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COMPACT MODULI OF CALABI-YAU CONES AND
SASAKI-EINSTEIN SPACES

YUJI ODAKA

Abstract. We construct proper moduli algebraic spaces of K-
polystable Q-Fano cones (a.k.a. Calabi-Yau cones) or equivalently
their links i.e., Sasaki-Einstein manifolds with singularities.

As a byproduct, it gives alternative algebraic construction of
proper K-moduli of Q-Fano varieties. In contrast to the previ-
ous algebraic proof of its properness ([BHLLX21, LXZ22]), we
do not use the δ-invariants ([FO18, BJ22]) nor the L2-normalized
Donaldson-Futaki invariants. We use the local normalized volume
of [Li18] and the higher Θ-stable reduction [Od24b] instead.
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1. Introduction

It follows from the recent breakthrough [DS14], combined with
the Gromov’s precompactness theorem and the theory of Gromov-
Hausdorff distance [Gro99], that there should be compactifying topo-
logical space of moduli spaces of Kähler-Einstein Fano manifolds, let-
ting the boundary parametrizes certain singular Kähler-Einstein Fano
varieties. Indeed, [DS14] uses Cheeger-Colding theory to prove that
for Kähler-Einstein smooth Fano manifolds of fixed dimensions, the
Gromov-Hausdorff limits, which always exists for subsequences, admit
the structure of log terminal Kähler-Einstein Fano varieties, which are
Q-Gorenstein smoothable (cf., [OSS16, §2]). In particular, they ad-
mit the structure of algebraic varieties. This also matches the general
K-moduli conjecture then ([Od10, Conjecture 5.2]), a purely algebro-
geometric conjecture, which was later refined in the course of devel-
opments. Indeed, the obtained compact moduli topological spaces
were enhanced to be proper (compact) algebraic spaces by using K-
stability in the series of works [OSS16, LWX19, SSY16, Od15a] (cf.,
also [MM93] which predates K-stability). By more birational algebro-
geometric discussions after that, recently we witnessed a celebrated
algebraic (re-)proof and generalization of the facts that the moduli
(stack) of K-polystable Fano varieties satisfies the valuative criterion
of properness by [BHLLX21, LXZ22], and the coarse moduli is projec-
tive ([CP21, XZ22]). Their algebraic proof depends on the theory of
δ-invariants [FO18, BJ22] of Fano varieties. This reproves and extends
the original construction [LWX19, Od15a] (cf., also closely related re-
sults in [SSY16]) to generally singular Q-Fano varieties.
In this paper, we extend this K-moduli construction to that of

Fano cones, e.g., contracted (pluri-)anticanonical line bundles over
Kähler-Einstein Fano manifolds, by a different method. What under-
lies historically behind this theory of cone type varieties is the real
odd-dimensional version of Kähler-Einstein manifolds, the structure of
Sasaki-Einstein manifolds on their links (see the textbook [BG07]) as
we review in the second section. One benefit of our approach is that it
also gives alternative (partial) proof of the algebraic construction of the
K-moduli of Fano varieties, without depending on the δ-invariant nor
L2-normalized Donaldson-Futaki invariants, but rather we only use the
normalized volume or the volume density of the Einstein metrics, to
match more easily with theory of log terminal singularities. We work
over an algebraically closed field k of characteristic 0.

Main Theorem (cf., Definitions 2.9, 2.15, 2.21, Theorem 3.17). For
each algebraically closed field k of characteristic 0, n ∈ Z>0 and V ∈
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R>0, there is a proper moduli algebraic k-space of n-dimensional K-
polystable Fano cones over k (a.k.a., Calabi-Yau cones1) of the volume
density V .
If k = C, equivalently, real (2n − 1)-dimensional compact Sasaki-

Einstein spaces of volume density V form a compact Moishezon analytic
space for each fixed n and V .

More precise version, logarithmic generalization and a corollary are
stated and proved as Theorem 3.17, 3.20 and 3.21 respectively. We
conjecture (Conjecture 3.23) that these coarse moduli spaces are also
projective schemes with Weil-Petersson type (singular) Kähler metrics.

2. Preparation

We give a brief review of some preparatory materials. Most of (but
perhaps not all of) the materials in this section are known before as we
give references to each.

2.1. Sasakian geometry. A classical differential geometric (or con-
tact geometric) counterpart of the Ricci-flat Kähler cone is the geom-
etry of Sasakian manifolds, which we briefly recall. This subsection is
intended to be more differential geometric review, and only works over
k = C whenever some varieties appear.

Definition 2.1 (Sasakian manifolds cf., [Sas60, BG14]). A Riemannian
manifold (S, g) of (real) odd dimension 2n − 1 with n ∈ Z>0 is said
to underlie a Sasakian manifold if there is a complex structure J on
Co(S) := S×R>0 with repsect to which gC(S) is a Kähler metric, so that
J further extends to the cone C(S) := Co(S) ∪ 0. The corresponding
Kähler form is, by the definition of gC(S), ωC(S) :=

√
−1∂∂r2.

Then, the corresponding ξ := J
(
r ∂
∂r

)
is called the Reeb vector field.

To avoid confusion with more algebraic flexible variant (positive vector
field in Definition 2.9), we call it the metric Reeb vector field. We also
have a contact 1-form η := ιξg = ι ∂

∂r
ωC(S) associated, where ι stands for

the interior product. The actual Sasaki structure on M is in addition
to g, further we encode ξ (or η equivalently). 2

There are also associated structures such as (1, 1) type real tensor
field Φ ∈ Γ(M,End(TS)), which satisfies Φ ◦ Φ = −id + ξ ⊗ η, where
End(TS) means the endomorphism bundle of the (real) tangent bun-
dle, id means the identity map and the contact form η is defined as

1in some literature, it requires slightly more constraints for this terminology e.g.,
[CH22]

2although, in most of quasi-regular cases, this is redundant by [BGN03, 8.4],
[BG05, 20, 21]
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η(v) = g(ξ, v). The datum is again equivalent to the (almost) complex
structure J on C(S) by the formula Φ(v) = J(v − g(ξ, v)ξ) = ∇LC

v ξ
by the Levi-Civita connection ∇LC. Below, we assume S is compact
throughout, unless otherwise stated.

Definition 2.2 (Quasi-regular, irregular). Rξ ⊂ Isom(S, g) is known to
be a r(ξ)-dimensional compact torus. We denote its complexification
as T (C) ≃ (C∗)r(ξ). If r(ξ) = 1 (resp., r(ξ) > 1), we call (S, g) or
corresponding Fano cone is quasi-regular (resp., irregular). If (S, g) is
irregular and further the action of T (C) ≃ C∗ on C(S) is free, we call
(S, g) is regular.

The following is also well-known (cf., e.g., [BG07]).

Proposition 2.3. For a compact Sasakian manifold (S, g, ξ), the fol-
lowing are equivalent:

(i) (C(S), gC(S)) is Ricci-flat.
(ii) (S, g) satisfies Ricg = (dim(X)− 1)g, hence Einstein manifold

in particular (called Sasaki-Einstein manifold).
(iii) In quasi-regular case, S/(T (C) ≃ C∗) admits a natural branch

divisor with standard coefficients ∆ (which is 0 in regular case)
so that (S/(T (C) ≃ C∗),∆) is a log K-polystable Q-Fano vari-
ety with conical weak Kähler-Einstein metric.

In the above case, C(S) ∪ 0 has only log terminal singularity at the
vertex.

As our highlight, we consider the limiting behaviour.

Definition 2.4. We consider all the (real) 2n − 1-dimensional com-
pact Sasaki-Einstein manifolds (S, g) of the volume V and denote their
isomorphic classes as Mn,V .

Corollary 2.5. Mn,V is precompact with respect to the Gromov-
Hausdorff topology. Furthermore, Mn,V (i = 1, 2, · · · ) satisfies the non-
collapsing condition (compare [DS14]):

For any 0 < r ≤ diam(Si, gi), there is a positive real
number c such that we have vol(Br(p, (Si, gi)) ≥ crn.
Here, diam(−) means the diameter, vol means the vol-
ume and (Br(p, (Si, gi)) means the geodesic ball of ra-
dius r and the center p in (Si, gi).

Proof. The former claim follows from the Myers theorem and Gromov
precompactness theorem. The latter claim follows from the Bishop-
Gromov comparison theorem. �
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From this claim, we naturally expect some compactness theorem and
the main aim of our paper is to give a proof to its algebraic analogue.
Martelli-Sparks-Yau [MSY08] studied necessary condition of the ex-

istence of Sasaki-Einstein metric (using the case study when (C(S), J)
in [MSY06]) and showed that the volume is an algebraic number.

Definition 2.6. For a compact Sasaki-Einstein manifold (S, g, ξ), de-
fine its volume as

volDG(ξ) :=
1

(2π)nn!

∫

C(S)

e−r2ωn
C(S)

=
vol(S, g)

vol (S2n−1(1))
.

The denominator is with respect to the standard round metric on the
unit sphere. Note that the above invariant volDG is invariant under the
rescale of r by cr(c ∈ R>0).

The above volume has a relatively algebraic nature and is determined
only by a positive vector field ξ as follows. We leave the details of the
proof of the following to [CS18, §6], [MSY08] or [Li18].

Proposition 2.7 ([MSY08],[CS18], [CS19, Proposition 6.6], and
Lemma 2.14 later). For any compact Sasaki manifold (S, g, ξ), the
cone (C(S), J) is a complex affine variety, which we write as Spec(R),
acted by the algebraic k-torus T (C) which induces the T -eigenspaces
decomposition R = ⊕~m∈Hom(T (C),C∗) and we regard ξ as an element of
Hom(C∗, T (C)). Then, we can define and write the index character F
([MSY08]) as

F (ξ, t) :=
∑

~m∈M

e−t〈~m,ξ〉 dimR~m

=
A0(ξ)

tn
− A1(ξ)

tn−1
+O(t2−n)

and further, if ξ is the metric Reeb vector field for the Ricci-flat Kähler
metric, we have

A0(ξ) = volDG(ξ)(1)

= v̂ol(valξ).(2)

Here (2) is in the sense of C.Li [Li18], which algebraizes the theory
and is the topic of the next subsection. Actually the equality A0(ξ) =

v̂ol(valξ) makes sense and holds true for more general cases (abstract
Reeb vector field in Definition 2.9) as we see in Lemma 2.14.
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In particular the above volume volDG(ξ) is determined only by the
multi-Hilbert function of the decomposition Γ(OX) = R = ⊕~mR~m.

Theorem 2.8. If (S, g) is a compact Sasaki-Einstein manifold, the
following hold.

(i) ([MSY06, MSY08]) volDG(−) extends to whole Reeb cone (cf.,
Definition 2.9) and is minimized at ξ which is determined by
the Sasakian structure.

(ii) ([Li18, CS19]) the metric Reeb vector field ξ of the metric tan-
gent cone C(S) satisfies the normalization (or gauge-fixing)
condition AC(S)(ξ) = n. Here, AC(S)(−) denotes the log dis-
crepancy function in the theory of the minimal model pro-
gram and valξ denotes the naturally corresponding valuation
of OC(S),0 to ξ.

The above results show some algebro-geometric natures of the
Sasakian geometry. From the next section, we mainly work by such
algebro-geometric framework.

2.2. Affine cone. Henceforth, we work on more algebro-geometric
side, over an algebraically closed field k of characteristic 0 unless
otherwise stated. Take an arbitrary algebraic torus T , we set N :=
Hom(Gm, T ), M := N∨ = Hom(T,Gm) throughout. Before going fur-
ther, we promise the further toric notation throughout the paper (which
follows [Od24b]).

Notations 1. For any rational polyhedral cone τ ⊂ N ⊗R, we denote
an affine toric variety corresponding to it as Uτ (⊃ T ) and its T -invariant
vertex (closed point) as pτ . We denote the quotient stack [Uτ/T ] as Θτ .
We often consider non-zero irrational element ξ ∈ (τ \NQ := N ⊗Z Q)
i.e., of Q-rank r.
On the dual side, we set M := Hom(N,Z) as the dual lattice, τ∨ :=
{x ∈ M ⊗ R | 〈τ, x〉 ⊂ R≥0}, Sτ := τ∨ ∩M . If we regard M as the
the character lattice of T , then the character of T which corresponds
to ~m ∈M is denoted by χ~m.

Definition 2.9 (cf., [LS13, CS18, CS19]). (i) Consider a normal
affine variety X with the vertex x and an action of an algebraic
torus T , which is good in the sense of [LS13], i.e., the action is
effective and x is contained in the closure of any T -orbit which
characterizes x. 3 We consider the decomposition

R := Γ(X,OX) = ⊕~m∈MR~m

3When r = 1, T y X ∋ x is also sometimes said to be a quasicone in the
literature.
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and define the moment monoid as

σR := {~m ∈M | R~m 6= 0},
the moment cone as

R≥0σR ⊂M ⊗ R,

and the Reeb cone as

CR := {ξ ∈ N ⊗ R | 〈~m, ξ〉 > 0 ∀~m ∈ σR \ {0}}.
We call an element ξ of CR an abstract Reeb vector field or
positive vector field. An important observation is that, for
each ξ, we can associate a valuation valξ with the center x ∈ X
(Definition 2.10). See also there is an interpretation of CR as
an analogue to the Kähler cone (cf., e.g., [BvC18, §2]), where
it is called the Sasaki cone.

(ii) An affine cone 4 is simply a triplet (X, T y X, ξ) where X is
an affine algebraic k-scheme, T y X is a good action, and ξ
is its abstract Reeb vector field. We denote the dimension of
X as n.
ξ is called regular (resp., quasi-regular) if r = 1 and T

acts freely on X \ {x} (resp., r = 1). In the case when ξ
is regular, we denote the corresponding polarized projective
scheme as (V, L) so that X = Spec⊕m≥0H

0(V, L⊗m). If ξ is
quasi-regular, i.e., in the general r(ξ) = 1 case, we can simi-
larly construct the quotient [(X \ x)/T ] → (X \ x)//T =: V
as a projective scheme (the GIT quotient). If X is nor-
mal, V is also automatically normal (cf., [Mum65, Chapter
I]) and we can consider the ramification index m(D) for each
prime divisor D on V and form the standard ramification di-

visor as a Weil Q-divisor
∑

D
m(D)−1
m(D)

D on V . This morphism

(X \ x) → (V,
∑

D
m(D)−1
m(D)

D) is called the (algebraic) Seifert

Gm-bundle in [Kol04, Kol13b] (cf., also [LL19, §3.1]), It glob-
ally realizes the so-called transverse Kähler structure on the
locally orthogonal direction to the Reeb foliation in r = 1
case (in the irregular case, one can only locally realize it cf.,
[BG07]).

(iii) A Q-Gorenstein (affine) cone5 is (generalized) affine cone
where X is reduced which is normal crossing in codimension
1, satisfying the Serre condition S2, KX is Q-Cartier, T y X

4or generalized affine cone, to clarify that it is in the broader sense than the
classical case i.e., when r = 1 and ξ is regular as [Kol13b, (3.8)]

5temporary name in this paper
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is a good action, and ξ is its abstract Reeb vector field. It
is called a Fano cone if X is also log terminal. We also call
it a (kawamata-)log-terminal cone in this paper. Similarly, if
X is log canonical (resp., semi-log-canonical), we call it a log
canonical cone (resp., semi-log-canonical cone).

There is a valuative interpretation of positive vector field.

Definition 2.10 (Monomial valuations cf., [BFJ08], [Li18, §2.2]). If
x ∈ X x T is an irreducible affine cone, then for each positive vector
field ξ ∈ CR (see Definition 2.9), we can associate a valuation valξ of
X centered at the vertex x as follows:

valξ(f) := min
~m∈σR

{〈~m, ξ〉 | f~m 6= 0},(3)

where f =
∑
f~m is the decomposition for R = ⊕R~m. If we take log

resolution of (X,
∑

i div(fi)) where fi are T -homogeneous generators of
R, it follows that the above valξ is quasi-monomial (compare [BFJ08]).

The following should be known to experts.

Lemma 2.11. (i) In the setup of Definition 2.9 (i), if mKX is
Cartier for some positive integer m, then it is automatically
linearly trivial.

(ii) For a Q-Gorenstein affine cone T y X ∋ x with the abstract
Reeb vector field ξ, there is a positive integer l and a nowhere
vanishing holomorphic section Ω ∈ Γ(O(lKX)) and some real
number λ so that

LξΩ =
√
−1λΩ.

Here, Lξ means the Lie derivative. Moreover, T y X ∋ x with
ξ is a Fano cone if and only if λ > 0.

Proof. For (i), by taking the index 1-cover with respect to KX , we can
reduce to the quasi-Gorenstein case. By the complete reducibility of
T y Γ(mKX) we can write KX as a T -invariant divisor which does not
contain the vertex, but then it is easy to see the support is empty. See
[PS11, LS13] for discussions in more general case. The classical case
i.e., for the regular action of T with r = 1, see [Kol13b, 3.14] for the
proof of this (i). For (ii) is proved in [CS19, Lemma 6.1, 6.2] for the
normal case. For non-normal case, the same proof works by combining
with [GZ16, 16.45, 16.47 and the proof]. �

The last statement also follows from the Seifert Gm-bundle interpre-
tation by [Kol13b, §9.3], [LL19, §3.3.1] (cf., also [LLX18, §3.1]). λ of
the above is interestingly interpretted as log discrepancy of X by C.Li
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[Li18]. For instance, its posivitiy was known to be equivalent to log
terminality of X as observed in [CS19, §6].

Definition 2.12. (i) The multi-Hilbert function of an affine cone
T y X ∋ x with the positive vector field ξ ∈ NR is a map
M → Z≥0 defined by ~m 7→ dimR~m =: χX(~m).

(ii) (cf., [MSY08, CS18, CS19]) Themulti-Hilbert series of an affine
cone T y X ∋ x with the positive vector field ξ ∈ NR

6 is
defined as

F (ξ, t) =
∑

~m∈M

e−t〈~m,ξ〉 dimR~m.

A priori one can regard it only as a formal function but we
review in Lemma 2.14 (from [MSY06, CS18]) later that as far
as R is finitely generated, the series is meromorphic around
0 so that it encodes the multi-Hilbert function {dimR~m}~m as
the Fourier coefficients. Obviously, the moment monoid, the
moment cone and the Reeb cone are determined only by the
multi-Hilbert function.

(iii) (cf., [CS18]) Take an affine cone T̃ y X ∋ x with an alge-
braic k-torus T̃ (⊃ T ), its character lattice M̃ := Hom(T,Gm)

(resp., Ñ := Hom(Gm, T ))
7 and η ∈ Ñ ⊗ R. We denote the

decomposition for the T̃ -action of R := Γ(OX) as ⊕m̃Rm̃.
The weighted (multi-)Hilbert series8 of the affine cone T̃ y

X ∋ x with the positive vector field ξ ∈ NR, for the η-direction,
is defined as

Cη(ξ, t) :=
∑

m̃∈M̃

e−t〈~m,ξ〉〈m̃, η〉 dimRm̃.

(iv) (cf., [HS17]) Consider any faithfully flat affine family between
algebraic k-schemes π : X = SpecS(R) → S with connected
S, with OS-algebra R, where an algebraic k-torus acts on X
fiberwise. We apply the complete reducibility of T to R to
obtain the decomposition R = ⊕~m∈MR~m where R~m denotes
the OS-module corresponding to the character ~m. If R~m for
any ~m is faithfully flat over S, we call the family π : X → S is
T -equivariantly faithfully flat over S, or T -fppf for short (if no

6Originally called index character by [MSY08, CS18, CS19] in the context of equi-
variant index theory but this term may sound more familiar to algebraic geometers

7This notation is set in this way as later we often apply to the central fiber of
the test configuration (Definition 2.15 (i)) so that T̃ is often T ×Gm, unless it is a
product test configuration.

8called weighted character in [CS18]
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confusion), in this paper. Note that this condition is said to
be admissibility of the deformation in [HS17] and is stronger
than the faithful flatness of π. See also the following Lemma
2.13 (ii).

Here is some useful general lemma.

Lemma 2.13. (i) (Characterization of good action) Take an
affine algebraic k-scheme X = Spec(R) on which an alge-
braic k-torus T acts. It is a good action if and only if the
multi-Hilbert functions are all finite i.e., dim(R~m) < ∞ for
any ~m ∈ M , and the moment cone R≥0σR is strictly convex
i.e., does not contain any line. It is further equivalent to the
non-triviality of the Reeb cone CR 6= ∅.

(ii) (Constancy of multi-Hilbert function) As Definition 2.12 (iv),
consider any flat affine family (resp., T -equivariantly faith-
fully flat) between algebraic k-schemes π : X → S with irre-
ducible S whose generic point is η, where an algebraic k-torus
acts on X fiberwise. If we compare the multi-Hilbert func-
tion of the generic fiber Xη and any fiber Xs for s ∈ S,
we have that χXs(~m) is either 0 or χXη(~m). Furthermore,
χXs(~m) = χXη(~m) for any ~m if and only if π is T -equivariantly
faithfully flat.

(iii) In the T -equivariantly faithfully flat situation of the above (ii),
if T y Xs for some s ∈ S is a good action, it holds for any
s ∈ S.

Proof. We first prove (i). The only if direction is discussed in [LLX18,
§3.1] (cf., also [LS13]). For the converse i.e., the if direction, note that
R~0 = k since it is a finite extension of k and is an integral domain, while
we assume k is algebraically closed. Since R~0 = RT i.e., coincides with
the T -invariant subring of R, it follows that the polystable locus Xps of
X consists of finite T -orbits. Furthermore, by the standard arguments
using the Raynold operator, it follows that Xps is connected. Hence it
consists of a single T -orbit, say Tx for some closed point x ∈ X . Denote
the identity component of the stabilizer stab(x) of x as stab0(x). Then
the character lattice of T/stab0(x) should be trivial since otherwise it
would contradicts with the strict convexity of R≥0σR.
Next we prove (ii). We can and do assume S is affine and write

the family as X = SpecR(R) by a (R :=)Γ(OS)-algebra. Apply the
complete reducibility of T to R to obtain R = ⊕~m∈MR~m, with R-
modulesR~m. SinceR is R-flat, eachR~m is also R-flat hence locally free
module because of the finitely generatedness assumption. Therefore,
the assertion follows. Finally, (iii) follows from (i) and (ii). �
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We note that a certain embedded version of (i) (resp., (ii)) is partially
proved in literature as [CS18, 4.5], [KR00, 4.1.19] (resp., [CS18, after
Definition 5.1]). We also review the following for the next section.

Lemma 2.14 ([CS18, CS19]). Recall that we set n := dim(X).

(i) The multi-Hilbert series F (ξ, t) can be written as

F (ξ, t) =
A0(ξ)

tn
− A1(ξ)

2tn−1
+ O(t2−n),

with t around 0 ∈ C where Ai(ξ)(i = 0, 1) are C∞-function on
the Reeb cone CR (Definition 2.9). In general, we have

A0(ξ) = v̂ol(valξ),(4)

where the latter v̂ol(−) means the normalized volume in the
sense of [Li18] (Definition 2.27). Note that this holds for gen-
eral affine cone as proved in [CS18, §4].

Furthermore, r(ξ) = 1, T is regular and ξ is the generator of
N , in the notation of Definition 2.9, A0(ξ) = (Ln−1), A1(ξ) =
(Ln−2.KV ). Note the obvious homogeneity Ai(cξ) = c−n+iAi(ξ)
for i = 0, 1.

(ii) The weighted multi-Hilbert series Cη(ξ, t) can be written as

Cη(ξ, t) =
B0(ξ)

tn+1
− B1(ξ)

2tn
+O(t1−n),

where Bi(ξ)(i = 0, 1) are C∞-function on the Reeb cone CR.
B functions are directional derivative of A functions in the

sense that Bi(ξ) = −DηAi(ξ) for i = 0, 1 where Dη denotes the
directional derivative along the direction η. Hence, we again
have the homogeneity Bi(cξ) = c−n−1+iAi(ξ) for i = 0, 1.

Proof. See [CS18, Theorem 3] (which depends on [KR00, §5.8]) for
the proof of (i). (ii) follows from the derivation by terms of∑

m̃∈M̃ e−t〈m̃,ξ−sη〉 dimRm̃. See the details in the proof of [CS18, Theo-
rem 4]. �

2.3. K-stability of affine cones.

Definition 2.15. (i) (cf., [CS18, CS19]) A (affine T -equivariant)
test configuration of an affine cone (T y X, ξ) means T ×Gm-
equivariant affine T -equivariantly faithfully 9 flat morphism
π : X → A1 from a normal affine scheme X , where T acts
only fiberwise (while acting trivially on the base A1) and Gm

9this T -equivariant faithful flatness is necessary e.g. to avoid X× (A1 \ {0}) and
some other pathological examples, which is missed in some literature
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acts multiplicatively on the base A1 such that its restriction to
π−1(A1\{0}) is the productX×(A1\{0}). A test configuration
is called product test configuration if there is a T -equivariant
isomorphism X ≃ X × A1. For simplicity, we sometimes ab-
breviate the whole data of a test configuration just as X if it
does not make confusion.

(ii) (cf., [CS18]) The Donaldson-Futaki 10 invariant DF(X , ξ) of a
test configuration (T × Gm) y X π−→ A1 is defined (up to a
dimensional constant 2((n+ 1)!(n− 1)!)) as

DF(X , ξ) := (n+ 1)A1(ξ)B0(ξ)− nA0(ξ)B1(ξ),(5)

where Ai(ξ) are that of any fibers π
−1(s) for s ∈ A1 (see Lemma

2.13 (ii) for the independence on s) Bi(ξ) are that of X0 =
π−1(0) defined in Definition 2.12 (ii).

If r = 1, T is regular and ξ is the generator of N , in the
notation of Definition 2.9, we have

A0(ξ) = (Ln−1), A1(ξ) = (Ln−2.KV ),(6)

B0(ξ) = (Ln), B1(ξ) = (Ln−1.KV/P1),(7)

where (V,L) denotes the (polarized projective) test con-
figuration in the sense of [Don02] which arise as ((X \
Gm · (x, 1))/Gm) → A1 by [Wan12, Od13a] so that it fits to
the original intersection number formula in loc.cit for the po-
larized projective setup.

Then, the (generalized) affine cone (T y X, ξ) is K-stable
(resp., K-semistable) if and only if DF(X , ξ) > 0 (resp.,
DF(X , ξ) ≥ 0) for any non-trivial affine test configuration
π : X → A1. It is said to be K-polystable if it is K-semistable
and DF(X , ξ) = 0 only occurs when X is a product test con-
figuration.

(iii) (cf., [LX14]) A test configuration of a Fano cone is called a
special test configuration if (X ,X0) is purely log terminal.

(iv) (cf., [CS18, CS19]) For a special test configuration X of a Fano
cone, its Donaldson-Futaki invariant is equivalently defined as

DF(X , ξ) = d

dt
|t=0v̂olX0(valξ−tη),

up to a dimensional constant 2((n+1)!(n−1)!). where η is the
holomorphic vector field induced by the Gm-action on X0. Note
also that if we normalize ξ and η i.e., to multiply suitable pos-
itive real number constants, so that ξ− ǫη for ǫ≪ 1 all satisfy

10defined and coined the name in [CS18], after [Don02] which generalizes [Fut83]
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the gauge fixing condition ([CS19, Definition 6.3, Proposition

6.4]) i.e., replace η by Tξ(η) :=
A(ξ)η−A(η)ξ

n
(cf., [LLX18, 3.9]),

we can replace the above v̂ol by the (unnormalized) volume
function vol(−) i.e., consider instead

D−Tξ(η) volX0(ξ)

as it has the same sign as DF(X ) where D−Tξ
(−) again de-

notes the directional derivative. One of its benefits is that we
know the strict convexity of vol(−) on CR by [MSY08] (later
generalized by [LX18, §3.2.2] to possibly singular T-varieties
using the Okounkov body [Oko96, LM09]).

Example 2.16 (From one parameter subgroup to test configuration).
If we consider a multi-Hilbert scheme H for affine closed subscheme
of AN of positive weights for an algebraic k-torus T with fixed multi-
Hilbert function, the centralizer of T in GL(N) which we denote as G,
naturally acts on H . If we take one parameter subgroup ρ : Gm → G
and a point [X ] ∈ H , the family over ρ(Gm) · [X ] is automatically a
test configuration. This is essentially the way [CS18, Definition 5.1]
first defined the test configurations. Indeed, it is also easy to see that
all test configuration, in our above more abstract sense, arises in this
manner.

Note that more Donaldson-type (i.e., [Don02]) definition is also
proved to be equivalent, as an analogue of [LX14], by Wu [Wu23].
There is also a partial related result in [LWX21, 4.3], which we extend
in the proof of Theorem 3.6.
We also prepare the Duistermaat-Heckman measures and norm func-

tionals analogous to the global projective setup, following [DH82,
Od12a, His16, BHJ17, Der16, Wu22].

Definition 2.17. (i) ([DH82, His16]) For a Q-Gorenstein affine
cone T y X ∋ x with an additional commuting action of Gm,
we define the Duistermaat-Heckman measure DH(X) for the
Gm-action as the probability measure

lim
c→∞

( ∑

λ∈Z,
~m∈M,〈~m,ξ〉<c

dim(R~m)λ
dim(R~m)

δ λ
〈m,ξ〉

)
.

Here, (R~m)λ is the k-linear subspace of R~m with the Gm-weight
λ and δa of a ∈ R denotes the Dirac measure supported on
a ∈ R. Note that the existence of the limit measure (conver-
gence) easily follows from approximating ξ by rational vectors,
to which [His16, BHJ17] applies.
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The Duistermaat-Heckman measure of a (T - equivariant
affine) test configuration π : X → A1 refers to that of Gm y
X0 = π−1(0).

(ii) ([Wu22, Chapter V] cf., also [BHJ17, Der16]) For a (T -

equivariant affine) test configuration (T × Gm) y X π−→ A1

of the Fano cone T y X , we define (INA − JNA)(X ) as
INA(ϕX ) − JNA(ϕX ) of [Wu22, Definition V.8], where ϕX is
the Fubini-Study function ([Wu22, IV.2.1], compare [BJ22])
induced by X (or π∗OX ).

Lemma 2.18 (cf., [Od12a, 2.7(i), p.2283 l2], [BHJ17, §7.2] [Der16,
3.10, 3.11, §4]). The strict positivity (INA−JNA)(X ) > 0 holds unless X
is the trivial test configuration i.e., (T ×Gm)-equivariantly isomorphic
to X × A1.

Proof. By approximating ξ by a sequence of rational elements in NQ,
due to [BHJ17, 7.8], it is enough to show that JNA)(X ) > 0 unless X
is the trivial test configuration. Furthermore, again by the same ap-
proximation, [BHJ17, 7.8] implies that JNA(ϕX ) = sup suppDH(X )−∫
R
λDHX . If this attains 0, it follows that DHX is a Dirac measure

whose support is a single point. Since we assume X is normal, it is
then trivial test configuration. See also [Der16, 4.7]. �

Problem 2.19 (cf., [Od13b]). Can we prove that any K-semistable Q-
Gorenstein affine cone (T y X, ξ) is semi-log-canonical by extending
the method to [Od13b]? What is the differential geometric meaning
behind it if it is true? (cf., e.g. [BG14]).

The following is the Yau-Tian-Donaldson type correspondence,
which generalizes the case of Fano manifolds mainly after [Ber16,
DaSz16, CDS15, Tia15].

Theorem 2.20. (i) ([CS18, CS19]) A (smooth) Fano cone T y
X admits a structure of Ricci-flat Kähler metric, which is a
cone metric of some Sasaki metric on the link, with metric
Reeb vector field ξ if and only if (T y X ∋ x, ξ) is K-polystable
in the sense of Definition 2.15.

(ii) ([Li21]) A (possibly klt) Fano cone T y X admits a structure
of Ricci-flat (weak) Kähler metric, which is a cone metric of
some Sasaki metric on the smooth locus of the link, with metric
Reeb vector field ξ if and only if (T y X ∋ x, ξ) is K-polystable
in the sense of Definition 2.15.

Such a cone type complete Ricci-flat Kähler metric g on (T y X ∋
x, J, ξ) is often called Ricci-flat Kähler cone metric and such a Fano
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cone with Ricci-flat Kähler cone metric (cf., Prop 2.3) is often called
Calabi-Yau cone in the literatures under some additional smoothness
assumptions, which is in particular Fano cones. We call v̂ol(x ∈ X) its
volume density (cf., Proposition 2.7 for the motivation).
We need to be careful not to mix up with log canonical cone we

define in Definition 2.9, which are often the affine cone over polarized
projective (log canonical) Calabi-Yau varieties (see [Kol13b, 3.1]). We
also note the latter singular version (ii) relies on the recent theory of
“weighted” framework by using the moment maps (cf., [Ino19a, Lah19,
Ino19b, HaL23, AJL23, Li21]).
Motivated by the above Definition 2.20 (ii), we introduce the follow-

ing terminology, allowing singularities to extend the notions reviewed
in §2.1.

Definition 2.21. A (compact) Sasaki-Einstein space (or Sasaki-
Einstein manifold with singularities) is a metric space which is decom-
posed as S = Sreg ⊔ Ssing (an open dense subset which is a manifold
and closed singular locus) with an Einstein (Riemannian) metric g on
Sreg which induces the metric structure, together with a Reeb vector
field ξ ∈ Γ(TSreg), such that the following holds:

corresponding complex structure extends to the cone
C(S) := (S×R>0)∪0 which underlies a Ricci-flat weak
Kähler cone (in the sense of [Li18] and the previous
Theorem 2.20 (ii)).

We hope for more intrinsic equivalent definition.

2.3.1. CM R-line bundle. The CM line bundle, first introduced by
[FS90, §10, 10.3-5] and generalized by [PT06, FR06] to singular setup,
gives a canonical ample line bundle on the K-moduli of canonically
polarized varieties ([Fjn18, KP17, PX17]), polarized Calabi-Yau va-
rieties ([Vie95, Od21]), Fano varieties ([CP21, XZ20]) as we expect
the same for more general polarized K-stable polarized varieties (cf.,
[FS90, Od10]).
As in the setup for flat families of the polarized varieties, we first

introduce CM R-line bundle on the moduli stack and then discuss its
descended R-line bundle on the good moduli space. Note that it is orig-
inally motivated by the generalization theory of Weil-Petersson metrics
[FS90], which was originally obtained as a Quillen-type metric for vir-
tual vector bundles à la Donaldson.

Definition 2.22. Consider an arbitrary flat family of n-dimensional
Fano cones T y X → S, whose relative coordinate ring we decompose
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as X = SpecS ⊕~m R~m. Here, ~m runs over the character lattice M :=
Hom(T,Gm). Then, we consider the following series

L(ξ, t) :=
⊗

~m∈M

(detR~m)
⊗e−t〈~m,ξ〉

,(8)

which give R-line bundle i.e., element of Pic(S) ⊗Z R for each com-
plex number t with Re(t) > 0 (the same proof as [CS18, 4.2]). Then,
by the same arguments as [CS18, 4.3], it has following expansion of
meromorphic type:

L(ξ, t) =
B0n!
tn+1

+
B1(n− 1)!

tn
+O(t1−n),(9)

if we write in the additive notation (note that Pic(S) ⊗ R is a finite
dimensional real vector space). After the following normalization

C0(ξ) := n!B0,(10)

C1(ξ) := −
(n− 1) · (n!)

2
B0 − (n− 1)!B1,(11)

we define the CM R-line bundle λCM(T y X ) as −(n − 1)A1(ξ)C0 +
nA0(ξ)C1 as an element of Pic(S) ⊗ R. Note that the above normal-
ization is suitable in the sense that if ξ is regular and S is a smooth
proper curve,

deg C0(ξ) = (Ln),(12)

deg C1(ξ) = (Ln−1.KY/S),(13)

where Y → S denotes the ξ quotient of X \ σ(S) where σ denote the
vertex section, and L is the corresponding ample line bundle.

See also a related general construction in [Ino20].

2.4. Donaldson-Sun theory and normalized volume.

2.4.1. Original work of Donaldson-Sun. In [DS17], for log terminal
singularities with weak Kähler-Einstein metrics, the analytic and
even algebraic nature of the metric tangent cone is started to ex-
plore. This is somewhat a local analogue of [DS14]. As a tech-
nical assumption, [DS17] assumes the metrized log terminal singu-
larities appear in the non-collapsed Gromov-Hausdorff limits (polar-
ized limit space) of Kähler-Einstein manifolds. After [DS17], more
algebraic works by [Li18, LL19, CS18, CS19] appear, which refines
and more algebraize the conjectural picture which is now a theo-
rem by [LX20, LX18, LWX21, BLQ22, XZ22, XZ21] (cf., the surveys
[LLX18, Zhu23b]).
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We briefly review this whole story in this subsection. In the work of
[DS14, DS17], the following setup is mainly considered (although being
somewhat more general).

Setup 1. Consider a flat projective family of n-dimensional smooth
polarized varieties f : (X ,L) → B over a connected base algebraic k-
scheme B with a section σ : B → X which satisfies KX ≡B L⊗k with a
constant k ∈ Q 11 Take a sequence of points bi ∈ B(i = 1, 2, · · · ) whose
f -fibers are (pi = σ(bi) ∈ Xi, Li) and admit Kähler-Einstein metrics
with the Kähler class in 2πc1(Li).
We take a sequence of compact Kähler-Einstein manifolds (pi =

σ(bi) ∈ Xi, Li, gi, ωi)i=1,2,··· which satisfies the non-collapsing condition:

there is a positive constant c such that if we consider
the geodesic ball Br(pi) in Xi with center pi = σ(bi)
of radius r ∈ [0, 1] we have 12

vol(Br(pi)) ≥ cr2n for i≫ 0.(14)

Following may be worth noted.

Lemma 2.23 (non-collapsing condition as log-terminality). If f ex-
tends to a locally stable projective family X (⊃ X )→ B and bi converges
to a point b ∈ B and further that f−1(b) is K-polystable. Then, the
above non-collapsing condition (14) holds if and only if σ(b) ∈ f−1(b)
is log terminal.

Proof. The only if direction follows from [DS14] and the characteriza-
tion of log terminality as local volume boundedness of the adapted
measure in [EGZ09]. If k < 0, then both conditions automati-
cally hold. In the case k = 0, the if direction also follows from
[EGZ09, DGG23] (see also [Od21]). In the case k > 0, it follows from
[BG14, Son17, DGG23]. �

Theorem 2.24 ([DS17]). (i) (loc.cit 1.1) Passing to a subse-
quence of i, there is a polarized limit space13 Z ∋ p with a
singular Kähler metric g as a complex analytic space.

(ii) (loc.cit 1.3) Suppose we take a sequence of (p ∈ Z, ag) with
a → ∞, then there is a unique polarized limit space as a log
terminal affine variety C with Ricci-flat Kähler cone (singular)

11[DS14, DS17] only requires to fix n and the constancy of the volume of the
fiber Ln

b
for each b ∈ B.

12(or equivalently the same for r in [0, ǫ] for small fixed ǫ independent of i)
13the enhanced notion of pointed Gromov-Hausdorff limit to consider complex

structure as defined in [DS14, DS17]
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metric on which a positive dimensional algebraic C-torus T (C)-
acts.

(iii) (loc.cit §2.3, §3) The above construction of C from Z ∋ p can
be separated into 2-steps i.e., (Z ∋ p) W  C, where W is
a Fano cone.

The above C is called (local) metric tangent cone of p ∈ Z with
respect to g. There are also related results in [VdC11]. The above
item (ii) above inspired the later developments in particular by the
following conjecture.

Conjecture 2.25 ([DS17, 3.22]). For any log terminal analytic space
x ∈ X with a weak Kähler-Einstein metric, the metric tangent cone

only depends on the complex analytic germ of x ∈ X (or ÔX,x, equiva-
lently).

In the next subsection, we also review the developments after the
above conjecture.

2.4.2. Normalized volume [Li18]. Motivated by the above Donaldson-
Sun theory, there were developments of algebro-geometric machinery
which in particular partially solved the above conjecture under Setup
1. Here we review the developments. Henceforth, we fix a closed point
x ∈ X as a n-dimensional klt singularities over k, on which we put the
trivial valuation. We write the space of valuations of X with the center
x, as Valx(X). Note that there is a natural bijection:

Valx(X) ≃ Valk(Ox,X) ≃ Valk(Ôx,X)(15)

For each v, we define the following.

Definition 2.26 (Local volume). ([ELS03], [LM09])

volx(v) := lim sup
m→∞

dimk(OX,x/{f | v(f) ≥ m})
mn/n!

This lim sup is known to be lim (cf., loc.cit).

In the case X has a structure of affine cone and v comes from a
positive vector field, recall that Lemma 2.14 (4) (from [MSY06, CS18])
gives another expression of this (unnormalized) volume function vol(−)
in terms of multi-Hilbert function.
On the other hand, we take the subspace of the space (15) defined

by AX(v) = n (cf., [MSY08, CS19]) and write as

Valnx(X) ≃ Valnk(Ox,X) ≃ Valnk(Ôx,X).(16)
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Definition 2.27 ([Li18]). Define the normalized volume of x ∈ X for
v as

(17) v̂olx(v) := AX(v)
nvolx(v).

Here, if AX(v) = +∞, then we also set v̂olx(v) := +∞. Equivalently,
we consider volx(v) on the normalized section Valnx(X).

By the effect of normalization using the log discrepancy AX , for any
positive real number λ,

v̂ol(λv) = v̂ol(v)(18)

so that the normalized volume gives a function

v̂ol : (Valx(X) \ {vtriv})/R>0 → R ∪ {+∞}.(19)

Here, vtriv is the trivial valuation and the action of R>0 on (Valx(X) \
{vtriv}) is simply given by the multiplication on the real valuations.
The quotient

(Valx(X) \ {vtriv})/R>0(20)

or homeomorphic Valnx(X) is often called non-archimedean link af-
ter the topological theory of links of complex algebraic singularities
([Sas60, Bri66, Mil69, BG07]). We note that clearly the latter normal-
ization convention is motivated by the Theorem 2.8 (ii).

Remark 2.28. We also note that if v comes from the plt blow up
π : X ′ → X with the exceptional divisor (Kollár component14) E,

v̂ol(v) equals the generalized log Donaldson-Futaki invariant DF(X ′ →
X,−(KX′/X + E)) defined in [Od15b]. In the theory, blow up π is
regarded as an analogue of test configuration in the sense of [Don02].

2.5. Donaldson-Sun 2-step degeneration and its algebraiza-
tion.

2.5.1. General procedure. By making use of the theory of normalized
volumes in the previous section, the Donaldson-Sun 2-step degeneration
theory is now put in a format of algebraic geometry and developped,
due to the work of [Li18, LL19, Blu18, CS18, CS19, LX18, LWX21,
Xu20, XZ22, XZ21, BLQ22]. We briefly summarized the conclusion as
follows.

14in the sense of [LX18] henceforth, see also the original [Sho96, 3.1], [Pro00,
2.1]
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Theorem 2.29. Suppose k is algebraically closed field of characteristic
0. We fix a pointed n-dimensional log-terminal k-variety x ∈ X, con-

sider the stalk OX,x and completed stalk ÔX,x (Only the formal germ
of x matters below, hence X is not assumed to be proper in general).
Then we have the following.

(i) ([Blu18, Xu20, XZ21, BLQ22]) There is a unique (necessarily
quasi-monomial [Xu20]) valuation v = vX ∈ Valx(X) up to the

R>0-action, which minimizes 15 the normalized volume v̂ol(−).
We denote the rank of (the groupification M of) Γ := Im(vX)
as r and the dual lattice as N := Hom(M,Z).

(ii) ([LX20, LX18, XZ22]) grv(OX,x) := ⊕s∈Γ({f ∈ OX,x | v(f) ≥
s}/{f ∈ OX,x | v(f) > s}) is of finite type over k ([XZ22] for
general r ≥ 1 case). There is a natural action of the alglebraic
k-torus T := N ⊗ Gm on W := Spec(Grv) and this provides
K-semistable Fano cone structure to W ([LX20, LX18]). We
denote its vertex as xW .

(iii) ([DS14, CS18, LWX21, Li21]) If k = C, C has a (weak) Ricci-
flat Kähler cone metric. Further, if X is compactified to the
(non-collapsed) polarized limit space of Kähler-Einstein mani-
folds in the sense of [DS14], [DS17, §2.1], then C is a metric
tangent cone of X ∋ x and is unique.

(iv) ([LWX21]) There is a (non-canonical) affine test configuration
of W to a unique K-polystable Fano cone C. In particular, C
is uniquely determined by germ of x ∈ X (i.e., Conjecture 2.25
by Donaldson-Sun [DS17] holds in the case of Setup 1).

2.5.2. Local vs global volume. The following type of inequalities are
very important to study K-stability of singular Q-Fano varieties. In
the dimension 2, [OSS16] originally used the Bishop-Gromov type in-
equality to deduce a similar (weaker) result which we also review.

Theorem 2.30 ([Liu18]). For any K-semistable Q-Fano variety X and
x its closed point, we have

(−KX)
n ≤

(
1 +

1

n

)n

v̂ol(v).(21)

Here is a weaker version, which in turn is a straightforward conse-
quence of the Bishop-Gromov inequality for orbifolds.

Theorem 2.31 (cf., [OSS16]). If there is a quotient singularity of the
type Cn/Γ (Γ is a finite subgroup of GL(n,C)) on a Kähler-Einstein

15analogue and the generalization of the volume minimization in [MSY06,
MSY08] (called “Z-minimization” in loc.cit)
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Q-Fano variety X, we have

(−KX)
n ≤ 1

|Γ| ·
2(2n− 1)n · n!

(2n− 1)!! = (2n− 1) · (2n− 3) · · ·3 · 1 .(22)

The estimation comes from the comparison of the (real) space form,
rather than the complex space form Pn, on which we can not expect
(complex) algebraic variety structure in general.

Proof. The proof in the 2-dimensional case ([OSS16, 2.7] cf., also
[Tia90]16) naturally extends. Apply (orbifold version of) the Bishop-
Gromov comparision theorem to X to obtain

(2π)n(−KX)
n/n!

vol(S2n(2n− 1))
≤ 1

|Γ| .

Hence the assertion follows from

vol(S2n(2n− 1)) = (2n− 1)n · (2n+ 1)πn+ 1
2

Γ(n+ 3
2
) = (n+ 1

2
)(n− 1

2
) · · · 1

2
×√π

= (2n− 1)n · 2πn

(n− 1
2
)(n− 3

2
) · · · 1

2

.

�

2.5.3. Toric case. We can see the strength of the K-stability theory
and Donaldson-Sun theory by one of simplest example - toric case.
As first pointed out by [CS19, §1], it readily re-proves a somewhat
weaker version of the following celebrated result by Futaki-Ono-Wang
[FOW09] and its generalization to singular case [Ber20]. Note that the
condition in loc.cit Theorem 1.2, the meaning of the assumptions in
loc.cit Theorem 1.2 (on the vanishing of the de Rham cohomology class
of the contact bundle and the positivity basic first Chern class of the
normal bundle of the Reeb foliation) is later clarified to be equivalent
to the (Q-)K-triviality which matches Definition 2.9 and Lemma 2.11.
Hence, we restate their result in that manner, although in a somewhat
weak statements (on the stability side).

Theorem 2.32 (cf., [FOW09], [Ber20]). Suppose T y X = C(S)
is a toric Fano cone i.e., a (log terminal) Fano cone which admits
an action of algebraic k-torus T ′ which preserves the structure. We
denote N ′ := Hom(Gm, T

′) and M ′ := Hom(T ′,Gm). Then X is K-
semistable and T ′-equivariantly K-polystable as Fano cone with respect
to a (unique) Reeb vector field ξ ∈ N ′ ⊗ R.

16cf., Remark 2.8 of [OSS16]
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Proof. The (unique) v̂ol-minimizing valuation v = vX of OX,x is T ′-
invariant hence is a toric valuation in the sense of [Blu18, §8]. Thus,
if we write C(S) = SpecR = ⊕~m∈M ′R~m for M ′ := Hom(T ′,Gm) as
the decomposition of the coordinate ring by the T -action, it is easy to
see grv(R) = R so that W = X in the Theorem 2.29. In particular,
X is K-semistable with respect to a Reeb vector field in N ⊗ R and
T ⊂ T ′. Further, if there is a T ′-equivariant special test configuration
(X , ξ, η), then since dim(X) = dim(T ′), T ×Gm can not act effectively
on any component of X0 so that X is a T ′-equivariant product test
configuration. Hence, because X0 has vanishing Futaki invariant with
respect to ξ by its K-semistability, it follows that X is T ′-equivariantly
K-polystable with respect to ξ′. �

This contrasts with the fact that toric Fano manifolds do not neces-
sarily have Kähler-Einstein metrics, but this is due to the flexibility of
the (abstract) Reeb vector fields.

2.6. Affine generalized test configurations vs filtered blow ups.
As a preparatory general material, we excerpt a part of [Od24b] on the
theory of generalized test configurations and give an alternative descrip-
tion of affine generalized test configuration for general affine varieties
(cf., also [Ino22, BJ21]). In short, generalized test configurations cor-
respond to certain ideals sequences or their (filtered) blow ups. This
generalizes the perspective of [Od13a].
Firstly, we recall the definition of generalized test configurations.

Definition 2.33. For an affine toric variety Uτ which corresponds to
a rational polyhedral cone τ ∈ N ⊗ R as in Notation 1, a generalized
test configuration of affine variety X is a faithfully flat T -equivariant
affine morphism p : Y ։ Uτ .
If general fibers are affine cones in the sense of Definition 2.15 with

respect to a p-fiberwise action of an additional algebraic k-torus T ′, we
further require the following:

Y = SpecR with a finite type Γ(Uτ )-algebra R that
decomposes as R = ⊕~m∈MR~m, to the T ′-eigen-Γ(Uτ )-
submodules, then R~m for each ~m is a locally free mod-
ule.

Example 2.34. For a klt affine variety X ∋ x, take the valuation
vX of minimizing normalized volume ([Li18, Blu18]) and set W as
Spec(grvX (OX,x)). Denote the groupificiation N of Im(vX) and a ra-
tional polyhedral cone τ ⊂ N which includes ξ.
Naturally, there is a canonical generalized test configuration

πτ : Xτ ։ Uτ of X whose fiber over pτ is W ([Tei03, LX18]). This
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gives a positive weight deformation of W in the sense of [Od24b]. See
more details in [Od24b, §2] (cf., also [LX18]).

Lemma 2.35. Fix an affine k-variety Spec(R) = X and a rational
polyhedral cone τ ⊂ N⊗R as before. Then, the following two sets have
natural bijective correspondence with each other:

(i) the set of isomorphic classes of (affine) generalized test con-
figuration over Uτ which dominates 17 X × Uτ , denoted by
π : X = Spec(R) ։ Spec(k[Sτ ]) (here, Sτ := {x ∈ M ⊗ R |
〈x, τ〉 ⊂ R≥0} ∩M)

(ii) the set of sequence of ideals of R which we write {I~m ⊂ R}~m∈M

(or ~m 7→ I~m) that satisfies the following:
• I~m · I~m′ ⊂ I~m+~m′ for any ~m, ~m′ ∈M ,
• I~m ⊂ I~m′ for any ~m, ~m′ ∈M with ~m′ − ~m ∈ Sτ ,
• and ⊕~mI~m · χ(~m)(= R) is of finite type over k (or equiv-
alently, over k[Sτ ]),
• I~m 6= R for (some or any) ~m ∈ −So

τ .

(ii) is analogous to the description of equivariant toric vector bun-
dles by family of filtrations in [Kl90] (see also [Ino19a, §2.2], [BJ21,
A3]). Indeed, for each ξ ∈ τ and each k ∈ R≥0, one can define graded
sequence of ideals as

(23) aξ,k :=
∑

~m,〈~m,ξ〉≤−k

I~m.

Furthermore, below we assume X is normal and consider the following
sets (3). Then, the above set (i) with normal X (or equivalently, (ii)
with normal R) has a natural map to the set (3) for each ξ ∈ τ o.

(3) the relative isomorphism class (over X) of a birational pro-
jective morphism h : Yξ → Spec(R) with an effective h-antinef
R-Cartier R-divisor Eξ.

Proof. We first prove the bijection between the first two i.e., (i) and
(ii). Since R is flat over k[Sτ ], R ⊂ R ⊗k[Sτ ] k[M ] ≃ R[M ]. We
put I~m := {f ∈ R | χ(~m)f ∈ R} for each ~m ∈ M . The condition
that X dominates X × Uτ ensures that I~m are ideals of R and the last
condition of I~m in the item (ii) is equivalent to the surjectivity of π i.e.,
R 6= (⊕~m∈Sτ\0R)R.
Next we discuss the map from (ii) with normal R to the set (3).

Take and fix ξ. As it may be even irrational, we take a rational ap-
proximation ξ′q(q = 1, 2, · · · ) i.e., (0 6=)ξ′q ∈ NQ ∩ τ and ξ′q → ξ for
q →∞.

17analogous to the blow up type (semi) test configurations in [Od13b]
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We take a shriking sequence of rational polyhedral cones τi(i =
1, 2, · · · ) of NR such that τi ⊃ τi+1 for each i, ξ ∈ τ oi and ∩iτi = R≥0ξ.
We consider the sequence of localization

R ⊂ R⊗
k[Sτ ] k[Sτ1 ]

⊂ R⊗
k[Sτ ] k[Sτ2 ]

· · ·
⊂ R ⊗

k[Sτ ] k[Γ≥0](=: Rξ),

where the last k[Γ≥0] is the global N-ring ([Od24b]) for ξ. Recall that
SpecRξ → ∆ξ is the associated isotrivial degeneration to the gener-
alized test configuration X (compare [Od24b]). With respect to the
T -action, we similarly decompose Rξ = ⊕R~m,ξ as R. Then we claim
its following simple structure.

Claim 2.36. There is a strictly increasing sequence of positive real
numbers ri(i = 1, 2, · · · ) and ideals I(i)(i = 1, 2, · · · ) of R with I(i) ⊂
I(i+1) for each i, which satisfies the following: For any ~m ∈ M if
〈~m,−ξ〉 ∈ [ri, ri+1), we have R~m,ξ = I(i).

proof of Claim 2.36. The claim follows straightforwardly from the Noe-
therian property of R and the fact that R~m,ξ ⊂ R~m′,ξ if 〈~m′− ~m, ξ〉 ≥ 0.
Note that the latter follows from the k[Γ≥0]-algebra structure ofRξ. �

For each q, since 〈ξ′q,M〉 ≃ Z, one can define the projective spec-
trum hq : Yq(:= ProjR⊕k∈〈ξ′q ,M〉∩R≤0

aξ′q,k) → X , birational projective
over X . Further this construction naturally associates an effective hq-
antiample Q-divisor Eξ′q . Now we analyze how this (Yξ′q , Eξ′q) behaves
as q increases.
We now consider (R ⊗

k[Sτ ] k[Sτi ])|−Sτ ⊂ (Rξ)|−Sτ . Note that the
latter is a (−)Sτ -graded finite type R-algebra and the former en-
larges as i increases. Therefore, there is some I ∈ Z>0 such that
(R ⊗

k[Sτ ] k[Sτi ])|−Sτ = (Rξ)|−Sτ for any i ≥ I. We take its fi-
nite generators fj ∈ R~mj ,ξ(j = 1, · · · , l) and write them as fj =∑

k=1,··· ,ki
gj,k ·χ(mj,k) with gj,k ∈ R~mj−mj,k

and mj,k ∈ Γ≥0. By replac-

ing {ξ′q} by its subsequence {ξ′q}q>Q for large enough Q if necessary, we
can and do assume 〈mj,k, ξ

′
q〉 ≥ 0 for any q. Therefore, it follows that

{aξ′q,k}k∈R≥0
(as a set) does not depend on q and is equal to {I(i)}i and

further that jumping numbers of k only continuously changes for ξ′q.
This implies that Yq are all isomorphic and Eξ′q converge to a R-divisor
(after the replacement of {q} to its subsequence to q > Q as done
above), which we denote as Eξ. From the construction, Eξ is relatively
nef. We complete the proof. �
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Under the above correspondence in Lemma 2.35, further we take a
rational approximation ξ′q(q = 1, 2, · · · ) i.e., (0 6=)ξ′q ∈ NQ∩τ such that

〈ξ − ξ′q, τ∨〉 > 0(24)

and ξ′q → ξ for q → ∞. Then, for each q, take a sufficiently divisible
positive integers dq so that dqξ

′
q ∈ N , consider the toric morphism

A1 → Uτ which correpsonds to dqξ
′
q, and the pullback of X as Xdqξ′q :=

XUτ × A1 → A1. We denote its central fiber as (Xdqξ′q)0. Then, the
following holds.

Lemma 2.37. (Xdqξ′q , (Xdqξ′q)0) is log canonical for q ≫ 0 if and only

if (Yξ, Eξ) is log canonical.

Proof. Since Eξ′q increases (under the assumption (24)) and converge to
Eξ, the latter is equivalent to the log canonicity of (Yq, Eξ′q) for q ≫ 0.
Then, the assertion follows from [LWX21, 2.21] (whose proof extends
to the non-cone situation). �

Note that the above two lemmas generalize [LWX21, 2.20, 2.21] in
two directions: to allow non-cones for general fibers, and to allow gen-
eralized test configurations with higher dimensional case.

2.7. (Higher) Θ-stratification. One of the main tools in the alge-
braic construction of K-moduli of Fano varieties (cf., [Xu20, BHLLX21,
LXZ22]) is stack-theoretic incarnation and generalization of the the-
ory of Harder-Narasimhan filtration, which is introduced by [HL14]
and called the Θ-stratification. Roughly put, it allows a family-wise
optimal destabilization along one parameter family. Correspondingly,
the properness-type criterion after Langton [Lan75] is established in

[AHLH23]. Because of the irrational nature of v̂ol-minimizing valua-
tions (associated to the Reeb vector fields), it is more convenient and
suitable to use a generalization of [HL14, AHLH23] to multi-variable
parameter family setup and degenerations in its irrational direction,
which is done as a part of a theory of [Od24b, §2, Ex 2.10]. We briefly
review some of the main definitions and theorems below, in a simplified
weaker form, following the toric Notations 1.

Definition 2.38 ([HL14, Od24b]). Generalizing [HL14] (r = 1 case),
a higher Θ-stratum of rank r and type τ in M consists of a union of
connected components Z+ ⊂ Map(Θτ ,M), where Map(−) denotes the
mapping stack (cf., [AHR20, AHR19]), such that the natural evaluation
morphism ev(1,··· ,1) : Z+ →M is a closed immersion.
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Definition 2.39 ([HL14, Od24b]). For a quotient algebraic k-stack
by a linear algebraic k-group, a (finite) higher Θ-stratification in M
consists of

(i) a finite set of real numbers 1 ∈ Γ ⊂ (−∞, 1] ⊂ R,
(ii) closed substacks M<c of M for c ∈ Γ which are monotonely

enlarging i.e., M<c ⊃ M<c′ if c > c′ in Γ. Naturally, we can
define substacks ofM asM>c,M=c,M≥c,M≤c.

(iii) higher Θ-strata structure of type N, τ (Def 2.38) on eachM=c

for each c ∈ Γ. We do not require N, τ to be identified for
different c.

For Definition 2.38, we have the following Langton type theorem, for
instance. Clearly, we can use it iteratively to obtain a generalization
of [AHLH23, 6.12] for higher Θ-stratification.

Theorem 2.40 (Higher Θ-stable reduction [AHLH23, Od24b]). For
any quotient algebraic stackM = [H/G] with finite type scheme H and
linear algebraic group G over k, consider any morphism f : ∆ → M
from ∆ = Speck[[t]], to M whose closed point c maps into a closed
substack Z+ corresponding higher Θ-strata for the cone τ ∋ ξ, while
the generic point maps outside Z+. We denote the restriction of f to
Spec(K) as f o.
Then, after a finite extension of R and shrinking τ , there is a

toric morphism e : Uτ → A1 (we denote its complete localization

Spec ÔUτ ,pτ → Spec(ÔA1,0 = k[[t]]) also as e) and a modification of
f as

f |ξ : Spec ÔUτ ,pτ →M,

which extends f o ◦ e and sends pτ (κ) to a point outside Z+, but still
isotrivially degenerates to a point in Z+.

The original statements in [Od24b] are somewhat stronger, more
general and canonical, for some irrational element ξ ∈ τ . We use the
above theorem 2.40 both for the following construction of K-moduli of
Calabi-Yau cones in the next section §3 and some other later work.

3. Moduli of Calabi-Yau cones

Now we consider the moduli of K-polystable Fano cones, i.e., Calabi-
Yau cones, depending on the various preparations in the previuos sec-
tion.

3.1. Boundedness. In n = 2 ([HLQ23, LMS23]) and n = 3 ([LMS23,
Zhu23a]) case, the following boundedness result is proved, and is now
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generalized to any n by [XZ24] 18 after the corresponding results and
arguments in log Fano varieties case [Jia20].

Theorem 3.1 (boundedness [XZ24]). For a fixed positive integer n,
n-dimensional K-semistable Q-Fano cone X of the normalized volume
at least V are bounded.

Corollary 3.2. In particular, for each n and V , there are only finitely
many choices of the (metric) Reeb vector fields with minimum normal-
ized volume.

Recall that multi-Hilbert schemes [HM04] parametrizes affine closed
schemes inside AN with a linear action of an algebraic torus T with fixed
multi-Hilbert series. Using this, one can rephrase the above theorem:

Corollary 3.3. For fixed n, V , n-dimensional K-semistable Q-Fano
cone X of the normalized volume at least V (for fixed n, V ) are
parametrized inside a finite union of certain projective multi-Hilbert
schemes for all positive weights.

proof of Corollaries. We write the proof for the convenience. For each
n-dimensional K-semistable Q-Fano cone X = Spec⊕~mR~m of the nor-
malized volume at least V , take a positive vector field ξ i.e., with
〈~m, ξ〉 > 0 unless R~m = 0. By Theorem 3.1, combined with the lat-
ter half arguments of the proof of [Od24b, Lemma 3.14], we can take
a uniform finitely generated regular submonoid Γ≥0 ⊂ M generated
by the set of the extremal integral vectors S ⊂ Γ≥0 which contains
all the moment monoids of X and their {R~m}~m∈S generate the coor-
dinates ring R of X . S gives uniform embedding of X → AN and
for small enough rational polyhedral cone τ ⊂ N ⊗ R which includes
ξ, we have strict positivity 〈τ, S〉 ⊂ R>0. This gives an isomorphism
T ≃ Gr

m and so that the weights on Ar of each Gm are all positive. In
particular, by [HS17, Theorem 1.1, Corollary 1.2], there is a projective
multi-Hilbert scheme (possibly non-connected) which parametrizes all
n-dimensional K-semistable Fano cone X of the normalized volume at
least V and the Reeb vector field ξ. The finiteness claim of the Reeb
vector fields follows from the characterization of the K-semistability
[CS18] in terms of the minimized normalized volumes [LX18, 1.1], com-
bined with the constructible semi-continuity of the minimized normal-
ized volumes [BL21, Xu20] (See also related arguments later during the
proof of Theorem 3.6). �

We consider the obtained finite union of projective multi-Hilbert
schemes and take its union of components which parametrize those with

18we learnt this result after the completion of our manuscript



28 YUJI ODAKA

normalized volume exactly V , and denote by HV in our paper (though
it also depends on n in general, just for simplicity). We sometimes
fix ξ among the finite choices. Note that the leading coefficient a0(ξ)
of F (ξ, t) is V because of Theorem 2.7. Hence, in particular, for any
pointed log terminal variety x ∈ X parametrized in HV , the normalized

volume v̂ol(x ∈ X) is at most V from the definition.
Below, due to the finiteness of ξ, we can and do fix it in addition to

the fixing of volume V . We then replace T by the minimum algebraic
subtorus which contains ξ in its Lie algebra, if necessary and set G to be
is the commutator of T ⊂ GL(N), which is reductive. We then consider
locus Hss

V (ξ) := {b ∈ HV | 0 ∈ Xb is K-semistable with respect to T, ξ}
and replace HV by its closure. Note that naturally the reductive group
G preserves Hss

V (ξ) ⊂ HV (see e.g., [HM04, DS17]).
From now on, we want to prove that the locus of K-semistable Fano

cones of the normalized volume V and the Reeb vector field ξ, which we
later denote as Bss

V (ξ) makes sense and the corresponding quotient stack
[Bss

V (ξ)/G] admits a coarse moduli algebraic space which is proper.

3.2. Locally closedness. We consider the universal family over HV

which we denote as (AN × HV ) ⊃ UV ։ HV with the fixed multi-
Hilbert series. Since the weights of the action of T = Gr

m y AN are all
positive, the fibers contain the origin i.e., UV ⊃ 0×HV and the action
are good in the sense of [LS13] (if the fibers are normal).
We take the locus B′

V of HV which parametrizes normal and Q-
Gorenstein fibers by Kollár’s hull and husk [Kol08, Kol22]. (There will
be also remarks later on the subtleties on definition of corresponding
families and their logarithmic generalizations: Remarks 3.18, 3.19.)
Further, inside B′

V , we take the open locus BV where the vertices are
log terminal, due to its openness.
By the standard fact (cf., e.g., [Kol13b, Lemma 3.1]), we see that for

any algebraic subtorus T ′ ⊂ T of rank 1, the T ′-quotients of the geo-
metric fiber of (UV \ HV )→HV ∋ b are log Q-Fano varieties precisely
when b ∈ BV , with respect to the natural boundary branch Q-divisors.
Hence, this BV is exactly the locus which parametrizes the Fano cones.
We denote the restriction of the G-equivariant universal family to BV

as XV → BV . We denote an arbitrary geometric k-point b ∈ BV and
the fiber as Xb on which T acts which commutes with the G-action.
Note that for any b ∈ BV , v̂ol(Xb) is at most V as we explained

in the previous subsection. Therefore, if we apply the semicontinuity
of the normalized volume [BL21] combined with [Xu20, 1.3] to the
universal family over BV and the Noetherian arguments, it follows that

{v̂ol(Xb) | b ∈ BV (k)} is a finite set which we denote as V = V0 >
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V1 > · · · > Vm > · · · > Vm′ . Correspondinglly, we have a filtration of
G-invariant open subschemes

BV (v = V ) ⊂ BV (v ≥ V1) ⊂ · · · ⊂ · · · ⊂ BV (v ≥ Vm′) = BV ,

where we mean

BV (v = V ) := {b ∈ BV | v̂ol(0 ∈ Xb) = V },
BV (v ≥ Vi) := {b ∈ BV | v̂ol(0 ∈ Xb) ≥ Vi}.

Clearly we have BV (v ≥ V0) = BV (v = V ) though. We sometimes
simply denote BV (v ≥ Vi) as BV (i).

Claim 3.4. BV (0) = BV ∩Hss
V (ξ).

Proof. For a geometric point b ∈ BV , the Reeb vector field ξ gives a

valuation vξ of Xb with v̂ol(vξ, Xb) = V . Therefore, if v̂ol(0 ∈ Xb) = V

i.e., b ∈ BV (0) if and only if the v̂ol-minimizing valuation of Xb ∋ 0 is
exactly vξ but it is characterized by the K-semistability of (0 ∈ Xb x
T, ξ) in the sense of [CS18, CS19], by [LX18, 1.1, 1.3] (cf., also [CS18,
6.1]). �

Hence, we can consider the algebraic stack of K-semistable Fano
cones of fixed normalized volume V and the Reeb vector field ξ, which
we denote as

Mss
V (ξ) := [Bss

V (ξ)/G].(25)

We also write MV for the bigger quotient stack [BV /G], MV (i) :=
[BV (v ≥ Vi)/G] for each i = 1, 2, · · · , m′.
By [Xu20] (cf., also [BL21]), more precisely by its third paragraph

of the proof of Theorem 1.3 and its Theorem 2.18, the v̂ol-minimizing
valuations is uniformly taken i.e., obtained as the restriction of the
same quasi-monomial valuation of O0,AN , on each strata of some fi-
nite stratification {BV ((j))}j by some locally closed connected subsets
BV ((j)) of BV . Note that loc.cit crucially depends on the bounded
complements by Birkar [Bir19] as well as an analogue of the invariance
of local plurigenera (cf., [HMX13]). By loc.cit for instance, the normal-
ized volume function on each strata BV ((j)) constant, hence is a subset
of BV (i) for some i. We give more details by Theorem 3.6 and its Step
(i) of the proof. Furthermore, that next Theorem 3.6 further implies
that the inclusion BV ((j)) →֒ BV (i) \ BV (i − 1) is proper i.e., closed
immersion. Because both {BV ((j))}j and {BV (i)}i are finite, it follows
that each BV ((j)) is a connected component of some BV (i)\BV (i−1).
We summarize:
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Claim 3.5. On each connected component of BV (i) \ BV (i − 1), the

v̂ol-minimizing valuations of 0 ∈ Xb for b ∈ BV (i) \ BV (i − 1) is
uniformly taken i.e., obtained as the restriction of the same quasi-
monomial valuation of O0,AN for large enough simultaneous uniform
embedding 0 ∈ Xb ∈ AN .

Note that in general, valuation of a ring does not necessarily restrict
to a valuation on its quotient ring.

3.3. Higher Θ-reductivity-type theorem. Now we discuss Θ-
reductivity (cf., [HL14, AHLH23]) of the moduli stack of Fano cones in
a somewhat generalized form, to include non-cone affine varieties, as
we also later use it in other works as well. This is a partial generaliza-
tion of [Xu20, 1.3], [ABHLX20, §5] (cf., also [BL21]). The statement is
compatible with the framework of [Od24b], as an irrational and fam-
ily analogue of the theory of the Harder-Narasimhan filtration or the
Θ-strata [AHLH23].

Theorem 3.6. Consider an arbitrary faithfully-flat affine klt morphism
π : Y → S with a section σ : S → Y for a reduced algebraic k-scheme S
over k of characteristic 0, suppose there is a constant V such that for
any geometric point s ∈ Spec(R), the geometric fiber Ys ∋ σ(s) satisfies
v̂ol(σ(s) ∈ Ys) = V .
Then there is an algebraic torus T = N ⊗ Gm, ξ ∈ NR \ NQ and

a rational polyhedral cone τ ∋ ξ, all independent of s, such that π
extends to a faithfully flat affine klt family Ỹ = [Y/T ] over the quotient
algebraic S-stack Θτ ×k S = [Uτ (S)/T (S)], such that for any s, Ỹ
restricts to the positive weight deformations of Ys ∋ σ(s) to the K-
semistable Fano cones Ws discussed in §2.4 and [Od24b, §2].

If we restrict out attention to the case of Fano cones, our proof of the
above theorem implies the following. It further provides the structure of
a higher Θ-strata to their parameter space of with constant normalized
volumes, as Claim 3.16 shows later.

Corollary 3.7 (of the proof of Theorem 3.6). The moduli stack Mss
V

of n-dimensional K-semistable Fano cones is Θ-reductive in the sense
of [HL14].

For the construction of moduli of Fano cones, we only need the above
corollary, but the theorem 3.6 will be also used in later work.

Simpler proof of Theorem 3.6 for n = 2. We first note that n = 2 case
can be checked by the following standard arguments, under the as-
sumption that S is a smooth k-curve. In this case, we take a closed
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point c and suppose that σ(c) has Q-Gorenstein index N . Now we

take the canonical cover of Y as Ỹ → Y of the Galois group µN(k).
Suppose that the generic fiber Yη ∋ σ(η) (resp., special fiber Yc ∋ σ(c)
for π is the (quasi-étale) quotient by a finite group Gη (resp., Gc) of

the order aη (resp., ac). If the preimage of σ(S) in Ỹ , denoted as S̃,

has degree bigger than 1 over S, we make base change of Ỹ → S by
S̃ → S and denote the obtained family (resp., section) as π̃ : Ỹ → S̃
(resp., σ̃). Then consider the pointed π̃-generic fiber which we sup-

pose to be the quotient by a finite group G̃η (resp., G̃c) of the order bη
(resp., bc). Note that ac ≥ aη, bc ≥ bη, ac = Nbc, aη ≤ Nbη from the
construction. From our assumption, we have ac = aη =

4
V
i.e., the local

volume does not decrease at c. Combining them, we obtain b0 = bη i.e.,
we can assume that π̃ is a flat family of ADE singularities whose local
fundamental groups orders do not change. Then it is a classical fact π̃

is formally trivial so that the (divisorial) v̂ol-minimizing valuations vs
of σ(s) ∈ Ys = π−1(s) for closed points of s ∈ S do not jump in the
sense that it can be realized as a S-flat coherent ideal on Y supported
on σ(S) (whose blow up gives a plt blow up for each s ∈ S, which
corresponds to vs). Hence, Theorem 3.6 for n = 2 follows. �

proof of Theorem 3.6. Now we work for the general case for any n. The
proof consists of the following three steps:

(i) To prove a weaker version of the statement of Theorem 3.6,
which allows finite stratification of S. It uses arguments similar
to [Xu20, proof of Theorem 1.3] (also [BL21, BLX22]), which in
turn crucially uses the bounded complements by Birkar [Bir19]
and [BCHM10].

(ii) Apply a similar method to the proof of the Θ-reductivity of
[ABHLX20, §4], originally for families of K-semistable Fano
varieties, to obtain an affine faithfully flat finite type family
i.e., to prove Claim 3.9.

(iii) Prove that the obtained family over Θτ ×k S is klt morphism
of the desired kind.

We first prove Step (i). By [Xu20, 4.2] (cf., also [BL21, BLX22]),
which uses the bounded complements [Bir19, Theorem 1.8], after possi-
ble replacement of S by a larger smooth (a priori non-connected) quasi-
compact algebraic k-scheme S̃ with a surjective morphism ϕ : S̃ → S,
we can and do take a relative m-complement D for π×S S̃, so that the
following holds. Below, the sub-indices mean the base change to the
geometric points.
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Condition 3.8. The geometric fibers (Ys,Ds′/m), for any geometric

point s′ of S̃ with s = ϕ(s), are log canonical Calabi-Yau pairs and
all the Kollár components (regarded as valuations) v of some fiber Ys

centered at σ(s) and v̂ol(v) < nn + 1 are log canonical valuations for
some s′ with ϕ(s′) = s.

By taking fiberwise log resolutions of π×S S̃, possibly after replace-
ment of S̃ by the union of (resolutions of) its stratifications and con-
sidering associated base changes, we can and do assume there is a
fiberwise log resolution µ : Ỹ → Y and its certain µ-exceptional Q-
divisor E such that (Ỹs′, (E + (µ∗D)/m)s′) are log smooth sub log

canonical Calabi-Yau pairs for all geometric point s′ of S̃. We de-
note the connected components of S̃ as {S̃i}i. From our construction,
the set of (R>0-rescaling equivalence classes of) log canonical valua-
tions vs′ for (Ỹs′, (E + (µ∗D)/m)s′) can be naturally identified with
∆(⌊(E + (µ∗D/m))s′⌋) which does not depend on s′, as far as s′ stays
inside a fixed connected component S̃i of S̃. Here, ∆(−) denotes the
(projectivized) dual intersection cone complex of a normal crossing di-
visor.
Moreover, using that identification, as far as their discrepancies of

v ∈ Valσ(s)(Ys) over Xs are negative (which are the case if v̂ol(v, Ys) <

nn + 1), the corresponding normalized volume v̂ol(v, Ys) only depends
on the connected component S̃i in which s′ sits i.e., constant on S̃i.
This follows from [Xu20, Theorem 2.18] (cf., also [BCHM10], [HMX13,
Theorem 4.2]). Note that when a Kollár component v approximates

enough the v̂ol(σ(s) ∈ Ys)-minimizing valuation (cf., [LX20, 1.3] for

such approximability result), then it automatically follows v̂ol(v, Ys) <

nn + 1. Thus, we conclude that the v̂ol-minimizing valuation are all
identified in ∆(⌊(E+(µ∗D/m))s′⌋). Note that s ∈ ϕ(S̃i) is constructible
by the Chevalley’s lemma.
Therefore, there is a finite stratification {Sα}α by connected locally

closed subsets Sα such that replacing S by ⊔αSα, we can and do assume
that

• π factors through Y →֒ AN
S → S for some large enough N ,

• σ is the 0-section,

• for any α, there is a linear action of T on AN and v̂ol-
minimizing valuations vα for 0 ∈ Ys for any s ∈ Sα are achived
by the same Reeb vector field ξα ∈ N ⊗ R.

We prove it as follows. Following [DS17], we consider the finitely gener-
ated Im(vα)- graded OSα-algebra R := grvα(OYSα

). Then, we consider
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the family Wα := SpecSα
R which incorpolates Ws := Spec grvα(OYs,0)

for each geometric point s ∈ Sα. We take finite generators of R possi-
bly after taking open coverings of Sαs (for simplicity, we do not change
the notation Sαs). Then, we further take their lifts of such generators
sections to π∗OYSα

to embed YSα →֒ AN ×Sα over Sα and consider the
T -action with the weights (holomorphic spectrum in [DS17]) as their
degrees, we obtain the above data.
We now proceed to Step (ii) i.e., to prove the following claim.

Claim 3.9. π extends to a faithfully flat affine pointed family π : Ỹ →
Θτ ×k S such that it restricts to the degeneration of Ys ∋ σ(s) to the
K-semistable Fano cones Ws discussed in §2.4, for generic s.

Note that the last claim is not asserted for when s is the closed
point, but we will improve this point in the next step (iii). By the
previuos Step (i), at least π exists over the generic point of S (this can
be reproved using the Galois descent after [XZ21]), which we denote
as η = Spec(K). We write the obtained degeneration as YK  WK =
Spec grv(OYK

).
Also, given the previous Step (i), we can and do assume S is Spec(R)

with a DVR R of essentially finite type over k and we are reduced to
prove the remained Step (ii) and Step (iii). This reduction is analogous
to the valuative criterion of properness, and easily follows from [Od24b,
3.14] combined with [AHLH23, Appendix A3]. We denote the closed
point as c = m ∈ S and its residue field as κ. Now, we follow the
method of [ABHLX20, §5], (cf., also [BLZ22, Theorem 5.3]).
Set the finitely generated R-algebra RY := Γ(OY ) and consider the

v̂ol-minimizing valuation v = vYK
of the generic fiber YK of Y , consider

the corresponding algebraic k-split torus T = N ⊗ Gm, and take the
positive vector field ξ ∈ N⊗R. Take its corresponding generalized test
configuration (positive weights deformations) as in [Od24b, Ex 2.10].
In what follows, we refine the approximation of v by the Kollár

components [LX20, Theorem 1.3]. The arguments are analogous to
[ABHLX20, §5].
Consider a positive vector field ξ′ for WK in N ⊗ R, which is close

enough to the v̂ol(−, YK)-minimizer v. Then the associated graded ring
grξ′(OYK

) is isomorphic to grξ(OYK
) with different grading (cf., e.g.,

[LXZ22]), hence in particular induces valuation v′ of YK . We consider
a set of such v′ as a neighborhood of v and we denote whose immersion
by ι : U(⊂ NR) →֒ ValYK ,0. Then it is easy to take a sequence of such
v′ ∈ ι(U) as v′q = ι(ξ′q)(q = 1, 2, · · · ) ∈ ι(U ∩ 1

q
N) which is induced by
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divisors EK,q(q = 1, 2, · · · ) over YK so that v′ = v′q = q−1 · ordEK,q
→ v,

AYK
(EK,q) = O(q) for q →∞.

Recall that the restriction of the normalized volume function v̂ol(−)
to each small open face of ValYK ,0 with respect to a fixed log smooth
model, is Lipschitz continuous by combining [JM12, 5.7] and [BFJ12,
Cor D] (cf., also [MSY08, Appendix C], [LX18, §3.2.2] for stronger
results in special case) hence so is the case along ι(U) for small enough

U . We consider more on the local behaviour around the v̂ol(−, YK)-
minimizer v. In general, for a quasi-monomial valuation v′ close enough
to v in ValYK ,0 which is associated to some positive vector field of WK ,

v̂ol(v′, YK) = v̂ol(v′,WK) because we have grv′(OYK
) = grv′(OWK

).
On the other hand, take the graded valuation ideals a•(ordEq) of OY

with respect to Eq and bq,• of OYκ at the reduction Yκ as in [ABHLX20,
§5]. Here, Eq is the closure of EK,q over (a large enough normalized
blow up of) Y . Then, analogously to Eqn (20) in the proof of 5.3 of
loc.cit, we have

V ≤ lct(Yκ; bq,•)
n+1mult(bq,•)(26)

≤ lct((Y, Yκ); bq,•)
n+1mult(bq,•)(27)

≤ AYK
(EK,q)

n+1mult(a•(ordEq))(28)

= A(Y,YK)(Eq)
n+1mult(a•(ordEq))(29)

= V + o

(
1

q

)
.(30)

(26) follows from the definition of the (minimum) normalized volume
and our assumption in Theorem 3.6. (27) follows from the inversion
of adjunction. (28) follows from [Blu21, 2.7], [BX19, (3)]. Finally,

(30) follows from the fact that v̂ol(−, YK) = v̂ol(−,WK) on U and the
same discussion as [ABHLX20, the proof of Claim 1], if we use a Fano
cone analogue of Martelli-Sparks-Yau-Li’s derivative formula ([Hu23,
Lemma 3.3.1] cf., also [Li17, §4.1]).
From the above (26), (27), (28), (29), (30), we obtain the following

Blum-type invariants’ convergence:

(31) ǫq := lim
q→∞

(A(Y,Yκ)(Eq)− lct((Y, Yκ); bq,•)) = 0.

The above quantity - the difference of log discrepancy and the log
canonical thresholds for the valuative ideals, is introduced and system-
atically studied by Blum [Blu21]. By the formula in loc.cit Propo-
sition 2.8, one can apply [BCHM10, 1.2 or 1.4.3] to blow up Y to
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extract only Eq for q ≫ 0 which we denote as µ : Yq → Y with Q-
factorial Yq with µ-antiample Eq (which automatically characterize µ),
with (Yq, (1 − ǫq)Eq + Yκ). Applying [HMX13, 1.1] to the pair for
q ≫ 0, we obtain that (Yq, Eq + Yκ) is log canonical so that in particu-
lar, Yκ is semi-log-canonical (and irreducible) by the adjunction. Note
that, in particular, we obtain the finite typeness of the OY -algebra
⊕p∈Z≥0

µ∗OYq(−pEq). as Eq ⊂ Yq is relatively anti-ample. In other
words, we obtain the extended Rees construction

Grξ′q(RY ) := ⊕m∈M∩(ξ′q≥0){f ∈ RY | v′q(f) ≥ 〈ξ′q, m〉}
⊂ RY [M ∩ (ξ′q ≥ 0)]

gives a finitely generated R-algebra. Here, the notation Gr is taken
in contrast with gr for its quotient as we used before (e.g., Theorem
2.29 (ii)). Now, we fix a rational polyhedral cone τ ⊂ NR which
contains ξ and consider the restriction of the above graded ring as
Grξ′q(RY )|τ∨ := ⊕m∈M∩(τ∨){f ∈ RY | v′q(f) ≥ 〈ξ′q, m〉} ⊂ RY [M ∩ (τ∨)]
which is again of finite type over R. Here, τ∨ denotes the dual cone of
τ in MR = Hom(NR,R). We can and do assume that ξ′q satisfies that
〈ξ − ξ′q, τ

∨〉 ⊂ R≥0, so that for each q, we have 〈ξ′q′ − ξ′q, τ
∨〉 ⊂ R≥0

for q′ ≫ q. Then, it follows that Grξ′q(RY )|τ∨ is a sub R-algebra of
Grξ(RY )|τ∨ := ⊕m∈M∩(τ∨){f ∈ RY | v′q(f) ≥ 〈ξ,m〉} ⊂ RY [M ∩ (τ∨)]
and ∪qGrξ′q(RY )|τ∨ = Grξ(RY )|τ∨. Take a generator of the monoid
τ∨ ∩M as m1, · · · , ms. Then from the ACC (the ascending chain con-
dition) of ideals of RY i.e., the Noetherian property of RY , the following
holds: for each i = 1, · · · s, we can take a large enough qi ∈ Z>0 which
satisfies that Grξ′q(RY )|τ∨(mi) = Grξ(RY )|τ∨(mi) for q ≥ qi. Here (mi)
means the degree mi-part. For q := max{qi | i}, it thus follows that for
any q > q′, we have Grξ′q(RY )|τ∨ = Grξ(RY )|τ∨ and in particular it is of
finite type over R. Thus we obtain a family of finite type over Uτ × S
which extends π. We write the obtained isotrivially degenerating fam-
ily as Y = Yξ, the morphism Y → Uτ × S still as π, and its restriction
over Spec(K) (resp., Spec(κ)) as YK = Yξ,K (resp., Yc = Yκ = Yξ,κ),
and its restriction over pτ × S as Ypτ → (pτ×)S.
The relative affineness of π follows from the above ring-theoretic con-

struction, and the faithful flatness of π follows from [Tei03, Proposition
2.3]. Hence we conclude the proof of Claim 3.9 and Step (ii).

We proceed to the last Step (iii). We keep fixing τ and also take large
enough q with Grξ′q(RY )|τ∨ = Grξ(RY )|τ∨. Then, we obtain a family

Y ′
q → A1

t × S as the basechange of Y → (Uτ × S) through A1
t → Uτ
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that corresponds to dξ′q ∈ N for some divisible enough positive integer

d. We apply arguments similar to [ABHLX20, §5.3] to Y ′
q → A1 × S.

By the relative version (over S) of [LWX21, Lemma 2.21] Ypτ :=
Y|pτ×S(≃S) ≃ Y ′

q|0×S is Q-Gorenstein family over S. Indeed, from
the construction of Y , the restriction Y|pτ×S is the relative cone of
(Eq,DiffEq(0)) with the Q-polarization −Eq|Eq , where Diff(−) denotes
the usual Shokurkov’s different, over S which is a log canonical pair
by the adjunction. Similarly, if we focus on the fiber over the closed
point c of S, (Yq,κ, Eq|Yq,κ =: eq) is log canonical by adjunction (here
Yq,κ denotes the central fiber of Yq) and hence (eq,Diffeq(0)) is semi-
log-canonical again by the adjunction. Therefore, Y(pτ ,c) = (Y ′

q)(t,c) is
semi-log-canonical as the affine cone of (eq,Diffeq(0)) (cf., e.g., [Kol13b,
Lemma 3.1]). (Alternatively, we can apply [Od24b, Lemma 2.23] to
the generalized test configuration Yc to confirm the same consequence,
combining with the same arguments as [ABHLX20, Claim 2], using
the ACC of log canonical thresholds [HMX13].) Then it follows that
(Y , π∗∂Uτ (×c)) is a log canonical pair by the inversion of adjunction
(cf., e.g., [Kaw06, OX12]). Here ∂Uτ (×c) means the (simple normal
crossing) toric boundary of Uτ .
Now, suppose Y(pτ ,c) is not log terminal and obtain a contradiction.
Note that from the construction Y restricts to a generalized test

configuration of Yc = Y(1,c) with the degeneration to Y(pτ ,c).
By [Od24b, Lemma 2.21], for the small enough fixed τ , there is a

sequence of ideals {I~m}~m of R such that Y|c∈S is given as Spec⊕~m∈Sτ I~m,
which also gives a birational projective morphism ([Od24b, Lemma 2.21
(3)]), which we denote as µ′′ : Z ′′ → Yc = Y(1,c). (We use the notation
with the simple prime ′ for another model for notational compatibility
with [LWX21, 4.3] as we use its arguments in this proof later). We
put the total exceptional divisor of µ′′ i.e., the divisorial part of µ′′-
exceptional locus as E ′′ (with all coefficients set as 1).
By [Od24b, Lemma 2.23] and the above arguments, it follows that

(Z ′′, E ′′) is log canonical. Suppose it is not purely log terminal. Then
we take a (log crepant) dlt modification (see e.g., [OX12, Kol13b]) of
(Z ′′, E ′′) as f : Z → Z ′′ with E := f−1

∗ E ′′ + Exc(f)red. Then by the
definition, (Z,E) is divisorially log terminal and Z is Q-factorial. If we
set g := µ′′ ◦ f , then we can describe the generalized test configuration
as

Y|c∈S = Spec⊕~m∈Sτµ
′′
∗OZ′′(−E~m)

= Spec⊕~m∈Sτ g
′
∗OZ′′(−g∗E~m),
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by our correspondence ([Od24b, Lemma 2.21]). Now we can apply
[LX20, Lemma 3.8, Proposition 2.10] to have a plt blow up of Yc sup-
ported on the closed point σ(c), which we denote as Z ′ → Yc with the
normal exceptional divisor E ′. Let us take a common resolution of Z

and Z ′ as Z
p←− Z̃

q−→ Z ′, and set G := p∗(KZ + E) − q∗(K ′
Z + E ′).

Then since the coefficient of q−1
∗ E ′ is positive from the choice of ord′

E

and the negativitiy lemma (cf., [KM98, 3.38, 3.39]), we know that G is
effective which we denote by

∑
i ciEi with ci > 0. Now, we can apply

the same arguments to [LX20, Lemma 3.7, 3.8] for the graded ideals
aξ,• in [Od24b, Lemma 2.21 (a) (and also the corresponding R-divisor
Eξ in (3))] to see that

v̂ol(Yc ∋ σ(c), ordE′) < volX(Z).(32)

Note that the left hand side can be computed by the model Z → Yc and
the right hand side is volX(Z) = V , by Lemma 2.13 (ii) which identi-
fies with the local volume over the generic point of S. This contradicts

our assumption that v̂ol(Yc ∋ σ(c)) = V . Hence it follows that Y(pτ ,c)

is irreducible. However, because of Lemma 2.13 (ii) and the unique-

ness of v̂ol-minimizing valuation ([XZ21], [BLQ22]), it follows that v

is the v̂ol-minimizing valuation of Yκ ∋ 0 and the obtained generalized
test configuration Y|c×Uτ is the positive weight deformation for it. We
complete the proof of Step (iii). �

Remark 3.10 (Other possible approaches). The author believes there
are also several other possible approaches to the last Step (iii) of the
above proof. For instance, we believe the above arguments of (32) is
equivalently replacable by analogous arguments to [LWX21, §4, Propo-
sition 4.3] by discussing the Donaldson-Futaki invariants DF(−, ξ) for
generalized test configurations by similarly localizing at the central
fiber (as in [Fut83, DT92], [Ino22, 2.22]) as Definition 2.15. The argu-
ments are essentially a higher rank analogoue to [LX14, Step 3, Propo-
sition 5] which loc.cit called the Q-Fano extension process. Also recall
that the final step of the proof in [LWX21, Proposition 4.3] (and [LX14,
Proposition 5]) are, similarly to above [LX20, 3.8], both to boil down
to the simple positivity of (local) volumes along the degenerate fibers
(while other steps in [LX14] requires the Hodge index theorem as in
[Od12a]).
Also we may be able to go back to obtain a generalized test config-

uration Y ′ → Uτ which corresponds to (Z ′, E ′) whose fibers over the
toric boundary are all normal and (Y ′, ∂Y ′) is plt where ∂Y ′ denotes
the preimage over the toric boundary of Uτ .
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proof of Corollary 3.7. The construction of the moduli stack Mss
V is

done in §3 (more precisely, §3.1, §3.2). Take any family of K-
semistable Fano cones Yo which comes from (ΘR \ p) → Mss

V , where
ΘR := [SpecR[t]/Gm] and p means the closed point for the maximal
ideal (m, t). Then we show that it extends to ΘR → Mss

V the de-
sired assertion (Θ-reductivity) follows from the above proof of Theorem
3.6. Indeed, K-semistable Fano cones are in particular log terminal by
the definition. Moreover, the test configuration over the generic point
Spec(K) has K-semistable special fiber so that (26), (28), (30) work.
Therefore, we can apply the step (ii), (iii) of the above proof of The-
orem 3.6. Hence, there is an extension of Yo to a faithfully flat affine
klt family Y over ΘR. (Step (iii) of the proof in this case is previously
proved in [LWX21, §4, Proposition 4.3, Corollary 4.4]. Indeed, the
Donaldson-Futaki invariant (Definition 2.15 (ii)) of the affine test con-
figuration along c ∈ S = Spec(R) is 0 as it is the same as that along
the generic point η ∈ S = Spec(R).) The only remained part is to
show the K-semistability of the fiber over the closed point p = (m, t).
This follows the same arguments as [LWX21, Lemma 3.1] (a special
case of the CM minimization conjecture), once we modify the proof
therein verbatim by replacing the Hilbert scheme by the multi-Hilbert
scheme and the Futaki invariant for the Fano varieties (corresponding
to regular case) by the Futaki invariant for the fixed positive vector
field ξ. This completes the proof of Corollary 3.7.

�

3.4. S-completeness and its consequences. In this subsection, we
confirm another ingredient for the properties of the moduli stack
Mss

V (ξ), after [LWX21].
First we review the following algebraic stack, which is convenient for

the framework of [HL14, AHLH23].

Definition 3.11 ([HL14, §2B]). For a DVR R with its uniformizer
π, STR := [Spec(R[x, y]/(xy − π))/Gm]. Here, Gm acts on x, y with
weights 1,−1 respectively. The closed point as the image of (x, y) is
denoted as 0.

Then, we rephrase a theorem of [LWX21] as follows.

Theorem 3.12 (cf., [LWX21]). For any fixed n, V and ξ, Mss
V (ξ) is

S-complete (over k) in the sense of [AHLH23, §3.5, 3.38]. That is for
any morphism ϕo : (STR\0)→Mss

V (ξ) with essentially finite type DVR
R over k, it extends to ϕ : STR →Mss

V (ξ).



MODULI OF SASAKI-EINSTEIN MANIFOLDS 39

Proof. This is essentially proved in [LWX21] (without the name of S-
completeness in [AHLH23]). Take a Gm-equivariant locally stable fam-
ily of K-semistable Fano cone X o → Spec(R[x, y]/(xy − π)) which
correpsponds to ϕo. This is equivalent to consider two special test con-
figurations of its general fiber X . Then, [LWX21, proof of 4.1] shows
that it extends to (automatically Gm-equivariat) faithfully flat affine
Q-Gorenstein family X → Spec(R[x, y]/(xy − π)). Further, [LWX21,
4.3, 4.4] (after its 4.1) shows that the fiber over the closed point (x, y)
is K-semistable Fano cone, which gives rise to the desired extended
morphism ϕ. �

See also [BX19, ABHLX20, LX18, XZ21] for related work.

Corollary 3.13. For a K-polystable Fano cone T y X, ξ, its automor-
phism group Aut(T y X, ξ)(k) := {T -equivariant automorphism X →
X} forms a reductive algebraic k-group Aut(T y X, ξ).

Proof. This follows from the above S-completeness theorem 3.12 by
[AHLH23, 3.47]. �

Remark 3.14. The reductivity also follows from more differential geo-
metric arguments, simply combining [DS17, Appendix] and [Li21, The-
orem 2.9].

In §3.6, we also use the above S-completeness to prove the separat-
edness of the moduli, following [AHLH23, 1.1].

3.5. Properness. We are now ready to prove the following theorem,
which partially generalize the results of [BHLLX21, LXZ22].

Theorem 3.15. For any fixed n, V and ξ,Mss
V (ξ) is universally closed

(i.e., satisfies the existence part of the valuative criterion).

Proof. As a direct application of Theorem 3.6, we confirm that

Claim 3.16. the filtration {MV (i)}i of §3.2 naturally holds the struc-
ture of the higher Θ-stratification (in the sense of [Od24b, §3.3], after
[HL14]) for some rational polyhedral cone τ ⊂ N ⊗ R which contains
ξ.

proof of Claim 3.16. We proceed to the proof of Claim 3.16. Take a
point b ∈ BV (i) \ BV (i − 1) for 1 ≤ i ≤ m′. From the generaliza-
tion of the extended Rees construction by Teissier [Tei03, §2.1, Propo-

sition 2.3], there is a T -equivariant morphism ψb : ∆
gl
ξ → T · b and

induced ψb : [∆
gl
ξ /T ] → [T · b/T ] (see also [LX18, §2.1], [Od24b, Ex-

ample 2.10, Theorem 2.12]). Now, take a connected component B of
(BV (i)\BV (i−1))red which means the closed subset (BV (i)\BV (i−1))
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with the reduced scheme structure, regarded as a closed subscheme.
Recall [Od24b, Lemma 3.14] which in particular says that any element
of

Map([∆gl
ξ /T ],MV (i))(B)(33)

= lim−→
τ∋ξ

Map([Θτ/T ],MV (i))(B)(34)

comes from Map([Θτ/T ],MV (i))(B) for some τ possibly after replac-
ing B by its Zariski covering. By Claim 3.5, there is an element of the
left hand side (33) which induces degenerations to K-semistable Fano
cones for any b simultaneously. Then, we use the above equality and
represent by Map([Θτ/T ],MV (i))(B) of the right hand side (34) for
some τ . We fix such τ . Therefore, we obtain a T -equivariant mor-
phism ψ : Uτ × B → Bi which induces ψ : Θτ × B → MV (i), where

Uτ means the affine toric variety for τ . ψ localises to (∆gl
ξ × B)→ Bi,

which we still write as ψ. Take the connected component of the (finite
type) algebraic stack Map([Θτ/T ],MV (i)) (cf., [HL14], [AHR20, 5.10,
5.11], [AHR19, 6.23]) which contains the image of B and denote as B.
Take any geometric k-point b′ ∈ B and consider the corresponding im-
age of the vertex pτ of Uτ as [Y ⊂ AN ]. Then from the construction, its
multi-Hilbert function remains the same as those parametrized by B.

So, combined with the uniqueness of the v̂ol-minimizer [XZ21, BLQ22],
it follows that the images of pτ ×B are again inside Bi \Bi−1 and the
image of Θτ ×B →MV , which extends ψ, still lies insideMV (i). De-
note the smallest τ among finite possibilities of B, as τm. Therefore,
collecting all B for Bs, localizing to the uniform τm, we obtain the
higher Θτm-stratification structure onMV . �

Now, we proceed to the proof of Theorem 3.15 by the valuative crite-
rion. Take any DVR R of essentially finite type over k (cf., [AHLH23,
Appendix A3]), and denote its quotient field (resp., residue field) as K
(resp., κ) and set S := Spec(R), its generic point η (resp., closed point
c). Consider an arbitrary morphism ϕ : S → BV which maps η into
Bss

V (ξ). We denote the corresponding family of Fano cones as YK → η.
Now we want to show that the induced morphism η → Mss

V (ξ) can
be extended to a morphism S → Mss

V (ξ). Take any common rational
positive vector field ξ′ and corresponding algebraic subtorus T ′ ⊂ T of
rank 1. Now, we apply [LX14, Theorem 1] to a Q-Gorenstein family of
log Fano pairs YK/T

′
։ η (cf., which underlies the associated Seifert

Gm-bundle’s base cf., [Kol13b]) and take its cone. Possibly after re-
placement of R by its finite extension, this gives an extension Y ։ S
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of YK/T
′
։ η as a family of Fano cones, corresponding to some mor-

phism S → BV (i) (after temporarily enlarging BV if necessary). Now,
by Claim 3.16, we can use the higher Θ-stable reduction theorem in
[Od24b, §3.2, §3.3], in the place of [AHLH23] for the original proof of
the Fano varieties case [BHLLX21, LXZ22] to decrease i, and hence
finally reach i = 0 by its repetition thanks to the ACC of normalized
volumes [XZ24, 1.2]. This completes the proof of Theorem 3.15. �

3.6. Existence of coarse (good) moduli space.

3.6.1. General statements and proof. Now we are ready to construct
the moduli spaces.

Theorem 3.17 (Proper K-moduli of Fano cone). For fixed n, V , there
is a moduli Artin stack of n-dimensional K-semistable Fano cones of
normalized volume V andMss

V (ξ), which admit a proper coarse (good)
moduli space M ss

V (ξ) whose closed points parametrize K-polystable Fano
cones among them.

Proof. We constructed the moduli stack of K-semistable Fano cones of
normalized volume V andMss

V (ξ) as (25). Then by the Θ-reductivity
(Corollary 3.7 of Theorem 3.6) and the S-completeness theorem 3.12
(cf., [LWX21, §4]) ofMss

V (ξ), [AHLH23, Theorem A] can be applied to
prove the existence of separated coarse (good) moduli space M ss

V (ξ).
Furthermore, recall that the normalized volumes of n-dimensional log

terminal singularities satisfy ACC [XZ24, 1.2]. Thus, Theorem 3.15 as
an application of the higher Θ-stable reduction theorem [Od24b, §3]
can be applied to show that M ss

V (ξ) is universally closed and hence
proper. We complete the proof. �

Remark 3.18 (Moduli (2-)functor). The set-theoretic meaning of the
moduli Mss

V (ξ)(k) and M ss
V (ξ)(k) are clear i.e., n-dimensional K-

semistable (resp., K-polystable) Fano cones of volume density V and
the Reeb vector field ξ for T , as we defined (in the previous section),
but more generally S-valued points for more general k-schemes S i.e.,
Mss

V (ξ)(S) can be redefined more intrinsically as their “locally stable”
families T y X ։ S in the sense of Kollár [Kol22, Definition 3.40].
The arguments are essentially the same as [Kol08, Kol22, Xu20], so we
omit the detail.

Remark 3.19 (Generalization to logarithmic setup). It is also straight-
forward to generalize the above theorems and their proofs to kawamata-
log-terminal log Fano cones (X,∆), their families and moduli, at least
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when ∆ are Q-divisors and marked as ∆ = 1
N
D with (Z-)Weil di-

visors, over reduced19 base. More precisely, we fix an algebraic k-
torus T = N ⊗Gm and consider the groupoid of T -faithfully flat fam-
ilies X π−→ S of normal affine cones (in the sense of Definition 2.9
(ii)) together with relative Mumford (Q)-divisors which are marked as
1
l
D with l ∈ Z>0 and relative Mumford 20 Z- divisors D, which sat-

isfy the same “Q-Gorenstein-ness of deformation” type condition of
[Kol22, 8.13 (except for 8.13.5)]. We further restrict our attention to
the cases with reduced S and when π-fibers (Xs,

1
l
Ds) for s ∈ S are

all log K-semistable with respect to ξ, and denote such groupoid as
Mlss,red

V (ξ, l)(S).

Then, by the log boundedness ofMlss,red
V (ξ, l)(k) ([XZ24]), we use the

multi-Hilbert scheme [HS17] again of T y X together with [Kol22, 7.3]
(applied to projective compactifications ofDs with respect to a positive
vector field ξ′ ∈ N) to obtain a larger moduli stack of log affine cones, in
the sense of Definition 2.9. Note that the divisors D are also assumed to
be T -invariant which, again by the theory of [HS17], provides the reason
of locally finite typeness of the obtained stack, and its finite typeness
is ensured by the log boundedness [XZ24]. Then, by [Kol22, 3.22]
(also cf., [Kol08]), we can take its locally closed substack generalize
our previous construction ofMss

V (ξ). Then, the remained confirmation
of its properties work verbatim after our discussions above in this §3
(and the materials of §2 and the references used in the proofs), using
the logarithmic framework of modern birational geometry (cf., [KM98,
§3]). Summarizing up, our arguments in this paper gives the following,
similarly to Theorem 3.17:

Theorem 3.20 (K-moduli of log Calabi-Yau cones). We fix n, l ∈ Z,
and V ∈ R>0. Then, by the logarithmic version of the boundedness
with fixed n,N, V, l. ([Jia20, XZ24], cf., also Corollaries 3.2, 3.3),
there are only finitely many choices of N, T = N ⊗ Gm, ξ ∈ N ⊗ R
of n-dimensional log K-semistable log Fano cones (T y X ∋ x,∆ =
1
l
D) where (X,∆) are kawamata-log-terminal and are of the normalized

volume V .
Further fixing N, T = N ⊗ Gm, ξ ∈ N ⊗ R (just for convenience of

description), they form a moduli Artin stackMlss,red
V (ξ, l) at the reduced

Artin stack level, which admits a reduced proper coarse (good) moduli

space M lss,red
V (ξ, l) whose closed points parametrize n-dimensional log

K-polystable log Fano cones (X, 1
l
D) among them.

19to avoid complication, which is treated by the notion of “K-flatness” in [Kol22]
20which simply means being relative Cartier divisor inside the open subset of

X sm ⊂ X , the relatively smooth locus, in our fiberwise normal case
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In particular, if k = C, M lss,red
V (ξ, l)(C) can be again regarded as the

moduli of Sasaki-Einstein manifolds with certain singularities including
“conical” type which we do not give intrinsic formulation in this paper.

3.6.2. Reconstructing Fano varieties’ K-moduli. For the case when ξ ∈
N and provides regular positive (Reeb) vector field, the above theorem
3.17 reproves the following.

Corollary 3.21 (K-moduli of Q-Fano varieties). For fixed n and fixed
V , there is a moduli stack M of n-dimensional K-semistable Q-Fano
varieties X of the anticanonical volume V = (−KX)

n, and it further
admits a proper coarse (good) moduli space M ss

V (ξ) whose closed points
parametrize K-polystable Q-Fano varieties.

We make further discussions on the possibility of yet other (general)
apporoaches to algebraic construction of K-moduli of Fano varieties, in
the next section §4.

Proposition 3.22. We fix n, V, T, ξ below. The (universal) CM R-line
bundle λCM(T y X ) (Definition 2.22) on the moduli stack Mss

V (ξ) of
n-dimensional Fano cones of the volume density V for the Reeb vector
field ξ descends to a R-line bundle on the coarse moduli space M ss

V (ξ)
which we denotes as LCM(n, V, ξ) for simplicity.

Proof. The proof is essentially the same arguments as [OSS16, §6.2, af-
ter (K-moduli) Conjecture 6.2]. Indeed, since the morphismMss

V (ξ)→
M ss

V (ξ) is étale locally a GIT quotient as in the discussion of [OSS16],
the descendability is equivalent to the vanishing of the Donaldson-
Futaki invariants for product test configurations for every K-semistable
Fano cones, which follows from the definition of K-semistability
([CS18], our Definition 2.15). �

3.6.3. Projectivity and CM R-line bundle. Naturally, as conjectured in
polarized setup in [FS90], [Od10], [OSS16, 6.2] and algebraic parts
solved by [CP21, XZ22] for Fano varieties case, we conjecture:

Conjecture 3.23. For k = C, c1(M ss
V (ξ)(C), LCM(n, V, ξ)) is rep-

resented by a Weil-Petersson type Kähler current on M ss
V (ξ)an =

M ss
V (ξ)(C). For general k, LCM(n, V, ξ) is an ample R-line bundle so

that M ss
V (ξ) is projective.

We omit the precise form of the natural log extension of the CM line
bundle and the corresponding positivity conjecture, which the readers
can guess from the polarized varieties case (cf., e.g., [OSS16, §6], [CP21,
§3]).
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3.7. Examples.

3.7.1. Quasi-regular case. In the quasi-regular case, as it is naturally
expectable after [MSY06, MSY08, CS18, CS19], we can reduce the
study to the K-moduli of (proper) log Fano varieties. This generalizes
Corollary 3.21, which corresponds to the regular Reeb vector field case.

Proposition 3.24. The moduli stack Mss
V (ξ) (resp., M ss

V (ξ)) of n-
dimensional Fano cones (T = Gm) y X of volume density V for quasi-
regular Reeb vector field ξ ∈ NQ is isomorphic to the K-moduli stack
(resp., K-moduli space) of certain log Fano varieties which appears as
quotient of X.

Proof. Take any Gm-equivariantly faithfully flat family of affine cones
Gm y X = ∪sXs ⊂ AN ⊗ S → S ∋ s with the weight vec-
tor ξ = (m1, · · · , mN), where mi are coprime positive integers. By
diagonalization, any Gm-equivariantly faithfully flat family of quasi-
regular affine cones can be localized to the above type family. As
noted by [CS18, CS19] (cf., also [LL19]), the K-(semi/poly)stability
of Xs is equivalent to that of (Xs \ x)/Gm with

∑
D

mD−1
mD

D where

D runs over prime divisors inside (zi = 0) ⊂ (Xs \ x)/Gm and
mD is the ramification degree of [(Xs \ x)/Gm] → (Xs \ x)/Gm i.e.,
mD = gcd(m1, · · · , mi−1, mi+1, · · · , mN).
If we consider the K-moduli stack M of log Fano varieties

((Xs \ x)/Gm,
∑

D
mD−1
mD

D), the above arguments give us a morphism

ϕ :Mss
V (ξ) → M. The inverse of this morphism also exists by taking

the relative cones. Hence, these moduli stacks are isomorphic. Further,
because of the fact that the K-polystability of X and ϕ(X) are equiva-
lent, or otherwise from the existence of proper good moduli spaces for
both, we conclude that ϕ also induces an isomorphism at the coarse
(good) moduli space level. �

Therefore, we can reduce the following to the log K-stability and log
K-moduli of (usual) log Fano varieties.

Problem 3.25. Explicitly describe the structure of K-moduli (Theo-
rem 3.17) of quasi-regular Fano cones (Sasaki-Einstein manifolds with
singularities) in the case of [BGN03, BG05, Kol05, LST22].

3.7.2. Irregular case. The examples of compact irregular Sasaki-
Einstein manifolds found in the initial stage seem to be [GMSW04a],
[GMSW04b], [MS21], [FOW09] among others and they are mostly toric
Fano cones, so that they do not have positive dimensional moduli
spaces.
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Recently, Süß[Sus21] considered an example of 3-dimensional affine
T -varieties of complexity one (cf., [IS17]) which admit a positive dimen-
sional moduli space. The example in loc.cit is constructed as follows.
By the correspondence of normal affine T -varieties with poloyhe-

dral divisors [AH06], if we consider Y = P1 and a polyhedral divisor
([AH06]) i.e., D =

∑
y∈P1(k)Dy where Dy are rational polyhedra of the

same tail cone σ which satisfy “proper”ness condition of [AH06, §1].
In [Sus21, §6], disjoint y1, · · · , yk ∈ P1(k) \ {0,∞} are fixed and we

set σ, Dy as:

• σ := R≥0(−1, 1) + R≥0(15k − 4, 8),
• D0 := (2

5
, 1
5
) + σ,

• D∞ := (−2
3
, 1
3
) + σ,

• Dyi(i = 1, · · · , k) := ([0, 1]× {0}) + σ,
• Dy := σ otherwise i.e., when y 6= 0,∞, yi(i = 1, · · · , k).

In [Sus21, §6], the corresponding T -variety Xk is proven to be K-
polystable Fano cone for any positive integer k. Due to the automor-
phism group Gm(k) = k

∗ of (P1, (0)+(∞)), we have the corresponding
moduli

Mk(k) = (P1(k) \ {0,∞})k/(Gm(k) = k

∗) ≃ k

k−1.(35)

To explicitly understanding our compactification (Theorem 3.17) in
this case, now we would like to consider the case when yis can collide
and can be even 0 or∞. When the supports of some y collide, we take
the Minkowski sum of the original Dys.

Case 1. Firstly, we consider the effect of collisions of yi i.e., yi = yj
outside 0,∞ for some 1 ≤ i 6= j ≤ k.
By [IS17], [Sus21, Definition 4.2, Proposition 4.3], special test con-

figuration of the obtained T -variety X corresponds to an admissible
point y ∈ P1 in the sense of loc.cit. Further, by [Sus21, Theorem 4.10],
the K-polystability of (X, ξ) remains equivalent as far as σy in loc.cit
§4 and uy does not change. Thus, in particular, X is K-polystable if
yis are all in P1 \ {0,∞} even if they collides.

Case 2. Next we consider when some of yi collide with 0. Suppose
exactly m(0 ≤ m ≤ k) of yis attain 0. Then, D0 is changed to (2

5
, 1
5
) +

([0, m], 0)σ.
Consider the case with k = 2 and positive m. A lengthy hand calcu-

lation (after [Sus21, 4.10, §6]), which we omit here, and confirmation
by using the Sage package “TVars” created by Absar Gull, Leif Jacob,
Leandro Meier and Hendrik Süß, shows the Donaldson-Futaki invariant
of the special test configuration for the admissible y = 0 is negative.
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The author thanks the creators of the Sage package, especially Hendrik
Süßfor the help on this computation.

Case 3. Next we consider when some of yi collide with ∞. Then, if
k = 2 and m′ is positive, a similar calculation as above (after [Sus21,
4.10, §6] and the same Sage program) shows the Donaldson-Futaki
invariant of the special test configuration for the admissible y = ∞ is
positive if m′ = 1 and negative if m′ = 2.
The conclusion is that

Proposition 3.26. In the generalized setup of [Sus21, §6] (allowing
yi to be 0,∞ and their collision), suppose k = 2 and yi = 0 for m
is and yi = ∞ for m′ is. Then, the obtained Fano cone X = Xk is
K-polystable if and only if m ≤ 1.

Corollary 3.27. For k = 2, the normalization of the K-moduli com-
pactification Mk = M2 (Theorem 3.17) of the above moduli 3.26
( (35)) of the 3-dimensional T -variety Fano cone of complexity 1 is
P1 = P(1, 2).

proof of Corollary 3.27. We consider 1
yi
=: xi and take [x1+x2 : x1x2] ∈

P(1, 2) = (A2
x1+x2,x1x2

\ (0, 0))/Gm. The natural relative version of the
construction of T - variety in [AH06] gives a family of T -variety X over
the above A2

x1+x2,x1x2
\ (0, 0) = (A2

x1,x2
\ (0, 0))/S2. By combining with

Proposition 3.26, we obtain the proof. �

By similar computations and some experiments, we expect that for
at least k = 3, 4 and possibly other small ks, that the normalization of
the K-moduli compactification ofMk is isomorphic to the log K-moduli
of

(P1, (1− c)[0] + c[y1] + · · ·+ c[yk] + (1− 3c)[∞])

for distinct yis and 0 < c≪ 1 and their log K-polystable degenerations.

It would be also interesting to work on these moduli from quiver-
gauge theoretic side on the ADS-CFT correspondence.

4. Discussions

4.1. Via γ-invariants of Berman. The reason of the name of “δ”-
invariant in [FO18] comes from the original work of Berman [Ber13],
where he introduces “γ”-invariant γ(X) ∈ R>0 for Q-Fano varieties X
from his original probabilistic (or statistical mechanical) approach to
the complex Monge-Ampère measures of the Kähler-Einstein metrics.
See [FO18, §2.2] for the more algebraic explanation and comparision of
the two invariants (γ vs δ). We also recall that
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Theorem 4.1 ([FO18, Theorem 2.5]). δ(X) ≥ γ(X) for any Q-Fano
variety X.

See [Ber13] for the discussions on the analytic aspects of the pos-
sibility that the above can be equality in general. We point out be-
low that the theory of γ(X) a priori gives a direct algebraic construc-
tion of K-stable limit of Fano varieties without the iterative procedure
[AHLH23, Od24b] nor some invariants a priori, as in the method via
δ(X).

Proposition 4.2 (K-stable Fano via log KSBA theory). Consider
any flat Q-Gorenstein (locally stable [Kol22]) family of Q-Fano vari-

eties X π−→ ∆, where ∆ is a smooth k-curve, which satisfies γ(Xt =
π−1(t)) > 1 (“uniformly Gibbs stable”) for all t ∈ ∆. Then, X (m) :=
X ×∆X ×∆ × · · ·×∆︸ ︷︷ ︸

m-times

X is obtained as the relative log canonical model of

(X̃ (m), (1+ ǫ)(f (m))∗Dm/m) over ∆, for any m≫ 0, where f : X̃ → X
is any log resolution of X , X̃ (m) := X̃ ×∆X̃ ×∆ × · · ·×∆︸ ︷︷ ︸

m-times

X̃ which con-

tracts as X̃ (m) f(m)

−−→ X̃ and Dm is the relative m-plurianticanonical
divisor crucially constructed in [Ber13, §6]. In particular, X can be
recovered as its relative diagonal.

Recall that standard birational geometric arguments easily imply the
above construction does not depend on the choice of f . Thus, the main
point of the above observation is its construction of K-(semi)stable
filling X0 does not depend on the choice of divisors etc, nor any kind
of iterative procedures, since Dm is taken as a canonical object (for
each m). Hence, this approach is close to that of the Kollár-Shepherd-
Barron-Alexeev for the (log) K-ample case (cf., [Kol22]), which we now
can interpret as a part of (log) K-stability theory (cf., the old survey
[Od10] and references therein).

4.2. Via δ-invariants. Recall that the original proof in [BHLLX21,
LXZ22] crucially uses the following refinement of δ-invariant:

Definition 4.3 ([BHLLX21, (1.2)]). For each log terminal Q-Fano
variety X ,

Mµ(X) :=

(
δ(X), inf

X

DF(X ,−KX/P1)

||X ||L2

)
,

as an element of R2
≥0 to which we put the lexicographic order. Here,

δ(X) denotes the δ-invariant of (X,−KX) ([FO18, BJ22]), X runs over
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special test configurations of X , ||X ||L2 is the L2-norm of test configu-
ration (X ,−KX/P1).

The crux of the original algebraic proof of this theorem is that we
can modify the family X or its corresponding family f : ∆ → M to
improve Mµ(f(0)) to make the first component δ(f(0)) at least 1.
Comparison of the δ-invariant ([FO18, BJ22]) and the normalized

volumes ([Li18, Li17, LL19]) are rather nontrivial problems, although
they are analogous ([Liu18], [LLX18, Remark 4.5]). For instance, the
following is known.

Theorem 4.4 (cf., [Liu18],[BBJ21],[CRZ19],[BJ22]). For any Q-Fano
variety X, we have

δ(X,−KX)
n(−KX)

n ≤
(
1 +

1

n

)n

v̂ol(x ∈ X).(36)

A weaker version is that

min{δ(X,−KX), 1}n(−KX)
n ≤

(
1 +

1

n

)n

v̂ol(x ∈ X).(37)

Proof. The weaker version (37) follows from the combination of the fact
that min{δ(X), 1} is the greatest Ricci lower bound ([BBJ21, §7.3],
[CRZ19, Appendix]) and the logarithmic analogue [LL19, Proposition
4.6] of [Liu18, Theorem 2], applied to (X, (1−min{δ(X,−KX), 1})D).
The stronger version (36) also directly follows from [BJ22, Theorem D]
if we set L = −KX for X . �

On the other hand, recently the theory of the δ-invariants are also
generalized to the (possibly irregular) Fano cone setups in a similar
manner by [Wu22, Hu23]. Note that [Hu23, 7.0.1] and the fact that
minimized normalized volume can be irrational would imply that they
are different in general. A natural question is

Question 4.5. Can we use the above-mentioned generalizations of δ-
invariant ([Wu22, Hu23]) to also give another properness proof of K-
moduli of Fano cones, extending the approach in [BHLLX21, LXZ22]?

We plan to discuss versions of our results for Kähler-Ricci solitons
in a different paper, which can be often considered as special cases of
the Sasaki-Einstein manifolds (cf., [MN15, Conjecture 1.2]).

Acknowledgement. The author thanks R.Berman, S.Sun, H.Süß, and
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[LMS23] Y. Liu, J.Moraga, H.Süß, On the boundedness of singularities via normal-
ized volume, arXiv:2205.12326v4 (2023).

[LST22] Y. Liu, T. Sano, L. Tasin, Infinitely many families of Sasaki-Einstein met-
rics on spheres, to appear in J. Differential Geom. arXiv:2203.08468

[LS13] A. Liendo, H. Süss, Normal singularities with torus actions, Tohoku Math.
Journal 65 (2013), no.1, pp. 105-130.

[MM93] T. Mabuchi, S. Mukai, Stability and Einstein-Kähler metric of a quartic
del Pezzo surface, (1993). Proceeding of 27th Taniguchi sympsium at 1990.

[MN13] T. Mabuchi, Y. Nakagawa, New examples of Sasaki-Einstein manifolds,
Tohoku Mathematical Journal, 2-nd Series, 65(2), 243-252 (2013).

[MS05] D. Martelli, J. Sparks, Toric Sasaki-Einstein metrics on S2 × S3, Phys.
Lette., B, 621: 208-212 (2005)

[MSY06] D.Martelli, J.Sparks, S.T.Yau, The geometric dual of a-maximisation for
toric Sasaki-Einstein manifolds, Comm. Math. Phys. 268 (2006), 39-65.

[MSY08] D.Martelli, J.Sparks, S.T.Yau, Sasaki-Einstein manifolds and volume
minimisation, Comm. Math. Phys. 280 (2008), 611-673.

[Mil69] J. Milnor, Singular points of Complex Hypersurfaces, Annals of Mathemat-
ics Studies (1969), Princeton University Press.
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[MN15] M. Mustaţă, J.Nicaise, Weight functions on non-archimedean analytic

spaces and the Kontsevich-Soibelman skeleton, Algebraic Geometry, 2(3),
365-404.

[Nak88] H. Nakajima, Hausdorff convergence of Einstein 4-manifolds, J. Fac. Sci.
Univ. Tokyo 35 (1988), 411-424.

[Od13a] Y. Odaka, A generalization of the Ross-Thomas slope theory, Osaka J.
Math. (2013) 171-185.

[OS12] Y. Odaka, Y. Sano, Alpha invariant and K-stability of Q-Fano varieties,
Advances in Mathematics (2012), 229(5), 2818-2834.

[Od13b] Y. Odaka, The GIT stability of polarized varieties via discrepancy, Ann.
of Math. (2) 177 (2013), no. 2, 645-661.

[Od10] Y. Odaka, On the GIT stability of polarized varieties: a survey, Proceeding
to Kinosaki algebraic geometry symposium, 2010, 77-89.

[Od12a] Y. Odaka, The Calabi conjecture and K-stability. International Mathe-
matics Research Notices, 2012(10), 2272-2288.

[Od12b] Y. Odaka, On the moduli of Kähler-Einstein Fano manifolds, Proceeding
of Kinosaki algebraic geometry symposium 2013, arXiv:1211.4833

[OSS16] Y. Odaka, C.Spotti, S.Sun, Compact moduli spaces of del Pezzo sur-
faces and Kähler-Einstein metrics. Journal of Differential Geometry, 102(1),
(2016), pp. 127-172.

http://arxiv.org/abs/2205.12326
http://arxiv.org/abs/2203.08468
http://arxiv.org/abs/2111.01738
http://arxiv.org/abs/1211.4833


MODULI OF SASAKI-EINSTEIN MANIFOLDS 55

[Od15a] Y. Odaka, Compact Moduli Spaces of Kähler-Einstein Fano Varieties, Pub-
lications of the Research Institute for Mathematical Sciences, 51(3), 549-565.

[Od15b] Y. Odaka, Invariants of varieties and singularities inspired by Kähler-
Einstein problems, Proc. Japan Acad. Ser. A Math. Sci., 91 (2015)

[Od21] Y. Odaka, On log minimality of weak K-moduli compactifications of Calabi-
Yau varieties, arXiv:2108.03832 (2021).

[Od22a] Y. Odaka, Polystable Log Calabi-Yau Varieties and Gravitational Instan-
tons, J. Math. Sci. Univ. Tokyo, 29, (2022) 1-50.

[Od24b] Y. Odaka, Stability theories over toroidal or Novikov type base and canon-
ical modification, preprint.

[OX12] Y. Odaka, C. Xu, Log-canonical models of singular pairs and its applica-
tions, Mathematical Research Letters, 19(2) (2012), 325-334.

[Oko96] A. Okounkov, Brunn-Minkowski inequality for multiplicities. Inventiones
mathematicae, (1996), 125, 405-411.

[PT06] S.Paul, G.Tian, CM stability and the generalized Futaki invariants,
arXiv:0605278.

[PX17] Z.Patakfalvi, C.Xu, Ampleness of the CM line bundle on the moduli space
of canonically polarized varieties, Algebraic Geometry, 4(1), 29-39 (2017).

[PS11] L. Petersen and H. Süss, Torus invariant divisors, Israel J. Math. 182 (2011),
481-504.

[PSS23] D. Phong, J. Song, J. Sturm, Degeneration of Kähler-Ricci solitons on
Fano manifolds, Universitatis Iagellonicae Acta Mathematica, (Tom 52),
29-43.

[Pro00] Y. Prokhorov, Blow-ups of canonical singularities, Algebra. Proc. Internat.
Conf. on the Occasion of the 90th birthday of A. G. Kurosh, Moscow, Russia,
May 25-30, 1998, Yu. Bahturin ed., Walter de Gruyter, Berlin (2000), 301-
317

[Sas60] S. Sasaki, On differentiable manifolds with certain structures which are
closely related to almost contact structure, Tohoku Math. J. 2 (1960), 459-
476.

[Sho96] V. V. Shokurov, 3-fold log models, Algebraic geometry, 4. J. Math. Sci. 81
(1996), no. 3, 2667-2699.

[Son17] J. Song, Degeneration of Kähler- Einstein manifolds of negative scalar cur-
vature, (2017), arXiv:1706.01518.

[SSY16] C. Spotti, S. Sun, C. Yao, Existence and deformations of Kähler-Einstein
metrics on smoothable Q-Fano varieties. Duke Mathematical Journal,
165(16), (2016).
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