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Abstract

Most factor modelling research in vector or matrix-valued time series assume all factors are perva-

sive/strong and leave weaker factors and their corresponding series to the noise. Weaker factors can in

fact be important to a group of observed variables, for instance a sector factor in a large portfolio of

stocks may only affect particular sectors, but can be important both in interpretations and predictions

for those stocks. While more recent factor modelling researches do consider “local” factors which are

weak factors with sparse corresponding factor loadings, there are real data examples in the literature

where factors are weak because of weak influence on most/all observed variables, so that the corre-

sponding factor loadings are not sparse (non-local). As a first in the literature, we propose estimators

of factor strengths for both local and non-local weak factors, and prove their consistency with rates

of convergence spelt out for both vector and matrix-valued time series factor models. Factor strength

has an important indication in what estimation procedure of factor models to follow, as well as the

estimation accuracy of various estimators (Chen and Lam, 2024). Simulation results show that our

estimators have good performance in recovering the true factor strengths, and an analysis on the NYC

taxi traffic data indicates the existence of weak factors in the data which may not be localized.
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1 Introduction

Factor modelling has become an increasingly important tool for analyzing high dimensional data across

various academic fields, including finance, economics, psychology, and biology. In high dimensional time

series, it is generally assumed that a small number of factors drive the dynamics of all variables, lead-

ing to significant dimension reduction. Traditional factor models primarily focus on vector time series,

exploring various assumptions regarding cross-correlation and serial dependence structures (Bai, 2003,

Bai and Ng, 2002, 2007, 2023, Chamberlain and Rothschild, 1983, Fan et al., 2013, 2019, Forni et al., 2000,

Lam and Yao, 2012, Lam et al., 2011, Pan and Yao, 2008, Stock and Watson, 2005, 2002). More recently,

studies have extended their scope to include matrix factor models (Chen and Fan, 2021, He et al., 2022,

Wang et al., 2019, Yu et al., 2022) and tensor factor models (Barigozzi et al., 2023a,b, Chen et al., 2022,

Chen and Lam, 2024, Han et al., 2020, 2022), incorporating emerging data in more complex matrix or

tensor formats.

In factor modelling, a crucial assumption pertains to the strengths of factors. In the early studies

of standard vector factor models (Bai, 2003, Bai and Ng, 2002, Stock and Watson, 2002), it is typically

assumed that all r factors are strong, commonly referred to as pervasive. Specifically, in the model

xt = Aft + ǫt, t = 1, · · · , T,

where xt ∈ R
d, A ∈ R

d×r and ft ∈ R
r, the pervasive factor assumption implies that all r eigenvalues of

ATA diverge proportionally to d, i.e., λj(A
TA) ≍ d for j = 1, · · · , r. This results in a clear partition of the

eigenvalues of the observed covariance matrix into two sets: large eigenvalues representing factor-related

variation and small eigenvalues representing idiosyncratic variation. Such a clear partition is also crucial

for validating the procedure to estimate the number of factors by analyzing the empirical behaviors of

eigenvalues (Ahn and Horenstein, 2013, Bai, 2003, Onatski, 2010).

However, a clear separation of the eigenvalues into one set of large eigenvalues and a second set of

small eigenvalues is typically not found in practice. Empirical studies in economics and finance indicate

that eigenvalues often diverge at varying rates (Freyaldenhoven, 2022, Ross, 1976, Trzcinka, 1986). In

response, models introducing weak factors have been proposed for analyzing vector time series (Bai and Ng,

2023, Freyaldenhoven, 2022, Lam and Yao, 2012, Lam et al., 2011, Onatski, 2012, Uematsu and Yamagata,

2022). For the j-th column aj of A, its factor strength αj , ranging between 0 and 1, is defined such that

‖aj‖2 ≍ dαj , j = 1, · · · , r,
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ensuring that

λj(A
TA) ≍ dαj , j = 1, · · · , r.

Thus, a strong (or pervasive) factor has αj = 1, while a weak factor has αj < 1. Theoretically, a weak

factor can result from two scenarios: (i) the factor has a weak effect on all observables, or (ii) it affects

only a subset of observables, referred to as a “local” factor by Freyaldenhoven (2022).

Building on assumptions about weak factors for vector time series, the literature has developed studies

focusing on the estimation of the factor loading space and the number of factors when weak factors are

present in the model (Bai and Ng, 2023, Freyaldenhoven, 2022, Lam and Yao, 2012, Lam et al., 2011,

Uematsu and Yamagata, 2022). Despite these efforts, there is limited research on directly estimating

factor strengths themselves. Uematsu and Yamagata (2022) assume sparsity in the factor loading matrix

A and employ techniques akin to adaptive LASSO for factor selection. They calculate the estimated factor

strengths by counting the number of nonzero elements in the estimated factor loading matrix. Another

study with similar sparsity assumptions, Bailey et al. (2021), proposes estimating factor strengths based

on the proportion of statistically significant factor loadings, but it concentrates on cases where factors are

observed, while our primary emphasis is on latent factor models.

The sparsity assumptions in the above mentioned works specifically address scenarios akin to case

(ii) mentioned earlier, i.e., when factors are weak due to being “local”. This framework does not cover

situations where a factor is weak because of its weak impact on all observed units. Connor and Korajczyk

(2022) considers such a scenario when factors are observed, and provides test-statistics for differentiating

strong from weak factors. They demonstrate in an analysis of US equity returns how weak factors can have

effects on some or all variables (thus no sparsity assumption since these weak factors are not “local”). While

their test-statistics can differentiate strong from weak factors, factor strengths are not estimated in the

paper. Factor strength provides important indication on how well a factor loading matrix can be estimated

(see Lam and Yao (2012) and Chen and Lam (2024) for rates of convergence for factor loading matrices in

the presence of weak factors). In recent years, matrix and tensor factor models with assumptions on weak

factors have also emerged (Chen et al., 2022, Chen and Lam, 2024, Han et al., 2020, 2022). However, none

of these papers provide a method to estimate factor strengths. Consequently, factor strength estimation

remains an important yet challenging issue, especially when we are not relying on sparsity assumptions on

the factor loading matrices.

In this paper, we propose a novel method to estimate factor strengths in factor models for vector and

matrix time series. Our method does not assume the factor loading matrix is sparse. Instead, we make use
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of covariance information and the estimated factor loading matrices to extract factor strengths directly.

To the best of our knowledge, this is the first method to estimate factor strengths that can be applied in

general settings when the factor loading matrices are not necessarily sparse. Moreover, it represents the

first method to estimate factor strengths in matrix factor models, i.e., tensor factor models with order

K = 2. For matrix factor models, the factor strengths on the row loading matrices and column loading

matrices are estimated with specific identifiability conditions provided. Numerical experiments show that

our method performs well in various settings, shedding light on future research directions in this field.

The rest of this paper is organized as follows. Section 2 introduces our method for estimating factor

strengths for vector factor models, accompanied by theoretical results. In Section 3, we extend the approach

to matrix factor models and provide an identifiability condition that enables the simultaneous estimation

of factor strengths on both modes, with theoretical guarantees. Section 4 presents our simulation studies,

showcasing the performance of our method in various settings, with a matrix-valued NYC taxi data set

analyzed in Section 4.3. All proofs are presented in Section 5.

2 Estimation Method in Vector Factor Models

The models we consider are time series factor models in vector or matrix formats. We start with a vector

factor model, which takes the form

xt = Aft + ǫt, t ∈ [T ], (2.1)

where xt ∈ R
d, ǫt ∈ R

d, A ∈ R
d×r is the factor loading matrix, and ft ∈ R

r are the latent factors. We

also define, for any positive integer m, [m] := 1, ...,m. We assume d ≫ r and r is finite, and present the

following assumptions to identify the factor loadings and factor strengths.

(V1) (Factor strengths) A is of full rank, and ATA = D, where D is a diagonal matrix. Define the

diagonal entries of D as djj := (D)jj , then djj ≍ dαj for j ∈ [r], and 0 < αr ≤ · · · ≤ α1 ≤ 1.

(V2) (Latent factors) There is zf,t the same dimension as ft, such that ft =
∑

q≥0 af,qzf,t−q. The time se-

ries {zf,q} has i.i.d. elements with mean 0, variance 1 and uniformly bounded fourth order moments.

The coefficients af,q are so that
∑

q≥0 a
2
f,q = 1.

Assumption (V1) defines factor strengths in the model. ATA being diagonal is necessary to identify

and estimate a spectrum of different factor strengths. Otherwise, different rotations could mix weak factors

with stronger ones, making the factor strengths unidentifiable. This assumption is not as non-general as it
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appears. As an illustrative example, consider a d× 2 factor loading matrix A = (a1, a2), with ‖a1‖2 ≍ dα1

and ‖a2‖2 ≍ dα2 , α1 > α2. Also, write aT

1a2 = ‖a1‖ · ‖a2‖ cos(θ). Then by the QR decomposition,

A = QR, where R :=




‖a1‖ ‖a2‖ cos(θ)

0 ‖a2‖


 ,

and Q is a d× 2 matrix with orthogonal columns. The matrix R can in fact be written as

R = D1/2R̃, where R̃ :=




1 ‖a2‖ cos(θ)/‖a1‖

0 1


 and D :=




‖a1‖2 0

0 ‖a2‖2


 ,

with the entry ‖a2‖ cos(θ)/‖a1‖ = O(d(α2−α1)/2) = o(1). Hence the common component in model (2.1)

can now be written as Aft = Ãf̃t, where Ã := QD1/2 and f̃t := R̃ft. Now the new factor loading matrix

indeed has ÃTÃ = D, a diagonal matrix with djj = ‖aj‖2 ≍ dαj as in Assumption (V1). The new factor

series f̃t is asymptotically the same as ft since R̃ is asymptotically the identity matrix. If α1 = α2, R̃ is not

asymptotically the identity matrix, but we only need to trivially modify all proofs in the paper (omitted).

It’s important to note that we do not impose any sparsity assumptions on the factor loading matrix

A, in contrast to other recent literature dealing with weak factors (Bailey et al., 2021, Freyaldenhoven,

2022, Uematsu and Yamagata, 2022). Consequently, a factor in our model can be weak if either (i) the

factor has a weak effect on all observables, or (ii) it affects only a subset of observables. Such relaxed

assumptions provide more flexibility for our approach to be used in practice. Assumption (V2) states that

ft has uncorrelated elements. Define F = [f1, . . . , fT ]
T, then Assumption (V2) implies E[F

T
F

T ] = Ir and
∥∥F

T
F

T

∥∥ = OP(1), facilitating the rationality of our method as described later.

To estimate the factor strengths αj , j ∈ [r], note that from Assumption (V1), the factor loading matrix

A can be written as A = QD1/2, where Q ∈ R
d×r has orthogonal columns such that QTQ = Ir, and

D ∈ R
r×r is a diagonal matrix defined in Assumption (V1). Since Q is orthogonal, the information about

factor strengths in A is fully encapsulated in D, given that djj ≍ dαj . Consequently, we can estimate

factor strengths by estimating the diagonal elements of D. To achieve this, we define Ŝ = Q̂TΣ̂xQ̂, where

Q̂ is an estimator of Q, and Σ̂x = 1
T

∑T
t=1 xtx

T

t . Then

Ŝ =Q̂TQD1/2

(
1

T

T∑

t=1

ftf
T

t

)
D1/2QTQ̂

+ Q̂TQD1/2

(
1

T

T∑

t=1

ftǫ
T

t

)
Q̂+ Q̂T

(
1

T

T∑

t=1

ǫtf
T

t

)
D1/2QTQ̂+ Q̂T

(
1

T

T∑

t=1

ǫtǫ
T

t

)
Q̂. (2.2)

If the error terms ǫt are appropriately bounded, with proper assumptions on its cross-correlation and
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serial dependence, the last three terms in (2.2) become small in comparison to the first term. Moreover,

considering that E[ftf
T

t ] = Ir by Assumption (V2), and assuming we have an estimator Q̂ that is close to

Q, we can make the following approximation:

Ŝ ≈ Q̂TQD1/2

(
1

T

T∑

t=1

ftf
T

t

)
D1/2QTQ̂ ≈ D.

In practice, the estimated Q̂ can be obtained through various approaches, depending on the model assump-

tions (see Bai and Li (2012), Bai and Liao (2016), Bai and Ng (2002), Lam and Yao (2012), Lam et al.

(2011) for examples). Now, given that D is diagonal, we can directly derive the estimator for djj , j ∈ [r],

by using the diagonal entries of Ŝ, such that d̂jj := ŝjj , where d̂jj and ŝjj represent the j-th diagonal

entries of D̂ and Ŝ, respectively. Thus, the factor strengths on A can be estimated as

α̂j =
log
(
d̂jj

)

log(d)
, j ∈ [r], (2.3)

and we can further obtain Â as Â = Q̂D̂1/2, where D̂ is a diagonal matrix with diagonal entries given by

d̂jj .

To assess the estimator α̂j obtained by (2.3), note that from Assumption (V1), the true factor strength

αj is defined as

∥∥aj
∥∥2 = Cdαj , j ∈ [r], (2.4)

where C is a constant that may vary across different j. Additionally, introduce the realized factor strength

α̃j as

α̃j :=
log(

∥∥aj
∥∥2)

log(d)
= αj +

log(C)

log(d)
. (2.5)

It is important to note that our estimator α̂j is, in fact, an estimator for α̃j rather than the true αj , as C

and αj are not identifiable. However, given that C is a constant, when the dimension d grows large, we

expect log(C)
log(d) → 0, leading to a negligible difference between α̃j and αj . In the special case where C = 1,

we always have α̃j = αj . In practical situations with finite samples and a moderately sized d, it is desirable

for C to be close to 1, ensuring that α̃j does not significantly differ from αj . In such cases, α̂j serves as a

reliable approximation to the true αj .

To introduce the theory for the consistency of α̂j , we need the following additional assumptions:
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(V3) (Noise series) Define E = [ǫ1, . . . , ǫT ]
T
, then

∥∥∥E
T
E

T

∥∥∥ = OP

(
1 + d

T

)
.

(V4) (Accuracy of the estimated Q̂) The estimated factor loading Q̂ satisfies

‖Q̂−Q‖ = OP(d
αr−α1). (2.6)

(V5) (Model parameters) We assume αr ≥ α1

2 and

d1+α1−2αr

T
= O(1). (2.7)

Assumption (V3) is standard in the literature that addresses the possibly correlated noise (Bai, 2003,

Bai and Ng, 2007). It asserts that (weak) cross-correlations and serial dependence can be allowed in the

noise series, which can be inferred from more primitive conditions (Moon and Weidner, 2015, Onatski,

2015). Assumption (V4) states that the estimated Q̂ should be close to the true Q, with the specified

rate of convergence required. In the special case when all factors have the same strength, (2.6) reduces to

‖Q̂ −Q‖ = OP(1), which is naturally satisfied by any consistent estimator of Q. It is important to note

that depending on the method used to obtain Q̂, additional technical assumptions may be necessary to

ensure the error bound of Q̂ is satisfied, although these details are not provided here. Assumption (V5)

outlines the necessary relationships between the weakest and the strongest factor, as well as between d and

T . To consistently estimate αj , it is crucial that the weakest factor is not excessively weak compared to

the strongest ones. This relationship also influences the required magnitude of T . Consider, for example,

the scenario where the strongest factor is pervasive (i.e., α1 = 1). In this case, we will need αr ≥ 0.5,

and (2.7) will be automatically satisfied if the weakest factor is also pervasive (i.e., αr = 1). However, if

αr = 0.5, then we will require d
T = O(1) to fulfill the rate condition (2.7).

The following theorem shows the consistency of estimated factor strengths α̂j obtained by (2.3).

Theorem 1. Under Assumptions (V1)-(V5), if the constant C defined in (2.4) is unknown, we have

|α̂j − αj | = OP

(
1

log(d)

)
, j ∈ [r].

Theorem 1 asserts that α̂j converges to the true factor strength αj with a rate of 1/log(d) when we do

not know the constant C defined in (2.4). Indeed, this rate is optimal, as we have demonstrated that α̂j is

an estimator for the realized factor strength α̃j defined in (2.5) when C 6= 1. Consequently, α̃j converges

to the true αj with a rate of 1/log(d), and the rate of |α̂j − αj | cannot surpass this bound. Theorem 1

highlights that, with proper assumptions, we can achieve this optimal rate.
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Nevertheless, if we assume C = 1, then α̃j = αj , making the factor strength αj exactly identifiable.

In such case, we can achieve a better rate of convergence for |α̂j − αj |. To accomplish this, we need the

following Assumption (V4’) and (V5’).

(V4’) The estimated factor loading Q̂ satisfies ‖Q̂−Q‖ = oP(d
αr−α1).

(V5’) We assume αr > α1

2 and d1+α1−2αr

T = o(1).

Assumptions (V4’) and (V5’) are parallel to Assumptions (V4) and (V5), respectively. The slightly

more restrictive rate conditions are necessary for the proof of the following theorem.

Theorem 2. Under Assumption (V1), (V2), (V3), (V4) and (V5’), if the constant C defined in (2.4)

equals 1, then we have, for any j ∈ [r − 1] satisfying αj > αr,

|α̂j − αj | = OP

(
cj + dαr−αj

log(d)

)
, (2.8)

where

cj := (d
α1
2

−αj )(1 + d1/2T− 1
2 ) + d−αj (1 + dT−1) = o(1).

Furthermore, if Assumption (V4’) is satisfied, then for any j ∈ [r],

|α̂j − αj | = OP

(
cj

log(d)

)
+ oP

(
dαr−αj

log(d)

)
. (2.9)

Theorem 2 presents the improved rate of convergence for the estimated factor strengths when they are

exactly identifiable. Equation (2.8) indicates that when αr is not too small and T is large enough to satisfy

(V5’), all factor strengths except for the weakest ones can be estimated at a rate faster than 1/log(d),

assuming some factors are stronger than others. Moreover, stronger factors can achieve faster rates, and

the rate increases as T or d grows larger.

Furthermore, (2.9) states that if Q is accurately estimated such that (V4’) is also satisfied, then all

factor strengths, including the weakest ones, can be estimated at an even faster rate. Note that if all factors

have the same strengths, then (V4’) is automatically satisfied for any consistent estimator of Q, and the

rate (2.9) directly applies.
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3 Extension to matrix factor models

In Section 2, we discuss our method to estimate factor strengths in a vector factor model. The similar

approach can be extended to a matrix factor model, which is developed for analyzing time series obser-

vations recorded in matrix form (Chen and Fan, 2021, He et al., 2023, Wang et al., 2019, Yu et al., 2022).

Consider the matrix factor model:

Xt = A1FtA
T

2 +Et, t ∈ [T ], (3.10)

where Xt ∈ Rd1×d2 , Et ∈ Rd1×d2 , Ft ∈ Rr1×r2 , and Ak ∈ Rdk×rk for k = 1, 2. The following assumptions

for matrix factor models are direct extensions of Assumptions (V1) and (V2) for vector factor models:

(M1) (Factor strengths) For k = 1, 2, Ak is of full rank, and AT

kAk = Dk, where Dk is a diagonal

matrix. Define the diagonal entries of Dk as dk,jj := (Dk)jj , then dk,jj ≍ dαk,j for j ∈ [rk], and

0 < αk,rk ≤ · · · ≤ αk,1 ≤ 1.

(M2) (Latent factors) There is Zf,t the same dimension as Ft, such that Ft =
∑

q≥0 af,qZf,t−q. The

time series {Zf,q} has i.i.d. elements with mean 0, variance 1 and uniformly bounded fourth order

moments. The coefficients af,q are so that
∑

q≥0 a
2
f,q = 1.

Assumption (M2) is parallel to the assumptions made for the factor series in Chen and Lam (2024)

when K = 2. Assumption (M1) fixes the concept of factor strength similar to Assumption (V1) in Section

2. With Assumption (M1), we can write A1 = Q1D
1/2
1 and A2 = Q2D

1/2
2 , where Qk ∈ Rdk×rk has

orthogonal columns for k = 1, 2. Then (3.10) can be written as

Xt = Q1D
1/2
1 FtD

1/2
2 QT

2 +Et, t ∈ [T ].

To estimate the factor strengths on A1, similar to the vector case, we can create Ŝ1 = Q̂T

1 Σ̂1xQ̂1,

where Q̂1 is an estimator of Q1, and Σ̂1x = 1
T

∑T
t=1 XtX

T

t . Then

Ŝ1 =Q̂T

1Q1D
1/2
1

(
1

T

T∑

t=1

FtD2F
T

t

)
D

1/2
1 QT

1 Q̂1

+ Q̂T

1Q1D
1/2
1

(
1

T

T∑

t=1

FtD
1/2
2 QT

2E
T

t

)
Q̂1 + Q̂T

1

(
1

T

T∑

t=1

EtQ2D
1/2
2 FT

t

)
D

1/2
1 QT

1 Q̂+ Q̂T

1

(
1

T

T∑

t=1

EtE
T

t

)
Q̂1.

(3.11)

The last three terms in (3.11) will become small compared to the first term if the error terms Et are
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small with proper assumptions on its cross-correlation and serial dependence. For matrix factor models,

literature has been developed to obtain Q̂1 using different approaches under various model assumptions

(see Barigozzi et al. (2023b), Chen and Fan (2021), Chen et al. (2022), Chen and Lam (2024), He et al.

(2023), Wang et al. (2019) for examples). If Q̂1 is close to Q1, then

Ŝ1 ≈ Q̂T

1Q1D
1/2
1

(
1

T

T∑

t=1

FtD2F
T

t

)
D

1/2
1 QT

1 Q̂1

≈ D
1/2
1

(
1

T

T∑

t=1

FtD2F
T

t

)
D

1/2
1

≈ D
1/2
1 tr(D2)D

1/2
1

= tr(D2)D1. (3.12)

If D2 is known, or we have an estimate for it, we can then estimate the diagonal entries of D1 by using

the diagonal entries of Ŝ1/tr(D2). With Q̂2 an estimator of Q2 and if they are close, parallel arguments

(by swapping the index 1 with 2 and vice versa) show

Ŝ2 ≈ tr(D1)D2. (3.13)

Thus, if D1 is known or if we have an estimate of it, then we can estimate the diagonal entries of D2 by

using the diagonal entries of Ŝ2/tr(D1).

However, in most practical scenarios, neither D1 nor D2 is known. Consequently, we aim to estimate

both D1 and D2 simultaneously from (3.12) and (3.13). In such situations, it is crucial to note that due

to matrix multiplication, the factor strengths on A1 and A2 are not identifiable in matrix factor models.

This lack of identifiability is reflected in the relationships derived from (3.12) and (3.13):

tr(Ŝ1) ≈ tr(D1)tr(D2) ≈ tr(Ŝ2). (3.14)

Therefore, to estimate the factor strengths on D1 and D2 simultaneously, it is necessary to define the

identifiability condition as:

(IC) (Factor strength identifiability)

tr(D1)

r1d1
=

tr(D2)

r2d2
. (3.15)

Note that the identifiability condition is not unique. However, we choose (3.15) as it is convenient for
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interpretations. The intuition behind (3.15) is that, in general, larger factor strengths will be “assigned”

to larger dimensions. For instance, consider r1 = r2 = 1 and α1,1 = α2,1 = 1. In this case, tr(AT

1A1) =

tr(D1) ≈ r1d1 and tr(AT

2A2) = tr(D2) ≈ r2d2 (each up to multiplication of an unknown constant).

Consequently, by (3.15), the estimated factor strengths can recover the true ones if we know one of it,

i.e., α̂1,1 ≈ α̂2,1 ≈ 1. On the other hand, if A1 and A2 have the exact same dimensions (r1 = r2 and

d1 = d2), they will be “assigned” the same factor strengths under (IC), as the factor strengths on them

are completely symmetric and indistinguishable from each other.

With identifiability condition (3.15), together with (3.14), we can allocate the proper factor strengths

on D1 and D2 accordingly. For more accuracy and consistency in calculations, we can use the average of

tr(Ŝ1) and tr(Ŝ2) as an estimate of tr(D1)tr(D2) and solve for tr(D1) and tr(D2), respectively. This leads

to the following approximations:

tr(D1) ≈
(
tr(Ŝ1 + Ŝ2)

2
· r1d1
r2d2

)1/2

, (3.16)

and

tr(D2) ≈
(
tr(Ŝ1 + Ŝ2)

2
· r2d2
r1d1

)1/2

. (3.17)

By substituting (3.17) and (3.16) back into (3.12) and (3.13), we can estimate the diagonal entries of

D1 and D2 by taking the corresponding diagonal entries in Ŝ1 and Ŝ2, respectively, normalized to specific

magnitudes. This leads to:

d̂1,jj :=
ŝ1,jj

(
tr(Ŝ1+Ŝ2)

2 · r2d2

r1d1

)1/2 , j ∈ [r1],

where d̂1,jj and ŝ1,jj are the j-th diagonal entries of D̂1 and Ŝ1, respectively, and

d̂2,jj :=
ŝ2,jj

(
tr(Ŝ1+Ŝ2)

2 · r1d1

r2d2

)1/2 , j ∈ [r2],

where d̂2,jj and ŝ2,jj are the j-th diagonal entries of D̂2 and Ŝ2, respectively. Finally, the factor strengths

on A1 and A2 can be estimated as:

α̂1,j =
log
(
d̂1,jj

)

log(d1)
, j ∈ [r1],
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and

α̂2,j =
log
(
d̂2,jj

)

log(d2)
, j ∈ [r2],

and we can further obtain Âk = Q̂kD̂
1/2
k , where D̂k is a diagonal matrix with diagonal entries given by

d̂k,jj , for k = 1, 2.

To introduce the theoretical guarantee for α̂1,j and α̂2,j , we similarly define the following assumptions

for the matrix factor models, as an extension of Assumptions (V3) to (V5) for vector factor models:

(M3) (Noise series)
∥∥∥ 1
d2T

∑T
t=1

EtE
T
t

T

∥∥∥ = OP

(
1 + d1

d2T

)
and

∥∥∥ 1
d1T

∑T
t=1

E
T
t Et

T

∥∥∥ = OP

(
1 + d2

d1T

)
.

(M4) (Accuracy of the estimated Q̂k) For k = 1, 2, the estimated factor loading Q̂k satisfies

‖Q̂k −Qk‖ = oP(d
αk,rk

−αk,1).

(M5) (Model parameters) For k = 1, 2, we assume αk,rk ≥ αk,1

2 , αk,1 ≥ 0.5. Furthermore

d1

d
α2,1

2 T
= o(1),

d2

d
α1,1

1 T
= o(1),

d
1−α1,1

1

d
α2,r2

2

= o(1),
d
1−α2,1

2

d
α1,r1

1

= o(1).

Assumption (M3) extends Assumption (V3) from the vector model to the matrix model, allowing for

(weak) cross-correlations among fibers and serial dependence in the noise series. Specifically, we can express

1
d2T

∑T
t=1

EtE
T
t

T as 1
d2T

∑T
t=1

∑d2

i=1 et,ie
T
t,i, where the et,i’s represent the columns of Et. Then Assumption

(M3) will be satisfied by applying random matrix theory if the correlations among columns of Et, rows

of Et, and serial dependence of Et are not too strong (Ahn and Horenstein, 2013, Bai and Yin, 1993).

Assumption (M4) states that the estimated Q̂k should be close to the true Qk. Consider a common scenario

that d1 ≍ d2 ≍ T , and the strongest factors for both modes are pervasive, i.e., α1,1 = α2,2 = 1. Then

the rate requirement for Assumption (M4) can be satisfied by the projection estimator of Chen and Lam

(2024) when αk,rk ≥ 0.5 (representing a very weak factor). In the special case when all factors have the

same strength, Assumption (M4) is naturally satisfied by any consistent estimator of Qk. Assumption

(M5) delineates the requisite relationships between the weakest and strongest factors of each mode, as well

as among d1, d2, and T . These conditions are relatively mild, as αk,1 ≥ 0.5 denotes a very weak strongest

factor for each mode. In a typical scenario where d1 ≍ d2 ≍ T and α1,1 = α2,2 = 1, Assumption (M5) will

be satisfied as long as αk,rk ≥ 0.5.

Similar to the vector factor model, the true factor strength αk,j for a factor under a matrix factor

12



model is defined as

∥∥ak,j
∥∥2 = Cd

αk,j

k , j ∈ [rk], k ∈ [1, 2], (3.18)

where C is a constant that may vary across different k, j. Additionally, define the realized factor strength

α̃k,j as

α̃k,j :=
log(

∥∥ak,j
∥∥2)

log(dk)
= αk,j +

log(C)

log(dk)
, j ∈ [rk], k ∈ [1, 2].

Similar to the vector case, our estimator α̂k,j is an estimator for α̃k,j rather than the true αk,j . When

the constant C 6= 1, the convergence rate of α̂k,j towards the true αk,j cannot be faster than 1/log(dk).

However, if C = 1, then the rate of convergence can be much faster. The following theorem shows

the consistency of estimated factor strengths α̂k,j for matrix factor models by specifying the rates under

different scenarios.

Theorem 3. Under Assumptions (M1)-(M5), and assuming the identifiability condition (3.15) holds. For

each j ∈ [rk], k = 1, 2, if the constant C defined in (3.18) is unknown, then we have

|α̂k,j − αk,j | = OP

(
1

log(dk)

)
.

Furthermore, if αk,rk >
αk,1

2 and the constant C defined in (3.18) equals 1, then for j ∈ [rk], k = 1, 2,

|α̂k,j − αk,j | = OP

(
ck,j

log(dk)

)
+ oP

(
dαk,rk

−αk,j

log(dk)

)
, (3.19)

where

c1,j := d
α1,1

2
−α1,j

1 d
1−α2,1

2

2

(
1 +

d1
d2T

)1/2

+ d
−α1,j

1 d
1−α2,1

2

(
1 +

d1
d2T

)
= o(1),

c2,j := d
α2,1

2
−α2,j

2 d
1−α1,1

2

1

(
1 +

d2
d1T

)1/2

+ d
−α2,j

2 d
1−−α1,1

1

(
1 +

d2
d1T

)
= o(1).

Theorem 3 extends the results of Theorem 1 and Theorem 2 from vector time series to matrix time

series. Specifically, in general scenarios when C 6= 1, the optimal rate of 1/log(dk) is achieved by our

estimated factor strengths. In the special case when C = 1 such that the factor strengths are exactly

identifiable, then we can obtain an improved rate of convergence as outlined by (3.19). The improved rate

(3.19) for matrix factor models can be compared to the rate (2.9) for vector factor models in Theorem 2.

If the strongest factor for mode-2 is pervasive, i.e., α2,1 = 1, then for estimating the factor strengths in

13



A1, we have

c1,j = d
α1,1

2
−α1,j

1

(
1 +

d1
d2T

)1/2

+ d
−α1,j

1

(
1 +

d1
d2T

)
,

which is faster than the rate cj in Theorem 2 when d1 ≻ d2T , and at the same rate as cj when d1 � d2T .

Thus, with the matrix factor model, we can potentially obtain a more accurate estimator of the factor

strengths.

4 Simulation Experiments

In this section, we conduct simulation experiments to test the performances of our proposed method to

estimate factor strengths in vector and matrix factor models.

4.1 Simulation settings

For generating our data, we use model (2.1) for vector time series, and (3.10) for matrix time series. For

vector time series, the factor loading matrix A is generated with A = BR, where the elements in B ∈ R
d×r

are i.i.d. U(−
√
3,
√
3), and R ∈ R

r×r is diagonal with the j-th diagonal element being d−ζj , 0 ≤ ζj ≤ 0.5.

Pervasive (strong) factors have ζj = 0, while weak factors have 0 < ζj ≤ 0.5. In this way, the constant

C in (2.4) will be close to 1, so that α̃j ≈ αj and ‖aj‖ ≈ d
αj

k for j ∈ [r]. For matrix time series, we

independently generate A1 and A2 using the same procedure described above. The factor loading matrix

Ak for k = 1, 2 is generated independently with Ak = BkRk, where the elements in Bk ∈ R
dk×rk are i.i.d.

U(−
√
3,
√
3), and Rk ∈ R

rk×rk is diagonal with the j-th diagonal element being d
−ζk,j

k , 0 ≤ ζk,j ≤ 0.5.

Pervasive (strong) factors have ζk,j = 0, while weak factors have 0 < ζk,j ≤ 0.5.

The elements in ft for vector time series (or Ft for matrix time series) are independent standardized

AR(1) with AR coefficients 0.8. The elements in ǫt (or Et) are generated based on Assumption (E1) and

(E2) in Chen and Lam (2024), where they decompose the noise series into a common component part and

an independent noise part, facilitating weak cross-correlations and serial dependence in the noise series. We

use the same parameters to generate ǫt (orEt) as in Chen and Lam (2024), except that we add an additional

step to normalize the magnitude of the noise based on the signal-to-noise ratio δ. This ratio is defined as

the average ratio of standard errors of ft and ǫt (or Ft and Et), which ensures that 1
d

∑d
j=1 var(et,j) =

1
δ2

(or 1
d1d2

∑d1

i=1

∑d2

j=1 var(et,i,j) =
1
δ2 ). We assume δ = 2 for all simulation experiments in this section.

We set r = 2 for vector time series, and r1 = r2 = 2 for matrix time series. We consider two settings

of factor strengths for vector time series:
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(I) One strong factor and one weak factor with ζ1 = 0 and ζ2 = 0.2, so that α1 = 1, α2 = 0.6.

(II) Two weak factors with ζ1 = 0.1 and ζ2 = 0.2, so that α1 = 0.8, α2 = 0.6.

Similarly, two settings of factor strengths are considered for matrix time series:

(I) One strong factor and one weak factor with ζk,1 = 0 and ζk,2 = 0.2 for k = 1, 2, so that αk,1 = 1,

αk,2 = 0.6.

(II) Two weak factors with ζk,1 = 0.1 and ζk,2 = 0.2 for k = 1, 2, so that αk,1 = 0.8, αk,2 = 0.6.

Each experiment is repeated for 500 times.

4.2 Results

For vector factor models, we consider all combinations of dimensions d = 50, 100, 200, 400, 800 and T =

50, 100, 200, 400, 800 for each of the two settings of factor strengths outlined in Section 4.1. We estimate

α̂1 and α̂2 following the process described in Section 2, where Q̂ is estimated using PCA of the sample

covariance matrix (Bai and Ng, 2002). Tables 1 and 2 record the mean and standard deviation over 500

repetitions of factor strengths estimations under different settings and dimensions.

Based on the results presented in Table 1 and 2, our factor strengths estimators demonstrate good

performance across all settings in vector factor models. Both α̂1 and α̂2 converge to the true factor strengths

α1 and α2, with a particularly notable improvement as T increases. Furthermore, the standard deviation

of the estimators decreases with the increase in T or d. It’s essential to note that the standard deviation

of estimation is influenced not only by errors in the estimation procedure but also by the fact that α̃j is

not generated to be exactly αj but with some small variance (i.e., the constant C in (2.4) is not exactly

1). Nevertheless, given that α̃j ≈ αj , the estimated α̂j still serves as a good approximation of αj .

For matrix factor models, we consider the following five settings of different dimensions for d1 and d2:

i. d1 = d2 = 25;

ii. d1 = d2 = 50;

iii. d1 = d2 = 100;

iv. d1 = 25, d2 = 50;

v. d1 = 50, d2 = 100.
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d T = 50 T = 100 T = 200 T = 400 T = 800

α̂1

50 1.00(0.10) 0.99(0.07) 1.00(0.06) 1.00(0.05) 1.00(0.04)
100 0.99(0.09) 0.98(0.06) 0.98(0.05) 1.00(0.04) 1.00(0.03)
200 0.99(0.08) 0.98(0.06) 0.99(0.04) 1.00(0.03) 1.00(0.02)
400 0.98(0.07) 0.99(0.04) 1.00(0.04) 1.00(0.03) 1.00(0.02)
800 0.98(0.07) 1.00(0.04) 0.99(0.03) 1.00(0.02) 1.00(0.02)

α̂2

50 0.56(0.08) 0.59(0.08) 0.59(0.06) 0.59(0.05) 0.59(0.05)
100 0.58(0.07) 0.59(0.07) 0.59(0.05) 0.59(0.04) 0.60(0.03)
200 0.59(0.06) 0.60(0.05) 0.60(0.04) 0.60(0.03) 0.60(0.02)
400 0.62(0.05) 0.59(0.05) 0.60(0.04) 0.60(0.03) 0.60(0.02)
800 0.64(0.04) 0.61(0.04) 0.60(0.03) 0.60(0.02) 0.60(0.02)

Table 1: The mean and standard deviation (in brackets) of the estimated factor strengths for Setting (I)
under vector factor models. The true factor strengths are α1 = 1, α2 = 0.6.

d T = 50 T = 100 T = 200 T = 400 T = 800

α̂1

50 0.82(0.09) 0.81(0.08) 0.82(0.05) 0.81(0.05) 0.81(0.04)
100 0.80(0.09) 0.80(0.07) 0.80(0.05) 0.80(0.03) 0.80(0.03)
200 0.79(0.07) 0.79(0.05) 0.80(0.04) 0.81(0.03) 0.80(0.03)
400 0.80(0.07) 0.80(0.05) 0.80(0.04) 0.80(0.02) 0.80(0.02)
800 0.81(0.05) 0.80(0.05) 0.80(0.03) 0.80(0.03) 0.80(0.02)

α̂2

50 0.56(0.09) 0.56(0.08) 0.59(0.06) 0.60(0.05) 0.59(0.05)
100 0.57(0.07) 0.59(0.05) 0.59(0.05) 0.59(0.03) 0.59(0.03)
200 0.59(0.05) 0.59(0.05) 0.60(0.04) 0.59(0.03) 0.60(0.02)
400 0.61(0.05) 0.60(0.05) 0.60(0.03) 0.60(0.03) 0.60(0.02)
800 0.63(0.03) 0.61(0.04) 0.60(0.03) 0.60(0.02) 0.60(0.02)

Table 2: The mean and standard deviation (in brackets) of the estimated factor strengths for Setting (II)
under vector factor models. The true factor strengths are α1 = 0.8, α2 = 0.6.

We consider all combinations of T = 50, 100, 200, 400, 800, and the above five settings of dimensions for

each of the two settings of factor strengths outlined in Section 4.1. We estimate α̂1,1, α̂1,2, α̂2,1, and

α̂2,2 following the process described in Section 3, where Q̂1 and Q̂2 are estimated using the pre-averaging

and iterative projection algorithm developed in Chen and Lam (2024). Table 3 and 4 record the mean

and standard deviation over 100 repetitions of factor strengths estimations under different settings and

dimensions.

From Table 3 and 4, our estimation procedure performs effectively across all settings in matrix factor

models. The identifiability condition (3.15) efficiently allocates factor strengths between A1 and A2. When

d1 = d2, we estimate relatively similar factor strengths for A1 and A2 since they are indistinguishable.

Moreover, all estimated factor strengths converge to the true values as T and d increase. In cases where

d1 6= d2, the estimated factor strengths on A1 and A2 are allocated based on the relative magnitudes of

d1 and d2, contributing to the recovery of true factor strengths. This tendency is particularly pronounced

in Setting (I), where the strongest factors on A1 and A2 are pervasive.
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(d1, d2) T = 50 T = 100 T = 200 T = 400 T = 800

α̂1,1

(25, 25) 1.00(0.07) 1.00(0.06) 0.99(0.05) 0.99(0.05) 1.00(0.04)
(50, 50) 0.99(0.06) 1.00(0.05) 1.00(0.04) 1.00(0.03) 1.00(0.03)
(100, 100) 0.99(0.04) 0.99(0.03) 1.00(0.02) 1.00(0.02) 1.00(0.02)

(25, 50) 1.01(0.08) 0.99(0.06) 0.99(0.05) 0.99(0.04) 0.99(0.04)
(50, 100) 0.98(0.06) 1.00(0.04) 0.99(0.04) 0.99(0.03) 0.99(0.02)

α̂1,2

(25, 25) 0.55(0.11) 0.57(0.09) 0.58(0.09) 0.58(0.06) 0.59(0.06)
(50, 50) 0.57(0.08) 0.58(0.07) 0.59(0.07) 0.59(0.05) 0.60(0.04)
(100, 100) 0.57(0.07) 0.59(0.06) 0.59(0.04) 0.59(0.04) 0.59(0.03)

(25, 50) 0.54(0.11) 0.55(0.10) 0.57(0.08) 0.57(0.06) 0.57(0.06)
(50, 100) 0.57(0.09) 0.56(0.07) 0.59(0.06) 0.59(0.05) 0.59(0.04)

α̂2,1

(25, 25) 1.00(0.07) 1.00(0.05) 0.99(0.05) 0.99(0.05) 1.00(0.04)
(50, 50) 0.99(0.06) 0.99(0.05) 1.00(0.04) 1.00(0.03) 1.00(0.03)
(100, 100) 0.99(0.04) 0.99(0.03) 1.00(0.02) 1.00(0.02) 1.00(0.02)

(25, 50) 1.01(0.06) 1.00(0.04) 1.00(0.04) 1.00(0.03) 1.00(0.03)
(50, 100) 0.99(0.05) 1.01(0.03) 1.00(0.03) 1.00(0.02) 1.00(0.02)

α̂2,2

(25, 25) 0.55(0.12) 0.56(0.09) 0.58(0.08) 0.58(0.06) 0.58(0.06)
(50, 50) 0.59(0.09) 0.59(0.07) 0.58(0.06) 0.59(0.04) 0.59(0.04)
(100, 100) 0.58(0.08) 0.58(0.06) 0.59(0.04) 0.59(0.04) 0.59(0.03)

(25, 50) 0.58(0.10) 0.59(0.07) 0.59(0.06) 0.59(0.04) 0.60(0.05)
(50, 100) 0.59(0.08) 0.58(0.06) 0.59(0.05) 0.60(0.04) 0.60(0.03)

Table 3: The mean and standard deviation (in brackets) of the estimated factor strengths for Setting (I)
under matrix factor models. The true factor strengths are α1,1 = α2,1 = 1, α1,2 = α2,2 = 0.6.

4.3 NYC taxi traffic analysis

We analyze taxi traffic pattern in New York city. The data includes all individual taxi rides operated by

Yellow Taxi within New York City, published at

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page.

To simplify the discussion, we only consider rides within Manhattan Island. The dataset contains 1.1

billion trip records within the period of January 1, 2011 to December 31, 2021. Each trip record includes

fields capturing pick-up and drop-off dates/times, pick-up and drop-off locations, trip distances, itemized

fares, rate types, payment types, and driver-reported passenger counts. Our study focuses on the pick-up

and drop-off dates/times, and pick-up and drop-off locations of each ride.

The pick-up and drop-off locations in Manhattan are coded according to 69 predefined zones and we

will use them to classify the pick-up and drop-off locations. While Chen and Lam (2024) and Chen et al.

(2018) further divide each day into 24 hourly periods and analyze the Xt ∈ R
69×69×24 tensor time series to

estimate factor loadings and the number of factors, our focus in this paper is on estimating factor strengths

in matrix time series. To achieve this, we record the total number of rides moving among the zones within
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(d1, d2) T = 50 T = 100 T = 200 T = 400 T = 800

α̂1,1

(25, 25) 0.82(0.07) 0.81(0.05) 0.80(0.05) 0.81(0.05) 0.81(0.05)
(50, 50) 0.80(0.06) 0.81(0.04) 0.80(0.03) 0.80(0.03) 0.81(0.03)
(100, 100) 0.79(0.05) 0.80(0.03) 0.80(0.02) 0.80(0.02) 0.80(0.02)

(25, 50) 0.79(0.07) 0.79(0.05) 0.78(0.05) 0.78(0.05) 0.78(0.04)
(50, 100) 0.78(0.06) 0.78(0.05) 0.78(0.03) 0.78(0.03) 0.78(0.02)

α̂1,2

(25, 25) 0.56(0.10) 0.55(0.08) 0.58(0.06) 0.58(0.06) 0.58(0.06)
(50, 50) 0.57(0.06) 0.58(0.06) 0.58(0.05) 0.59(0.04) 0.59(0.04)
(100, 100) 0.58(0.08) 0.60(0.05) 0.59(0.03) 0.60(0.03) 0.59(0.02)

(25, 50) 0.53(0.10) 0.54(0.08) 0.55(0.07) 0.55(0.06) 0.55(0.06)
(50, 100) 0.56(0.08) 0.56(0.06) 0.57(0.04) 0.57(0.04) 0.57(0.04)

α̂2,1

(25, 25) 0.83(0.07) 0.80(0.06) 0.81(0.05) 0.81(0.04) 0.81(0.05)
(50, 50) 0.81(0.05) 0.81(0.04) 0.80(0.04) 0.81(0.03) 0.81(0.03)
(100, 100) 0.79(0.04) 0.80(0.03) 0.80(0.03) 0.80(0.02) 0.80(0.02)

(25, 50) 0.83(0.06) 0.83(0.04) 0.81(0.04) 0.82(0.03) 0.82(0.03)
(50, 100) 0.82(0.04) 0.82(0.04) 0.82(0.03) 0.82(0.02) 0.82(0.02)

α̂2,2

(25, 25) 0.55(0.09) 0.57(0.08) 0.57(0.06) 0.57(0.06) 0.58(0.06)
(50, 50) 0.57(0.06) 0.57(0.06) 0.59(0.05) 0.59(0.04) 0.59(0.04)
(100, 100) 0.60(0.06) 0.59(0.05) 0.60(0.04) 0.60(0.03) 0.59(0.02)

(25, 50) 0.58(0.08) 0.60(0.06) 0.62(0.05) 0.61(0.04) 0.61(0.04)
(50, 100) 0.60(0.06) 0.61(0.05) 0.61(0.03) 0.62(0.03) 0.62(0.02)

Table 4: The mean and standard deviation (in brackets) of the estimated factor strengths for Setting (II)
under matrix factor models. The true factor strengths are α1,1 = α2,1 = 0.8, α1,2 = α2,2 = 0.6.

specific hours on each day. As an example, we utilize data from 10pm to 12am on each non-business day,

representing taxi traffic patterns during nighttime (Chen et al., 2022, Chen and Lam, 2024). We analyze

the non-business-day series within the period from January 1, 2011, to December 31, 2021, encompassing

1248 days. Thus, Xt ∈ R
69×69 for each day, where xi1,i2,t represents the number of trips from zone i1 (the

pick-up zone) to zone i2 (the drop-off zone) between 10pm and 12am on day t. Similar analysis can be

conducted to examine traffic patterns by aggregating data from other hours as well.

Chen and Lam (2024) utilizes their bootstrapped correlation thresholding method to estimate the

number of factors for both pick-up and drop-off locations, resulting in r̂1 = r̂2 = 3. This observation

suggests the potential existence of weak factors, as opposed to other rank estimators designed to analyze

only pervasive factors, all of which yield r̂1 = r̂2 = 1 (Barigozzi et al., 2023b, He et al., 2023, 2022, Yu et al.,

2022). To assess the factor strengths for these potential weak factors, we incorporate r̂1 = r̂2 = 3 in our

analysis.

To estimate factor strengths, we first obtain estimators of Q̂1 and Q̂2 using the pre-averaging and

iterative projection method proposed by Chen and Lam (2024). This method is specifically designed to
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provide more accurate estimators of the factor loadings particularly in the presence of weak factors. Sub-

sequently, using the estimated Q̂1 and Q̂2, we calculate the estimated factor strengths using the method

outlined in Section 3. The heatmaps of the loading matrices A1 (for pick-up locations) and A2 (for drop-off

locations) are shown in Figure 1 and 2, respectively. The estimated factor strengths α̂k,j are summarized

in Table 5.

Pick-up Factors
α̂1,1 α̂1,2 α̂1,3

1.39 0.65 0.50

Drop-off Factors
α̂2,1 α̂2,2 α̂2,3

1.40 0.82 0.63

Table 5: Factor strengths estimators for NYC Taxi Traffic Data.

From Table 5, both α̂1,1 and α̂2,1 have values greater than 1, indicating that the strongest factor

for both the pick-up and drop-off loadings should be pervasive with C > 1. This observation is further

supported by Figure 1 and Figure 2, where both figures show that the first factor has a large number of

elements that are not close to zero. Specifically, both factors load most heavily on East Village, where a

significant number of arts, music venues, and restaurants are located. Moreover, the values of α̂1,1 and

α̂2,1 are very close because d1 = d2 and r1 = r2, and the identifiability condition (3.15) assigns similar

strengths for the strongest factors to both modes. This alignment is reasonable in practice.

Furthermore, it can be observed from Table 5 that the estimated strengths of the second and third

factors for both pick-up and drop-off loadings are much less than 1. This suggests that these factors are

likely to be weak (non-pervasive), a conclusion supported by Figures 1 and 2 as well. In these figures,

the second and third factors exhibit certain localized behavior, with many entries near zero. Specifically,

Factor 2 in the pick-up loadings loads heavily on Penn Station, a major transportation hub, while Factor

2 in the drop-off loadings loads heavily on the Lower East Side, known for its nightlife and entertainment

venues. Furthermore, both Factor 3 in the pick-up and drop-off loadings highlight Times Square/Theatre

District, another popular tourist destination and hub of nightlife activity. It is also important to note that

sparsity alone may not fully account for the presence of weak factors. For example, Factor 2 in the pick-up

loadings demonstrates greater sparsity compared to Factor 3, yet it exhibits stronger estimated strengths.

This suggests the potential weak influence of certain factors on some or all observed variables.

19



Legend

[−0.8,−0.4)

[−0.4,−0.3)

[−0.3,−0.2)

[−0.2,−0.1)

[−0.1,0)

[0,0.1)

[0.1,0.2)

[0.2,0.3)

[0.3,0.4)

[0.4,0.8)

Figure 1: Loadings on three pickup factors.
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Figure 2: Loadings on three dropoff factors.
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5 Appendix

Proof of Theorem 1. To start with, note that (2.2) can be written as

Ŝ = S11 + S12 + S21 + S22,

where

S11 : = Q̂TQD1/2

(
FTF

T

)
D1/2QTQ̂,

S12 : = Q̂TQD1/2

(
FTE

T

)
Q̂,

S21 : = Q̂T

(
ETF

T

)
D1/2QTQ̂,

S22 : = Q̂T

(
ETE

T

)
Q̂.

For each j = 1, · · · , r, we have α̂j =
log(d̂jj)
log(d) =

log(ŝjj)
log(d) . Thus, we need to bound the distance between

ŝjj and dαj . We start with S11 which contains the true signal part. Denote M := Q̂TQ, then we can further

decompose S11 as

S11 = S11,1 + S11,2 + S11,3 + S11,4,

where

S11,1 : = D1/2

(
FTF

T

)
D1/2,

S11,2 : = MD1/2

(
FTF

T

)
D1/2(M− Ir)

T,

S11,3 : = (M− Ir)D
1/2

(
FTF

T

)
D1/2MT,

S11,4 : = (M− Ir)D
1/2

(
FTF

T

)
D1/2(Ir −M)T.

By Assumption (V2), the diagonal entries of F
T
F

T are all bounded with constant magnitude O(1).

Thus, (S11,1)jj ≍ dαj , which incorporates the true factor strengths. The estimation errors between ŝjj and

dαj comes from the diagonal entries of all remaining terms S11,2,S11,3,S11,4,S12,S21,S22, and we bound

each of them accordingly.

Note that S11,2 + S11,3 is a symmetric matrix, so by the Schur’s majorization theorem, maxj |(S11,2 +
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S11,3)jj | ≤ |λ1(S11,2 + S11,3)| ≤
∥∥S11,2 + S11,3

∥∥, and

∥∥S11,2 + S11,3

∥∥ ≤ 2
∥∥M

∥∥∥∥D
∥∥
∥∥∥∥
FTF

T

∥∥∥∥
∥∥M− Ir

∥∥

� dα1

∥∥M− Ir
∥∥

= OP(d
αr ),

where the last step follows as
∥∥M− Ir

∥∥ =
∥∥Q̂T(Q− Q̂)

∥∥ ≤
∥∥Q̂−Q

∥∥ = OP(d
αr−α1). Thus, maxj |(S11,2 +

S11,3)jj | = OP(d
αr ). Next,

∥∥S11,4

∥∥ ≤
∥∥D
∥∥
∥∥∥∥
FTF

T

∥∥∥∥
∥∥M− Ir

∥∥2

� dα1

∥∥M− Ir
∥∥2

= OP(d
2αr−α1)

� OP(d
αr ),

and maxj |(S11,4)jj | ≤ |λ1(S11,4)| ≤
∥∥S11,4

∥∥ = OP(d
αr ) since S11,4 is also symmetric. Similar steps can be

applied to deal with S12 + S21 and S22, respectively, since they are both symmetric matrices. We have

∥∥S12 + S21

∥∥ ≤ 2
∥∥D1/2

∥∥
∥∥∥∥
FTE

T

∥∥∥∥

≤ 2
∥∥D1/2

∥∥
√∥∥∥∥

FTF

T

∥∥∥∥

√∥∥∥∥
ETE

T

∥∥∥∥

� OP

(
d

α1
2

(
1 +

√
d

T

))
,

and

∥∥S22

∥∥ ≤
∥∥∥∥
ETE

T

∥∥∥∥ = OP

(
1 +

d

T

)
.

Thus, maxj |(S12 + S21)jj | = OP

(
d

α1
2

(
1 +

√
d
T

))
and maxj |(S22)jj | = OP

(
1 + d

T

)
. Finally, we have

|α̂j − αj | =
∣∣∣∣
log(ŝjj)− log(dαj )

log(d)

∣∣∣∣

=

∣∣∣∣log
(
(S11,1)jj + (S11,2 + S11,3)jj + (S11,4)jj + (S12 + S21)jj + (S22)jj

dαj

)∣∣∣∣
1

log(d)
(5.20)

=

∣∣∣∣log
(
Cdαj [1 + (S11,2 + S11,3)jj/d

αj + (S11,4)jj/d
αj + (S12 + S21)jj/d

αj + (S22)jj/d
αj ]

dαj

)∣∣∣∣
1

log(d)

=
log(C) + log(Rs)

log(d)
,
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where C is a constant, and

Rs := 1 +
(S11,2 + S11,3)jj

dαj
+

(S11,4)jj
dαj

+
(S12 + S21)jj

dαj
+

(S22)jj
dαj

.

We have obtained the upper bound for each term in Rs, such that

∣∣∣∣
(S11,2 + S11,3)jj

dαj

∣∣∣∣ = OP

(
dαr−αj

)
� OP(1), (5.21)

∣∣∣∣
(S11,4)jj

dαj

∣∣∣∣ = OP

(
dαr−αj

)
� OP(1), (5.22)

∣∣∣∣
(S12 + S21)jj

dαj

∣∣∣∣ = OP

(
(d

α1
2

−αj )(1 + d1/2T− 1
2 )
)
� OP(1), (5.23)

∣∣∣∣
(S22)jj
dαj

∣∣∣∣ = OP

(
d−αj (1 + dT−1)

)
� OP(1), (5.24)

where the last two lines follow from Assumption (V5). Therefore, Rs = OP(1) and |α̂j−αj | = OP(1/log(d)).

This completes the proof of Theorem 1. �

Proof of Theorem 2. We use the same definitions of S11,1,S11,2,S11,3,S11,4,S12,S21,S22 as in the proof

of Theorem 1. Define fj = [f1j , · · · , fTj ]
T ∈ R

T . If C = 1, then

(S11,1)jj = dαj

(
E

[
fT

j fj

T

]
+OP

(√
V ar

[
fT

j fj

T

]))

= dαj + dαjOP



√

E
[
(fT

j fj)
2
]

T 2
− 1


 ,

since E[ftj ]
2 = 1 for any t ∈ [T ], j ∈ [r] by Assumption (V2). Next, we have

E
[
(fT

j fj)
2
]
= E

[
T∑

t=1

f2
tj

]2

=

T∑

t=1

T∑

s=1

∑

q≥0

a2qa
2
q−|t−s|E(z

4) +

T∑

t=1

T∑

s=1



∑

q≥0

p6=q−|t−s|∑

p≥0

a2qa
2
p


E(z2)2,

where z is a random variable with mean 0, variance 1, and uniformly bounded fourth moment. Let

Bf,T ∈ R
T×T to be a matrix such that (Bf,T )ts =

∑
q≥0 a

2
qa

2
q−|t−s|. Then

T∑

t=1

T∑

s=1

∑

q≥0

a2qa
2
q−|t−s| =

T∑

t=1

T∑

s=1

(Bf,T )ts ≤ T ‖Bf,T‖1 = T max
t

T∑

s=1

|(Bf,T )ts|

≤ 2T

T∑

v=0

|
∑

q≥0

a2qa
2
q+v| ≤ 2T



∑

q≥0

a2q




2

≤ 2T.

26



Thus,
∑T

t=1

∑T
s=1

∑
q≥0 a

2
qa

2
q−|t−s|E(z

4) = O(T ). Next, since E(z2) = 1,

T∑

t=1

T∑

s=1



∑

q≥0

p6=q−|t−s|∑

p≥0

a2qa
2
p


E(z2)2 ≤

T∑

t=1

T∑

s=1



∑

q≥0

∑

p≥0

a2qa
2
p


 ≤

T∑

t=1

T∑

s=1



∑

q≥0

a2q




2

≤ T 2.

Moreover, since E
[
(fT

j fj)
2
]
≥ T 2 by definition, we will also have

∑T
t=1

∑T
s=1

(∑
q≥0

∑p6=q−|t−s|
p≥0 a2qa

2
p

)
E(z2)2 ≥

T 2 −O(T ). Thus, we finally have that E
[
(fT

j fj)
2
]
= T 2 +O(T ), so

(S11,1)jj = dαj + dαjOP

(
T− 1

2

)
,

and we can define (S̃11,1)jj := (S11,1)jj − dαj = OP

(
dαjT− 1

2

)
. From (5.20), using the same notations, we

have

|α̂j − αj | =
∣∣∣∣log

(
(S11,1)jj + (S11,2 + S11,3)jj + (S11,4)jj + (S12 + S21)jj + (S22)jj

dαj

)∣∣∣∣
1

log(d)

=

∣∣∣∣log
(
dαj [1 + rs]

dαj

)∣∣∣∣
1

log(d)

=
log(1 + rs)

log(d)
,

where

rs := (S̃11,1)jj/d
αj + (S11,2 + S11,3)jj/d

αj + (S11,4)jj/d
αj + (S12 + S21)jj/d

αj + (S22)jj/d
αj . (5.25)

If rs is small such that rs = oP(1), then log(1 + rs) = rs + O(r2s ), so we can achieve a convergence rate

such that

|α̂j − αj | = O(rs/log(d)). (5.26)

Note that (S̃11,1)jj/d
αj = OP

(
T−1/2

)
= oP(1) as T → ∞. Also, from (5.21) to (5.24), if Assumption (V5’)

is satisfied, then for any j such that αj > αr,

∣∣∣∣
(S11,2 + S11,3)jj

dαj

∣∣∣∣ = OP

(
dαr−αj

)
� oP(1), (5.27)

∣∣∣∣
(S11,4)jj

dαj

∣∣∣∣ = OP

(
dαr−αj

)
� oP(1), (5.28)

∣∣∣∣
(S12 + S21)jj

dαj

∣∣∣∣ = OP

(
(d

α1
2

−αj )(1 + d1/2T− 1
2 )
)
� oP(1), (5.29)

∣∣∣∣
(S22)jj
dαj

∣∣∣∣ = OP

(
d−αj (1 + dT−1)

)
� oP(1), (5.30)
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so we can show (2.8) by substituting (5.27)(5.28)(5.29)(5.30) into (5.25) and (5.26). Furthermore, if

Assumption (V4’) is also satisfied, then for all j ∈ [r],

∣∣∣∣
(S11,2 + S11,3)jj

dαj

∣∣∣∣ = oP
(
dαr−αj

)
� oP(1), (5.31)

∣∣∣∣
(S11,4)jj

dαj

∣∣∣∣ = oP
(
dαr−αj

)
� oP(1), (5.32)

and we can show (2.9) by substituting (5.31), (5.32), (5.29), (5.30) into (5.25) and (5.26). This completes

the proof of Theorem 2. �

Before presenting the proof of Theorem 3, we first state the following Lemma.

Lemma 1. Denote g1 := tr(D1), g2 := tr(D2). From (3.16) and (3.17), denote ĝ1 :=
(

tr(Ŝ1+Ŝ2)
2 · r1d1

r2d2

)1/2

and ĝ2 :=
(

tr(Ŝ1+Ŝ2)
2 · r2d2

r1d1

)1/2
. Then, under Assumptions (M1) - (M5), if the identifiability condition

(3.15) holds, we have

tr(Ŝ1)

g1g2
= 1 + oP(1),

tr(Ŝ2)

g1g2
= 1 + oP(1),

and thus,

ĝ1
g1

= 1 + oP(1),
ĝ2
g2

= 1 + oP(1),

which means ĝ1 and ĝ2 are ratio-consistent estimates of g1 and g2, respectively.

Proof of Lemma 1 We prove the results for k = 1 WLOG, and the results for k = 2 will similarly

follows. Similar to the proof of Theorem 1, we start by writing (3.11) as

Ŝ1 = S
(1)
11 + S

(1)
12 + S

(1)
21 + S

(1)
22 ,

where

S
(1)
11 : = Q̂T

1Q1D
1/2
1

(
1

T

T∑

t=1

FtD2F
T

t

)
D

1/2
1 QT

1Q̂1,

S
(1)
12 : = Q̂T

1Q1D
1/2
1

(
1

T

T∑

t=1

FtD
1/2
2 QT

2E
T

t

)
Q̂1,

S
(1)
21 : = Q̂T

1

(
1

T

T∑

t=1

EtQ2D
1/2
2 FT

t

)
D

1/2
1 QT

1 Q̂1,

S
(1)
22 : = Q̂T

1

(
1

T

T∑

t=1

EtE
T

t

)
Q̂1.
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Let M1 := Q̂T

1Q1, we can further decompose S
(1)
11 as

S
(1)
11 = S

(1)
11,1 + S

(1)
11,2 + S

(1)
11,3 + S

(1)
11,4,

where

S
(1)
11,1 : = D

1/2
1

(
1

T

T∑

t=1

FtD2F
T

t

)
D

1/2
1 ,

S
(1)
11,2 : = M1D

1/2
1

(
1

T

T∑

t=1

FtD2F
T

t

)
D

1/2
1 (M1 − Ir1)

T,

S
(1)
11,3 : = (M1 − Ir1)D

1/2
1

(
1

T

T∑

t=1

FtD2F
T

t

)
D

1/2
1 MT

1 ,

S
(1)
11,4 : = (M1 − Ir1)D

1/2
1

(
1

T

T∑

t=1

FtD2F
T

t

)
D

1/2
1 (Ir1 −M1)

T.

Thus,

tr(Ŝ1) = tr(S
(1)
11,1) + tr(S

(1)
11,2) + tr(S

(1)
11,3) + tr(S

(1)
11,4) + tr(S

(1)
12 ) + tr(S

(1)
21 ) + tr(S

(1)
22 ). (5.33)

Next, we want to show that tr(Ŝ1)
tr(D1)tr(D2)

= 1+ oP(1). We start by tr(S
(1)
11,1). For each j = 1, · · · , r1, we

have

(S
(1)
11,1)jj = d

α1,j

1

1

T

T∑

t=1

(
r1∑

i=1

d
α2,i

2 f2
tji

)

= d
α1,j

1

1

T

T∑

t=1

E

(
r1∑

i=1

d
α2,i

2 f2
tji

)
+ d

α1,j

1 OP




√√√√V ar

[
1

T

T∑

t=1

(
r2∑

i=1

d
α2,i

2 f2
tji

)]
 . (5.34)

For the first term in (5.34),

d
α1,j

1

1

T

T∑

t=1

E

(
r1∑

i=1

d
α2,i

2 f2
tji

)
= Cd

α1,j

1 tr(D2),

where C is the constant such that ‖a1j‖2 = Cd
α1,j

1 . For the second term in (5.34), denote fji =
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[f1ji, · · · , fTji]
T ∈ R

T , then

V ar

[
1

T

T∑

t=1

(
r2∑

i=1

d
α2,i

2 f2
tji

)]
=

r2∑

i=1

d
α2,i

2 V ar

(∑T
t=1 f

2
tji

T

)

=

r2∑

i=1

d
α2,i

2 V ar

(∑T
t=1 f

T

jifji

T

)

=

r2∑

i=1

d
α2,i

2 OP(T
−1)

= tr(D2)OP(T
−1),

where the second last step follows from the proof of Theorem 2 by simply replacing fj in the proof of

Theorem 2 with fji here. Thus,

(S
(1)
11,1)jj = tr(D2)Cd

α1,j

1 + [tr(D2)]
1/2d

α1,j

1 OP(T
−1/2). (5.35)

Therefore,

tr(S
(1)
11,1) = tr(D1)tr(D2) + tr(D1)[tr(D2)]

1/2OP(T
−1/2),

and the dominating term in tr(S
(1)
11,1) is tr(D1)tr(D2). In other words,

tr(S
(1)
11,1)

tr(D1)tr(D2)
= 1 + oP(1).

Next, we show that tr(S
(1)
11,1) is dominating all remaining terms in (5.33), such that all remaining terms are

dominated by the rate tr(D1)tr(D2) ≍ d
α1,1

1 d
α2,1

2 . We have

tr(S
(1)
11,2) + tr(S

(1)
11,3) ≤ r1d

α1,1

1

∥∥∥∥∥
1

T

T∑
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FtD2F
T
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∥∥∥∥∥
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∥∥ � r1d
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1 d
α2,1

2 oP(1) ≺ d
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1 d
α2,1

2 ,

tr(S
(1)
11,4) ≤ r1d

α1,1

1
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1

T

T∑

t=1

FtD2F
T

t

∥∥∥∥∥
∥∥M1 − Ir1

∥∥2 � r1d
α1,1

1 d
α2,1

2 oP(1) ≺ d
α1,1

1 d
α2,1

2 ,

tr(S
(1)
12 ) + tr(S

(1)
21 ) ≤ 2r1

∥∥D1/2
1

∥∥
(

1

T

T∑

t=1

‖Ft‖
∥∥D1/2

2

∥∥ ‖Et‖
)

≤ r1OP

(
d

α1,1

2

1 d
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2

2

√
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d1
T

)
≺ d
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1 d
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2 ,
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(1)
22 ) ≤ r1
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1

T
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EtE
T

t

∥∥∥∥∥ = r1OP

(
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T

)
≺ d

α1,1

1 d
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2 ,

30



where the last two equality follows from Assumption (M5). Therefore, from (5.33), we have

tr(Ŝ1)

tr(D1)tr(D2)
= 1 + oP(1),

which proves the first part of Lemma 1 for k = 1. We can similarly prove the result for k = 2, then we will

also have

[
tr(Ŝ1) + tr(Ŝ1)

]
/2

tr(D1)tr(D2)
= 1 + oP(1).

Thus,

ĝ1
g1

=

√
tr(Ŝ1)+tr(Ŝ1)

2
r1d1

r2d2

g1
=

√
g1g2(1 + oP(1))

r1d1

r2d2

g1
=

√
g21(1 + oP(1))

g1
= 1 + oP(1),

where the second last step equality follows from the identifiability condition (3.15) that g1
r1d1

= g2
r2d2

. This

completes the proof of the second part of Lemma 1 for k = 1. Similar arguments can be applied to prove

the results for k = 2. Thus, we complete the proof of Lemma 1. �

Proof of Theorem 3. We prove the results for k = 1 WLOG, and the results for k = 2 will similarly

follows. Recall the definition of S
(1)
11,1,S

(1)
11,2,S

(1)
11,3,S

(1)
11,4,S

(1)
12 ,S

(1)
21 ,S

(1)
22 as from the proof of Lemma 1.

For each j = 1, · · · , r1, we have (S
(1)
11,1)jj contains the true signal part, and from (5.35), we have

(S
(1)
11,1)jj = d

α1,j

1

(
tr(D2)C + [tr(D2)]

1/2OP(T
−1/2)

)
,

and we can further define

(S̃
(1)
11,1)jj := (S

(1)
11,1)jj − tr(D2)d

α1,j

1 = (C − 1)tr(D2)d
α1,j

1 +OP

(
d
α1,j

1 T− 1
2 [tr(D2)]

1/2
)
.

Next, we bound the terms S
(1)
11,2,S

(1)
11,3,S

(1)
11,4,S

(1)
12 ,S

(1)
21 ,S

(1)
22 accordingly. Similar to the proof of Theorem

1, we have

∥∥S(1)
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(1)
11,3

∥∥ ≤ 2
∥∥M1
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∥∥∥∥∥
1
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FtD2F
T

t
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� d
α1,1

1 d
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2
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� oP(d
α1,r1

1 d
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2 ),

where the last step follows as
∥∥M1 − Ir1

∥∥ =
∥∥Q̂T

1 (Q1 − Q̂1)
∥∥ ≤

∥∥Q̂1 − Q1

∥∥ = oP(d
α1,r1

−α1,1

1 ). Thus,
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maxj |(S(1)
11,2 + S

(1)
11,3)jj | = oP(d

α1,r1

1 d
α2,1

2 ). Next,
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and thus maxj |(S(1)
11,4)jj | = oP(d

α1,r1

1 d
α2,1

2 ). Similarly,

∥∥S(1)
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1
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t
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.

and

∥∥S(1)
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(1)
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,

Thus, maxj |(S(1)
12 + S

(1)
21 )jj | = OP
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1 d
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2

2

[
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d1

T

]1/2
)
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22 )jj | = OP
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T

)
.

Now, we have α1,j = log((Ŝ1)jj/ĝ2)/log(d1). Thus,
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where
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. (5.36)
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For each term in (5.36), since g2 ≍ d
α2,1

2 , we can obtain

(S̃
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1
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where the last two formulas follow from Assumption (M5). Finally, if C 6= 1, then the constant C − 1

dominates r
(1)
s , and thus

|α̂1,j − α1,j | =
∣∣∣∣log

(
g2 [C + oP(1)]

ĝ2

)∣∣∣∣ log(d1)
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)
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)
.

If C = 1, then we have r
(1)
s = oP(1), thus log(1+ rs) = rs+O(r2s), and we have a faster convergence rate of

|α̂1,j − α1,j | = OP

(
r
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s
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)
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1
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 .

This completes the proof of Theorem 3. �
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