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In this letter, we present a novel exact scalar quasibound states solutions in the

extremal Reissner-Norström black hole background. We start with the construc-

tion of the governing covariant relativistic scalar field equation, the Klein-Gordon

equation in the extremal Reissner-Norström black hole background and applying

the separation of variables anzat. The exact relativistic scalar wave’s angular so-

lution is found in terms of the spherical harmonics while the two independent ra-

dial wave solutions are, for the first time, exactly found and presented in terms of

the double confluent Heun functions. The solutions are settled in the gravitational

potential well and behave like an ingoing waves approaching black hole’s hori-

zon, vanishing when approaching infinity. The gravitationally bounded charged

massive scalar fields are found to have quantized complex valued energy levels

while imaginary energy levels are obtained for the charged massless scalar field,

of both cases, indicating decaying states. Further investigation shows that the ex-

treme Reissner-Nordstöm black hole does not support scalar cloud. And with the

help of the obtained exact radial solutions, the Hawking radiation of the extremal

Reissner-Nordstöm black hole is investigated and we find the zero temperature of

the black hole’s horizon.

I. INTRODUCTION

The efforts to formulate the theory of of quantum systems in a curved space-time back-

ground goes back to the year of 1920s-1930s. The study was carried out independently by

Fock, Shcrödinger and Pauli to obtain the picture of the quantum mechanics in a curved

space [1–3]. The effect of the space-time curvature on the Hydrogen atom has also been

investigated in 1970s [4]. It was found that the presence of the gravitational field repre-

sented by the space-time curvature alters the energy levels of the Hydrogen’s electron.

A concrete effort to investigate the analytical solutions of the relativistic scalar filed in

a curved space-time by solving the Klein-Gordon equation for a massive field was carried
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out for the first time by Rowan and Stephenson in 1977 [5]. However, due to the complex-

ity of the Klein-Gordon’s radial equation, the analytical solutions were obtained only for

asymptotic regions, i.e., close to the exterior of the event horizon and far away from the

event horizon. The radial asymptotic solution found by Rowan and Stephenson is given

in terms of the Hypergeometric functions that subjects to a polynomial condition, from

where, the hydrogenic-like energy levels expression is obtained. Interestingly, scattering

and bound states of scalar field on the Schwarzschild spacetime are obtained analyti-

cally in [6]. Quasibound states are computed explicitly in case of the Reissner-Nordström

black holes [7–9] and the Kerr black hole [10]. In addition, for acoustic black holes, the

quasibound state solutions are obtained in many scenarios [11–13]. Together with the

advances in the research of the family of the Heun differential equations, we have de-

veloped a method to exactly solve the radial equation of the Klein-Gordon equation in

several black hole backgrounds. Exact solutions of quasibound states of massless and

massive neutral scalar field in various static spherically symmetric backgrounds have

successfully been obtained in terms of either the confluent Heun or the general Heun

functions [6, 8, 11–16].

On the otherhand, the failure of numerical methods to solve the Klein-Gordon equa-

tion with extremal black holes background is a well known problem [17, 18]. The diffi-

culty forces the numerical investigation stop short at the near-extremal limit [19–26]. Thus,

in this paper, the charged scalar field in an extremal Reissner-Norström black hole back-

ground will be investigated analytically.

We will start with the discussion of properties of the Reissner-Norström space-time

in Sec II and the Klein-Gordon equation that is non-minimally coupled to the electro-

magnetic vector potential is constructed in Sec III. Using the ansatz of separation of

variables, we solve the temporal and the angular parts respectively in terms of the har-

monic function and the Spherical Harmonics. The radial part is then treated carefully

and is brought to its normal form. We find that the radial equation of the charged scalar

field in the extremal Reissner-Norström black hole background has exact solutions in

terms of the double confluent Heun functions. By applying the polynomial conditions

of the double confluent Heun function, the complex valued spectrum of the gravito-

electromagnetically bound states are found for both massive and massless cases. This

are discussed in Sec III C.

We will also examine the analytical energy levels expression in the so-called small

black hole limit, given by the condition,

Mblack hole ≪
m2

Plankc2

E0
, (1)

where mPlank is Plank mass, E0 is the scalar particle’s rest energy and c is the speed of

light. In this particular condition, the imaginary part of the complex valued resonance

frequencies are suppressed [27, 28], and we recover the expression found in [5] after set-
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ting q = 0,

En

E0
≈ 1 − E2

2n2
, (2)

E =

(

E0rs

h̄c

)2

. (3)

Having the exact energy expression, we investigate the presence of the charged scalar

cloud around the extremal Reissner-Norström black hole in Sec IV by imposing the ω̃ =

qQ and ω̃I = 0 conditions and found out that the extremal Reissner-Norström black hole

does not support scalar cloud.

In Sec V, using the Damour-Ruffini method, we make use the obtained radial exact

solutions to calculate the Hawking radiation of the Extremal Reissner-Norström black

hole’s horizon. We find out that the Extremal Reissner-Norström black hole’s horizon

does not radiate and it has zero Hawking temperature. We summarize our findings in

Sec VI.

II. THE REISSNER-NORDSTRÖM BLACK HOLE

It did not take long after Einstein completed his general theory of relativity in 1915

for Karl Schwarzschild to find the first exact static spherically symmetric black hole so-

lution [29]. In the same year, Hans J. Reissner generalized the Schwarzschild’s solution

by including an electric charge into the black hole solution [30]. Two years later, Gunnar

Nordström independently obtained the same solution [31].

The Reissner-Nordström (RN) space-time describes the space-time geometry outside

a static spherically symmetric charged massive body with mass M and electric charge Q.

The space-time is described by this following line element,

ds2 = − f (r)dt2 +
dr2

f (r)
+ r2dθ2 + r2 sin2 θdφ2, (4)

f (r) =
(r − r−)(r − r+)

r2
, (5)

where the inner (r−) and outer (r+) horizons are given by

r± = M ±
√

M2 − Q2. (6)

Generally, the RN metric has two event horizons when M > Q. The RN metric de-

velops to naked singularity as the event horizons become complex number i.e., M < Q.

Interestingly, the event horizons are degenerate when gravitational mass M equals elec-

tric charge Q yielding the extremal black hole. Here in this article, we focus particularly

on extremal RN black hole i.e., r− = r+ = M.
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III. THE KLEIN-GORDON EQUATION

The quasibound states dynamics is governed by the covariant equation describing the

behaviour of a relativistic charged scalar field in a curved spacetime is given by the Klein-

Gordon equation,

DνDνψ + µ2ψ = 0,

where,

Dν = ∇ν − iqAν. (7)

Scalar field’s mass and charge are denoted by µ and q respectively. The electromag-

netic potential is chosen to be,

Aν =

(

Q

r
, 0, 0, 0

)

(8)

The scale field ansatz is given by,

ψ
(

t, r, θ, φ
)

= e−iωtR (r)Ym
l

(

θ, φ
)

, (9)

where Ym
l

(

θ, φ
)

is the spherical harmonics. Under extremal RN spacetime, the Klein-

Gordon equation can be expressed as,

R′′ +
2

r − r+
R′ +

(

r2

(r − r+)4

(

ωr + qQ
)2 − µ2r2 + ℓ(ℓ+ 1)

(r − r+)2

)

R = 0, (10)

where R′ = dR/dr and ℓ(ℓ + 1) is the eigenvalue of spherical harmonic function. Now,

we define a new variable,

x ≡ r − r+
r+

. (11)

Thus, the event horizon is at x = 0 and x → ∞ as one approaches infinity. The Klien-

Gordon equation becomes,

d2R

dx2
+ p (x)

dR

dx
++q (x) R = 0, (12)

where,

p(x) =
2

x
, (13)

q(x) =
[

ω̃2 − µ̃2
]

+ 2
[

ω̃
(

2ω̃ + qQ
)

− µ̃2
] 1

x
+
[

6ω̃2 + 6ω̃qQ + q2Q2

− ℓ(ℓ+ 1)− µ̃2 ]
1

x2
+
[

2
(

2ω̃ + qQ
) (

ω̃ + qQ
)

] 1

x3
+
[

(

ω̃ + qQ
)2
] 1

x4
. (14)

We define ω̃ = ωr+ and µ̃ = µr+. Then, we transform the radial differential equa-

tion into the normal form by following the method described in Appendix A. The radial

equation (12) in the normal form reads,

∂2
xY (x) + K (x)Y (x) = 0, (15)
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where Y(x) ≡ xR(x). Since, K(r) = − 1
2

dp
dx − 1

4 p2 + q (see Appendix A), equation (13)

implies that K(x) = q(x). This equation generally describes scalar perturbation on ex-

tremal RN background. In the following subsection, we shall impose specific boundary

condition corresponding to quasibound states.

A. The Boundary Conditions

The quasibound states are quasilocalized relativistic quantum states bound in the

black hole’s gravitation potential well. They have quasistationary energy levels and be-

have like an ingoing wave close to the black hole’s horizon and vanishing at infinity.

Let us consider the normal form of the radial equation (15). Far away from the horizon,

x → ∞, the differential equation can be approximated in this following form,

∂2
xY (x) +

[

ω̃2 − µ̃2
]

Y (x) = 0, (16)

we obtain the decaying solution, we obtain a decaying solution,

Y (x) = Ae−
√

µ̃2−ω̃2x, (17)

when ω̃ < µ̃ is satisfied.

Near the horizon, i.e. x → 0, the radial equation (15) is then,

∂2
xY (x) +

(

ω̃ + qQ
)2

x4
Y (x) = 0, (18)

where the solutions are obtained as follows,

Y (x) = x

[

C1e
i
(

ω̃+qQ
x

)

+ C2e
−i
(

ω̃+qQ
x

)

]

, (19)

where C1, C2 are integration constants. Now, we define k = ω̃ + qQ and redefining the

radial variable x̃ = 1
x . We can set C1 = 0 to obtain ingoing wave solution.

B. The Radial Exact Solution

By comparing (13) with the normal form of double confluent Heun differential equa-

tion (A10) in Appendix A. One can identity the following,

ǫ = 2
√

µ̃2 − ω̃2, (20)

γ = 2i(ω̃ + qQ), (21)

δ = 2 + 2iqQ + 4iω̃, (22)

α = 2

(

ǫ

2
− µ̃2 +

(

2ω̃ + qQ
)

(

ω̃ +
iǫ

2

)

)

, (23)

β = µ̃2 + ℓ(ℓ+ 1)− iqQ (1 + ǫ − 2iω̃)− 2ω̃

(

ω̃ + i

(

1 +
ǫ

2

)

)

. (24)
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Here, we have successfully solved all of the double confluent Heun’s parameters.

Thus, the novel exact solutions of the Klein-Gordon equation in the extremal Reissner-

Nordström background can be written as follows,

ψ = ψ0e−iωtY
ml
l

(

θ, φ
)

[

Ax
1
2 (δ−2)e

1
2(ǫx− γ

x ) HeunD
(

β, α, γ, δ, ǫ, x
)

+Bx−
1
2 (δ−2)e−

1
2(ǫx− γ

x ) HeunD
(

−2 + β + δ, α − 2ǫ,−γ, 4 − δ,−ǫ, x
)

]

, (25)

where HuenD is the double confluent Huen function.

C. The Scalar’s Energy Quantization

Now, let us apply the polynomial condition of the double confluent Heun as given

in (A11). The polynomialization of the radial solution is important since any infinite

sequence of polynomials pn, where pn having degree n forms a basis for the infinite

dimensional vector space of all polynomials. The set of the polynomial functions can

be constructed as orthogonal basis by using the Gram-Schmidt orthogonalization. The

polynomial condition terminates the infinite series of the radial solution at nth
r order and

leads to quantization of relativistic scalar’s energy as follows,

4ω̃2 − 2µ̃2 + 2ω̃qQ

2
√

µ̃2 − ω̃2
+

(

1 − 4ω̃2 + 2q2Q2 + 6ω̃qQ

2i(ω̃ + qQ)

)

= −nr , (26)

where nr is the principal quantum number that can be connected with the angular mo-

mentum quantum number ℓ and the excitation number N as nr = N + ℓ.

In addition, we investigate the energy quantization in the small black hole limit. Tak-

ing ω̃ = ωr+ ≪ 1, qQ ≪ 1 and ω̃
µ̃ ≈ 1, for massive charged scalar field, a Hydrogenic

energy levels expression is obtained,

ω̃=µ̃

√

1 − (µ̃ + qQ)2

(nr + 1)2
, (27)

.

In the limit where
(µ̃+qQ)

2

(nr+1)2 ≪ 1, one can expand (27) as a Taylor Series as follows,

ω̃ = µ̃

[

1 − (µ̃ + qQ)2

2(nr + 1)2
− (µ̃ + qQ)4

8(nr + 1)4
− (µ̃ + qQ)6

16(nr + 1)6
+ . . .

]

. (28)

If q is set to be zero, we recover the well-known energy levels of the so called gravita-

tional atom,

ωn

µ
≈ 1 − κ2

2(nr + 1)2
, κ = µM2, (29)



7

that can be found in [32–36]. Analogous to the electronic transition that emits photon,

graviton is emitted as level transition occurs in a gravitational atom [37, 38].

In the case of massless field (µ̃ = 0), energy level can be solved as follows,

ω̃ = −qQ

2
+

(nr + 1)

4
i. (30)

Clearly, the interaction between black hole and field dictates the real part of quasi-

bound state frequency while the imaginary part solely depends on the principal quantum

number nr. The positive real part requires that qQ < 0, therefore, there is no superradi-

ance in this case [39]. In addition, it is shown in [40] that extremal Reissner-Nordström

black hole does not suffer from superradiant instability. In the absence of scalar field

charge (q = 0), this formula agrees with those obtained in [8].
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2.5

Re(˜)

Im
(˜

)

qQ=-0.01
qQ=-0.03
qQ = -0.05

FIG. 1. Quasibound state’s frequencies with µ̃ = 0.1 where nr = 0 − 10 increasing from bottom to

top.

In Fig. 1, we plot quantized quasibound states frequencies in a complex ω̃ plane for a

scalar field with mass µ̃ = 0.1 in the extremal Reissner-Nordström black hole background

where the charge configurations are varied as qQ = −0.01,−0.03,−0.05. We present the

quasibound states frequencies for nr = 0, 1, ..., 10 where the lowest nr is always associ-

ated with lowest value of Im(ω̃). The leap of the imaginary part of the quasibound states

frequencies, ∆Im(ω̃), seems steady while the real part of the quasibound states frequen-

cies significantly increase for lower nr and slightly increase for higher nr, similar to the

hydrogenic atom’s electronic level transitions.

In Fig. 2, we separately present the real and imaginary quasibound states frequen-

cies for a fixed charge configuration qQ = −0.1. We solve the ω̃ for various value of µ̃
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FIG. 2. Quasibound state’s frequencies as a function of µ̃ for fixed qQ = −0.1.

0.2 0.4 0.6 0.8 1.0
0.00

0.01

0.02

0.03

0.04

-qQ

R
e
(�˜

)

0.2 0.4 0.6 0.8 1.0

-0.008

-0.006

-0.004

-0.002

0.000

-qQ

Im
(�˜

)

�
˜
= 0.01

�
˜
= 0�0�

�
˜
= 0�0�

�
˜
= 0.04

FIG. 3. Quasibound state’s frequencies as a function of −qQ with nr = 0. The colored curves are

denoted by the legend in the right plot.

with nr = 0, 1, 2, 3. It is important to mention that the imaginary part of the quasibound

states frequencies runs from positive, zero, and finally entering negative zone. The zero

imaginary part of the frequencies indicates the existence of a scalar cloud which will be

elaborated more in the following section.

In Fig. 3, we present visualizations of the real and imaginary part of the quasibound

states frequencies for various qQ − µ̃ configuration. The Re(ω̃) vs − qQ graph shows us

that larger value of −qQ causes larger drop of Re(ω̃). Classically, this is understood as the

adding up of the attractive electrostatic potential to the gravitational potential enhancing

the binding energy of the scalar fields to the central black hole. The Im(ω̃) vs − qQ

graph also shows us that the quasibound states are stable since all values of the Im(ω̃)

are negative indicating decaying states. Moreover, we also notice that the value of Im(ω̃)

increases in magnitude following the increase in magnitude of qQ. This indicates that the

power of the extremal charged black hole in absorbing scalar particles is increased with

the help of the attractive electrostatic interaction. Also notice that for each value of qQ,

larger µ̃ leads to more rapid decay.
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IV. THE CHARGED SCALAR CLOUD

In this section, we will investigate the existence of the scalar cloud around the extremal

Reissner-Nordström black hole. The scalar cloud is an stable configurations of a charged

scalar field stationarily bound in a black hole background. The scalar cloud have a real

valued frequency that matches the qQ configuration as follows [41–43],

ω̃ = qQ, (31)

ω̃I = 0. (32)

The first scalar cloud condition, classically, is understood as the equilibrium between

gravitational-electrostatic force balance. The second energy condition indicates that there

is no ingoing scalar flux impenetrates the outer horizon. Therefore, they do not grow or

decay over time.

Applying the first condition to the exact energy expression (26), we obtain,

6ω̃2 − 2µ̃2

2
√

µ̃2 − ω̃2
+ (1 + 3iω̃) = −nr. (33)

where the analytical solution must be complex valued, thus, violates the second condition

of the scalar cloud. Now, let us check whether there exists a massless charged scalar cloud

around the extremal Reissner-Nordström black hole by setting µ̃ = 0 in the equation (33),

here we obtain,

ω̃ = i
(nr + 1)

6
. (34)

Again, the solution is purely imaginary, violating the second criterion of the scalar

cloud. Therefore, there is no solution for µ̃ that satisfies the energy condition (32). Thus,

the charge scalar cloud surrounding an extreme Reissner-Nordström black hole does not

exist. The same conclusion is obtained via asymptotical method and can be found in [41].

However, it is possible to find a condition for a long-lived massive scalar cloud by

taking ω̃ = ωr+ ≪ 1 and ω̃
µ̃ ≈ 1 limit of the (33) and obtain a real valued energy levels

expression as follows,

ω̃ = µ̃

√

1 − 4µ̃2

(nr + 1)2
. (35)

Despite the extremal Reissner-Nordström black hole does not support scalar cloud.

But, it is possible to find scalar configuration that minimizes the decay.

V. THE HAWKING RADIATION

In this section, the Hawking radiation coming out of the extremal Reissner-Nordström

black hole’s horizon will be investigated. With the exact solution of the radial wave func-

tion in hand, we can apply the Damour-Ruffini method [44, 45] in order to derive the
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radiation distribution function without having to go through the black hole’s thermo-

dynamics. Let us start with rewriting the complete radial solution of the Klein-Gordon

equation as follows,

R = Ax
1
2 (δ−2)e

1
2(ǫx− γ

x ) HeunD
(

β, α, γ, δ, ǫ, x
)

+ Bx−
1
2 (δ−2)e−

1
2(ǫx− γ

x ) HeunD
(

−2 + β + δ, α − 2ǫ,−γ, 4 − δ,−ǫ, x
)

. (36)

Approaching the horizon r+ i.e.,x → 0, the wave function can be expanded up to the

first order of x, where,

e
1
2(−

γ
x ) HeunD

(

β, α, γ, δ, ǫ, x → 0
)

≡ φ1, (37)

e
1
2(

γ
x ) HeunD

(

−2 + β + δ, α − 2ǫ,−γ, 4 − δ,−ǫ, x → 0
)

≡ φ2. (38)

Notice that, the HeunD(x → 0) → ∞ regardless the value of the parameter. There-

fore, φ1 can be considerably finite while φ2 diverges as one moves closer to the horizon.

Therefore, in the near horizon limit, the radial wave can be rewritten in this following

form,

R = Aφ1x
1
2 (δ−2) + Bφ2x−

1
2 (δ−2). (39)

The scalar’s radial wave consists of two parts, i.e. ψ+in is the ingoing wave and ψ+out

is the outgoing wave as follows,

R =

{

ψ+in = Bφ2x−
1
2 (δ−2)

ψ+out = Aφ1x
1
2 (δ−2)

, (40)

where after defining κ = 1
2(δ − 2), the combination of the radial and temporal solution

leads to this following simple wave equation,

R =

{

ψ+in = Bφ2e−i(ωt+κ ln x)

ψ+out = Aφ1e−i(ωt−κ ln x) , (41)

Furthermore, we can investigate the ratio
φ2
φ1

as follows,

φ2

φ1
=

HeunD
(

−2 + β + δ, α − 2ǫ,−γ, 4 − δ,−ǫ, x → 0
)

HeunD
(

β, α, γ, δ, ǫ, x → 0
) e(

γ
x ), (42)

and as the HeunD are series solutions, the behaviour of the quantity
φ2
φ1

is mostly deter-

mind by the exponential term. So, in the limit x → 0, we obtain,

lim
x→0

φ2

φ1
= ∞. (43)

Now, let us apply the Damour-Ruffini method as the following. Suppose we have

an ingoing wave hitting the apparent horizon at r+ and inducing a particle-antiparticle
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pair where the particle will enhance the reflected wave and the antiparticle will be-

come the transmitted wave. Analytical continuation of the wave function ψ (x) de-

scribes unique antiparticle state for a particular particle state and it is defined as ψ−out ≡
ψ+out

(

x → xe−iπ
)

is obtained simply by changing x → −x = xe−iπ as follows,

ψ−out = Aφ1

(

xe−iπ
)

1
2 (δ−2)

,

= ψ+oute
− 1

2 iπ(δ−2).

(44)

We can therefore, consider the following ratio,

∣

∣

∣

∣

∣

ψ−out

ψ+in

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

ψ+out

ψ+in

∣

∣

∣

∣

∣

2

e−2iπ(δ−2), (45)

=

∣

∣

∣

∣

∣

ψ+out

ψ+in

∣

∣

∣

∣

∣

2

e4π[2ω̃+qQ],

where we substitute δ as in (22). Using the fact that total probability of the particle wave

going out from the horizon and the antiparticle wave going in must be equal to 1, we

obtain this following distribution function,

〈

ψout

ψin

∣

∣

∣

∣

∣

ψout

ψin

〉

= 1 =

∣

∣

∣

∣

∣

Aφ1

Bφ2

∣

∣

∣

∣

∣

2 ∣
∣

∣

∣

1 − e4π[2ω̃+qQ]
∣

∣

∣

∣

, (46)

and let us write the black hole’s apparent horizon’s radiation distribution function,

∣

∣

∣

∣

B

A

∣

∣

∣

∣

2

= ζ(TH) =
1

e
h̄ω

kBTH − 1
, (47)

where kB is the Boltzmann constant. The equation (46) in the near horizon limit, now can

be rewritten as follows [45],

ζ(TH) =

(

lim
x→0

φ1

φ2

)

×
∣

∣

∣

∣

1 − e4π[2ω̃+qQ]
∣

∣

∣

∣

= 0. (48)

By comparing (47) and (48), we can conclude that the extremal Reissner-Nordström

black black hole’s horizon has a zero Hawking temperature, thus, does not radiate. This

is in contrast with the non-extremal Reissner-Nordström black hole where the apparent

horizon’s radiation distribution function is obtained as [8],

ζ(TH) =

∣

∣

∣

∣

B

A

∣

∣

∣

∣

2

=
1

e
4π
δr [

E
h̄c r2

+] − 1
=

1

e
h̄ω

kBTH − 1
, (49)

leads to a non-zero Hawking temperature,

TH =
δrch̄

4πkBr2
+

, (50)
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where δr = r+ − r− is as defined in equation (6). One can also set Q = M and directly

substitute the expression into the Hawking temperature formula of the non-extremal

Reissner-Nordström’s above to get the same conclusion that the extremal Reissner-

Nordström black black hole’s horizon has a zero Hawking temperature.

VI. SUMMARY

In this work, we explore the quasibound spectrum of charged relativistic bosonic

quantum states of the massive and massless fields in an extremal Reissner-Nordström

black hole space-time. We start with the Klein-Gordon equation with extremal Reissner-

Nordström black hole background. Due to the static spherically symmetry, the temporal

and the angular parts of the relativistic wave solution are obtained respectively in terms

of the harmonic function and the Spherical Harmonics. We carefully deal with the radial

equation and successfully find the exact solutions in terms of the double confluent Heun

functions

The quantization of the radial solution is done by applying the polynomial condition

of the double confluent Heun function. The relation between the double confluent Heun’s

parameters turns out to be an energy quantization rule, presented in (26). We also do a

further investigation for the ωr+ → 0 limit and obtain the Hydrogenic atom’s energy

level (27). Similar expressions are also obtain via asymptotic methods, can be found in

[46, 47]. We also obtain exact energy level for for massless charged scalar field around the

extremal Reissner-Nordström black hole. We find that imaginary part of the quasibound

state can either be positive, zero and negative while the real part can only be positive if

qQ < 0. Increasing scalar mass µ̃ leads to a more rapid decaying modes where the real

part is increasing with µ̃. We can see that larger magnitude of −qQ increases the com-

bined attractive potential leads to enhancement of both the scalar fields’ binding energy,

Re(ω̃) and the decay, which is represented by the magnitude of −Im(ω̃).

Using the exact quantized energy expression (26), we search for a possible charged

scalar cloud around an extremal Reissner-Norström black hole. We found that there is

no possible charged scalar cloud configuration for the extremal Reissner-Norström black

hole. The same conclusion is also found in [41]. We have also investigated the Hawking

radiation of the extremal Reissner-Norström black hole’s horizon via the Damour-Ruffini

method. We find that the extremal static spherically symmetric charged black hole’s hori-

zon has zero temperature, thus, does not radiate. The same result is also obtained via

black hole thermodynamics analysis in [48].
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Appendix A: The Normal Form and double confluent Heun differential equation

In this appendix, we discuss a useful transformation of a linear second order differen-

tial equation [49]. Let us first consider a general second order differential equation in the

following form

d2y

dx2
+ p̃(x)

dy

dx
+ q̃(x)y = 0. (A1)

Now, we assume that the solution can be written as

y = Y(x)e−
1
2

∫

p̃(x)dx. (A2)

If one assumes that e−
1
2

∫

p̃(x)dx 6= 0, then (A1) can be recast into the normal form

d2Y

dx2
+

(

−1

2

dp̃

dx
− 1

4
p̃2 + q̃

)

Y = 0. (A3)

Now, Let us consider the double confluent Heun differential equation [50],

d2y

dx2
+

(

γ

x2
+

δ

x
+ ǫ

)

dy

dx
+

(

α

x
− β

x2

)

y = 0. (A4)

This equation has two irregular singular points at x = 0 and x = ∞. A general solution

of this equation is [50]

y = A HeunD
(

β, α, γ, δ, ǫ, x
)

+ Be
γ
x −ǫxx2−δ HeunD

(

−2 + β + δ, α − 2ǫ,−γ, 4 − δ,−ǫ, x
)

≡ H(x), (A5)

where HeunD is doubly confluent Heun function. One puts the double confluent Heun

differential equation in its normal form by recognizing

p̃ =
γ

x2
+

δ

x
+ ǫ, (A6)

q̃ =
α

x
− β

x2
, (A7)

y = Y(x)e−
1
2(ǫx− γ

x )x−
δ
2 ≡ H(x), (A8)

Therefore, the normal form of (A4) is obtained

d2Y

dx2
+ K(x)Y = 0, (A9)

where

K(x) = −1

2

dp̃

dx
− 1

4
p̃2 + q̃,

= −ǫ2

4
+

1

x

(

−ǫδ

2
+ α

)

+
1

x2

(

δ

2
− δ2 + 2ǫγ

4
− β

)

+
1

x3

(

γ − δγ

2

)

+
1

x4

(

−γ2

4

)

. (A10)
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Remark that the double confluent Heun function becomes polynomial when the fol-

lowing condition is met

α

ǫ
= −nr, nr = 0, 1, 2, . . . . (A11)
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