̂1p̂2

(∫

R
ds′ |gs′⟩q q⟨s′|

)

(A18)

=e−igq̂1p̂2 . (A19)

e. Controlled-Z gate

The unbiased CZ gates can be expanded as

u

wwww
v

F

}

����
~

(A20)

=

(∫

R
ds |s⟩q1 q1,qanc

⟨s, s|
)
F̂anc

(∫

R
ds′ |s⟩qanc q2

⟨s′|
)

(A21)

=

∫

R
ds

∫

R
ds′ qanc

⟨s|F̂ |s′⟩qanc |s, s
′⟩q1,q2 q1,q2

⟨s, s′|
(A22)

=

∫

R
ds

∫

R
ds′ qanc

⟨s|s′⟩panc
|s, s′⟩q1,q2 q1,q2

⟨s, s′| (A23)

=

∫

R
ds

∫

R
ds′ eiss

′ |s, s′⟩q1,q2 q1,q2
⟨s, s′| (A24)

=eiq̂1q̂2 (A25)

and sandwiching this by squeezing gates works for biased
ones in the same way as CSUM gates.

f. Beamsplitter gate

M




u

wwwwwwwww
v

Sq
(

1
tanθ

)

Sq
(

sin2θ
cosθ

)

Sq
(

1
tanθ

)

Sq
(

1
cosθ

)

}

���������
~




(A26)

=




1
tan θ 0 0 0

0 tan θ 0 0
0 0 1 0
0 0 0 1







1 0 0 0
0 1 0 −1
1 0 1 0
0 0 0 1







sin2 θ
cos θ 0 0 0

0 cos θ
sin2 θ

0 0
0 0 1

cos θ 0
0 0 0 cos θ







1 0 −1 0
0 1 0 0
0 0 1 0
0 1 0 1







1
tan θ 0 0 0

0 tan θ 0 0
0 0 1 0
0 0 0 1


 (A27)
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=




cos θ 0 − sin θ 0
0 cos θ 0 − sin θ

sin θ 0 cos θ 0
0 sin θ 0 cos θ


 (A28)

g. Cubic phase gate

q
γx3

y
=

∫

R
ds eiγx

3

q|s⟩ ⟨s|q = eiγq̂
3

(A29)

2. Soundness of basic rewriting rules

As is discussed in Sec II D, to prove soundness of a
graphical calculus one just needs to verify that the indi-
vidual rewrite rules are sound. In this section, we will
show soundness for each basic rewriting rules given in
IV A by direct calculaion.

a. Identity rule

q
a

y
=

∫

R
ds eia |s⟩q q⟨s| ∼ idH (A30)

q
b

y
=

∫

R
ds eib |t⟩p p⟨t| ∼ idH (A31)

where idH denotes the identity operation.

b. Fusion rule

u

w
v
n ... f(x)

...m
...

n′ ... g(x) ...m
′

}

�
~ (A32)

=

∫

R
ds

∫

R
ds′ eif(s)eig(s

′)
(
q⟨s|s′⟩q

)k(
q⟨s′|s⟩q

)k′

×
(
|s⟩q
)⊗n(

q⟨s|
)⊗m ⊗

(
|s′⟩q

)⊗n′(
q⟨s′|

)⊗m′

(A33)

=

∫

R
ds

∫

R
ds′ eif(s)eig(s

′)δ(s− s′)k+k′

×
(
|s⟩q
)⊗n(

q⟨s|
)⊗m ⊗

(
|s′⟩q

)⊗n′(
q⟨s′|

)⊗m′

(A34)

=

∫

R
ds eif(s)eig(s)δ(0)k+k′−1

(
|s⟩q
)⊗n+n′(

q⟨s|
)⊗m+m′

(A35)

∼
r
n+n′ ... (f+g)(x) ...m+m′

z
(A36)

where k and k′ denote the number of upward and down-
ward wires between the two spiders, respectively. The
colour-flipped counterpart can be shown to be sound in
the same way. Note that here we have neglected the in-
finite scalar term δ(0)k+k′−1.

c. Bialgebra rule

t |

(A37)

=

∫

R
ds1

∫

R
ds2

∫

R
dt1

∫

R
dt2 |t1, t2⟩p1p2 pppp⟨t1, t1, t2, t2|s1, s2, s1, s2⟩qqqq q1q2

⟨s1, s2| (A38)

∼
∫

R
ds1

∫

R
ds2

∫

R
dt1

∫

R
dt2 e

−i(s1t1+s1t2+s2t1+s2t2) |t1, t2⟩p1p2 q1q2
⟨s1, s2| (A39)

=

∫

R
ds1

∫

R
ds2

∫

R
dt1

∫

R
dt2 e

−i(s1+s2)(t1+t2) |t1, t2⟩p1p2 q1q2
⟨s1, s2| (A40)

=

∫

R
ds1

∫

R
ds2

(∫

R
dt1 e

−i(s1+s2)t1 |t1⟩p1

)(∫

R
dt2 e

−i(s1+s2)t2 |t2⟩p2

)
q1q2
⟨s1, s2| (A41)

∼
∫

R
ds1

∫

R
ds2 |s1 + s2⟩q1 |s1 + s2⟩q2 q1q2

⟨s1, s2| (A42)

=

∫

R
ds

∫

R
ds1

∫

R
ds2 δ(s− s1 − s2) |s, s⟩q1q2 q1q2

⟨s1, s2| (A43)



28

=

(∫

R
ds |s, s⟩q1q2 q⟨s|

)(∫

R
ds1

∫

R
ds2 |s1 + s2⟩q q1q2

⟨s1, s2|
)

(A44)

=

t |

(A45)

d. Fourier rule

By definition, the Fourier transform operator F̂ can be
expanded as

F̂ =

∫

R
du |u⟩p q⟨u| =

∫

R
du |−u⟩q p⟨u| . (A46)

This operator has the Heisenberg action on the quadra-
ture operators q̂ and p̂ is as follows:

q̂ 7→ F̂ †q̂F̂ =

(∫

R
du |u⟩p q⟨−u|

)
q̂

(∫

R
du′ |−u′⟩q p⟨u′|

)

(A47)

=

∫

R
du

∫

R
du′ (−u)δ(u− u′) |u⟩p p⟨u′|

(A48)

=−
∫

R
duu |u⟩p p⟨u| = −p̂, (A49)

p̂ 7→ F̂ †p̂F̂ =

(∫

R
du |u⟩q p⟨u|

)
q̂

(∫

R
du′ |u′⟩p q⟨u′|

)

(A50)

=

∫

R
du

∫

R
du′ (u)δ(u− u′) |u⟩q q⟨u| (A51)

=

∫

R
duu |u⟩q q⟨u| = q̂. (A52)

Thus, one obtains

M

(t

F

|)
=

(
0 −1
1 0

)
(A53)

= M
(r

R(θ)
z)∣∣∣

θ=−π
2

(A54)

and the same works for F̂ † and F̂ 2.

e. Copy rule

s
... f(x)

{
∼
∫

R
ds eif(s) |s . . . s⟩q1...qn q⟨s|0⟩q

(A55)

=eif(s) |0 . . . 0⟩q1...qn (A56)

∼ |0⟩q
⊗n

(A57)

=

t
...

|

(A58)

The same works for its colour-flipped counterpart.

f. Displacement rule

u

w
v

ax

... f(x)
...

ax

}

�
~ (A59)

=

∫

R
ds eif(s)

(
|s⟩q
)⊗n (

q⟨s| e−iap̂
)⊗m

(A60)

=

∫

R
ds eif(s)

(
|s⟩q
)⊗n (

q⟨s− a|
)⊗m

(A61)

=

∫

R
ds eif(s+a)

(
|s+ a⟩q

)⊗n (
q⟨s|

)⊗m

(A62)

=

∫

R
ds eif(s+a)

(
e−iap̂ |s⟩q

)⊗n (
q⟨s|

)⊗m

(A63)

=

u

w
v

ax

... f(x+a)
...

ax

}

�
~ (A64)

The colour-flipped counterpart holds as well.

g. Antipode rule

t |

=

∫

R
ds

∫

R
dt |s⟩qout p⟨t|s⟩q pin

⟨t| (A65)

=

∫

R
ds

∫

R
dt |−s⟩pout p⟨t|s⟩p pin

⟨t| (A66)

=

∫

R
ds |−s⟩pout pin

⟨s| (A67)

=
r

F 2

z
(A68)
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h. Squeezing rule

u

www
v

Sq(τ)

... f(x)
...

Sq(τ)

}

���
~

(A69)

=

∫

R
ds eif(s)

(
|s⟩q
)⊗n (

q⟨s| Ŝq(τ)
)⊗m

(A70)

∼
∫

R
ds eif(s)

(
|s⟩q
)⊗n

(

q

〈 s
τ

∣∣∣
)⊗m

(A71)

∼
∫

R
ds eif(τs)

(
|τs⟩q

)⊗n (
q⟨s|

)⊗m

(A72)

∼
∫

R
ds eif(τs)

(
Ŝq(τ) |s⟩q

)⊗n (
q⟨s|

)⊗m

(A73)

=

u

www
v

Sq(τ)

... f(xτ)
...

Sq(τ)

}

���
~

(A74)

Again, the colour-flipped counterpart holds in the same
way.

i. Quadratic rule

M
(q

ax2 bx2 cx2
y)

(A75)

=

(
1 0
2a 1

)(
1 2b
0 1

)(
1 0
2c 1

)
(A76)

=

(
4bc+ 1 2b

8abc+ 2a+ 2c 4ab+ 1

)
(A77)

On the other hand,

M
(q

bc
4abc+a+c

x2 (4abc+a+c)x2 ab
4abc+a+c

x2
y)

(A78)

=

(
1 2bc

4abc+a+c

0 1

)(
1 0

2(4abc+ a+ c) 1

)(
1 2bc

4abc+a+c

0 1

)

(A79)

=

(
4bc+ 1 2b

8abc+ 2a+ 2c 4ab+ 1

)
(A80)

holds. Thus, these two unitary operators are equivalent
up to a scalar factor.

j. Inversion rule

u

www
v

F F †

... f(x)
...

F F †

}

���
~

(A81)

=

∫

R
du eif(u)

(
F̂ |u⟩q

)⊗n (
q⟨u| F̂ †

)⊗m

(A82)

=

∫

R
du eif(u)

(
|u⟩p

)⊗n (
p⟨u|

)⊗m

(A83)

=

t
... f(x)

...

|

(A84)

Appendix B: Graphical calculus of 1-mode Gaussian gates

1. Associativity of squeezing gates

Theorem 3. For arbitrary nonzero real τ and κ,

Sq(τ) Sq(κ) = Sq(τκ) (B1)

holds.

Proof. Using Theorem. 1, one obtains

Sq(τ) = τ(1−τ)
4

x2 − 1
τ
x2 τ−1

4
x2 x2 (B2)

and

Sq(κ) = −x2 κ−1
4κ

x2 κx2 −κ−1
4κ2 x2 (B3)
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Therefore,

Sq(τ) Sq(κ) (B4)

(f)
= τ(1−τ)

4
x2 − 1

τ
x2 τ−1

4
x2 κ−1

4κ
x2 κx2 −κ−1

4κ2 x2 (B5)

(f)
= τ(1−τ)

4
x2 − 1

τ
x2 κτ−1

4κ
x2 κx2 −κ−1

4κ2 x2 (B6)

(q)
= τ(1−τ)

4
x2 − 1

τ
x2 1−κ

τ−1
x2 τ−1

4κ
x2 κ(κτ−1)

τ−1
x2 (B7)

(f)
= τ(1−τ)

4
x2 1−κτ

τ(τ−1)
x2 τ−1

4κ
x2 κ(κτ−1)

τ−1
x2 (B8)

which is equivalent to

Sq(τκ) = τκ(1−τκ)
4k

x2 − k
τκ

x2 τκ−1
4k

x2 kx2 (B9)

by substituting k = κ(κτ−1)
τ−1 in Theorem. 1.

2. Associativity of rotation gates

Theorem 4. For arbitrary real θ and ϕ,

R(θ) R(ϕ) = R(θ+ϕ) (B10)

can be shown under the identity rule (id), the fusion rule (f), and the quadratic rule (q).

Proof. If either θ = 2nπ or ϕ = 2nπ holds, then the rotation is equivalent to identity operation, and thus (B10) is
obvious. Likewise, if θ = (2n+ 1)π for some n ∈ Z, then

R((2n+1)π) R(ϕ) (B11)

(58)
= Sq(−1) tan(θ/2)

2
x2 − sinθ

2
x2 tan(θ/2)

2
x2 (B12)

(173)
= 1

tan(ϕ/2)
x2 − tan(ϕ/2)

2
x2 1

tan(ϕ/2)
x2 − tan(θ/2)

2
x2 tan(θ/2)

2
x2 − sinϕ

2
x2 tan(ϕ/2)

2
x2 (B13)

(f)
= 1

tan(ϕ/2)
x2 − tan(ϕ/2)

2
x2

(
1

tan(ϕ/2)
− sinϕ

2

)
x2 tan(ϕ/2)

2
x2 (B14)

(q)
= 1

tan(ϕ/2)
x2 − 1

2tan(ϕ/2)
x2 − sinϕ

2
x2 1

2tan(ϕ/2)
x2 (B15)

(f)
= 1

2tan(ϕ/2)
x2 − sinϕ

2
x2 1

2tan(ϕ/2)
x2 (B16)

(q)
= − 1

2tan(θ/2)
x2 sinθ

2
x2 − 1

2tan(θ/2)
x2 (B17)

(58)
= R(ϕ+π) (B18)

for all ϕ satisfying sinϕ ̸= 0, and

R((2n+1)π) R((2n+1)π) (B19)

= Sq(−1) Sq(−1) (B20)

(B1)
= Sq(1) (B21)

= (B22)

holds (by Theorem. 3). The same argument applies when ϕ = (2n + 1)π. Therefore, all we need to confirm is when
sin θ ̸= 0 and sinϕ ̸= 0.
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(i) If sin(θ + ϕ) ̸= 0, then

R(θ) R(ϕ) (B23)

(f)
= tan(θ/2)

2
x2 − sinθ

2
x2 tan(θ/2)+tan(ϕ/2)

2
x2 − sinϕ

2
x2 tan(ϕ/2)

2
x2 (B24)

(q)
= tan(θ/2)

2
x2

(
tan((θ+ϕ)/2)−tan(θ/2)

2

)
x2 − sin(θ+ϕ)

2
x2

(
tan((θ+ϕ)/2)−tan(ϕ/2)

2

)
x2 tan(ϕ/2)

2
x2 (B25)

(f)
= tan((θ+ϕ)/2)

2
x2 − sin(θ+ϕ)

2
x2 tan((θ+ϕ)/2)

2
x2 (B26)

(58)
= R(θ+ϕ) (B27)

holds. Here we applied the quadratic rule (q) under the assumption sin(θ + ϕ) ̸= 0.

(ii) If θ + ϕ = 2nπ, then sin θ = − sinϕ and tan(ϕ/2) = tan(nπ − θ/2) = − tan(θ/2), and thus

R(θ) R(ϕ) (B28)

(f)
= tan(θ/2)

2
x2 − sinθ

2
x2 tan(θ/2)+tan(ϕ/2)

2
x2 − sinϕ

2
x2 tan(ϕ/2)

2
x2 (B29)

= tan(θ/2)
2

x2 − sinθ
2

x2 0 sinθ
2

x2 − tan(θ/2)
2

x2 (B30)

(id)
= tan(θ/2)

2
x2 − sinθ

2
x2 sinθ

2
x2 − tan(θ/2)

2
x2 (B31)

(f)
= tan(θ/2)

2
x2 − tan(θ/2)

2
x2 (B32)

(f)
= (B33)

= R(2nπ) (B34)

holds.

(iii) If θ + ϕ = (2n+ 1)π, then sinϕ = sin θ and tan(ϕ/2) = 1
tan(θ/2) , and thus

R(θ) R(ϕ) (B35)

(f)
= tan(θ/2)

2
x2 − sinθ

2
x2 tan(θ/2)+tan(ϕ/2)

2
x2 − sinϕ

2
x2 tan(ϕ/2)

2
x2 (B36)

= tan(θ/2)
2

x2 − sinθ
2

x2
(

tan(θ/2)
2

+ 1
2tan(θ/2)

)
x2 − sinθ

2
x2 1

2tan(θ/2)
x2 (B37)

(q)
= tan(θ/2)

2
x2 − sinθ

2
x2 − sinθ

2tan2(θ/2)
x2 tan(θ/2)

2
x2 − 1

tan(θ/2)
x2 (B38)

(f)
= tan(θ/2)

2
x2 − 1

tan(θ/2)
x2 tan(θ/2)

2
x2 − 1

tan(θ/2)
x2 (B39)

(172)
= Sq(−1) (B40)

(F )
= R(π) (B41)

= R((2n+1)π) (B42)

holds.

[1] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C.
Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L.
Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen,

B. Chiaro, R. Collins, W. Courtney, A. Dunsworth,
E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina,
R. Graff, K. Guerin, S. Habegger, M. P. Harrigan,



32

M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang,
T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang,
D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh,
A. Korotkov, F. Kostritsa, D. Landhuis, M. Lind-
mark, E. Lucero, D. Lyakh, S. Mandrà, J. R. Mc-
Clean, M. McEwen, A. Megrant, X. Mi, K. Michielsen,
M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill,
M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quin-
tana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank,
K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Tre-
vithick, A. Vainsencher, B. Villalonga, T. White, Z. J.
Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Marti-
nis, Quantum supremacy using a programmable super-
conducting processor, Nature 574, 505 (2019).

[2] H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C.
Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu,
X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan,
G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu,
and J.-W. Pan, Quantum computational advantage using
photons, Science 370, 1460 (2020).

[3] M. Fernández, Models of Computation: An Introduction
to Computability Theory , edited by I. Mackie, S. Abram-
sky, C. Hankin, D. Kozen, A. Pitts, H. R. Nielson,
S. Skiena, I. Stewart, and D. Zhang, Undergraduate
Topics in Computer Science (Springer London, London,
2009).

[4] J. Miszczak, High-Level Structures for Quantum Comput-
ing , edited by M. Lanzagorta and J. Uhlmann, Synthesis
Lectures on Quantum Computing, Vol. #6 (Morgan &
Claypool Publishers, 2012).

[5] D. Deutsch, Quantum theory, the Church–Turing prin-
ciple and the universal quantum computer, Proceedings
of the Royal Society of London. A. Mathematical and
Physical Sciences 400, 97 (1985).

[6] P. Selinger and B. Valiron, A lambda calculus for
quantum computation with classical control, in Typed
Lambda Calculi and Applications, edited by P. Urzyczyn
(Springer Berlin Heidelberg, Berlin, Heidelberg, 2005)
pp. 354–368.

[7] M. A. Nielsen and I. L. Chuang, Quantum Computation
and Quantum Information (Cambridge University Press,
2000).

[8] C. Heunen and J. Vicary, Categories for Quantum The-
ory: An Introduction (Oxford University Press, 2019).

[9] B. Coecke and R. Duncan, A graphical calculus for quan-
tum observables (2007).

[10] B. Coecke and R. Duncan, Interacting Quantum Ob-
servables: Categorical Algebra and Diagrammatics, New
Journal of Physics 13, 043016 (2011).

[11] A. Kissinger and J. van de Wetering, Reducing T-count
with the ZX-calculus, Physical Review A 102, 022406
(2020).

[12] N. de Beaudrap, X. Bian, and Q. Wang, Techniques to
Reduce $pi$/4-Parity-Phase Circuits, Motivated by the
ZX Calculus, Electronic Proceedings in Theoretical Com-
puter Science 318, 131 (2020).

[13] M. Backens, H. Miller-Bakewell, G. de Felice, L. Lobski,
and J. van de Wetering, There and back again: A circuit
extraction tale, Quantum 5, 421 (2021).

[14] A. Kissinger and J. van de Wetering, Universal MBQC
with generalised parity-phase interactions and Pauli mea-
surements, Quantum 3, 134 (2019).

[15] D. Horsman, Quantum picturalism for topological
cluster-state computing, New Journal of Physics 13,

095011 (2011).
[16] A. Toumi, R. Yeung, and G. De Felice, Diagrammatic

Differentiation for Quantum Machine Learning, Elec-
tronic Proceedings in Theoretical Computer Science 343,
132 (2021).

[17] S. Lloyd and S. L. Braunstein, Quantum computation
over continuous variables, Physical Review Letters 82,
1784 (1999).

[18] D. Gottesman, A. Kitaev, and J. Preskill, Encoding a
qubit in an oscillator, Physical Review A 64, 012310
(2001).

[19] M. H. Michael, M. Silveri, R. T. Brierley, V. V. Albert,
J. Salmilehto, L. Jiang, and S. M. Girvin, New class
of quantum error-correcting codes for a bosonic mode,
Physical Review X 6, 031006 (2016).

[20] A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A.
Fuchs, H. J. Kimble, and E. S. Polzik, Unconditional
Quantum Teleportation, Science 282, 706 (1998).

[21] W. Asavanant, Y. Shiozawa, S. Yokoyama, B. Charoen-
sombutamon, H. Emura, R. N. Alexander, S. Takeda,
J.-i. Yoshikawa, N. C. Menicucci, H. Yonezawa, and
A. Furusawa, Generation of time-domain-multiplexed
two-dimensional cluster state, Science 366, 373 (2019).

[22] M. V. Larsen, X. Guo, C. R. Breum, J. S. Neergaard-
Nielsen, and U. L. Andersen, Deterministic generation of
a two-dimensional cluster state, Science 366, 369 (2019).

[23] S. Konno, W. Asavanant, F. Hanamura, H. Nagayoshi,
K. Fukui, A. Sakaguchi, R. Ide, F. China, M. Yabuno,
S. Miki, H. Terai, K. Takase, M. Endo, P. Marek, R. Filip,
P. Van Loock, and A. Furusawa, Logical states for fault-
tolerant quantum computation with propagating light,
Science 383, 289 (2024).

[24] C. Flühmann, T. L. Nguyen, M. Marinelli, V. Negnevit-
sky, K. Mehta, and J. P. Home, Encoding a qubit in
a trapped-ion mechanical oscillator, Nature 566, 513
(2019).

[25] L. Podhora, L. Lachman, T. Pham, A. Lešundák, O. Č́ıp,
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