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Abstract

Protoplanetary disks are routinely described as finite mass reservoirs left over by
the gravitational collapse of the protostar, an assumption that strongly constrains
both disk evolution and planet formation models[1–3]. We propose a different
scenario where protoplanetary disks of pre-main sequence stars are assembled pri-
marily by Bondi-Hoyle accretion from the parent gas cloud[4]. We demonstrate
that Bondi-Hoyle accretion can supply not only the mass, but also the angular
momentum necessary to explain the observed size of protoplanetary disks[5–8],
and we predict the dependence of the disk specific angular momentum on the
stellar mass. Our results are based on an analytical derivation of the scaling of
the angular momentum in a turbulent flow, which we also confirm with a numer-
ical simulation of supersonic turbulence. This new scenario for disk formation
and evolution may alleviate a number of observational problems[9–11] as well as
compel major revisions of disk and planet formation models.

Keywords: Astrophysical disks, Exoplanets, Interstellar medium, Computational
astrophysics
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Theoretical models of protoplanetary disks (PDs) have so far been focused on the
myriad of internal disk processes[1–3, 12, 13], ignoring the disks’ environment and
specifically the possibility of mass infall from larger scales. This implicit assumption
that PDs are fully formed at the end of the protostellar collapse is unfounded. It com-
pounds observational problems, from the origin of planetary masses[9, 11, 14, 15] to the
disk lifetimes[10, 16, 17], from the disk angular momentum[18] to the misalignment of
disks[19–21] or exoplanetary orbits[22–27]. It is also incompatible with recent discov-
eries of streamers connected to young disks[28–33] and it contradicts theoretical and
computational evidence that Bondi-Hoyle (BH) accretion[34–36] in young pre-main
sequence (PMS) stars may control the mass budget of their disks[4, 37, 38]. In support
of the scenario where PD evolution is strongly affected by mass infall, we demonstrate
both analytically and numerically that BH accretion is relevant not only to the disk
masses, but also to their angular momenta, or sizes. This scenario leads to predictions
of the observed relations between disk properties and stellar mass[5, 7, 39–41] that
remain unexplained in the standard models of isolated disks.

We consider the specific angular momentum, j, of the gas in a sphere of radius
R with respect to the center of the sphere, in a turbulent medium with an rms gas
velocity σv,0 at a large driving scale R0, and evaluate the dependence of its standard
deviation, ⟨j2⟩1/2, on the scale R. There are two distinct contributions to j. The
first one is due to the offset of the center of mass from the center of the sphere,
because of random density fluctuations, so the velocity of the center of mass carries
a net angular momentum. The second one is the net rotation of the gas around the
center of the sphere, because of random velocity fluctuations. In highly supersonic
turbulence, the first contribution is dominant because of strong density fluctuations,
while the second term is negligible at small scales where velocity fluctuations are
≪ σv,0. In incompressible turbulence, the first contribution vanishes because of the
constant density, so only the local net rotation from velocity fluctuations contributes
to the angular momentum. Net rotation is the only contribution also in observational
estimates of j in molecular clouds (MCs), where density fluctuations are ignored and
the mean cloud velocity is subtracted away, so the contribution from the offset of the
center of mass is removed by design.

In Methods, we demonstrate that these two contributions lead to different scaling
laws. When only velocity fluctuations matter, as in incompressible turbulence or for
MC rotation, the scaling of ⟨j2⟩1/2 can be derived by dimensional analysis from the
velocity scaling. Adopting the velocity-size relation of MCs from Solomon et al. [42],
we find

⟨j2⟩1/2 = 8.3× 1022(R/1 pc)1.5cm2s−1. (1)

When the contribution of net rotation is negligible, as in supersonic turbulence, we
find a linear scaling, ⟨j2⟩1/2 = (β/6)1/2 σv,0 R, where β is the exponent of the den-
sity correlation function (β = 0.61 in our simulation), because the standard deviation
of the center of mass offset scales linearly with R. In Methods, this result is demon-
strated analytically, and also confirmed with our numerical simulation. Considering
the angular momentum with respect to the position and velocity of a star, the same
linear scaling applies, with the standard deviation of the relative velocity between the
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Fig. 1 Specific angular momentum versus size for individual MCs [43, 44] and cores [45, 46] shown
as red circles. A least-squares fit for a large compilation of surveys (partially overlapping with the
individual clouds shown here) is given by the red solid line [44]. The black dashed line is the predicted
MC relation from Equation 1, and the blue solid line the scaling of ⟨j2⟩1/2 as predicted by Equation 2,
using the value of σv,rel from the simulation. The black circles corresponds to the BH radius (also
adopting σv,rel from the simulation) and disk specific angular momentum of PMS stars with resolved
disk sizes [5–8].

star and the gas, σv,rel, instead of σv,0,

⟨j2⟩1/2 = (β/6)1/2 σv,rel R. (2)

Figure 1 shows the linear scaling of ⟨j2⟩1/2 from Equation 2 with the value of
σv,rel taken from the simulation (blue solid line), as well as the steeper scaling from
Equation 1 (black dashed line). Values of j derived in MCs and dense cores [43–46],
shown by red circles in Figure 1 are clearly consistent with the predicted scaling, as is
a least-squares fit of observational data including some of the objects shown here and
others, j = 8.7 × 1022(R/1 pc)1.47cm2s−1 [44], shown by the red solid line. At scales
of order 102− 103 AU, the steeper scaling law of MCs significantly underestimates the
general scaling of supersonic turbulence (blue line). Figure 1 also shows the values of
j for disks of PMS stars (black circles), derived from the observed disk radius and
the stellar mass, assuming a simple model of a Keplerian disk (Method, Section 1.4).
Rather than the disk radius, Rd, the x-axis for the disks is the value of the BH radius,
because that is the scale where the angular momentum of the turbulence is captured,
as explained below. The predicted linear scaling of j is such that, at small scales, j is
large enough to account for the observed sizes of PDs.

We now assume that the specific angular momentum of the gas captured by a PMS
star moving through the parent cloud is that of the turbulence inertial range at a scale
equal to the Bondi-Hoyle radius of the star. We use the following expression for the
Bondi-Hoyle radius:

RBH =
2GMstar

c2s + v2rel
, (3)

which reduces to the Hoyle-Lyttleton radius, RHL = 2GMstar/v
2
rel, in the pres-

sureless case where cs = 0 [34], and to the Bondi radius for spherical accretion,
RB = GMstar/c

2
s , in the limit of vrel = cs [36]. The significance of the Bondi-Hoyle
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radius is that gas streaming at a speed vrel relative to the star, within a minimum
distance ≤ RBH, is gravitationally captured by the star (vrel is essentially the star’s
escape speed at the distance RBH). Using c2s + v2rel = σ2

v,rel in Equation 3, and setting
R = RBH in equation 2, the characteristic value of the specific angular momentum of
the gas captured by the star is

jBH = 4.3× 1020 cm2 s−1 (σv,rel/2 km s−1)−1 (Mstar/1M⊙), (4)

where we have used the numerically derived value of β = 0.61 in equation 2 (Methods,
Section 1.1), and have adopted a normalization of σv,rel comparable to that found in
the simulation. Based on a simple model of a Keplerian disk with angular momentum
jd (Methods, Section 1.4), and setting jd = jBH, the characteristic disk radius is

Rd = 3.6× 102AU(σv,rel/2 km s−1)−2 (Mstar/1M⊙), (5)

assuming there is no partial cancellation or transport of the angular momentum of
the accreting gas, so the actual disk may be somewhat smaller. Interestingly, Rd has
the same dependence on σv,rel and Mstar as RBH, resulting in a constant ratio of the
two quantities,

RBH/Rd = 4.1. (6)

Equations 4 and 5 depend on the value of σv,rel. In Methods, we derive the time
dependence of σv,rel from the velocity-size relation of the interstellar gas. We show
that σv,rel increases with time because the velocity of a star gradually decouples from
that of the gas due to the temporal decorrelation of the turbulence. The derived
time dependence leads to the following expressions for the total mass gained by BH
accretion to the disk from a time t onward,

Md = 3.3× 10−2M⊙ (t/1Myr)−4 (Mstar/1M⊙)
2, (7)

the mass-averaged j associated with that mass,

jBH = 9.6× 1020cm2 s−1 (t/1Myr)−1 (Mstar/1M⊙), (8)

and the corresponding disk radius,

Rd = 1.8× 103AU(t/1Myr)−2 (Mstar/1M⊙). (9)

Equations 8 and 9 should be considered as upper limits, because the angular momen-
tum of the gas captured by an individual star in its trajectory is generally not constant
over a ∼ 1Myr timescale, so there must be some partial cancellation in the average of
the angular momentum vector.

These relations should not be used backward in time for t < 1Myr, as explained
in Methods. In addition, they should not be interpreted as a strict prediction of the
time evolution of the mass, specific angular momentum, and radius of PDs, because we
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Fig. 2 Specific gas angular momentum within the BH radius, jBH, versus stellar mass, Mstar, mea-
sured in 7 snapshots of the simulation, for all sink particles identified as accreting PMS stars (blue
dots), with least-squares fit shown by the blue solid line. The two dashed lines correspond to jBH

predicted in Equation 8, for t = 1Myr (upper line) and 4Myr (lower line). The dashed-dotted lines
correspond to the disk specific angular momentum, jd, for given disk radii, as in Equation 29. The
red empty circles give the observational values of Mstar and jd for PMS stars with resolved disk sizes
[5–8], with the least-squares fit shown by the red solid line.

do not specify the status of the preexisting disk at time t, nor the processes involved
in mixing the infalling gas with the disk. For example, lower j gas infalling at later
times may help support the disk accretion onto the central star, rather then cause
a reduction in the disk size. The purpose of these relations is instead to specifically
show that, starting at ∼ 1Myr, in the middle of their Class II phase, PMS stars can
still accrete a mass that is in excess of the observed disk masses and carries a large
enough angular momentum to explain the observed disk radii.

For example, disk masses in Lupus, with an age of ∼ 2Myr, scale with stellar
mass as Md = 7.5 × 10−3 M⊙(Mstar/1M⊙)

1.7, while in Upper Scorpius, with an age
of ∼ 4Myr, Md = 1.9× 10−3 M⊙(Mstar/1M⊙)

2.2 [41], assuming a gas-to-dust ratio of
100. In Equation 7, the predicted mass captured between 1 and 2Myr is approximately
four times larger than the disk masses in Lupus. Between 2 and 4Myr it is 32 times
smaller, but still relevant for the disk mass budget, only a factor of two smaller than
the disk masses in the Upper Scorpius region. In addition, BH infall provides a nat-
ural explanation for the steep dependence of Md on Mstar, whose origin is otherwise
unexplained.

The dependence of jBH on Mstar predicted by Equation 8 is shown in Figure 2 for
t = 1Myr (upper dashed line) and 4Myr (lower dashed line). The figure also shows
the specific angular momentum of observed PDs, derived from the observed values of
the disk radii and stellar masses of PMS stars with resolved disk sizes [5–8], the same
observational sample as in Figure 1. The predicted values of jBH at times between 1
and 4Myr are large enough to account for the observed disk values. Moreover, the
observations confirm the prediction that the disk specific angular momentum should
increase with the stellar mass, though the derived slope of 0.71± 0.04 is a bit smaller
than the predicted one of 1.0. However, the fraction of unresolved disks with sizes
smaller than ∼ 20AU (∼ 70% of the disks in recent ALMA surveys [47]) is skewed
towards lower stellar masses, so the real mass dependence is indeed expected to be
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Fig. 3 Example of a PMS bound triple system (bright white dots) from the simulation. As the stars
orbit around each other, their long BH tails twist around each other. The Keplerian disks of the stars
are not visible because they are too small to be resolved in the simulation.

somewhat steeper. Higher resolution surveys, as well as more data for stars above
2M⊙ [48] are needed for more accurate comparisons.

We test the theoretical prediction for jBH with our simulation, by measuring the
magnitude of the specific angular momentum in spheres around the PMS stars (Meth-
ods, Section 1.5), which is shown as a function of the stellar mass in Figure 2 (blue
dots). The least-squares fit gives jBH ∝ M0.86±0.03

star (blue solid line) almost identical to
the theoretical prediction. The normalization is a bit lower than in Equation 8, con-
sidering the median age of 0.92Myr of the PMS stars in the simulation, but this is
expected because of the slightly larger gas velocity normalization in the simulation
relative to the velocity-size relation adopted here [42]. The slope is also a bit smaller
than the predicted linear relation, likely because the increase of the disk size with stel-
lar mass means that the settling of the infalling gas towards a disk, causing partial j
cancellation, is comparatively better resolved for the more massive stars.

Besides its significance in terms of mass and angular momentum, BH infall on PMS
stars can strongly affect the evolution of PDs as a consequence of its highly asymmetric
nature. Because σv,rel ≫ cs, the gravitationally captured or deflected head-wind gas
that does not collide directly with the disk (RBH > Rd) shocks onto a wake trailing
the star, creating dense filaments (see example in Figure 3) whose interior parts closer
to the star fall back onto the disk. Because of the rather high density of the infalling
gas, its effect can be strongly focused on a limited disk region causing appreciable
perturbations. On the other hand, because of their low column density, such filaments
may escape detection. In an upcoming work, we demonstrate that dedicated ALMA
and JWST observations can successfully detect them.

A general scenario of late-time mass infall onto PDs is consistent with recent dis-
coveries of large-scale flows feeding young disks [e.g. 28–33], the detection of reflection
nebulae around Class II stars [49], and previous numerical studies following the early
evolution of disks in realistic large-scale environments [e.g. 50–53]. If further confirmed
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by future observations, this new scenario will compel major revisions of current disk
evolution and planet formation models.

1 Methods

1.1 Angular-Momentum Scaling in a Turbulent Flow

We derive the scaling of the angular momentum within a spherical region of radius,
R, in a compressible turbulent flow. Without loss of generality, we assume that the
region is centered at the origin and, for mathematical convenience, apply a Gaussian
filter of size R to evaluate the mass,

M =

∫
ρ exp

(
− r2

R2

)
d3r, (10)

and angular momentum,

J =

∫
(ρr × v) exp

(
− r2

R2

)
d3r, (11)

where ρ and v are density and velocity at r. The specific angular momentum is defined
as j = J/M , and we aim to calculate the rms of j as a function of R. We will assume
⟨j2⟩ = ⟨J2⟩/⟨M2⟩, which holds at high accuracy, as verified by simulation data.

From Equation (11), the variance of J is calculated as,

⟨J2⟩ =
∫

d3r1

∫
d3r2 [r1ir2i⟨ρ1ρ2v1jv2j⟩ − r1ir2j⟨ρ1ρ2v1iv2j⟩] exp

(
−r21 + r22

R2

)
,

(12)

where the subscripts ”1” and ”2” indicate quantities at two points r1 and r2, respec-
tively. Under the assumption of statistical homogeneity and isotropy, it is straightfor-
ward to show that ⟨ρ1ρ2v1iv2j⟩ = Bρ,v

ij (s)− 1
2BρS

dw
ij (s), where the density correlation

function Bρ(s) ≡ ⟨ρ1ρ2⟩, the mixed correlation function Bρ,v
ij (s) ≡ ⟨ρ1ρ2v1iv1j⟩ and

the density-weighted structure function Sdw
ij (s) ≡ ⟨ρ1ρ2(v2i − v1i)(v2j − v1j)⟩/Bρ,

depend on the separation, s = r2−r1. If the density and velocity fields are assumed to
be independent, we have Bρ,v

ij = ⟨ρ1ρ2⟩⟨v1iv1j⟩ = Bρv
′2δij with v′ the 1-dimensional

rms velocity, suggesting that the longitudinal and transverse correlation functions
Bρ,v

ll = Bρ,v
nn = Bρv

′2 (see Figure 4 and discussions below). The above equation can
then be rewritten as,

⟨J2⟩ =2v′2
∫

d3r1

∫
d3r2Bρ(s)r1kr2k exp

(
−r21 + r22

R2

)
+

1

2

∫
d3r1

∫
d3r2Bρ(s)

[
r1ir2jS

dw
ij (s)− r1kr2kS

dw(s)
]
exp

(
−r21 + r22

R2

)
. (13)
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Fig. 4 Left: Longitudinal (red squares) and transverse (blue circles) components of the mixed
correlation function Bρ,v

ij = ⟨ρ1ρ2v1iv2j⟩. Under the assumption of independence between ρ and v,

both are expected to equal v′2Bρ (black circles). The density correlation function, Bρ, exhibits a
power-law scaling with an exponent of 0.61 in the inertial range. Right: Longitudinal (circles) and
transverse (squares) components the velocity structure tensor with (red) and without (blue) density
weighting. The structure functions show similar scalings, but the amplitudes of the density-weighted
ones are slightly smaller.

With isotropy, the structure function Sdw
ij (s) = Sdw

nn (s)δij + [Sdw
ll (s)− Sdw

nn (s)]sisj/s
2,

where Sdw
ll and Sdw

nn are the longitudinal and the transverse components. Also with the
assumption of independence between the density and velocity fields, we would have
Sdw
ij (s) = Sij(s).
The two contributions in equation (13) can be intuitively understood as follows.

The first term which arises mainly due to density fluctuations represents the offset of
the mass center from the geometric center of sphere (see below), while the second term,
which depends on the velocity structure function, originates from the ”imbalance”
of the turbulent velocity on the opposite sides of the geometric center, leading to a
”residual” angular momentum. For convenience, we denote the two terms as ⟨J2⟩1
and ⟨J2⟩2, respectively. As discussed below, the first term provides the dominant
contribution in the highly supersonic regime. It can also be shown that for the weakly
compressible or incompressible regime, it is the second term that dominates.

By changing integral variables, s = r2 − r1 and t = r2 + r1, the two terms in
Equation (13) can be simplified by carrying out the integration with respect to d3t,
yielding,

⟨J2⟩1 =
(2π)

3
2R3v′2

16

∫
Bρ(s)

(
3R2 − s2

)
exp

(
− s2

2R2

)
d3s, (14)

and,

⟨J2⟩2 =
(2π)

3
2R3

32

∫
Bρ(s)

[
s2Sdw

nn (s)−R2Sdw(s)
]
exp

(
− s2

2R2

)
d3s. (15)

A similar calculation for the variance of M leads to,

⟨M2⟩ = (2π)
3
2R3

8

∫
Bρ(s) exp

(
− s2

2R2

)
d3s. (16)
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For the application to interstellar turbulence, we consider highly supersonic turbu-
lence. We first verify the assumptions in our formulation using data from a simulation
of supersonic MHD turbulence with a sonic Mach number of 10 (see Section 1.3). The
left panel of Fig. 4 confirms that the density-velocity mixed correlation functions are
approximately equal to the density correlation function times v′2, Bρ,v

ll (s) ≈ Bρ,v
nn (s) ≈

Bρ(s)v
′2, as expected from the statistical independence of density and velocity fields.

The right panel shows that the density-weighted velocity structure functions exhibit
similar behaviors as the velocity structure functions, Sdw

ij (s) ≈ Sij(s), except for a
slightly larger normalization of the transversal structure function, Snn (filled blue
squares), and a slightly steeper slope of the density-weighted transversal structure
function, Sdw

nn (empty red squares). In addition, the left panel shows that the density
correlation function (black circles) can be approximated by a power-law function. A
least-squares fit for the density correlation function, Bρ(s) ∝ s−β , gives β = 0.61,
which is the value we adopt in our applications. Assuming that Bρ(s) = cs−β , we may
integrate Equation (16) to obtain,

⟨M2⟩ = 21−
β
2 π

5
2Γ

(
3− β

2

)
cR6−β , (17)

where Γ is the Gamma function. Using integration by parts for the integral in equation
(14), we find that,

⟨J2⟩1
⟨M2⟩

=
1

2
βv′2R2, (18)

which suggests that the offset of the mass center from the geometric center due to
strong density fluctuations contributes an rms angular momentum ∝ R in highly
supersonic turbulence.

To evaluate ⟨J2⟩2, we assume inertial-range scaling for the density-weighted struc-
ture functions, Sdw

ll (s) = cls
γ and Sdw

nn (s) = cns
γ , where the parameter cl, cn and γ

may be constrained by numerical simulations. Inserting into Eq. (15), we find that,

⟨J2⟩2 = 2
γ−β

2 −1π
5
2Γ

(
3 + γ − β

2

)
c[(1 + γ − β)cn − cl]R

8+γ−β , (19)

so that,

⟨J2⟩2
⟨M2⟩

= 2
γ
2 −2

Γ
(

3+γ−β
2

)
Γ
(

3−β
2

) [(1 + γ − β)cn − cl]R
2+γ . (20)

Clearly, this contribution depends on velocity scaling, which is expected as it originates
from velocity fluctuations within the sphere. The R2+γ scaling for ⟨j2⟩2 could be
derived from a simple dimensional analysis.

In the highly supersonic regime, where β ∼ 1 (β = 0.61 in our simulation), it is
straightforward to see that that ⟨J2⟩1 dominates over ⟨J2⟩2 at inertial-range scales
R much smaller than the integral scale, L, of the flow. This is because at R ≪ L,
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Fig. 5 Scaling of the variance of the specific angular momentum, ⟨j2⟩1/2, as a function of the size
R in units of half the box size, L. The blue square symbols and the connected blue lines are the
results averaged over four snapshots of the simulation. The red dashed line is the linear prediction
from Equation 21.

Sdw
ll (R) = clR

γ ≪ v′2 and Sdw
nn (R) = cnR

γ ≪ v′2. Only when R approaches L, could
the two contributions become comparable. Since ⟨J2⟩1 ≫ ⟨J2⟩2 for small scales, we
have,

⟨j2⟩ = 1

2
βv′2R2, (21)

which is found to be in excellent agreement with results from our simulation of highly
supersonic turbulence (see Section 1.3). Figure 5 shows the scaling of ⟨j2⟩1/2 from both
the simulation (blue squares) and the analytical result (red dashed line). Both the
slope and the normalization are nearly identical in the two cases, for distances within
the limited inertial range of the turbulence in the simulation. Small deviations appear
only at large scale, affected by the driving force, and small scale, affected by numerical
dissipation.

We offer a more intuitive derivation of the linear scaling of ⟨j2⟩1/2 in highly super-
sonic turbulence, Equation 21, where the role of the mass center offset is more easily
appreciated. We consider R much smaller than the integral scale of turbulence, so that
one may neglect fluctuations of v and assume it is constant within the sphere, v = vc.
Setting v = vc in Equation (11) for J yields

J = Mrc × vc, (22)

where M is the total mass M (Equation 10) and rc is the mass center defined as

rc = 1
M

∫
ρr exp

(
− r2

R2

)
d3r. Due to strong density fluctuations in the highly super-

sonic turbulence, rc may deviate significantly from the geometric center of the sphere,
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leading to considerable angular momentum, as implied by equation (22). The variance
of rc may be estimated as,

⟨r2c ⟩ =
1

⟨M2⟩

∫
d3r1

∫
d3r2Bρ(r2 − r1)⟩(r1 · r2) exp

(
−r21 + r22

R2

)
. (23)

Using the power-law scaling for the density correlation function Bρ ∝ s−β , we find
that ⟨r2c ⟩ = 1

4βR
2, suggesting that the mass center offset is linear with R.

Further assuming the independence between the velocity and gas density (as in
Section 1.1) and the randomness of the velocity direction and considering that the
rms of vc is essentially the rms turbulent velocity, Equation (22) would produce the
same result, Equation (21), derived earlier for the variance of the specific angular
momentum. If we adopt the three-dimensional rms turbulent gas velocity σv,0 rather
than the 1D rms v′, we have ⟨j2⟩ = 1

6βσv,0R
2. The linear scaling of ⟨j2⟩1/2 with R

originates from the linear scaling of the offset distance rc with R, while the contribution
from velocity fluctuations inside the sphere is negligible.

1.2 Angular Momentum Versus Size for Molecular Clouds

In the observational studies, the specific angular momentum of MCs is computed as
j = R2Ω, where Ω is the cloud’s overall angular speed, derived from the gradient of
the mean radial velocity of emission line spectra at different cloud positions. Here we
show that this definition of j, is equivalent to our definition in Equation 11, if the
gas density is assumed to be constant, hence the observed scaling of j in MCs can
be predicted from the ⟨J2⟩2 term in our formalism in Section 1.1, imposing constant
density.

In our formulation, the overall angular velocity of a cloud may be estimated as
(see Pan et al. 2016),

Ω =
1

2V

∫
ω exp

(
− r2

R2

)
d3r, (24)

where V is the effective volume V = (2π)3/2R3 and ω is the vorticity of the turbulent
velocity in the cloud. Using the Gauss theorem, it follows from the above equation
that,

j = R2Ω =
1

V

∫
(r × v) exp

(
− r2

R2

)
d3r, (25)

which is equivalent to Equation 11 assuming constant density. The observational
method is thus equivalent to setting the density to a constant value in our formalism
in Section 1.1. In that case, the density correlation function is Bρ ≃ ρ20, where ρ0 is the
constant density of the flow, hence β = 0. As a result, the first of the two contributions
to the variance of the angular momentum in this case is ⟨J2⟩1 = 0. In addition, the sec-
ond term, ⟨J2⟩2, is simplified by setting β = 0 in Equation 20. To evaluate the velocity
structure functions, we make use of Larson’s velocity-size relation [54], ∆v(ℓ) = Cℓα,
where α ≃ 0.5 [42] and C is a constant, and assume equipartition between solenoidal
and compressive modes in the power spectrum, so that Sll(s) = Snn(s) = 1

3C
2s2α.
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Thus, Equation 20 is further simplified by setting cl = cn = C2/3, and we obtain:

⟨j2⟩ = 2α

3
π− 1

2αC2Γ

(
3

2
+ α

)
R2+2α, (26)

If α = 0.5, we have ⟨j2⟩1/2 = (18π)−
1
4CR

3
2 . Using the relation from Solomon et al. [42],

∆v(ℓ) = 0.72(ℓ/1 pc )0.5 km s−1 (where ∆v(ℓ) is an estimate of the three-dimensional
velocity dispersion), we find that

⟨j2⟩1/2 = 8.3× 1022(R/1pc)3/2cm2s−1. (27)

As shown in Figure 1 in the Main text, this predicted scaling is almost identical
to the relation between specific angular momentum and size of MCs derived from the
observational data. The scaling of the angular momentum of MCs and dense cores is
not directly applicable to our problem of estimating the angular momentum of the
gas captured by a PMS star along its trajectory. If applied to our problem, it would
significantly underestimate the specific angular momentum of the gas captured by the
star, as shown by Figure 1.

1.3 Numerical Simulation and j Scaling

In order to test the analytical results, we use a numerical simulation of randomly-
driven, supersonic, magneto-hydrodynamic (MHD) turbulence, designed to simulate
the star-formation process in a turbulent interstellar cloud. The simulation is the
same used in Kuffmeier et al. [55], also equivalent to the high reference simulation
in Haugbølle et al. [56], except that the numerical resolution (the root grid) is larger
by a factor of two. The reader is referred to Haugbølle et al. [56] for details of the
numerical methods, which is only briefly summarized here. The simulation solves the
MHD equations with the adaptive-mesh-refinement (AMR) code Ramses [57], with a
root grid of 5123 cells and six levels of refinement, corresponding to a smallest cell of
size ∆x = 25AU for the assumed box size of 4 pc. The total mass, mean density, and
mean magnetic field strength are Mbox = 3000M⊙, n̄H = 1897 cm−3, and B̄ = 7.2µG,
appropriate for a typical star-forming cloud at that scale. The equation of state is
assumed to be isothermal, and the boundary conditions are periodic. The turbulence is
first driven, without self-gravity, for ∼ 20 dynamical times, with a random solenoidal
acceleration giving an rms sonic Mach number of approximately 10. The simulation
is then continued for ∼ 2Myr with self-gravity and sink particles to capture the
formation of individual stars, yielding 317 stars with a mass distribution consistent
with the observed stellar IMF [58, 59].

To test Equation 21, we generate density and velocity snapshots in a uniform grid of
5123 cells (using only the root grid of the AMR simulation), and compute the angular
momentum, J , and the mass,M , within spherical volumes of radius R with a Gaussian
cutoff, consistent with Equations 11 and 10. We then compute the specific angular
momentum, j = J/M , for each sphere. We use 163 spheres with centers uniformly
distributed in the computational domain, and collect data from six snapshots, so
the variance of j is computed from an average over 16,384 spherical volumes. The
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procedure is repeated for 7 values of the cutoff radius, R = 4, 8, 16, 32, 64, 128,
256×∆x. The result is shown by the filled blue squares in Figure 5. The least-squares
fit (solid black line in Figure 5) has both slope and normalization indistinguishable
from those predicted by Equation 21 (red dashed line in Figure 5).

The same 6 snapshots were also used to test the key assumption of the derivation of
Equation 21, that is the independence of density and velocity fields, and to measure the
scaling exponent (β = 0.61) of the density correlation function, Bρ(s) (see Section 1.1).

1.4 Disk Model

We consider a very simple disk model, for the sole purpose of relating the estimated
jBH to a characteristic disk size. The disk is assumed to have a power-law column
density profile with exponent n and to be truncated at an outer radius Rd. For n < 2,
the inner radius, Ri, is irrelevant for the normalization to the total mass, as long as
Ri ≪ Rd, and could also be zero, and we can write the radial dependence of the
column density as

Σd(R) =
(2− n)Md

2πR2
d

(
R

Rd

)−n

(28)

where Md is the total disk mass. Assuming the disk has a Keplerian velocity profile,
its mass-averaged specific angular momentum is given by

jd =
4− 2n

5− 2n
G1/2M

1/2
starR

1/2
d

= 2.25× 1019cm2s−1

(
Mstar

1M⊙

)1/2 (
Rd

1AU

)1/2

(29)

where the second equality assumes n = 3/2, a typical value in disk models, such as
for the minimum-mass solar nebula [60].

1.5 Angular Momentum of Bondi-Hoyle Infall in the
Simulation

The simulation can be used also to measure jBH relative to the position and velocity
of PMS stars, and to compare the result with the prediction of Equation 4. Although
new stars are continuously formed in the simulation, towards the end of the run a
significant fraction of them have ages in the approximate range 0.5-2.0Myr, old enough
to be representative of Class II PMS stars. However, because the time it takes to
assemble a star may vary from star to star, and can be relatively long (∼ 1Myr)
for massive stars [61, 62], we select PMS stars based on the local gas density, rather
than the stellar age, which better reflects the observational SED classification as well.
For that purpose, we use seven snapshots at regular time intervals covering the last
0.75Myr of the simulation, yielding a total of 1,629 stellar positions.

Averaging over all seven snapshots, we find that the gas density sampled in spheres
of radius ∼ 400AU (of the order of the size of the largest observed disks) centered
around the stars, Pst(n), has a clear bimodal distribution, shown by the shaded blue
histogram in the left panel of Figure 6. The red unshaded histogram shows the overall
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Fig. 6 Left: Probability distribution of density sampled in spheres of radius∼ 403 au centered around
the stars, Pst(nH) (blue shaded histogram), and sampled uniformly in the whole volume at the same
resolution, PV(nH) (red unshaded histogram), using all seven time snapshots of the simulation. The
black points give the infall rate on the stars from the simulation, averaged over a period of 5,000 yr,
with values shown in the right y axis and a linear least-squares fit shown by the long dashed line. The
vertical dashed line corresponds to the critical density, nH,cr = 5× 104 cm−3, used to select the stars
representative of Class II objects in the BH phase. Right: The predicted BH infall rate versus the
infall rate of the stars in the simulation (as in the left plot). The red symbols are the Class II stars
based on the critical density criterion, and the red line is the least-squares fit to the red symbols. The
black line is the one-to-one relation.

gas density distribution sampled uniformly in the whole volume at the same resolution,
PV(n). The lower-density peak of Pst(n) follows approximately the overall distribution,
though shifted to slightly larger density and with a shape a bit skewed to the right,
while the higher-density peak has a maximum at a density larger by four orders of
magnitude. The stars at such high local density are still embedded in their native dense
gas and are generally increasing their mass at a high rate. The black circles in the left
panel of Figure 6 show the gas infall rate on the sink particles in the simulation (with
values shown on the right y axis). It strongly correlates with the local gas density, and
the infall rates of stars below ∼ 105 cm−3 are of the same order of magnitude as the
observed accretion rates of young PMS stars.

We have verified through visualizations that most of these stars at lower densities
are accompanied by gas structures with morphology and kinematics consistent with
BH trails, and their predicted BH infall rate is also of the order of the measured infall
rate in the simulation, as shown in the right panel of Figure 6. We have also verified
that, on average, the local density is inversely correlated with the stellar age. The stars
at low density have clearly decoupled from their native dense cores and tend to sample
the random density and velocity fields of the parent cloud at larger scales. Based on
these results, we choose a fixed critical density value, nH,cr, to select the sink particles
representative of Class II PMS stars in the BH phase, nH,cr = 5 × 104 cm−3, shown
by the vertical dashed line in Figure 6. This selection yields 961 PMS stars, out of the
total 1,629 stars found in the seven snapshots.

We measure the mean mass, gas velocity and angular momentum within spheres
of different radii centered on the position of each star. The density and velocity fields
of the whole 4 pc box are first extracted into a uniform grid of 1,0243 cells, so the
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cell size is dx = 0.004 pc or 780AU. The spheres have radii of 2, 4, 8, 16, 32, 64, 128,
and 256 dx, with the two smallest ones and the largest one expected to be outside of
the inertial range of the simulation. Gas mass, and velocity and angular momentum
components are averaged within each sphere with a Gaussian cutoff, as in Equation 11.

We estimate the angular momentum of the infalling gas by computing j within a
sphere of radius equal to RBH, so we need to compute RBH as defined in Equation 3.
The mass and velocity of each star are known, as well as the isothermal sound speed
in the simulation, cs = 0.18× 105 cm s−1. To compute vrel, the difference between the
star velocity and the gas velocity, we use the gas mean velocity measured within a
sphere centered on the star. Because the flow is turbulent, the mean gas velocity may
vary when measured at different scales, so we should compute it at a scale larger than
RBH, but not too large. We settle on a radius of 8 dx=6,250AU, which is significantly
larger than the largest values of RBH and the typical PD sizes. For the sink particles,
we find values of RBH in the approximate range 1-3,000AU. We cannot measure j
directly from the simulation at such scales, because they are well within the numerical
dissipation range. Instead, we measure it within spheres of radius of 8 dx=6,250AU,
as for the estimate of vrel, because this is the smallest size we can consider without
being significantly affected by numerical dissipation. We then extrapolate the value
of j at R = RBH, using the linear j scaling established earlier both analytically and
numerically (see Figure 5).

The results are shown in Figure 2 as a function of the stellar mass for all the
selected PMS stars in the simulation (blue dots). The least-squares fit has a slope of
0.86 (solid blue line), a bit shallower than the one predicted in Equation 8. Figure 2
shows a significant scatter at any given value of Mstar, as expected from Equation 4
due to the dependence on σv,rel: for an individual star at a given time, jBH depends on
the local value of vrel, which is a random variable. The scatter and the average value
of j in PDs are expected to be somewhat smaller than those in individual BH spheres
computed here, because of partial cancellation in the vector sums of J from different
BH spheres. Figure 2 shows that observed disks have indeed a slightly reduced mean
angular momentum and a smaller scatter than our individual BH spheres, as expected.

1.6 Time Dependence of PMS Disk Formation by Bondi-Hoyle
Infall

Whether or not BH infall is so dominant to completely restructure PDs during the
Class II phase, that is on a timescale of ∼ 2Myr, depends on the stellar mass and on
the time evolution of the relative velocity between the stars and the turbulent gas, vrel.
The BH infall rate, defined as a mass flux through a surface of area πR2

BH with gas
velocity v = (c2s + v2rel)

1/2, gas number density nH, and RBH given by Equation 3 is:

ṀBH =
4πmH nH G2M2

star

(c2s + v2rel)
3/2

. (30)

When the stars are fully decoupled from the parent gas, their velocities are not corre-
lated to the gas velocity anymore, and we can assume that the rms velocities satisfy
the relation σ2

v,rel = σ2
v,0 + σ2

v,s, where σv,0 is the gas rms velocity at some large scale,
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and σv,s is the rms velocity of the stars. However, when a star is formed, its velocity
is comparable to that of the nearby gas (except for stars accelerated by dynamical
interactions), and then gradually decouples from the gas velocity because of the tem-
poral decorrelation of the turbulence. A turbulent eddy of size R, with an rms velocity
σv(R), has a turnover time τ(R) ∼ R/σv(R). After that time, the star velocity is
decorrelated from the gas velocity at the scale R, but remains coupled to the turbu-
lent velocity at larger scales. Thus, the relevant σv(R) for BH infall increases with
time, as the star velocity decouples from the gas velocity at increasingly larger scales.
The star is also accelerated in the local gravitational potential. Neglecting stars that
achieve a significant acceleration by close encounters with other stars (like disrupted
binaries), we assume that stars achieve an rms velocity of order the virial velocity at
scale R, in approximately a dynamical time. According to the two Larson’s relations,
σv(R) is also of the order of the virial velocity at the scale R, so we adopt a simple
approximation where σv,s = σv, meaning that both rms velocities grow in time at the
same rate, so σv,rel =

√
2σv(R(t)), where R(t) = R(τ), that is we identify the time

with the eddy turnover time. Using Larson’s velocity-size and density-size relations
from Solomon et al. [42],

σv = 0.72 km s−1 (R/1 pc)1/2, (31)

nH = 5.2× 103 cm−3 (R/1 pc)−1, (32)

the time dependence of the relative velocity and density is given by

σv,rel = 0.75 km s−1 (t/1Myr), (33)

nH = 9.6× 103 cm−3 (t/1Myr)−2. (34)

These relations are hard to test in the simulation, due to the expected scatter,
the existence of stars with significant dynamical kicks from close encounters, and
the broad range in the extent of the embedded phase preceding the BH phase (or
Class II), meaning that the time zero of the decoupling corresponds to a different
age for different stars [61, 62]. However, the simulation shows clear evidence of the
predicted trends, as illustrated in Figure 7. The figure shows vrel (upper panel) and
nH (lower panel) as a function of age (blue dots) for the stars found in the simulation
in the same six snapshots used to compute jBH. Binaries are not included (35% of the
stars) due to their more complex dynamical evolution, nor stars with accretion rate
> 5 × 10−6 M⊙yr

−1 (8% of single stars) because they are still deeply embedded and
far from reaching their final mass and starting to decouple from the gas. In the upper
panel, we compute the rms relative velocity, σv,rel, in age bins (red squares), and fit the
result for t > 0.5Myr, which gives σv,rel ∼ t0.8±0.1 (red solid line). The predicted time
dependence from Equation 33, with the velocity normalization increased by a factor
1.6 to match the rms velocity in the simulation, is shown by the black dashed line. The
lower panel shows the median of nH in age bins (red squares), a least-squares fit for
t > 0.5Myr giving nH ∼ t−2.3±0.4 (red solid line), and the prediction from Equation 34
(dashed black line), also based on the renormalized velocity dispersion.
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Fig. 7 Gas-star relative velocity (upper panel) and gas number density (lower panel) versus star
age at the same star positions as in Figure 6, but excluding binaries and stars with accretion rate
> 5× 10−6 M⊙yr−1 (blue dots). Red squares are rms values (upper panel) and median values (lower
panel) computed in age bins, with their least-squares fit, for t > 0.5Myr, shown by the red solid
lines. The dashed lines are the predictions from Equations 33 and 34, with the velocity normalization
increased by a factor 1.6, to match the rms velocity in the simulation.

Using Equations 33 and 34, Equation 30 becomes

ṀBH ≈ 1.3× 10−7M⊙yr
−1(t/1Myr)−5(Mstar/1M⊙)

2. (35)

This equation should not be used for t significantly shorter than 1Myr, because i)
σv,rel would become comparable to cs ∼ 0.2 km s−1, which was neglected; ii) at t =
0.5Myr, nH = 3.8 × 104 cm−3, almost the same as the threshold density, nH,cr =
5×104 cm−3 cm−3 that we have identified as the transition density into the BH phase
or Class II in the simulation (see Section 1.5); iii) Figure 7 shows that the scatter is
dominant for t < 0.5Myr; iv) we are not concerned with times significantly smaller
than 1Myr because we are interested in the possibility of forming PDs during the
Class II phase.

We now can estimate the mass gained by PDs through BH infall from the time t
onward, Md =

∫∞
t

ṀBHdt. Using Equation 35, we find

Md = 3.3× 10−2M⊙ (t/1Myr)−4 (Mstar/1M⊙)
2. (36)
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From Equations 33 and 4, we can also derive the mass-averaged value of jBH

accumulated from the time t onward, jBH =
∫∞
t

jBHṀBHdt /
∫∞
t

ṀBHdt,

jBH = 9.6× 1020cm2 s−1(t/1Myr)−1 (Mstar/1M⊙), (37)

and the corresponding disk radius,

Rd = 2.6× 103AU(t/1Myr)−2(Mstar/1M⊙), (38)

assuming there is no partial cancellation of angular momentum. Because J of the
gas captured by an individual star in its trajectory is generally not constant over a
∼ 1Myr timescale, there must be some partial cancellation, hence Equations 37 and
38 should be considered as upper limits to the actual PD values.
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