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Abstract

Evaluating house prices is crucial for various stakeholders, including homeowners, investors, and
policymakers. However, traditional spatial interpolation methods have limitations in capturing
the complex spatial relationships that affect property values. To address these challenges, we
have developed a new method called Multi-Head Gated Attention for spatial interpolation. Our
approach builds upon attention-based interpolation models and incorporates multiple attention
heads and gating mechanisms to capture spatial dependencies and contextual information better.
Importantly, our model produces embeddings that reduce the dimensionality of the data, enabling
simpler models like linear regression to outperform complex ensembling models. We conducted
extensive experiments to compare our model with baseline methods and the original attention-
based interpolation model. The results show a significant improvement in the accuracy of house
price predictions, validating the effectiveness of our approach. This research advances the field
of spatial interpolation and provides a robust tool for more precise house price evaluation. Our
GitHub repository.∗contains the data and code for all datasets, which are available for researchers
and practitioners interested in replicating or building upon our work.

Keywords: House price evaluation, gated Attention, spatial interpolation, spatial analysis

1 Introduction

The Real Estate sector plays a pivotal role in the global economy, with house prices significantly
influencing individual wealth and broader economic trends. Fluctuations in house prices can stimu-
late consumption and boost the economy when prices rise. At the same time, a decrease can limit an
individual’s borrowing capacity, potentially crowding out investments due to the evaporation in the
value of collaterals [1]. The shock in the global economy caused by the 2008 housing bubble perfectly
illustrates the importance of a stable and measurable house price [2]. Predicting house prices, how-
ever, is a complex task due to the multitude of influencing factors. Historically, house price prediction
has relied on traditional regression models that consider a range of property-specific factors such as
size, age, condition, and number of rooms, among others [3]. However, with the advent of machine
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learning, the landscape of house price prediction has significantly evolved. Techniques such as sup-
port vector machines, decision trees, and neural networks have been employed to improve prediction
accuracy [4]. In addition, ensemble learning methods, such as boosting, have been used to enhance
the performance of prediction models. Specifically, XGBoost [5], a scalable and accurate implementa-
tion of gradient boosting machines, has been applied to house price prediction with promising results
[6, 7]. Furthermore, to account for spatial heterogeneity in house prices, Geographically Weighted
Regression (GWR) and its variants have been utilised [8–11]. Kriging1 [12], a geostatistical method,
has also been used for spatial interpolation in house price prediction [13, 14]. However, these conven-
tional methodologies bear certain limitations. For instance, they might struggle to capture complex
spatial relationships, particularly in regions with diverse and distinct geographical realms. Addition-
ally, assumptions like isotropic variability, which presupposes a constant spatial relationship in all
directions, may impede the accuracy of these traditional models in anisotropic landscapes. Moreover,
these models might exhibit sensitivity to outliers and could become computationally demanding,
especially with increased data points. Our model builds upon the research of Vianna and Barbosa [15],
who developed the attention-based spatial interpolation model. Our research endeavours to extend
the paradigm by intertwining Multi-head and Gated Attention mechanisms. Vianna and Barbosa’s
model manifested a breakthrough by employing an attention mechanism to weigh the influence of
neighbouring houses based on supervised learning. They introduced two attention layers: a Euclidean-
based attention layer for considering neighbouring houses based on structural feature similarities and
a spatial kernel-based attention layer, Geo Attention, for weighing neighbours based on geographic
proximity to the target house. These attention layers, coupled with the geographical and structural
features of the house, were fed into a fully connected network, culminating in a regression layer for
house price prediction. This architecture yielded what they called a ’house embedding,’ encapsulat-
ing the house attributes and spatial context into a common subspace, serving as a feature set for
any regressor to estimate house prices. Our model extrapolates upon this framework, retaining the
essence of generating ’house embeddings’ but enhancing the architecture with Multi-head and Gated
Attention mechanisms. These innovations are delineated into two distinct attention modules: Geo-
graphical Attention and Structural Attention. The Geographical Attention mechanism focuses on
spatial relationships and proximities among properties, rendering a more nuanced understanding of
the geographical context. Concurrently, the Structural Attention mechanism dives into the intrinsic
attributes of properties such as size, age, condition, and the neighbouring points of interest, offering
a granular perspective on the structural context. The Multi-head facet of our model unleashes the
potential for parallel processing of geographical and structural information, thereby capturing a rich
tapestry of spatial relationships from diverse dimensions. Each head in the Multi-head Attention
mechanism could focus on different aspects or scales of spatial relationships, thus enriching the spa-
tial context captured by the model. Furthermore, the Gated Attention mechanisms are orchestrated
to modulate the information flow through the network meticulously. This refined control over the
attention distribution is instrumental in mitigating outliers’ impact on the estimated values, thereby
promising more robust and accurate house price predictions. Our model, therefore, stands as a sophis-
ticated augmentation of the attention-based spatial interpolation model conceived by Vianna and
Barbosa. By synthesising the Multi-head and Gated Attention mechanisms with a bifurcated focus
on geographical and structural relationships, our model unfolds a promising avenue for more accurate
and insightful real estate price predictions. This innovative approach, rooted in the pioneering work
of Vianna and Barbosa, yet elevated with novel attention mechanisms, propels the discourse in this
domain towards new vistas, potentially laying a robust foundation for subsequent research endeav-
ours and practical applications in real estate price prediction. Our project introduces significant
contributions to advance real estate price prediction. We combine machine-learning techniques with
a deep understanding of spatial heterogeneity in real estate valuations. Below are our contributions:

• Introducing a New Dataset: A new dataset for Italian cities has been introduced, likely
including features relevant to real estate valuation related to 8 Italian cities.

• Incorporating Various Attention Mechanisms: applying multi-head gated Attention to cap-
ture with different weights and basis to capture different structural and geographical contexts
based on the similarities.

• Testing our model on different datasets: We have tested our approach on other datasets to
solidify the model’s effectiveness in predicting house prices in other areas and diverse datasets.

1Kriging is a regression method used in spatial analysis (geostatistics) that allows one to interpolate a quantity in space,
minimising the mean square error.
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The subsequent sections of this document are structured as follows: Section 2 presents a comprehen-
sive overview of relevant works, including literature and methodologies, that relate to house price
estimation and section 3 delves into our proposed attention network, detailing its unique features
and potential benefits. In Section 4, we conduct experiments, perform data analysis, and provide a
thorough evaluation of our model. Lastly, in Section 5, we draw insightful conclusions based on our
experimentation, compare our approach with prior methodologies, and articulate the implications of
our findings. This structure ensures a coherent and comprehensive understanding of our innovative
methodology for house price prediction.

2 Related works

House price estimation is a critical activity with far-reaching implications in the real estate industry.
This field has been the subject of extensive academic research, traditionally employing regres-
sion analyses that integrate multiple variables, data types, and methodologies. In this review, we
explore the scholarly landscape of this subject, tracing the evolution of research methodologies and
spotlighting modern advancements and emerging trends.

The Hedonic Price Theory, first introduced by Rosen in 1974 [16], is the foundation for Hedonic
Regression models. These models have become a crucial tool in studying house prices. The theory
utilises a set of attributes, such as the number of bedrooms or bathrooms, to explain and represent
a house’s market value. These attributes are ranked based on their impact on a house’s utility
function, assuming that a market equilibrium between buyers and sellers determines the sale price.
Hedonic Regression models are widely used to analyse the effects of different factors on house prices
in various areas, making them a robust tool for market segmentation [17]. Although the original
Hedonic Price Theory focused mainly on the intrinsic characteristics of a house, it has evolved to
account for external factors like location [18]. This adaptation was motivated by the realisation
that solely considering a house’s intrinsic attributes was insufficient for accurate price representation
[19]. Despite its widespread use, Hedonic Regression models have faced challenges, including issues
related to the stability of attribute coefficients across different locations and property types, as well
as limitations in handling non-linearity and model specification [20].

The integration of machine learning into house price prediction has been significantly accelerated
by advancements in computational capabilities and the increase of data [21]. Initially, the focus was
mainly on traditional machine learning algorithms such as Linear Regression (LR) [22]. While these
linear models offered computational efficiency and ease of interpretation, they were limited in captur-
ing the high-dimensional and non-linear complexities inherent in transaction price data. To address
these limitations, researchers explored regularisation techniques like Ridge and Lasso Regression
[23, 24]. These methods helped mitigate overfitting and offered a more refined approach to feature
selection but struggled with capturing complex, non-linear relationships. Principal Component Anal-
ysis (PCA) [25] has also been employed for dimensionality reduction to simplify the feature space,
although it has been criticised for potentially discarding crucial information. This led to the explo-
ration of more flexible, non-linear models such as Support Vector Regression (SVR) [26] and Decision
Trees [27]. Support Vector Regression (SVR) offers a solution for non-linearities through various ker-
nel functions, while Decision Trees provide a simple yet effective approach for detecting non-linear
patterns [26, 27]. However, Decision Trees are prone to overfitting. To combat this, ensemble methods
like Random Forests were developed to improve model generalisation [28]. Random Forests combine
the outcomes of many decorrelated trees to minimise variance and enhance accuracy.

With advancements in computational power, the field has shifted to more sophisticated ensemble
methods such as XGBoost [29]. Unlike Random Forests, XGBoost constructs trees sequentially to
correct the errors made by the previous ones. This makes XGBoost particularly effective in handling
diverse data structures and enhancing prediction accuracy [30]. These advanced ensemble models are
also highly scalable and efficient, often surpassing Random Forests’ performance on large datasets.

To further optimise their predictive performance, these sophisticated ensemble models are often
fine-tuned using metaheuristic optimisation techniques like Particle Swarm Optimization (PSO) [31,
32]. These optimisation techniques enable precise tuning of hyperparameters, resulting in models
that are both accurate and computationally efficient.

The latest development in house price prediction is Graph Neural Networks (GNNs) [33], which
excel in identifying spatial relationships between properties. However, GNNs can be computationally
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demanding and require large, well-curated datasets for practical training. Additionally, their perfor-
mance can vary significantly based on the architecture and hyperparameters, which may hinder their
widespread adoption.

Furthermore, the domain has seen the rise of deep learning techniques. Deep Neural Networks
(DNNs) [34] can automatically learn feature representations, eliminating the need for manual feature
engineering. Although DNNs can unravel highly complex relationships in the data, they present
challenges, such as the risk of overfitting and the need for substantial datasets and computational
resources for practical training.

Building on these advancements, recent research has focused on integrating diverse computa-
tional models and data sources. A groundbreaking study by Tchuente et al. [35] on the French real
estate market is a prime example. Utilising machine learning techniques such as Random Forest,
AdaBoost [36], and gradient boosting [37], along with geocoding features, they analysed five years of
historical real estate transactions provided by the French government. Their findings revealed that
incorporating geocoding elements increased the models’ predictive accuracy by over 50

Building upon the findings of Tchuente et al., the research conducted by Zhao et al. [38] rep-
resents a significant advancement in data analysis. By incorporating a multi-modal approach that
encompassed traffic patterns, amenities, and social emotions in the bustling city of Beijing, China,
this study validated the crucial role of location-based data. Furthermore, it introduced a feature-
ranking mechanism that established a direct correlation between the data and its economic impact.
This groundbreaking research underscores the potential of geolocated data in predicting real estate
prices and highlights its transformative capabilities. Further advancing this research domain, De
Nadai et al. [39] delved into the economic repercussions of neighbourhood characteristics within Ital-
ian urban landscapes. Their investigative toolkit encompassed a rich array of data sources including
OpenStreetMap2, Urban Atlas 2012, imagery from Google Street View, Italian census data3, along-
side property tax records sourced from the ”Immobiliare. it”4 platform. Through the application of
their model, they witnessed a notable 60% enhancement in nowcasting housing prices, thereby under-
pinning the transformative potential of leveraging rich, geolocated datasets. Sarkar Snigdha Sarathi
Das et al. [40] It has introduced the concept of Geospatial Network Embedding (GSNE). Unlike tra-
ditional models that often overlook the geospatial context of neighbourhood amenities, GSNE aims
to capture this crucial aspect. The study emphasises that the proximity of a house to key points of
interest (POIs) like train stations, highly-ranked schools, or shopping centres can significantly influ-
ence its price. The GSNE model leverages graph neural networks to create embeddings of houses and
various types of POIs in multipartite networks. In these networks, houses and POIs are attributed
nodes, representing their relationships as edges. This is particularly promising because it allows the
model to understand complex latent interactions between houses and POIs, offering a robust and
effective way to incorporate geospatial context.
Yuhao Kang et al. Kang et al.[41] delve into house price appreciation rates, employing a multi-
source extensive geo-data framework that amalgamates structural attributes, locational amenities,
and visitor patterns, employing machine learning models and geographically weighted regression for
accurate predictions at both micro and macro scales. Their gradient-boosting machines achieve an R-
squared value of 74% at the neighbourhood scale, highlighting the effectiveness of their approach in
understanding house price appreciation nuances. On a similar innovative trajectory, Pei-Ying Wang
et al. [42]. Propel house price prediction forward by harnessing a Joint Self-Attention Mechanism
intertwined with a rich analysis of heterogeneous data, including public facilities and environmental
aesthetics captured through satellite imagery. Tested in Taipei and New Taipei, this model eclipses
other machine learning-based models in prediction accuracy, showcasing a lower error rate. The
Spatial Transformer Network (STN)[43] and their model’s novel joint self-attention mechanism intri-
cately dissect the complex relations between different attributes impacting house prices. This work
accentuates the necessity of a holistic data-rich approach and extends the versatility of the attention
mechanism across various domains, setting a robust foundation for future research. In a parallel vein,
Viana and Barbosa [15] introduce a groundbreaking framework that melds the spatial essence of real
estate with the structural attributes of houses. Their hybrid attention mechanism orchestrates a bal-
anced blend between the Euclidean space of structural features and the geographic tapestry, crafting
them into a unified predictive model. The inception of a house embedding vector carries through

2europe/italy.html
3https://www.istat.it/
4www.immobiliare.it
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the regression analysis domain, offering a fresh lens to capture spatial dependencies. This attention-
infused approach heralds a promising avenue where the convergence of spatial interpolation and
machine learning unravels a richer understanding of housing market dynamics, further amplifying the
potential of attention mechanisms in elucidating the multifaceted nature of house price predictions.
The related work showcases a trajectory towards crafting more nuanced, robust, and insightful real
estate price prediction models. These models progressively harness multi-source, geolocated data and
sophisticated machine learning techniques, notably attention mechanisms. This evolution reflects a
maturing field poised to address the intricate challenges inherent to urban landscapes and real estate
markets.

3 Methodology

Our proposed methodology aims to create robust house embeddings by assessing the similarity
between a specific house and its neighbouring properties. This approach goes beyond merely consid-
ering individual property attributes and geographical location. Instead, it encapsulates each house’s
local characteristics with its immediate surroundings. Unlike traditional methods, we integrate the
geographical coordinates of the property to refine this embedding further, capturing the essence of
its surroundings and their relation to critical landmarks or amenities.

Our approach is based on the Attention-Based Spatial Interpolation (ASI) architecture pro-
posed by Viana and Barbosa [15]. This architecture creates geographical and Euclidean similarities
and emphasises specific similar points using an attention mechanism. However, more than a simple
attention head may be required to capture differentiated interrelations. For this reason, our model
employs multi-head-gated attention mechanisms to optimise the extraction of these features and
their interrelationships. Multi-Head Gated Attention allows the model to capture multiple contexts,
such as architectural styles, proximity to amenities, and other relevant features. Concurrently, the
gated attention mechanism controls the flow of information to ensure that only the most pertinent
attributes are considered. This is particularly useful when there is a significant variance between the
target house and its neighbours, allowing the model to focus on the most critical similarities or dif-
ferences. The Euclidean Multi-Head Gated Attention layer, represented in Figure 1 (A), calculates
attention weights for the structural features of neighbouring houses based on their Euclidean distance
to Ai. Concurrently, the Geographical Multi-Head Gated Attention layer in Figure 1 (B) learns the
spatial correlations between the n-nearest geographical neighbours of house i. The output vectors
from both attention layers are concatenated with Ai and Gi and fed into a fully connected neural
network, culminating in a regression layer. This architecture synthesises the influence of the neigh-
bouring houses and the target house’s attributes into a single vector, termed the “house embedding”
illustrated in Figure 1.

3.1 Background knowledge

To perform predictive analysis in real estate valuation, it is crucial to have a solid foundation of knowl-
edge. This field employs a variety of methodologies and algorithms that are based on fundamental
principles and metrics. Understanding these concepts is essential for accurately performing advanced
analytical techniques. This subsection aims to clarify some of these key concepts and metrics, pro-
viding a starting point for a deeper exploration and comprehension of the subsequent methodologies
and evaluations.

3.1.1 Similarity calculation

In the intricate landscape of data science, similarity is a critical underpinning for various algorithms
and methodologies. This sub-subsection aims to illuminate the key metrics ubiquitously employed to
quantify similarity, laying the groundwork for the following analyses.

• Euclidean Distance: A foundational metric in geometry, Euclidean distance provides a straight-
forward measure of similarity by calculating the straight-line distance between two points in an
Euclidean space.

d(P1, P2) =
√

(x2 − x1)2 + (y2 − y1)2 (1)

• Cosine Similarity: This metric is invaluable in high-dimensional spaces, measuring the cosine
of the angle between two vectors. It is especially pertinent in text analysis and natural language
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Fig. 1: Architecture representation of the multi-head gated-attention-based interpolation. (A) Rep-
resent the Euclidean interpolation block based on the multi-head gated Attention. (B) Represent the
geo-interpolation block based on the Multi-Head Gated attention.

processing.

Cosine Similarity =
C ·D

∥C∥ × ∥D∥
(2)

• Jaccard Index: A set-based metric, the Jaccard Index is helpful for categorical data, quantifying
the ratio of the intersection to the union of two sets.

J(C,D) =
|C ∩D|
|C ∪D|

(3)

• Identity Similarity: This is a binary similarity measure used to ascertain whether or not two
data points are identical. Unlike continuous similarity measures, the Identity Similarity scores one
if the data points are similar and 0 if they differ. This measure is handy in scenarios requiring
exact matching or where data is categorical. Mathematically, it is expressed as:

• Gaussian Kernel: Also known as the Radial Basis Function (RBF) with Gaussian form, this
metric is a cornerstone in non-linear data transformations. Unlike other metrics that measure
distance directly, the Gaussian Kernel calculates similarity by mapping the original data points
into a higher-dimensional space through a Gaussian function. This allows it to capture complex,
non-linear relationships between data points. Mathematically, it is expressed as:

K(x, y) = exp

(
−∥x− y∥2

2σ2

)
(4)

The parameter σ controls the spread of the Gaussian function, thereby influencing the similarity
measure. A smaller σ will result in a narrower Gaussian function, making the similarity measure
more sensitive to the distance between data points.
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These metrics serve as the backbone for various algorithms and offer a nuanced understanding of
how data points relate to each other in complex spaces, with the Gaussian Kernel standing out for
its ability to capture non-linear relationships.

3.1.2 Spatial interpolation

Spatial interpolation is a critical technique for predicting unknown values at unobserved locations
based on known values at observed locations, finding applications in diverse fields such as geostatis-
tics, environmental science, and real estate. The effectiveness of spatial interpolation is intrinsically
tied to the choice of similarity measures. For instance, Euclidean distance can be employed in a
straightforward approach like ”inverse distance weighting” (IDW) [44], where the influence of a
neighbouring point on the interpolated value is inversely proportional to its Euclidean distance from
the target location. On the other hand, the Gaussian Kernel [45] offers a more nuanced approach
by transforming the Euclidean distance into a measure of similarity, thereby capturing complex,
non-linear spatial relationships. This is especially useful in advanced geostatistical methods like krig-
ing [46]. Therefore, the choice between straightforward measures like Euclidean distance and more
complex ones like the Gaussian Kernel can significantly impact the quality of spatial interpolation,
exemplifying the broader applicability and importance of similarity measures in data science.

3.1.3 Attention Mechanisms

Attention mechanisms [47] has emerged as a cornerstone in many deep learning models, predomi-
nantly in sequence-to-sequence tasks such as machine translation and speech recognition. The essence
of Attention is to emulate the human ability to focus on specific segments of input data, much like
how we selectively concentrate on some aspects of a visual scene or a conversation. Among the diverse
attention mechanisms, Soft Attention is a mechanism that computes a weighted sum of all input val-
ues. These weights, indicative of the relevance of each input, are typically determined using a softmax
function, ensuring a normalised distribution where the weights sum up to one. The continuous nature
of these weights makes soft Attention inherently differentiable, rendering it particularly amenable to
gradient-based optimisation techniques [48]. On the other hand, intricate Attention operates more
selectively. Instead of distributing focus across all inputs, it zeroes in on a specific subset, effectively
sidelining the others. Given its discrete selection process, traditional backpropagation struggles with
optimising intricate Attention. Yet, this challenge is surmountable with techniques like the reinforce
algorithm [49]. The Gated Attention mechanism [50] bridges the gap between these two. It adeptly
amalgamates information from diverse sources and employs gating tools to ascertain the relevance
of each source. This approach can be perceived as a harmonious blend of the soft and hard attention
paradigms, encapsulating the strengths while mitigating their limitations [51].

3.2 Attention Block

The Attention Block is the computational nucleus of our architecture, designed to intricately capture
the spatial relationships essential for precise house price prediction. As delineated in Figure 1, this
block comprises two main components: the Geo Multi-head Gated Attention and the Euclidean
Multi-head Gated Attention. Each of these components consists of several key stages, contributing
to generating their respective geo- and Euclidean-gated attention vectors. Figure 2 elucidates the
fundamental principles for calculating the Geo and Euclidean attention mechanisms. In the initial
stage, represented by Figure 2 (A), the Distance Calculation Block computes the distance between
the target house and its neighbours. The nature of this distance is contingent on the specific attention
mechanism in play, be it Geo or Euclidean. The Similarity Calculation Block, as depicted in Figure 2
(B), transforms these distances into similarity scores. A Gaussian kernel function is employed for Geo
Attention, while alternative kernel functions may be used for the Euclidean variant. The subsequent
component is the multi-head gated Attention, illustrated in Figure 2 (C). This block leverages the
similarity scores to derive attention weights, which are then gated to modulate their influence. The
entire process is executed across multiple heads, capturing various facets of the spatial relationships
between the target house and its neighbours. Next, the aggregated attention head, represented by
Figure 2 (D), consolidates the outputs from all attention heads into a single vector. This is achieved
through a weighted sum, where the weights are adaptively learned during training. If the architecture
employs multiple attention mechanisms, such as Geo and Euclidean, their aggregated attention heads
are combined further. Following this, Figure 2 (E) illustrates the Final Aggregation Block. In this
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stage, aggregated normalised gating weights are computed using a softmax function. After that, the
weighted sums produced from each attention head are multiplied by these normalised weights. This
aggregation is performed separately for the Geo and Euclidean attention mechanisms, resulting in
their aggregated attention vectors. Finally, the vector produced from this aggregation process is the
final attention vector, as depicted in Figure 2 (F). In summary, the Attention Block encapsulates the
Multi-head Geo Gated Attention and the Euclidean Multi-head Gated Attention, generating their
respective Geo and Euclidean Gated Attention Vectors.

Fig. 2: Comprehensive overview of the Gated Multi-head Attention mechanism within the Attention
Block. (A) depicts the initial computation of geodesic and Euclidean distances, serving as the founda-
tion for subsequent attention calculations. (B) illustrates the Similarity Function, which transforms
these foundational distances into similarity scores. (C) shows the core Multi-Head Gated Attention
Block, where these similarity scores derive gated attention weights across multiple heads. (D) High-
lights the Aggregated Attention Head, consolidating the gated attention weights from all heads into
a singular vector. (E) represents the aggregation of multiple gated attentions for each weighted sum.
(F) Indicates the Final Attention Vector.

3.2.1 Geo Multi-head Gated Attention

The Geo Multi-head, Gated Attention mechanism is intricately designed to capture the spatial rela-
tionships between a target house and its neighbouring properties. This involves using a Gaussian
kernel function to calculate geographic similarity scores between the target house and its neighbours.
Equation 5 demonstrates how the geographic score between the target house Gi and its neighbouring
house Gi,j is computed using the Gaussian kernel function.

s(Gi, Gi,j) = exp (−geo dist(Gi, Gi,j)× ρ) (5)

Here, ρ = σ2

2 and geo dist(Gi, Gi,j) represents the geodesic distance between Gi and Gi,j . The
vector of similarity scores L is then transformed into a hidden representation H ′ through a fully-
connected layer, as described in Equation 6:

H ′ = W ′ · L+ b′ (6)

In this equation, W ′ and b′ are the learned weights and bias terms, respectively. The attention
weights ageo are computed using a softmax layer, as formulated in Equation 7:

ageo(Gi, Gi,j) =
exp(H ′

j)∑n
j′=1 exp(H

′
j′)

(7)

Then, using our defined gated attention mechanism (Equation 8), we apply it to the attention
weights:

Gate(x) = σ(Wg · x+ bg) (8)

Subsequently:
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a′geo(Gi, Gi,j) = Gate(ageo(Gi, Gi,j))⊙ ageo(Gi, Gi,j) (9)

Where:

• x is the input value, in this case, the original attention weight ageo(Gi, Gi,j).
• Wg represents the learned weight matrix associated with the gate.
• bg denotes the bias term.
• σ is the sigmoid function, ensuring the output value of the gate lies in the [0,1] range.

With this, the Geo Gated Attention Vector vggeo(Gi) is computed as a weighted sum of the
features of the neighbouring houses using the modified attention weights a′geo:

vggeo(Gi) =

n∑
j=1

a′geo(Gi, Gi,j)[Gi,j ⊕Ai,j ⊕∆di,j ⊕ yi,j ] (10)

In this equation, ∆di,j represents the geographic distance between house i and its neighbour j.
Similarly, yi,j signifies the price of the neighbor j, and ⊕ denotes the concatenation operation. The
dimensionality of vgeo(Gi) is derived from the summation of dimensions where Gi,j ∈ R2, Ai,j ∈ RT ,
∆di,j ∈ R1, and yi,j ∈ R1. Consequently, the vector vgeo(Gi) can be viewed as a weighted sum of
vectors Gi,j , concatenated with ∆di,j and yi,j , and weighted using the normalised geo gated attention
coefficients which are determined during the training process.

3.2.2 Euclidean Multi-head Gated Attention

The Euclidean Multi-head Gated Attention mechanism is precisely engineered to emphasise the
most relevant structural similarities between a target house and its neighbouring properties. This
mechanism employs the Euclidean distance to compute the similarity scores between the target house
and its neighbours. The Euclidean distance between the target house Ai and a neighboring house
Ai,j is computed as shown in Equation 11:

d(Ai, Ai,j) =

√√√√ T∑
p=1

(ai,p − ai,j,p)2 (11)

where d(Ai, Ai,j) is the Euclidean distance indicating similarity between houses based on structural
attributes, Ai represents the structural features of the target house i, Ai,j denotes the structural
features of the jth neighboring house to i, ai,p and ai,j,p are specific structural attributes of houses i
and j, respectively, and T is the total number of structural attributes considered.

After computing the Euclidean distances, we construct a vector of similarity scores L, which is
then transformed into a hidden representation H through a fully-connected layer, as described in
Equation 12:

H = W · L+ b (12)

In Equation 12, W and b are the learned weights and bias terms, respectively. The attention
weights aeuc are computed using a softmax layer, as formulated in Equation 13:

aeuc(Ai, Ai,j) =
exp(Hj)∑n

j′=1 exp(Hj′)
(13)

The essence of the gated attention mechanism is to refine the attention weights by introducing
an additional modulation step. This modulating factor, or ”gate”, is typically represented as a value
between 0 and 1 and is applied element-wise to the attention weights. The purpose is to amplify or
diminish the original attention values based on the model’s learned parameters.

Given this, the gated attention can be defined as:

Gate(x) = σ(Wg · x+ bg) (14)

Where:

• x is the input value, in this case, the original attention weight aeuc(Ai, Ai,j).
• Wg represents the learned weight matrix associated with the gate.
• bg denotes the bias term.
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• σ is the sigmoid function, ensuring the output value of the gate lies in the [0,1] range.

Subsequently, the gated attention mechanism can be formalised as:

a′euc(Ai, Ai,j) = Gate(aeuc(Ai, Ai,j))⊙ aeuc(Ai, Ai,j) (15)

Here, ⊙ denotes element-wise multiplication. Thus, the attention weight is modulated by its
gating value, allowing the model to allocate attention more selectively to houses exhibiting the most
congruent features.

The Vector with Euclidean Gated Attention denoted as vgeuc(Ai), represents a cumulative
weighted mix of attributes from the surrounding homes. This process uses the gated attention
coefficients a′euc and is illustrated in Equation 16:

vgeuc(Ai) =

n∑
j=1

a′euc(Ai, Ai, j)⊙ [Ai,j ⊕ yi,j ] (16)

Within Equation 16, yi,j defines the price of the j
th neighboring home of house i, while ⊕ denotes

the concatenation action. The size of veuc(Ai) stands at T +1 given that Ai,j resides in RT and yi,j is
part of R1. The composition of veuc(Ai) involves initially multiplying the combined vector [Ai,j⊕yi,j ]
for each jth neighbor of house i by its respective gated attention coefficient a′euc(Ai, Ai,j), producing
an individual weighted vector for every jth neighbor. An overall summation is then applied to these
vectors for all n adjacent homes to house i. Consequently, the elements within veuc(Ai) represent a
comprehensive weighted sum of the structural attributes and the valuations of the nearby homes of
house i. The gated attention coefficients undergo refinement during the learning phase.

3.2.3 Final Aggregation Block

The final aggregation stage shown in Figure 2 E involves collecting and combining the attention
vectors from each head of the attention mechanism and applying the gated attention based on the
normalized gates weights and biases. It is important to note that this process is unique for each
attention mechanism, namely Geo and Euclidean, and it results in the formation of two separate
aggregated attention vectors.

To ensure the effectiveness of the attention mechanism in both Geo and Euclidean interpolation,
it is crucial to normalise the gating weights and biases using a softmax function, as shown in Equation
17. By normalizing the gating weights and biases, they fall within the range of 0 to 1, which makes
them more easily interpretable.

gatenorm,i =
exp(Gate weightsi +Gate biasi)∑n

j=1 exp(Gate weightsj +Gate biasj)
(17)

After normalising the gating weights and biases, we perform element-wise multiplication with each
attention and then aggregate them. The resulting vector that shows the aggregated gated geographic
attention, denoted as vagg ggeo, is presented in Equation 18.

vagg ggeo =

n∑
i=1

gatenorm, geo,i ⊙ vggeo,i (18)

Where gatenorm, geo,i represents the softmax-normalized gating weights and biases, and vgeo,i
refers to the attention vectors from the Geo attention heads.

In a similar vein, the aggregated gated Euclidean attention vector vagg geuc is represented by
Equation 19:

vagg geuc =

n∑
i=1

gatenorm, euc,i ⊙ vgeuc,i (19)

Here, gatenorm, euc,i signifies the softmax-normalized gating weights, and vgeuc,i portrays the gated
attention vectors emergent from the Euclidean attention heads.

In conclusion, the consolidated Geo attention vector vagg ggeo and the Euclidean attention vector
vagg geuc are computed using an element-wise multiplication between the softmax-normalized gating
weights and their corresponding attention vectors as illustrated in Figure 2 F derived from the Geo
and Euclidean attention heads, respectively. This approach ensures an accurate integration of the
significance associated with each feature and reflects the complex spatial relationships inherent within
the Geo and Euclidean contexts.
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3.3 House embeddings

Embeddings serve as a pivotal component in contemporary machine-learning architectures, espe-
cially in scenarios that involve the manipulation of high-dimensional or categorical variables. In
the realm of real estate price prediction, the utility of embeddings is accentuated for the encoding
of categorical attributes such as neighbourhood classifications, types of properties, and associated
amenities into a continuous vector space [52]. These continuous embeddings can capture intricate
relationships between disparate categories, thereby augmenting the predictive efficacy of the machine
learning model [53, 54]. The transformation from a sparse, high-dimensional feature space to a
dense, lower-dimensional vector space has found applications across a multitude of domains, rang-
ing from natural language processing to recommendation engines and graph-based machine learning
algorithms [55–58]. However, effectively utilising embeddings necessitates meticulous tuning and val-
idation to mitigate the risk of overfitting and ensure robust generalisation on unseen data [59]. In
the present study, as delineated in Figure 1, we introduce a novel methodology for generating house
embeddings. Initially, two distinct Multi-Head Gated Attention mechanisms are employed: one geo-
graphically oriented (Geo Multi-Head Gated Attention) and another focused on structural attributes
(Euc Multi-Head Gated Attention). The Geo Multi-Head, Gated Attention mechanism leverages
the geographical coordinates of proximate properties, while the Euc Multi-Head Gated Attention
mechanism utilises the structural attributes of neighbouring properties. The vectors generated from
these attention mechanisms are concatenated with the original geographical (Gi) and structural (Ai)
attributes of the property. This concatenated vector is propagated through a hidden neural layer to
synthesise the final house embeddings. This intricate methodology enables the model to assimilate
both geographical and structural nuances, thereby enhancing its predictive capabilities.

3.4 Regression layer

For the empirical component of our study, we employed a diverse set of regression algorithms, each
optimised through rigorous cross-validation techniques. The algorithms were selected based on their
suitability for the specific characteristics of our dataset as well as the computational resources at our
disposal. Below is an exhaustive list of the algorithms utilised:

• Linear Regression (LR): Utilized with default hyperparameters as implemented in the scikit-
learn library [60]. This algorithm serves as a baseline model for our study.

• Random Forest (RF): An ensemble of decision trees, optimised using grid search and k-fold
cross-validation. Hyperparameters such as the number of trees was varied, with tests conducted
for 50, 100, 200, 700, and 1000 trees [61].

• LightGBM (LGBM): A gradient boosting framework that uses tree-based learning algorithms.
Hyperparameters including the number of trees (50, 100, 200), the number of leaves (3, 4, 5, 100,
300), and the learning rate (0.03, 0.05, 0.07, 0.1) were fine-tuned [62].

• Extreme Gradient Boosting (XGB): An optimised distributed gradient boosting library, fine-
tuned through cross-validation. Parameters such as minimum child weight, gamma, subsample,
column sample by the tree, learning rate, and maximum depth were adjusted [5].

• Categorical Boosting (CatBoost): An algorithm specifically designed for handling categorical
variables. The depth parameter was optimised, with tests conducted for depths of 8 and 10 [63].

• K-Nearest Neighbors (KNN): A distance-based algorithm, optimised by adjusting the number
of neighbours, with tests conducted for 10 and 15 neighbours [64].

• Decision Tree (DT): A basic tree-based model, optimised by adjusting the maximum depth
parameter, with tests conducted for a depth of 9 [65].

• Support Vector Machines (SVM): A kernel-based algorithm suitable for linear and non-linear
problems. Parameters ’C’ and ’gamma’ were fine-tuned using cross-validation [66].

• Regression Layer (RL): This layer serves as the terminal component of our attention-based
neural network model, generating the final housing price prediction based on the feature map
(house embeddings) obtained from preceding layers.

This empirical analysis aims to provide a comprehensive evaluation of the selected algorithms,
thereby elucidating the relative merits and demerits in the context of housing price prediction.
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4 Experimentation

This section presents the experimentation methodology adopted for our house price prediction task,
including the specifics of the dataset preparation, model implementation, training, and evaluation
process.

4.1 Dataset

In the experimental section, we utilised several datasets from different cities across various parts of
the world to showcase the effectiveness of our model.

Table 1: Summary of Datasets

Dataset Price Range Number of Samples Number of Features
IT (Italian) (60000 to 720000) Euro 30,918 24
BJ (Beijing) (5500 to 170000) Yuan 28,550 26
KC (Kings county) (75,000 to 7,700,000) Dollar 21,650 18
POA (Porto Alegre City) (70,000 to 1,168,324) Reais 15,368 7

1. Italian (IT) Dataset: We obtained our dataset of Italian (IT) properties from Immobiliare.
It is a well-known real estate platform in Italy. To collect the data, we designed a web scraper
that extracted information from eight different cities: Genoa, Milan, Turin, Rome, Bologna, Flo-
rence, Naples, and Palermo. We filtered the data to include only five types of properties, such as
apartments and penthouses while excluding outliers like farms, buildings, and properties under
construction. This ensured that the dataset was representative and coherent. We then conducted
a thorough cleaning process to eliminate outliers. This process helped us eliminate data entry
errors and rare property types, resulting in a consistent dataset suitable for analysis. To enrich the
dataset, we added geographical data points. We included precise longitude and latitude coordi-
nates for each property listing and leveraged OpenStreetMap to enhance each listing with Points
of Interest (POI) data. This provided more profound insights into the property’s surroundings,
which could be significant in assessing its value. The final IT dataset comprises 30,918 property
listings spread across eight significant cities in Italy. Each listing includes 19 distinct features that
capture structural attributes, such as surface area, year of construction, and geographical details.

2. Beijing (BJ) Dataset: This dataset consists of 28,550 real estate transactions in Beijing and is
sourced from the H4M study [67]. It includes 25 features, which range from structural attributes
like surface area and year of construction to geographical elements such as district location and
Point Of Interest (POI) information. The features are detailed in Table 1.

3. Kings County (KC) Dataset: Sourced from the GitHub5 In the repository associated with
the ”Attention-Based Interpolation” paper, there is a dataset representing the Kings County,
USA housing market. This dataset comprises 21,650 house samples, characterized by 19 distinct
features. These features, which encompass both structural and geographical attributes, are detailed
in a separate table, Table 1.

It’s important to note that the prices in this dataset are provided in a log-scaled format.
4. Porto Alegre City (POA) Dataset: Derived from the repository provided by Vianna and

Barbosa, this dataset focuses on Brazil’s Porto Alegre City housing market. It includes 15,368
house samples, each described by 6 features, similar to the KC dataset. The features are outlined
in Table 1.

It’s essential to recognize that the prices in this dataset are provided in a log-scaled format.

4.2 Model configuration

Our model was developed in a Python 3.7 environment, using TensorFlow 2.5 as the backend for
the Keras framework. The model was executed on a system with an Intel Core i5-13700K CPU
and an NVIDIA GeForce RTX 3070 GPU. We used cross-validation and grid search techniques for
hyperparameter tuning to achieve optimal results with regression algorithms such as XGBoost and
RandomForest. For our custom model, we fine-tuned the hyperparameters using a validation subset

5https://github.com/darniton/ASI
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of the data to obtain the best possible embedding representation and predictive performance. The
hyperparameters and their values are summarised in Table 2, and we describe each hyperparameter
and its significance below.

• n-nearest: Specifies the number of nearest neighbours to consider. The best values were 40 for
IT, 60 for KC, 60 for POA, and 30 for BJ.

• sigma (σ): Controls the width of the Gaussian kernel. Optimal values were 2 for IT, 2 for KC, 2
for POA, and 10 for BJ.

• nodes: Represents the number of nodes in the hidden layers. The best values were 60 for IT, 60
for KC, 60 for POA, and 60 for BJ.

• Num heads: Specifies the number of attention heads in the model. Optimal values were 8 for IT,
8 for KC, 4 for POA, and 4 for BJ.

• num geo: Indicates the number of geographical features to consider. The best values were 30 for
IT, 30 for KC, 10 for POA, and 15 for BJ.

• num euc: Represents the number of Euclidean dimensions for distance calculations. The best
values were 25 for IT, 30 for KC, 15 for POA, and 15 for BJ.

• LR (Learning Rate): Controls the step size during optimization. Optimal values were 0.001 for
IT, 0.008 for KC, 0.001 for POA, and 0.001 for BJ.

• batch size: Specifies the number of samples per batch during training. Optimal values were 32
for IT, 250 for KC, 32 for POA, and 250 for BJ.

• act func (Activation Function): Either Rectified Linear Unit (ReLU) or Exponential Linear
Unit (ELU) was used. ELU was optimal for all datasets.

• hidden act function (Hidden Layer Activation Function): The activation function for the
hidden layers was either ReLU, ELU, regression, or linear. The linear function was optimal for all
datasets.

• similarity function: We used the Gaussian Kernel and Identity function to compute similarities
between data points. The Identity function was optimal for IT and POA, while the Gaussian
Kernel was optimal for KC and BJ.

Table 2: hyperparameters that were used to train our model

HP Values General Values
Best Values

IT KC POA BJ
N-nearest 5, 10, 15, 60 40 60 60 30
Nearest-geo 20, 25, 30, 35, 40, 45, 50, 55, 60 30 30 10 15

Nearest-Euclid 20, 25, 30, 35, 40, 45, 50, 55, 60 25 30 15 15
Num heads 1,2,4,8,12,15 8 8 4 4
Sigma(σ) 2, 5, 10, 15, 20 2 2 2 10
Nodes 5, 10, 15, 60 60 60 60 60
LR [0.001-0.01] 0.001 0.008 0.001 0.001

Batch size 250, 300, 400, 500 32 250 32 250
Act func Relu and ELU ELU ELU ELU ELU

Hidden act func Relu, ELU, regression and linear linear linear linear linear
Similarity function Identity and Gaussian Kernel Identity Gaussian Kernel Identity Gaussian Kernel

4.2.1 Evaluation Metrics

After training, the model was evaluated using standard regression metrics such as Root Mean Squared
Error (RMSE) and Mean Absolute Error (MALE). These metrics serve specific purposes in assessing
the model’s performance:

• RMSE (Root Mean Squared Error): Provides a measure of the model’s prediction error, penal-
ising more significant errors more severely than smaller ones. It is advantageous when significant
errors are undesirable in the prediction task.

• MALE (Mean Absolute Logarithmic Error): This metric expresses the average magni-
tude of the relative errors between predicted and actual values while disregarding their direction.
It is beneficial when dealing with exponential growth, or underestimation is more critical than
overestimation.
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Table 3: Benchmark the datasets on state-of-the-art machine learning models. The average value is referred to k-fold
cross-validation with k=10

Model IT KC POA BJ
MALE ↓ RMSE ↓ MALE ↓ RMSE ↓ MALE ↓ RMSE ↓ MALE ↓ RMSE ↓

Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg

LR 0.385 0.388 76224 76241 0.1924 0.1925 205460 209330 0.2610 0.2611 152861 153775 0.2394 0.2396 20551 20558

KNN 0.247 0.248 84637 85163 0.1501 0.1513 174046 175628 0.2065 0.2078 122521 123113 0.1116 0.1121 12093 12149

DT 0.197 0.205 69085 70423 0.1583 0.1608 158937 178296 0.2163 0.2195 127382 128915 0.0936 0.0954 10155 10409

RF 0.1502 0.1508 51774 52147 0.1245 0.1251 133933 136993 0.1716 0.1731 105183 105975 0.0784 0.0794 8369 8475

SVM 0.4072 0.4074 128634 128781 0.1331 0.1336 149265 152675 0.2232 0.2246 126911 128191 0.2234 0.2237 20652 20668

LGBM 0.1381 0.1384 46183 46492 0.1164 0.1175 122116 126076 0.172 0.177 104928 106705 0.0790 0.0796 8070 8152

CatBoost 0.1362 0.1368 45942 46233 0.1131 0.1141 120351 123077 0.1793 0.1775 105984 106593 0.0782 0.0785 7995 8066

XGB 0.1350 0.1358 46008 46396 0.1160 0.1167 119479 124459 0.1613 0.1634 100212 101614 0.0723 0.0744 7713 7836

These metrics collectively offer a comprehensive evaluation of the model’s performance in pre-
dicting house prices, allowing for the assessment of the model’s accuracy and its goodness of fit to
the actual data.

4.3 Results and Interpretation

In our evaluation, we consider both the average and best performance metrics to offer a compre-
hensive view of each model’s capabilities. The average performance metrics are derived from 10-fold
cross-validation, indicating how the model will likely perform on unseen data. It gives us a more gen-
eralisable performance measure by mitigating the risk of the model overfitting to a particular subset
of the data. On the other hand, the best performance metrics are extracted using grid search tech-
niques. These values demonstrate the optimal performance that the model can potentially achieve
under ideal hyperparameter settings. Including both types of metrics allows for a balanced under-
standing of the model’s robustness and potential for excellence. It helps in identifying not just the
most consistently high-performing models but also those with the capacity for superior performance
under the right conditions.

4.3.1 Base models benchmark

Table 3 provides an exhaustive evaluation of multiple machine-learning models In an exhaustive eval-
uation of machine learning models on real estate datasets from Italy (IT), King’s County (KC), Porto
Alegre City in Brazil (POA), and Beijing (BJ), the best performance was consistently demonstrated
by XGBoost (XGB). Specifically, XGB recorded the best MALE values of 0.1350 in IT, 0.1160 in
KC, 0.1613 in POA, and 0.0723 in BJ. Notably, the average performance for XGB was stable and
closely aligned with these best values, indicating high reliability across diverse geographic datasets.
CatBoost and LightGBM also performed strongly, closely trailing XGB in each dataset. For instance,
CatBoost had the best MALE values of 0.1362 in IT, 0.1131 in KC, 0.1793 in POA, and 0.0782
in BJ. LightGBM posted the best MALE deals of 0.1381 in IT, 0.1164 in KC, 0.172 in POA, and
0.0790 in BJ. The average performances of CatBoost and LightGBM were also impressively stable
and nearly matched their respective best values. Conversely, Support Vector Machines (SVM) signifi-
cantly underperformed, with its best MALE values being 0.4072 in IT, 0.1331 in KC, 0.2232 in POA,
and a dismal 0.2234 in BJ. K-Nearest Neighbors (KNN), a traditional algorithm, also lagged, partic-
ularly in the BJ dataset, where it posted a best MALE of 0.1116. In summary, XGB takes the lead
across all datasets regarding best and average performance metrics, closely followed by CatBoost and
LightGBM, which also show highly stable average performances. Conversely, SVM and traditional
models like KNN are less effective, particularly in complex, geographically diverse datasets.
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Table 4: Performance Evaluation of our model against the ASI model and ANN

Model IT KC POA BJ
MALE ↓RMSE ↓MALE ↓RMSE ↓MALE ↓RMSE ↓MALE ↓RMSE ↓

ANN 0.197 67835 0.2231 127900 0.2212 125961 0.239 19565

ASI 0.133 46473 0.112 124557 0.139 93818 0.075 7934

Ours 0.1312 45797 0.110 107993 0.136 92020 0.073 7797

4.3.2 Experimental results for our model

We conducted a series of tests to evaluate our model and compare it with ANN and ASI models.
The dataset was split into three subsets, with 70% assigned for training, 20% for testing, and 10%
for validation. Table 4 shows the performance metrics of our model, ASI, and ANN, compared across
four different datasets from various locations: Italy (IT), King’s County (KC), Porto Alegre (POA),
and Beijing (BJ).

Our model performed better than the ASI model in the IT dataset. It has a superior MALE that’s
approximately 1.52% lower and an RMSE that’s approximately 0.36% lower, with figures of 0.1312
and 45,797, respectively. These results highlight our model’s ability to interpret the IT dataset more
accurately.

In the KC dataset, our model’s robustness shines with a notable 13.3% improvement in RMSE
compared to the ASI model. This translates to a lower RMSE of approximately 107,993 for our
model compared to ASI’s 124,557. This underscores our model’s consistent efficiency across various
geographical contexts.

Our model also outperforms the ASI model in the POA and BJ datasets, demonstrating its
versatility and accuracy in handling diverse data types. In the POA dataset, our model achieves a
MALE of approximately 1.44% lower and an RMSE of approximately 13.45% lower compared to
ASI. In the BJ dataset, our model achieves a MALE of approximately 2.67% lower and an RMSE of
2.31% lower compared to ASI. These metrics align with those observed in the IT and KC datasets,
reaffirming the broad applicability of our model.

Our model incorporates Multi-Head Gated Attention mechanisms, which enable it to assimilate
diverse spatial cues between houses and their surroundings. This fosters more precise and robust
predictions as our model comprehensively grasps spatial dynamics.

In conclusion, our model has proven superior to the ASI model across all evaluated metrics and
datasets. The advanced Multi-Head Gated Attention architecture plays a pivotal role in aggregating
contextual cues, ultimately enhancing overall predictive accuracy.

4.3.3 Experimental results for house embeddings

In our experiment, we wanted to see how custom house embeddings generated by our Multi-Head
Gated Attention model would affect the performance of various baseline machine learning models.
These embeddings were created based on structural and geographical information and enhanced
the feature space for algorithms like Linear Regression, KNN, Decision Tree, Random Forest, SVM,
LightGBM, CatBoost, and XGBoost. We evaluated the models’ performance using four different
geographical datasets: Italy (IT), King’s County (KC), Porto Alegre (POA), and Beijing (BJ), and
assessed the Best and Average MALE and RMSE scores.

Our results showed that our custom embeddings significantly positively impacted the predictive
performance of the baseline models. For example, when the CatBoost model was augmented with our
custom embeddings, it achieved the lowest RMSE score in the IT dataset at 45,708, outperforming
even our original Multi-Head Gated Attention model. However, we found that the improvement
magnitude was inconsistent across all datasets. The IT dataset, which combines data from various
cities with significant geographical and Euclidean distances between them, showed only a modest
enhancement of around 1.3% in RMSE when deploying CatBoost with custom embeddings compared
to the baseline.

We discovered that the unique spatial complexities inherent in each dataset could impact the
effectiveness of the custom embeddings. For instance, in the KC dataset, CatBoost with custom
embeddings demonstrated significant gains over its baseline, whereas, in IT, the improvements were
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Table 5: Benchmark the datasets on state-of-the-art machine learning models on the generated embeddings from
our model. The average value is referred to k-fold cross-validation with k=10

Model IT KC POA BJ
MALE ↓ RMSE ↓ MALE ↓ RMSE ↓ MALE ↓ RMSE ↓ MALE ↓ RMSE ↓

Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg

LR 0.1317 0.1318 45837 45868 0.1103 0.1104 106954 107133 0.1369 0.1372 91725 91848 0.0732 0.0733 7779 7786

KNN 0.1352 0.1354 46648 46761 0.1208 0.1211 123235 125010 0.1398 0.1402 92032 92369 0.0767 0.0770 7980 8015

DT 0.1347 0.135 46007 46160 0.1353 0.1412 142731 154575 0.1501 0.1512 97704 98387 0.0752 0.0756 7853 7879

RF 0.1323 0.1325 45921 45995 0.1146 0.1151 112588 115852 0.1388 0.1396 92623 93243 0.0741 0.0742 7843 7864

SVM 0.1743 0.1745 58977 59188 0.1103 0.1103 107389 108700 0.1357 0.1359 91719 91796 0.0778 0.0779 8332 8344

LGBM 0.1324 0.1327 45885 45930 0.1138 0.1141 111551 112994 0.1384 0.1387 92383 92617 0.0742 0.0744 7835 7854

CatBoost 0.1320 0.1321 45708 45752 0.1130 0.1136 110481 113174 0.1367 0.1373 91784 91976 0.0735 0.0737 7806 7814

XGB 0.1324 0.1325 45961 46021 0.1147 0.1152 108644 112332 0.1392 0.1397 92677 93003 0.0739 0.0740 7822 7834

more restrained. We also found that even simpler models like Linear Regression could benefit sub-
stantially from the enriched feature space the embeddings provide. In the IT dataset, the best MALE
improved by approximately 65.8%, the average MALE improved by approximately 66.0%, the best
RMSE improved by approximately 39.8%, and the average RMSE improved by approximately 39.8%.

In the CatBoost model for the IT dataset, the best MALE improved by approximately 2.4%, and
the average MALE improved by approximately 2.9%. The best RMSE improved by approximately
0.5%, and the average RMSE improved by approximately 1.0%. This indicates a positive trend
in reducing MALE and RMSE values, which is crucial for achieving better model performance in
predictive tasks like house price prediction.

In the KC dataset, the implementation of custom embeddings reflected varying degrees of improve-
ment across different machine-learning models. The CatBoost model illustrated an enhancement in
the best MALE value by approximately 5%, although the average MALE value experienced a minor
deterioration by approximately 0.44%. On the brighter side, a more noticeable improvement was
observed in the RMSE values, where the best RMSE value improved by approximately 8.20%, and
the average RMSE value improved by approximately 8.04%.

The POA dataset manifested a significant leap in performance metrics upon integrating custom
embeddings. Specifically, the CatBoost model, when augmented with custom embeddings, demon-
strated a robust improvement in both MALE and RMSE values. The best MALE value improved by
an impressive margin of approximately 23.77%, while the average MALE value improved by approx-
imately 22.66%. Concurrently, the RMSE metrics also exhibited substantial enhancements, with the
best RMSE value improving by approximately 13.40%, and the average RMSE value improving by
approximately 13.45%.

In the BJ dataset, we observed that models trained on embeddings generally perform better on
average values, reflecting a more consistent performance across varying data points. However, the
best values achieved in MALE and RMSE metrics were slightly better when models were trained
on original data. This suggests that while embeddings generally enhance model performance, there
might be specific instances or datasets where traditional feature sets could yield better or comparable
results.

4.4 Discussion

Building upon our previous results in Table 3,4,5 our model, based on Multi-Head Gated Attention,
consistently outperforms the baseline models across multiple datasets. This superiority is particularly
noteworthy as the model excels in spatial interpolation tasks and enhances the performance of other
state-of-the-art machine learning models when its embeddings are used. One of the key advantages
of our model over the attention-based interpolation model is the ability to capture multiple contexts
from each head and control the flow of the information so that it will consider the most similar
neighbours through the use of Multi-Head Gated Attention.
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4.4.1 Spatial and Structural Analysis

The present study introduces a Multi-Head Gated Attention model that exhibits superior perfor-
mance compared to baseline models when applied to various datasets, including IT and POA. This
model utilizes distinct weights and biases within each attention head to capture various contextual
relationships within the data, showcasing its exceptional capabilities in spatial interpolation tasks.
This approach provides a more comprehensive understanding of the underlying spatial dynamics. Our
model’s multi-head gated attention mechanism exceeds traditional singular attention approaches by
integrating various spatial and structural features from the data. This integration is essential as it
moderates the influence of outliers, which is expected in a vast and diverse metropolis like Beijing,
where extreme data points can skew the analysis. By employing this sophisticated mechanism, the
model ensures the delivery of accurate and nuanced house price predictions that genuinely reflect the
complex intricacies of Beijing’s housing market, setting a new benchmark for robustness and reliabil-
ity. The box plots in Figure 3(a,b) effectively illustrate each dataset’s spatial and structural features.
Specifically, Figure 3(b) reveals that Kings County (KC) has a compact urban form, indicated by a
median geodesic distance of just under 0.65 km, which is also supported by a low median normalized
Euclidean distance shown in Figure 3(a), highlighting high structural homogeneity among houses.
In contrast, Beijing (BJ) portrays a more dispersed housing structure with a median geodesic dis-
tance of approximately 0.45 km, as indicated in Figure 3(b), and a median normalized Euclidean
distance of approximately 0.150, as shown in Figure 3(a). These distances indicate a significant vari-
ation in structural features, suggesting a housing landscape that includes densely packed urban areas
and more spread-out suburban or peri-urban zones. The Italian (IT) region demonstrates a median
geodesic distance of around 0.50 km, reflecting less uniformity and greater architectural diversity, as
further evidenced by a median normalized Euclidean distance of around 0.110. Moving to Porto Alegre
(POA), the dataset displays a distinctive spatial composition, with a median geodesic distance that
suggests moderately dense housing and a median normalized Euclidean distance of approximately
0.100. This places POA in a unique position between the densely packed environment of KC and the
varied spatial arrangements of BJ and IT. The moderate variation in POA’s housing structures sig-
nifies an urban design that merges densely built areas with open suburban spaces, reflecting its rich
historical development and cultural diversity. Employing the multi-head gated attention mechanism
for the POA dataset allows for an in-depth exploration of the city’s complex architectural styles and
spatial dynamics. When juxtaposed with the consistent architecture of KC and the diverse spatial
distributions of BJ and IT, our model’s multifaceted approach yields a deep understanding of the
nuances within POA’s urban clusters and the distinctive nature of its rural homes. As a result, our
model stands out as a sophisticated and precise analytical tool, uniquely equipped to navigate and
predict the intricate dynamics of the housing market with extraordinary accuracy and insight.

The improvements highlighted in Table 4 emphasises the progress made by our model compared
to the ASI model. Our model achieved improvements of 1.35% and 1.46% in MALE and RMSE,
respectively, for the IT dataset, 1.79% and 13.34% for the KC dataset, 2.16% and 1.92% for the POA
dataset, and 2.67% and 1.73% for the BJ dataset. These results demonstrate the superiority of our
model across different datasets and spatial configurations. The multi-head gated attention mechanism
played a significant role in achieving these improvements. It captures diverse contextual relationships
within the data by leveraging weights and biases in each head, especially when dealing with regions
with a more varied architectural landscape and pronounced geographical diversity. The improvements
in the KC dataset are significant, as it has a high degree of architectural uniformity. However, the
model could still capture minute differences and nuances, leading to a 13.34% improvement in RMSE.
For the BJ dataset, which has a more dispersed housing layout and a vast spatial range, the model
achieved a 2.67% improvement in MALE and a 1.73% improvement in RMSE, highlighting the
model’s ability to accurately capture the essence of each area despite the considerable differences in
spatial dynamics and architectural styles. The advances in the IT dataset were also noteworthy, with
the model achieving a 1.35% improvement in MALE and a 1.46% improvement in RMSE despite
the unique spatial layout of the region compared to KC. These results demonstrate the robustness
and reliability of our model in providing accurate predictions against the ASI model across diverse
datasets and spatial configurations.

4.4.2 Emebeddings performance

In Table 5, we present a comparative analysis of our model embeddings against the benchmarks out-
lined in Table 3. Additionally, the results from the regression layer of our model are presented in Table
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4. The results underline the substantial advancements made by our model and the generated embed-
dings. Rigorous evaluations across various validation sets demonstrate the superior performance of
our model in handling complex spatial datasets. Furthermore, the efficiency of the generated embed-
dings emphasises our model’s role in reducing data complexity so that simple models like linear
regression can outperform ensembling models.

In the IT dataset, our model achieved a Mean Absolute Logarithmic Error (MALE) of 0.1312
and a Root Mean Square Error (RMSE) of 45,797. These results represent a 2.89% improvement in
MALE and a 0.46% improvement in RMSE over the best baseline model, XGBoost, which recorded
a MALE of 0.1350 and an RMSE of 46,008.

Furthermore, the embeddings in our model outperformed the regression layer of our model and
the base benchmarking in terms of RMSE, with the Catboosting model achieving the best result of
45,708. This indicates a slight improvement over our model’s performance.

These results can be attributed to the challenging nature of predicting housing prices accurately in
this dataset, where various factors come into play. Our model’s success suggests that its embeddings
effectively capture the price variations associated with the diverse housing landscape, as evident from
the wide distribution of Euclidean distances in Figure 3(a). This distribution reflects the influence of
different cities in one dataset, especially Italian cities, which exhibit various housing structures from
the south to the north of italy.

Transitioning to the KC dataset, our model displayed a MALE of 0.110 and an RMSE of 107993.
This corresponds to a percentage improvement of 2.81% and 10.27% in MALE and RMSE, respec-
tively, compared to the best baseline model, CatBoost. CatBoost had a MALE of 0.1131 and an
RMSE of 120351. However, the embeddings seem to mark the best results over our model, and the
base benchmarking with 0.1103 MALE value and 106954 RMSE scored in the linear regression model
shows an improvement in comparison to our model in both metrics, further emphasising the power
of our generated embeddings.

Furthermore, the significant improvement observed in the Kings County (KC) dataset demon-
strates our model’s enhanced capability in dense housing and architectural uniformity regions. Our
model boosts the prediction accuracy for the most relevant houses and creates diverse contex-
tual frameworks that underscore the interrelationships between houses, even in areas of uniformity.
Additionally, creating embeddings encapsulating these relationships further improves the model’s
performance.

Our model exhibits exceptional performance on the Porto Alegre (POA) dataset, achieving the
lowest Mean Absolute Logarithmic Error (MALE) at 0.136 and Root Mean Square Error (RMSE) at
92,020. This performance surpasses the XGBoost baseline’s MALE of 0.1613 and RMSE of 100,212,
indicating a 15.67% improvement in MALE and an 8.17% improvement in RMSE. The model’s
superior embeddings are instrumental in this achievement, effectively streamlining intricate urban
data for linear regression without losing essential details, as indicated in Tables 5 and 4. Figures
3(a,b) potentially reveal the spatial complexity of POA, with its moderately dense urban fabric
intertwined with suburban and rural patches. Despite this diversity posing challenges for predictive
models, our embeddings adeptly encode these complexities, effectively representing the multifaceted
housing styles and values within POA. Our model’s predictive precision stems from its algorithmic
sophistication and nuanced understanding of the region’s unique urban tapestry.

Lastly, base benchmarking for the Beijing (BJ) dataset performs better than our model’s regres-
sion layer. However, our embeddings demonstrate better results, suggesting they are more generalized
than the base benchmarking outcomes. The embeddings score the best MALE of 0.072 and the best
RMSE of 7,713, compared to 0.073 and 0.0732 MALE, and 7,797 and 7,779 RMSE with our model
and linear regression model using our embeddings, respectively. Our embeddings’ average values from
cross-validation are 0.0733 MALE and 7,786 RMSE, while the base benchmarking average values are
0.074 MALE and 7,836 RMSE, showing a close similarity to the embeddings.

Examining the housing market in Beijing presents several challenges, including managing diverse
and often extreme data points typical of a large metropolis. The median distance to the nearest 60
homes in Beijing, as depicted in Figure 3(b), is approximately 0.45 km, highlighting an extensive and
varied housing layout. The city’s diverse architectural styles add another layer of complexity to the
dataset. Our model, equipped with a Multi-Head Gated Attention mechanism, is adept at handling
these challenges. This mechanism effectively regulates the influence of outliers, ensuring a nuanced
and accurate representation of Beijing’s housing landscape. The embeddings generated by our model
are particularly noteworthy for their ability to generalize across Beijing’s diverse housing market.
While the base benchmarking results provide valuable insights, our model’s embeddings capture a
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(a) (b)

Fig. 3: Analysis of Geodesic and Euclidean Distances Among the 60 Nearest Houses Across Datasets
a Highlights the variation in quantiles of the average geodesic distance (in km) for the 60 nearest
houses across the four datasets, reflecting the spatial proximity of residences. b Represents the dis-
tribution in quantiles of the average normalised Euclidean distance for the 60 nearest houses, taking
into account the structural features of the houses. Min-max normalisation was employed to stan-
dardise the distance values due to the diverse attributes of the houses in each dataset.

broader range of intricacies, ensuring they are statistically sound and meaningfully representative of
the real-world scenario.

This quantitative comparison highlights the considerable enhancements of our model. The marked
performance uplift in the BJ dataset accentuates our model’s potential in real estate price prediction
tasks. Additionally, the comparative analysis with the original attention-based interpolation model
by Viana et al. [15] on the KC and POA datasets further amplifies the strengths of our model. Our
model’s ability to efficaciously reduce data dimensionality while retaining crucial information has led
to significant improvements in MALE and RMSE across all datasets. This proficiency in compressing
high-dimensional data into more digestible forms has enabled algorithms like linear regression to
compete and outperform complex ensemble models like LightGBM, CatBoost, and XGBoost.

5 Conclusions

This study marked a significant advancement in the realm of house price prediction, particularly in the
application of spatial interpolation techniques. One of the cornerstone contributions of our research
was the introduction of a novel dataset focused on the Italian housing market. This dataset enriched
the existing pool of resources and offered a unique landscape for testing new methodologies. Our
comprehensive review revealed a noticeable gap in applying attention mechanisms within house price
prediction. Most notably, the use of Multi-Head Gated attention in spatial interpolation was virtually
unprecedented, especially for datasets that were not time series. Our Multi-Head Gated Attention
model successfully bridged this gap, demonstrating a marked improvement in prediction accuracy
over traditional and original attention-based interpolation models. This underscored the untapped
potential of attention mechanisms in capturing intricate spatial dependencies. However, it was crucial
to acknowledge the computational cost associated with our approach. The complexity of the model
posed challenges for real-time applications or scenarios with limited computational resources. As
we looked to the future, our research aimed to expand the horizons of house price prediction by
incorporating additional data sources. These included satellite imagery and both interior and exterior
photographs of properties. Such multi-modal data integration would offer a more holistic view of the
factors influencing house prices, thereby enhancing the predictive capabilities of our model.
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