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Forecasting with an N-dimensional Langevin equation and a neural-ordinary differential equation

ABSTRACT

Accurate prediction of electricity day-ahead prices is essential in competitive elec-

tricity markets. Although stationary electricity-price forecasting techniques have received

considerable attention, research on non-stationary methods is comparatively scarce, de-

spite the common prevalence of non-stationary features in electricity markets. Specifically,

existing non-stationary techniques will often aim to address individual non-stationary

features in isolation, leaving aside the exploration of concurrent multiple non-stationary

effects. Our overarching objective here is the formulation of a framework to systematically

model and forecast non-stationary electricity-price time series, encompassing the broader

scope of non-stationary behavior. For this purpose we develop a data-driven model that

combines an N-dimensional Langevin equation (LE) with a neural-ordinary differential

equation (NODE). The LE captures fine-grained details of the electricity-price behavior

in stationary regimes but is inadequate for non-stationary conditions. To overcome this

inherent limitation, we adopt a NODE approach to learn, and at the same time predict,

the difference between the actual electricity-price time series and the simulated price

trajectories generated by the LE. By learning this difference, the NODE reconstructs the

non-stationary components of the time series that the LE is not able to capture. We exem-

plify the effectiveness of our framework using the Spanish electricity day-ahead market

as a prototypical case study. Our findings reveal that the NODE nicely complements

the LE, providing a comprehensive strategy to tackle both stationary and non-stationary

electricity-price behavior. The framework’s dependability and robustness is demonstrated

through different non-stationary scenarios by comparing it against a range of basic naïve

methods.
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In the realm of time-series analysis, the term “stationary" refers to those observable quan-

tities that exhibit consistent and predictable behavior over time, while the term “non-

stationary" encompasses a time regime governed by time-varying features. Electricity-

price time series alternate between both stationary and non-stationary regimes because of

the complex nature of electricity markets; this is especially so with the day-ahead market

which accounts for the electricity trading on the following day. To address this challenge,

we propose a comprehensive data-driven framework to model and forecast electricity prices

independently of the prevailing market regime. Our framework combines a stochastic differ-

ential equation which approximates the time evolution of the price in stationary conditions,

and a neural-ordinary differential equation responsible for the reconstruction of the elu-

sive non-stationary components of the price that the stochastic equation cannot capture by

itself. We illustrate the dependability, strength, and robustness of our framework using

data from the Spanish electricity day-ahead market and through various non-stationary

settings. Not only does the proposed framework advance existing techniques to tackle non-

stationary electricity-price time series, but also offers a flexible and versatile methodology

with potential applications to other scientific domains characterized by the coexistence of

both stationary and non-stationary phenomena.

I. INTRODUCTION

Time series are ubiquitous in science and engineering. Most time-series recordings register

macroscopic/state variables of complex dynamical systems that are composed of many interacting

elements at a microscopic level. Describing such systems from first principles requires a large

number of degrees of freedom accounting for the non-trivial interactions between their constituent

components. Not surprisingly, this high-dimensional description poses significant challenges in

terms of both modeling and computational tractability. A way forward is coarse graining: the

objective is to obtain an effective description that (judiciously) averages out the microscopic prop-

erties and retains the main effects at the macroscopic level. This then turns the study of complex

systems to that of examining the time evolution of their macroscopic/state or coarse-grained vari-

ables. Time-series analysis of the latter then aims to facilitate the understanding and inference

of relationships between observed macroscopic effects and the underlying microscopic governing
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dynamics.1–3

Among the various time-series properties, stationarity is critical for the understanding of the

equilibrium state (and its possible time evolution) of the underlying complex system characterized

by the time series. A stationary time series is one for which the probability density function (PDF)

governing the time-series statistics is invariant in time.4 In contrast, non-stationary time series

exhibit a time-dependent PDF. This temporal variability can arise due to either an explicit time

dependence of the moments of the stochastic process governing the underlying complex system

dynamics,5 or multi-regime changes where distinct PDFs govern the system dynamics in different

regimes.6,7

While stationary modeling has been extensively studied generating a well-established litera-

ture,8,9 non-stationary techniques have not received the same level of attention.10 This imbalance is

primarily due to the difficulties in unraveling the causes of the non-stationary behavior, as it often

intertwines with intricate nonlinear dynamics occurring at the system’s constituent/microscopic

level.11,12 The frequent course of action when dealing with time series is to transform a non-

stationary signal into a quasi-stationary one.13 This approach attenuates the nonlinear features,

simplifying the time-series analysis. However, it comes at the expense of losing detailed system

interactions that are embedded within the inherent nonlinear features.

An area that accounts for good part of the literature within the field of time-series analysis

is electricity-prices modeling,14–20 rather topical these days because of the global energy crisis

that began in the aftermath of the COVID-19 pandemic. Electricity, in particular, is a special

commodity with limited economic feasibility for storage among the different energy resources.21

Indeed, electricity markets and the electricity power-system operation must guarantee a continuous

equilibrium between electricity generation and demand, ensuring the security of supply, which is

of paramount importance in competitive economies.

In the electricity day-ahead market, a daily auction is held where electricity generators and

demand agents submit their electricity energy offers for each time-block auctioned. Typically, in

European and American markets, one time-block allocates 1 hour of the following day. Thus,

every day, the outcome of the day-ahead market is a 24-dimensional array of electricity prices

for the 24 h of the following day. The electricity day-ahead market is a complex system affected

by a myriad of factors, such as fuel prices, weather conditions, or market players’ bidding strate-

gies. The nonlinear interactions between these, often competing, factors ultimately translate into

non-stationary electricity-price time series. By addressing this non-stationary behavior, market
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players and policymakers would be better equipped to understanding the price dynamics, and, as a

consequence, to improving the accuracy of their electricity-prices forecasts.22 This, in turn, would

enhance their decision-making capabilities within the competitive electricity market landscape.

Unraveling the dynamics of electricity markets requires a comprehensive analysis of electricity-

price time series encompassing their non-stationary characteristics. In recent decades, there have

been notable research efforts aiming to address the challenges posed by non-stationary conditions

in electricity-price time series.23–27 However, most previous work has focused only on individual

non-stationary features, such as price jumps or moment variations, without tackling multiple non-

stationary effects simultaneously. Alternatively, as mentioned earlier, some studies transform the

non-stationary time series into a quasi-stationary signal by studying the time evolution of the

changes over consecutive time steps, thus eliminating possible trend components. Hence, non-

stationary behavior remains elusive, and there still remains a need for a methodology to account

for it. Our overarching objective here is precisely to develop a comprehensive framework for the

rational and systematic analysis of non-stationary electricity-price time series regardless of the

specific non-stationary features exhibited.

The backbone of our approach lies in the decomposition of the electricity day-ahead price time

series into both stationary and non-stationary signals. For the stationary component, we adopt a

data-driven model underpinned by an N-dimensional Langevin equation (LE).28,29 As we shall il-

lustrate, this model captures fine details governing the price dynamics, yielding a reliable approx-

imation of the price evolution in stationary conditions. Consequently, any disparities observed

between the price evolution simulated by the LE and the actual electricity-price time series are

entirely driven by the non-stationary aspects of the electricity day-ahead market. We extend the

LE-based price model to comprehensively address these non-stationary features by complement-

ing it with a neural-ordinary differential equation (NODE).30,31 This extension involves training

and validating the NODE to effectively approximate the time evolution of the difference between

the actual prices and those predicted by the LE. We then incorporate the results obtained from the

NODE to the LE output to forecast the electricity price. This offers a novel and unique architec-

ture for dealing with non-stationary electricity day-ahead prices. The conjoining of the LE and

the NODE guarantees a trade-off between interpretability and accurate forecast. On the one hand,

the LE enables an explicit price-equation formulation which unravels the underlying price dynam-

ics in stationary conditions. On the other hand, the NODE exclusively predicts the price-signal

term that the LE cannot capture, shedding light on the non-stationary behavioral patterns of the
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FIG. 1: Schematic diagram of the framework proposed to forecast time series, St . The framework

consists of a two-stage process. First, a N-dimensional LE approximates the stationary

component, Xt , of St . Second, the NODE extends Xt to account for the non-stationary behavior,

Yt , of St that the LE cannot capture. The framework is applied to the electricity day-ahead

market, in which case St represents the electricity day-ahead prices.

electricity day-ahead price.

Section II introduces the methodology of the proposed framework for modeling and predicting

non-stationary electricity day-ahead prices. In Sec. III, we exemplify the proposed framework with

the Spanish electricity day-ahead market. By comparing the results of the LE model with the actual

electricity-price time series, we highlight the necessity to address the non-stationary behavior. We

then demonstrate the NODE’s effectiveness and efficiency to accommodating the non-stationary

effects and enhancing the electricity-price prediction generated by the LE. Finally, we contrast

the performance of our framework in forecasting non-stationary prices against a range of naïve

techniques that rely on heuristics. Through this comparison we validate the reliability, robustness,

and strength of our framework. Finally, Sec. IV offers concluding remarks and suggestions for

promising future research directions.
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II. METHODOLOGY

Decomposing a time series into stationary and non-stationary signals is a well-established pro-

cedure in the field of nonlinear time-series analysis,11,32–36 with applications in diverse fields rang-

ing from neuroscience37 to climate science.38 Following this strategy, we propose the following

decomposition of the electricity price:

St = Xt +Yt , (1)

where St = {Shi
t } is the collection of electricity prices at hours hi = {1, . . . ,24} of the day t ∈ N0,

Xt = {Xhi
t } is a multivariate stochastic process accounting for the stationary part of the price evo-

lution, and Yt = {Y hi
t } is a deterministic time-dependent function embodying the non-stationary

effects.

Figure 1 depicts a diagrammatic representation of our framework. As discussed in Sec. I, the

hourly electricity day-ahead price is the result of the daily auction process. This process yields a

hourly price which evolves in time (per day) exhibiting an average trend and state-dependent fluc-

tuations, under the assumption of a moderate daily change of the demand and the available electric-

ity generation. To model this price evolution, we adopt a multivariate LE, a versatile prototypical

model for the evolution of stochastic variables in complex systems, including financial instruments

and global weather effects.29 This simple, yet effective, model approximates the stationary com-

ponent of the time evolution of the price, capturing the subtle price movements observed across

consecutive days. However, it is not capable to account for substantial price variations arising

from complex market dynamics, such as persistent trends and changes in volatility.

To address this limitation, we adopt a statistical-learning technique, which we referred to in

Sec. I as NODE, to encompass the non-stationary behavior that the LE cannot capture. Although

classic neural networks (NNs) can be easily customized and have demonstrated good performance

in numerous settings especially where the inputs and outputs are high-dimensional, including time-

series prediction,39,40 they do generate a discrete time-fixed prediction whose time scope depends

on the design of the network architecture. Conversely, NODEs are increasingly gaining traction as

an attractive alternative machine-learning tool to model complex dynamics, with the capability of

treating time as a continuous variable regardless of the network layout. Specifically, NODEs aim at

learning the underlying vector field dictating the time evolution of a system at hand.31 This means

that the NODE approximates the unknown function governing the time-dependent differential

equation of a system’s observables. This concept seamlessly aligns with our overarching objective
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of unraveling the dynamics of the price evolution. As we will demonstrate, the price predictions

obtained from the NODE enhance substantially the forecasting capacity of the simulated price

trajectories of the LE.

It should be emphasized that the actual dynamic laws governing the day-ahead price movement

are not known exactly and might even be intractable. Nevertheless, it is reasonable to assume that

the electricity price follows a predefined yet unknown dynamics at least for a short-term time scale,

usually spanning a few days. These unknown dynamics can be partially uncovered by approximat-

ing the time evolution of the electricity price by means of data-driven techniques. This is precisely

the core of our framework’s rationale. Our hypothesis is that the synergistic combination of the

LE, supporting the stationary features, Xt , and the NODE, driving the non-stationary behavior of

the price signal, Yt , is sufficient to estimate the prevailing features of the price evolution, St . Also,

by separating St into Xt and Yt , our framework facilitates the understanding of the underlying

market dynamics generating the time evolution of St in a short-term horizon.

A. Stationary component: LE

We reconstruct Xt using a multivariate LE:

dXhi
t = µ

hi(Xt)dt +σhih j(Xt)dW h j
t , (2)

where µhi and σhih j are the drift and diffusion coefficients, respectively, with h j = {1, . . . ,24}, and

W h j
t is a Wiener process vector with Gaussian increments: W h j

t+dt −W h j
t ∼ N (0,dt). We estimate

the drift and diffusion coefficients from empirical price observations following the definition of

the Kramers-Moyal expansion coefficients.41 (See Appendix A for further details.)

The LE in Eq. (2) is a valid approximation for St , i.e., St = Xt , only when the electricity day-

ahead market is at equilibrium. At this equilibrium state, we can assume that historical electricity

day-ahead prices are representative of the future price evolution, which is consistent with the time-

invariant PDF inherent in stationarity. However, there are a myriad of both internal and external

factors that disrupt the normal operation of the electricity day-ahead market, leaving the market

in a non-equilibrium state, with prices deviating from historical expected records. Furthermore,

the stationary assumption underlying Eq. (2) is tightly linked to the Markov property. Under this

property, simulations of the time evolution of the price depend entirely on the present price level

(the initial condition) and not on past records. Consequently, as it stands, the LE is impeding our
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ability to model and forecast electricity prices accurately because it hinges solely on historical

price values, it does not incorporate endogenous/exogenous factors that modify market behavior

and operates as a memoryless process due to the Markov property.

B. Non-stationary component: NODE

To alleviate the limitations of the LE and enhance its price approximation, we complement it

with a NODE to reconstruct Yt , as represented in Eq. (1). Within the neural differential equa-

tion family, NODEs30 have demonstrated remarkable performance as a general-purpose machine-

learning methodology for solving initial-value problems (IVPs) in deterministic systems.42–45

NODEs utilize a system of ODEs that generate trajectories of the macroscopic observables of the

system at hand. Unlike classic fixed-time NNs, NODEs process the input data, i.e., the time evo-

lution of the observables, in a continuous manner, which in turn endows NODEs with increased

representation capabilities of complex temporal patterns. The basic idea is to parameterize the

derivatives of the ODEs to be solved using NNs, the output of which is evaluated using a (black-

box) ODE solver. Adjusting the weights of the NNs through common gradient-based optimization

techniques, appropriate approximations of the unknown functions dictating the system’s dynamics

are obtained. This then enables NODEs to reconstruct the trajectories of the input data. As the

ODE solver can be arbitrarily set to any specific time horizon, the NODE has the ability to predict

up to any desired time, resulting in a continuous-time generative model.

Referring back to Eq. (1), the signal Yt = St −Xt contains the residual component of the price

behavior not captured by the stochastic process Xt . For a short-term period, we can approximate

Yt with a flexible functional form. The combination of the NODEs, being a continuous-time

generative model, and the universal approximation capabilities of NNs, yields a model for the

continuous-time approximation of Yt ,

dYt = f (Yt , t,θ)dt, Y0 = Yt0, (3)

where f is a deterministic function (the vector field that governs the ODE dynamics), θ are the

weights of the proposed NN architecture, and Yt0 corresponds to the initial condition. During the

NN training stage, the weights, θ , are updated iteratively to approximate the true but unknown

dynamics f of the system.

Such an update process depends on the error metric, the so-called loss function. The loss

function, L , measures the difference between the real trajectory from t0 to t1, {Yt0 , . . . , Yt1}, and
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the trajectory generated by the NN as it was the solution of an IVP:

L

(
{Yt0, . . . , Yt1}, Yt0 +

∫ t1

t0
f (Yt , t,θ)dt

)
. (4)

The calculation of Yt and implementation of the NODE is as follows: considering an ini-

tial condition, St0 , we generate a set of n independent random paths for a predefined period

of time p solving numerically the LE as in Eq. (2). These random paths produce a collection

{Xt0, Xt0+1, . . . , Xt0+p}n that we compare with the actual electricity price {St0, St0+1, . . . , St0+p}
obtaining a dataset, D p

n = {St0 − Xt0, St0+1 − Xt0+1, . . . , St0+p − Xt0+p}n. We then use D p
n to

train the NODE. Throughout the training process, the NODE learns Yt , attempting to compensate

the shortcomings of the LE in approximating St . Once the NODE learns the function Yt over

the period p, we employ its continuous-time generative capability to predict the out-of-sample

values Yt until time step p+ q, q > 0. Combining the out-of-sample predictions with the ran-

dom paths of the LE from Eq. (2), we can define the following test dataset D p,q
n = {Xt0+p+1 +

Yt0+p+1, . . . ,Xt0+p+q +Yt0+p+q}n. By contrasting D p,q
n with St , we can validate the performance

of our framework in reconstructing and forecasting the electricity day-ahead prices.

It is worth mentioning that the NODE is applied after obtaining the results of the LE. While

implementing the NODE directly to model and forecast St may seem appealing, it poses significant

challenges in terms of computational requirements, explainability, and performance. First, the NN

architecture within the NODE must be sufficiently sophisticated (deep, convolutional, or residual)

to capture the information already unraveled by the LE and simultaneously address time-dependent

effects. Another limitation of NODEs is their short-time scope. Hence, to process the entire

historical time series of St , the NODE should be trained and validated with a sliding window

multiple times, increasing computational demands and training times. Moreover, since it operates

as a black-box model, we could not extract and understand the prevailing dynamics that dictate

the time evolution of St , which the LE enables. Finally, the NODE may suffer from overfitting,

as the historical time series of St comprises a single sample available for the training procedure.

Conversely, the NODE within our framework uses the n residual trajectories of St −Xt , preventing

from overfitting and ensuring good generalization.

C. Naïve methods

We also evaluate the effectiveness of our framework in comparison to several naïve methods.

This benchmark, the so-called naïve test, is a widely recognized procedure to assess the accuracy
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FIG. 2: (a) Spanish electricity day-ahead price time series and (b) its associated volatility for the

year 2021. The volatility is computed as the standard deviation of the last 3 days.

of the proposed electricity-price forecasting technique against basic rule-based predictions.14,17,46

In our study, the naïve methods approximate Yt using heuristic formulations. The purpose of the

benchmark is to demonstrate the advantage of our framework over these simplified approaches,

verifying it as a proof of concept. The first naïve approach, denoted as “LE + 1 day difference",

consists of the following steps:

Yt0+p+1 = St0+p −St0+p−1

Ŝt0+p+1 = Xt0+p+1 +Yt0+p+1, (5)

while the second naïve approach, referred to as “LE + initial condition difference," is,

Yt0+p+1 = St0+p −St0

Ŝt0+p+1 = Xt0+p+1 +Yt0+p+1. (6)
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III. CASE STUDY

We exemplify our framework using data from the Spanish electricity day-ahead market for the

period spanning 2004 - 2021. The period from 2004 to 2020 constitutes the training dataset to

estimate the drift and diffusion coefficients of the LE in Eq. (2). The time series from the training

dataset consists of the hourly electricity prices in e/MWh, comprising a total of 149040 data

points with 6210 samples per hour. We validate the electricity-price trajectories generated by the

LE using the Spanish electricity data for the year 2021. This validation dataset corresponds to

8760 samples with 365 samples per hour. Such validation motivates the extension of the LE with

the NODE enhancing thus the overall predictive capabilities of our framework.

A. LE validation

Figure 2 displays the Spanish electricity-price time series and its associated volatility for the

whole year 2021. There are two noteworthy non-stationary effects. First, trends that are main-

tained at irregular time intervals. For example, a slight positive trend occurs at the beginning of

the year that subsequently disappears, leading to a price plunge around February. There is also

a persistent trend that starts around June and steadily grows until about mid-October. Second,

changes in volatility levels, as shown in the bottom subplot where volatility peaks arise in mid-

May, the beginning of October, and throughout December.

We now assess the LE performance in approximating the time evolution of the Spanish elec-

tricity prices in 2021. For this purpose, we simulate a collection of n = 103 independent sample

paths of the LE in Eq. (2) using the Euler-Maruyama method47 with a time interval of T = p = 9

days and a step size of 1 day. By applying the Euler-Maruyama method on different days, i.e.,

different initial conditions, we can analyze the LE behavior and compare it to the time evolution

of the real electricity price for specific scenarios.

The results of Fig. 3 corroborate the LE’s effectiveness in generating a robust approxima-

tion of the time evolution of the Spanish electricity price under stationary conditions when time-

dependent effects are absent. This validation of the price representation of the LE in stationary

conditions provides valuable insights into the short-term dynamics driving the Spanish day-ahead

market. Among these dynamics, we can identify the daily price fluctuations, the mean-reversion

effects across different hours, and the distinct equilibrium prices that exist for each hour of the day.
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FIG. 3: Simulation of Xt obtained from the LE in stationary conditions. Initial date: 3/3/2021.

Solid line is the true electricity price, St . Dashed line corresponds to the mean price over 103

simulated paths of Xt . Shaded areas delimit the following percentile ranges: [25, 75] (dark) and

[10, 90] (light). Thus, the lightest area at the bottom of the plot encloses the percentiles [10, 25],

while the lightest area at the top encloses the percentiles [75, 90].

These short-term characteristics arise from the estimated drift and diffusion terms from Eq. (A1)

that govern Eq. (2).

To further assess the performance of the LE, we report in Fig. 4 a comparison between the true

electricity-price signal and the simulated price paths generated by the LE in various non-stationary

scenarios. Subplots (a.i) and (c.i) illustrate an upward trend in the electricity price that the LE is

unable to replicate. In scenario (a), the initial condition is close to the equilibrium prices. Hence,

the simulated paths remain within the same initial price ranges. On the other hand, in scenario

(c), the initial condition is far from the equilibrium prices and therefore the simulated paths tend

to revert to the equilibrium values, amplifying the price forecasting error of the LE as is evident

from subplot (c.ii). In contrast, subplot (b.i) represents a scenario characterized by a prominent

volatility. The initial condition for scenario (b) exhibits a substantial price variation, with many

hourly prices deviating from the equilibrium ones. As the LE reverts the initial prices toward

the equilibrium values, the large volatility is dampened, yielding a poor predictive performance

in this high volatility scenario. In summary, these scenarios underscore the inability of the LE
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FIG. 4: Assessment of Xt obtained from the LE in non-stationary conditions. Each row

corresponds to a different scenario with initial dates: (a) 1/1/2021, (b) 8/5/2021, and (c) 6/9/2021.

Left column: comparison between the true electricity price, St , (solid line) and 103 simulated

price paths of Xt . Right column: time evolution of St −Xt . Dashed lines correspond to the mean

of Xt (left column) and mean of St −Xt (right column) over all simulated paths. Shaded areas in

both columns delimit the same percentile ranges as in Fig. 3.

formulation to anticipate non-stationary features, and the necessity of implementing the NODE.

B. Extension with NODEs

The proposed NN architecture within the NODE consists of a feed forward fully-connected

network with one hidden layer. The input and output dimension is 24, one per hourly difference,

to maintain the multivariate structure of the LE. The hidden layer contains 96 neurons with hyper-

bolic tangent as the activation function. The time evolution, denoted as t in Eq. (3), is measured in

days.
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FIG. 5: Hourly training dataset D p
n ,with p = 9, n = 103, of scenario (a) in Fig. 4 computed as the

difference between the true electricity price, St , and the simulated paths of Xt obtained from the

LE. Dashed lines correspond to the mean of St −Xt . Shaded areas delimit the same percentile

ranges as in Fig. 3. These trajectories are equivalent to the time evolution depicted in Fig. 4 (a.ii)

but rearranged into the 24 hourly dimensions considered in the LE. Solid lines correspond to the

mean of St − (Xt +Yt), i.e., the error between the true price and the out-of-sample prediction of

the LE and the NODE.

The training process proceeds as follows: at the initialization stage, we compute D p
n using the

initial condition Yt0 = St0 −Xt0 , where t0 is the initial time step. We note that Yt0 = 0, being the

initial condition Xt0 = St0 . The training objective for the NODE is then to minimize the disparity

between the real difference trajectory, {St0+1 −Xt0+1, . . . , St0+p −Xt0+p}, and the predicted one.

We choose the mean absolute error (MAE) as the loss function to be minimized, and the root mean

squared propagation as the optimizer algorithm to update the NN weights, θ . During the training

process, we employ a mini-batch gradient descent algorithm with 32 samples per batch and 2×103

epochs with a learning rate of 10−3. We implement and train the NODE using the Python library

torchdiffeq.48 It is worth emphasizing that we have selected empirically all hyper-parameters re-

15



Forecasting with an N-dimensional Langevin equation and a neural-ordinary differential equation

0 50 100 150 200
time [hours]

25

50

75

100

125

150

pr
ic

e
[€

/M
W

h]

(a.i)

0 50 100 150 200
time [hours]

−80

−60

−40

−20

0

20

40

S
t
−

(X
t
+

Y
t)

[€
/M

W
h]

(a.ii)

0 50 100 150 200
time [hours]

0

20

40

60

80

100

120

pr
ic

e
[€

/M
W

h]

(b.i)

0 50 100 150 200
time [hours]

−100

−50

0

50

S
t
−

(X
t
+

Y
t)

[€
/M

W
h]

(b.ii)

0 50 100 150 200
time [hours]

75

100

125

150

175

200

pr
ic

e
[€

/M
W

h]

(c.i)

0 50 100 150 200
time [hours]

−50

0

50

S
t
−

(X
t
+

Y
t)

[€
/M

W
h]

(c.ii)

FIG. 6: Assessment of Xt +Yt obtained from the combined LE-NODE. Each row corresponds to

a different scenario with initial dates: (a) 1/1/2021, (b) 8/5/2021, and (c) 6/9/2021. Left column:

comparison between the true electricity price, St (solid line) and the prediction of Xt +Yt . Right

column: time evolution of St − (Xt +Yt). The first 48 h (p = {0,1}) correspond to training

samples for the NODE. The remaining hours (p = {2, . . . ,8}) contain out-of-sample predictions

(q = 1) of Yt from the NODE combined with the n = 103 simulated paths of Xt generated by the

LE. Dashed lines correspond to the mean of Xt +Yt (left column) and mean St − (Xt +Yt) (right

column) over all simulated paths. Shaded areas in both columns delimit the same percentile

ranges as in Fig. 3.

lated to the NN architecture and optimization scheme based on the NODE performance.

Figure 5 illustrates the training dataset D p
n for scenario (a) of Fig. 4. Each hourly subplot de-

picts the trajectory of the differences between the true price, St , and the mean over all simulated

paths generated by the LE (dashed line). The NODE attempts to fit the empirical differences, re-

constructing the dashed-line trajectory. Our training process, involving the epochs and mini-batch

procedure described earlier, continually feeds the NODE with a random subset of price differ-
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FIG. 7: Performance histograms for the different approaches (specified on the vertical axis),

under the different scenarios (a), (b), and (c) of Fig. 4. Cases considered: LE + NODE (first row),

LE + 1 day difference (second row), and LE + initial condition difference (third row).

Performance metric: absolute error between price observations and predictions both for

stationary, only the LE model (green), and non-stationary models (gray) (note that the overlap of

the green and gray colors makes the former darker). Solid lines indicate the MAE of the

non-stationary prediction. Dashed lines delimit the interquartile range of the non-stationary

prediction.

ences’ trajectories. This randomized strategy ensures that, on average, the NODE approximates

very well the dashed-line trajectory, reducing the error between St and our framework, Xt +Yt ,

close to 0, as evidenced by the solid lines.

To assess the predictive performance of our framework, in general, and the NODE, in particular,

we undertake the following validation procedure for each scenario represented in Fig. 4: using D p
n ,

p = {1, . . . ,8}, we train the NODE up to time step p and predict the next set of time steps, p+q,

corresponding to the out-of-sample predictions of Yt0+p+q. For the sake of efficiency, we adopt
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the smallest possible validation time step, i.e., q = 1 day. We combine Yt0+p+1 with the simulated

price paths of Xt0+p+1 to generate D p,1
n , and compare it to St0+p+1.

Figure 6 plots St and the time evolution of the electricity price for D p,1
n , p = {1, . . . ,8}. Com-

paring these results with the baseline price approximations of the LE, shown in Fig. 4, we observe

a notable improvement in the price reconstruction due to the predictions of Yt generated by the

NODE. These predictions substantially enhance the representation of the electricity-price dynam-

ics, reducing the mismatch between the actual electricity prices and the simulated price paths

generated by the LE. However, the accuracy of these predictions can vary across different scenar-

ios. When there is a persistent trend in the electricity day-ahead market, such as in scenarios (a)

and (c), the NODE accounts for this external effect efficiently. This leads to compelling forecasts

of the time-dependent component, Yt , of the electricity day-ahead prices. Remarkably, scenario

(c) presents a dynamic interplay between the LE and the NODE. With an initial condition located

far from equilibrium prices, the LE drives the electricity prices toward the equilibrium values,

as seen in Fig. 4 (c.i). Nevertheless, the existing upward trend cancels completely the historical

mean-reversion effect, maintaining the actual electricity prices even further from their historical

expected values. The NODE determines this change in the dynamic regime and exerts a correct-

ing force to counteract the mean-reversion feature of the LE. Finally, the increased volatility in

scenario (b) presents a challenging condition for the NODE, resulting in a low prediction accu-

racy. The rapid price variations in scenario (b) likely contribute to the reduced performance of

the NODE, as opposed to scenarios (a) and (c), where the upward trend presents a smooth and

sustained external effect that the NODE can capture effectively.

C. Benchmarking

Figure 7 presents the histograms of the absolute differences between the actual prices, St , and

the expected values of the out-of-sample predictions, Xt +Yt . The histograms facilitate a com-

parative analysis of the outcomes generated by our framework and the naïve methods detailed in

Sec. II C across each scenario of Figs. 4 and 6. Furthermore, we calculate two key metrics for

each method and scenario: the MAE (vertical solid line) and interquartile range (vertical dashed

lines). Our proposed framework, the synergistic combination of LE and NODE, clearly outper-

forms the naïve methods in scenario (c), and consistently emerges as the most robust technique

across all scenarios due to its remarkable trade-off between the MAE and the interquartile range.
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In scenario (a), the combined LE-NODE (a.i) reveals a similar performance to the “LE + initial

condition difference" (a.iii) approach, which proves to be the best model. However, the “LE + 1

day difference" method yields the lowest MAE score in scenario (b), as is evident from subplot

(b.ii). In this scenario (b), our framework (b.i) and the “LE + initial condition difference" (b.iii)

present identical MAEs, but our framework exhibits a lower interquartile range. It is worth noting

that our framework exhibits its lowest accuracy in this high volatility scenario (b), as previously

discussed in relation to Fig. 6 (b.i) and (b.ii). Conversely, the naïve methods display higher error

rates and a larger dispersion in scenario (c), observe (c.ii) and (c.iii), compared to the combined

LE-NODE methodology (c.i). This further highlights the superiority of the combined LE-NODE.

IV. CONCLUSIONS

We have introduced a rational and systematic data-driven mathematical framework to analyze

non-stationary time series. The proposed framework is applied on electricity-price series, a top-

ical subject due to the recent energy crisis worldwide, and addresses simultaneously stationary

and non-stationary features of such series, advancing the non-stationary electricity-price modeling

arena. Because of its generality and versatility, our framework can accommodate time series ex-

hibiting concurrent stationary and non-stationary features in other areas and application domains.

It integrates synergistically the LE with a NODE to forecast the short-term time evolution of

the electricity price following a two-stage approach. First, the drift and diffusion terms of the LE

are fitted to historical electricity prices in order to yield a reliable price formulation. However, the

expected prices lie at the heart of the estimation of the drift-diffusion terms, and the LE neces-

sarily accounts for the stationary behavior of the electricity price only. We subsequently employ

a NODE to learn the difference between the actual electricity-price time series and the simulated

prices generated by the LE. By learning this difference, the NODE captures the underlying dynam-

ics of the non-stationary components of the price behavior that the LE cannot adequately approx-

imate. Therefore, the NODE nicely complements the LE and extends the formulation to address

effectively both stationary and non-stationary electricity-price time series. We can then infer the

(short-term) dynamic laws dictating the electricity price evolution in stationary conditions, while

at the same time account for external effects.

Our study uses the Spanish electricity day-ahead prices as a prototypical system to showcase

the applicability of our methodology to real complex systems. The results reveal that the LE
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formulation successfully unravels electricity-price features such as the mean-reversion effect, the

existing equilibrium prices for each hour, and the daily fluctuations. However, the LE itself is not

sufficient to accurately predict the electricity prices, particularly when persistent trends or changes

in volatility occur in the day-ahead market. To overcome this limitation, we integrate the LE with

a NODE. Specifically, the output of the NODE corrects the deviation between the actual price-

time series and the price representation obtained from the LE, resulting in a substantially more

precise electricity-price forecast. Furthermore, to assess the performance of our methodology, we

conduct a comparative analysis with a number of naïve methods, showing that our model is reliable

and robust. In detail, the comparison illustrates similar price approximations between our model

and the naïve methods across two non-stationary scenarios: one with a positive trend starting

from equilibrium prices and another with increased volatility levels. Nevertheless, the LE-NODE

framework outperforms the naïve methods when there is an upward external drift originating from

price values far from historical equilibrium prices. This significant outcome is because the NODE

counteracts efficiently the price dynamics dictated by the LE, i.e., the mean-reversion effect, which

is temporarily not applicable in this external drift scenario.

This fusion of the LE with a NODE unravels the price dynamics in the stationary regime and

provides satisfactory forecasts under non-stationary effects. Specifically, it identifies and predicts

first-moment variations in the electricity-price signal, such as upward trends. However, the present

NODE, as we have designed it, will not yield accurate results when dealing with second-moment

variations, e.g., changes in price volatility, as in scenario (b) of Fig. 6. Consequently, future refine-

ments will aim at enhancing the proposed framework to account carefully for varying volatility.

This might entail exploring deep, convolutional, or recurrent NN architectures within the NODE

and/or considering the adoption of neural stochastic differential equations49,50 as an alternative to

the NODE. Another worthwhile line of enquiry would be to further enhance the learning process

by introducing elements of Bayesian inference, as in our recent studies in Refs 51 and 52, to en-

able uncertainty quantification which is not native to NNs. Finally, the NODE designed within

our framework may be substituted by standard non-stationary techniques, such as empirical mode

decomposition,53 wavelets,54 or autoregressive integrated moving average models. Yet, the im-

plementation of these standard techniques should be carefully evaluated and benchmarked with

our NODE which combines superior data efficiency with simplicity. We shall examine these and

related questions in future studies.
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Appendix A: Estimation of the drift and diffusion coefficients

The drift and diffusion coefficients of the LE in Eq. (2) can be computed using the definitions

for the Kramers-Moyal expansion coefficients,

µ
hi(X) = lim

τ→0

⟨Xhi
t+τ −Xhi⟩

τ
= D(1)

hi
(X)

1
2

σhihk(X)σh jhk(X) =
1
2

lim
τ→0

⟨[Xhi
t+τ −Xhi][Xh j

t+τ −Xh j ]⟩
τ

= D(2)
hih j

(X), (A1)

where ⟨·⟩ is the shorthand notation for conditional expectation, and D(1),D(2) represent the first

and second Kramers-Moyal coefficients, respectively. We note that we adopted Einstein’s notation

for the diffusion coefficient.

The conditional expectation of Eq. (A1) requires the use of the historical PDFs that govern D(1)
hi

and D(2)
hih j

. These PDFs represent the joint probability of the random variables:

Phi = (Phi
1 ,Phi

2 ) = (Xhi
t ,Xhi

t+1 −Xhi
t )

Phih j = (Phih j
1 ,Phih j

2 ,Phih j
3 )

=

(
Xhi

t ,Xh j
t ,

1
2
(Xhi

t+1 −Xhi
t )(Xh j

t+1 −Xh j
t )

)
. (A2)

We approximate the PDFs of Phi and Phih j applying a kernel density estimation55 technique over

the datasets:

Phi = {(xhi
t+k, xhi

t+k+1 − xhi
t+k)}

Phih j =

{(
xhi

t+k, xh j
t+k,

1
2
(xhi

t+k+1 − xhi
t+k)(x

hi
t+k+1 − xhi

t+k)

)}
k = 0, . . . ,N −2, (A3)
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with N being the number of available data samples. We replace τ from Eq. (A1) by 1 in Eqs. (A2)

and (A3), as Xhi
t evolves on a daily basis in Eq. (2), with τ = 1 being the minimum time reso-

lution that we can adopt. We fit a single Gaussian kernel over each data sample of the datasets

Phi, Phih j . The bandwidth H of the Gaussian kernel follows Scott’s rule:56

H = (N− 1
d+4 )Id, (A4)

where d indicates the input kernel dimensions (d = 2 for Phi and d = 3 for Phih j) and Id is a d-

dimensional identity matrix. The sum and normalization of all kernels for each Phi, Phih j yields

an approximate reconstruction of the PDFs for Phi and Phih j . We then sample the approximated

PDFs through a mesh resolution of (103 × 103) and (102 × 102 × 5 · 102) datapoints for Phi and

Phih j , respectively. Finally, we condition the obtained samples of the approximated PDF of Phi on

Xhi in order to calculate D(1)
hi

,

D(1)
hi
(X) = E[Phi

2 |Phi
1 = Xhi], (A5)

where E represents the expected value. Conversely, we assume that D(2)
hih j

is state-independent:

D(2)
hih j

(X) = E[Phih j
3 ]. (A6)
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