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Figure 1: Reconstruction of the values of primary energy and absorber thickness that lead to a given energy deposition profile
in a sampling calorimeter, using the gradient descent optimizer with algorithmic derivatives of the shower simulation.

ABSTRACT
Among the well-known methods to approximate derivatives of
expectancies computed by Monte-Carlo simulations, averages of
pathwise derivatives are often the easiest one to apply. Computing
them via algorithmic differentiation typically does not requiremajor
manual analysis and rewriting of the code, even for very complex
programs like simulations of particle-detector interactions in high-
energy physics. However, the pathwise derivative estimator can
be biased if there are discontinuities in the program, which may
diminish its value for applications.

This work integrates algorithmic differentiation into the electro-
magnetic shower simulation code HepEmShow based on G4HepEm,
allowing us to study how well pathwise derivatives approximate
derivatives of energy depositions in a sampling calorimeter with
respect to parameters of the beam and geometry. We found that
when multiple scattering is disabled in the simulation, means of
pathwise derivatives converge quickly to their expected values, and
these are close to the actual derivatives of the energy deposition.
Additionally, we demonstrate the applicability of this novel gradi-
ent estimator for stochastic gradient-based optimization in a model
example.
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CCS CONCEPTS
• Mathematics of computing → Automatic differentiation; Se-
quential Monte Carlo methods; • Applied computing→ Physics.
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1 INTRODUCTION
Monte-Carlo simulations.Monte-Carlo (MC) simulations are a
popular method to model processes that involve stochasticity; for
instance, the Geant4 toolkit [4, 6, 7] is widely used to simulate the
passage of particles through matter. Unlike deterministic simula-
tions, the output data 𝑦 ∈ 𝑌 ⊂ R𝑚 of MC simulations does not only
depend on the input data 𝜃 ∈ Θ ⊂ R𝑛 , but also on random numbers
supplied by a pseudo-random number generator (RNG). We can
think of MC simulations as functions

𝑓 : Θ × Ω → 𝑌, (𝜃, 𝜔) ↦→ 𝑦 (1)
with an additional argument 𝜔 from a probability space Ω with a
probability measure P. For simplicity, we assume in the following
that the RNG defines only a single stochastic primitive called flat()
(as in Geant4) that returns independent random numbers uniformly
distributed on the interval [0, 1], like numpy.random.rand in Python
or (double)rand()/RAND_MAX in C. We may think of Ω as the set
of sequences of random numbers.

Usually, the function 𝑓 is evaluated many times; a common
quantity of interest for a MC simulation is the expected value of
the output for a given input 𝜃 ,

E𝑓 := E𝜔 𝑓 (𝜃, 𝜔) =
∫

𝑓 (𝜃, 𝜔) dP(𝜔), (2)

which can be estimated by averaging over 𝑁 independent random
samples,

𝑓 := 1
𝑁

·
𝑁∑︁
𝑖=1

𝑓 (𝜃, 𝜔 (𝑖 ) ) . (3)

The choice of 𝑁 must balance the required run-time, which grows
linearly with 𝑁 , with the standard deviation of 𝑓 , which is propor-
tional to 𝑁 −1/2.

Algorithmic Differentiation. Sometimes, users of (for now,
deterministic) computer simulations are not primarily interested in
the output 𝑦 at a specific input value 𝜃 , but rather wish to identify
optimal inputs 𝜃 ∈ Θ ⊂ R𝑛 that maximize or minimize a scalar
output 𝑦. For example, 𝜃 might be a set of parameters to be tuned
in order to minimize the deviation 𝑦 between model predictions
and observed data; closely related, 𝜃 might contain the weights of
a neutral network and 𝑦 be the training error. As another example,
𝜃 might be a set of design parameters and 𝑦 a utility function to be
improved, see e. g. the work of Albring et al. [5] who optimized the
shape of an airfoil to reduce the drag computed by a computational
fluid dynamics simulation.

To employ gradient-based optimization methods like gradient
descent or BFGS [35], it is necessary to be able to evaluate gradients
𝜕𝑦/𝜕𝜃 . Besides, the derivative 𝜕𝑦/𝜕𝜃 characterizes the sensitivity

of 𝑦 with respect to changes in 𝜃 , and can thus be useful for un-
certainty quantification. When the function 𝜃 ↦→ 𝑦 is given by
computer code, the gradient 𝜕𝑦/𝜕𝜃 of a computer-implemented de-
terministic function can often be obtained efficiently and accurately
by algorithmic differentiation (AD) [20], a set of techniques based
on the chain rule and the well-known derivatives of the elementary
operations performed by the computer program while evaluating
𝜃 ↦→ 𝑦.

Specifically, the forward mode of AD with a single scalar input
𝜃 ∈ R (i. e. 𝑛 = 1) keeps track of the dot value ¤𝑞 = 𝜕𝑞/𝜕𝜃 whenever
an intermediate variable𝑞 is computed by the program; for example,
the primal operation 𝑞 = 𝑞1 · 𝑞2 is augmented with the AD logic
¤𝑞 = ¤𝑞1 · 𝑞2 + 𝑞1 · ¤𝑞2. Optimization applications favor the reverse
mode of AD because it provides the entire gradient of a scalar out-
put 𝑦 ∈ R (i. e. 𝑚 = 1) with respect to many inputs 𝜃 ∈ R𝑛 in a
run-time independent from 𝑛, however at the expense of a higher
memory consumption; we refer to the textbook by Griewank and
Walther [20] for details. On the implementation side, there are sev-
eral mechanisms for AD tools to detect real arithmetic in an existing
primal program and to augment them with AD logic; for instance,
operator-overloading tools provide a custom floating-point datatype
with arithmetic operators and math functions overloads, to be used
instead of the built-in floating-point types like double in C++. In
contrast, source transformation tools operate on the program as a
whole. While they are usually more difficult to implement and may
only support a subset of the language, having access to the entire
program allows for more advanced performance optimizations.

AD for MC Simulations. Typically, AD tools recognize and
differentiate the basic operations +, −, · and / and related opera-
tors like +=, as well as simple math functions like

√
, exp, sin, etc.

Higher-level mathematical constructs often need manual treatment;
while it is usually straightforward to inform AD with analytical
derivatives of, e. g., solutions of linear systems [15] and the domi-
nating eigenvalue of a matrix [41], computing the derivative of an
expected value of a MC simulation,

(E𝑓 )′ := 𝜕

𝜕𝜃
[E𝜔 𝑓 (𝜃, 𝜔)] = 𝜕

𝜕𝜃

[∫
𝑓 (𝜃, 𝜔) dP(𝜔)

]
, (4)

poses a rather difficult but very important challenge across applica-
tion domains.

In quantitative finance, certain derivatives of e. g. expected op-
tion prices are called “Greeks” and define strategies to hedge risks
[17]. Differentiable rendering allows to reconstruct three-dimensional
scenes from images [9, 10, 25, 27, 42]. In reinforcement learning,
policy gradients can be used for training [37]. In many of the afore-
mentioned application areas of gradient-based optimization using
deterministic AD, it is natural to add stochasticity to the differenti-
ated code, leading to e. g. stochastic neural networks [38] including
VAEs [23] and GANs [19]. See [28] for a review of Monte Carlo
gradient estimation in machine learning.

The present work is a study on applying AD in the realm of
high-energy physics (HEP), where gradient-based optimization is
explored as a way to enhance the design of future particle detectors
[2, 13] or reconstruct properties of detected particles [12, 36], and
gradients of stochastic programs could help performing Bayesian
inference of parameters of the standard model [11]. The Geant4
toolkit for the simulation of the passage of particles through matter
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[4, 6, 7] is widely used across many HEP-related application areas,
from the planning of detectors at the LHC to radiation safety in
space to medical physics.

As a step to explore ways to create a differentiated version of
Geant4, in this study, we differentiate a more compact but algo-
rithmically similar MC code composed of G4HepEm [31] and Hep-
EmShow [29, 30]. We are interested in derivatives of the expected
value of energy deposition of electromagnetic showers in a simple
sampling calorimeter, with respect to parameters of the geometry
and the incoming particles.

A natural first step to approach (4) is to form the pathwise deriv-
ative

𝜕

𝜕𝜃
𝑓 (𝜃, 𝜔) (5)

by applying AD to the MC simulation 𝑓 in a way that, with regard
to differentiation, treats random numbers like constants. This has
been accomplished for Geant4 in principle, without focus on perfor-
mance though and only simulating a single particle to demonstrate
technical feasibility [2]. The second step then is to estimate the
expected value of the pathwise derivative,

E(𝑓 ′) := E𝜔
[
𝜕

𝜕𝜃
𝑓 (𝜃, 𝜔)

]
, (6)

by averaging it over 𝑁diff independent random samples,

𝑓 ′ := 1
𝑁diff

·
𝑁diff∑︁
𝑖=1

[
𝜕

𝜕𝜃
𝑓 (𝜃, 𝜔 (𝑖 ) )

]
. (7)

However, the expected pathwise derivative E(𝑓 ′) matches the
sought derivative (E𝑓 )′ of the expected value only under certain
assumptions on 𝑓 . A well-known corollary of Lebesgue’s dominated
convergence theorem [14, TheoremA.5.3] states that (E𝑓 )′ = E(𝑓 ′)
if 𝑓 (𝜃, 𝜔) is continuously differentiable in 𝜃 and | 𝜕𝑓𝜕𝜃 | ≤ 𝐵(𝜔) for an
integrable random variable 𝐵 : Ω → R. Figure 2 gives an example
of such a function 𝑓1 with (E𝑓1)′ = E(𝑓 ′1 ) = 𝑑 .

In general, E(𝑓 ′) and (E𝑓 )′ can take different values. For the
function 𝑓2 in figure 2, we can analytically see that
E𝜔 𝑓2 (𝜃, 𝜔) = (0.6 − 𝑑 · 𝜃 ) · 1 + (0.4 + 𝑑 · 𝜃 ) · 2 = 1.4 + 𝑑 · 𝜃

⇒ 𝜕

𝜕𝜃
[E𝜔 𝑓2 (𝜃, 𝜔)] = 𝑑,

but the pathwise derivative 𝜕
𝜕𝜃 𝑓2 (𝜃, 𝜔) is zero for almost all𝜔 . Only

for the zero-probability set of 𝜔 with 𝑟 (𝜔) = 0.6−𝑑 ·𝜃 , 𝑓2 (𝜃, 𝜔) has
a jump at 𝜃 . This jump makes (E𝑓 )′ non-zero but does not affect
E(𝑓 ′). An estimator like 𝑓 ′, whose expected value does not match
the target value (E𝑓 )′, is called biased.

Non-trivial MC simulations usually contain control flow con-
structs like if and while, whose (discrete and hence non-differen-
tiable) condition depends on both the AD inputs 𝜃 and the random-
ness 𝜔 , so their pathwise derivative estimators are generally biased.
Accordingly, several approaches to create unbiased estimates for
derivatives of expected values of MC simulations have been pro-
posed in the literature; see e. g. references [8, 10, 24], or Kagan and
Heinrich [22] for a first analysis of some of these methods in HEP.

The reparametrization trick [23] refers to implementing paramet-
ric random distributions as differentiable expressions of the param-
eters and non-parametric random numbers. For instance, a random
number uniformly distributed on [0, 𝜃 ] (with 0 < 𝜃 ≤ 1, say) would

0

1

2

3

𝜔 ∈ Ω

𝑦

double f_1(double theta){

double r = flat ();

double offset = theta *

(d+sin(8*pi*r));

if(r <0.6){

return 1.0+ offset;

} else {

return 2.0+ offset;

}

}

0

1

2

3

𝜔 ∈ Ω
𝑦

double f_2(double theta){

double r = flat ();

if(r<0.6-d*theta){

return 1.0;

} else {

return 2.0;

}

}

𝑓 (𝜃, 𝜔) 𝑓 (𝜃 + d𝜃, 𝜔)
𝑓 (𝜃 + 2d𝜃, 𝜔) 𝑓 (𝜃 + 3d𝜃, 𝜔)

Figure 2: Different mechanisms for Monte-Carlo simula-
tions to combine input parameters and randomness. The
RNG primitive flat() yields independent random numbers
uniformly distributed on [0, 1]; this is how the second argu-
ment 𝝎 in (1) comes in. Around 𝜽 = 0, both functions have
E𝝎𝒇𝒊 (𝜽, 𝝎) = 𝒅 ·𝜽 . Top: The pathwise derivative is distributed
around the mean 𝒅. Bottom: The pathwise derivative is zero
almost everywhere, and undefined at a single point where 𝒇
jumps.

be implemented as 𝜃 · flat() rather than, e. g., rejection-sampling
flat() repeatedly until it yields a number in [0, 𝜃 ]. This makes the
differentiable dependency between the sampled random numbers
and the parameters visible to the mean pathwise derivative E(𝑓 ′).
For elementary parametric distributions like normal distributions,
MC simulations in HEP often follow the reparametrization trick by
default. However, MC simulations then usually continue to process
them using non-differentiable operations (like 𝑓2 in figure 2), to
which the reparametrization trick cannot be applied in general.

As a well-known alternative or addition to pathwise derivatives,
the likelihood ratio or score function method [18, 34] proposes to
compute a term

E𝜔

[
𝜕 log(𝑝 (𝜃, 𝜔))

𝜕𝜃
· 𝑓 (𝜃, 𝜔)

]
= E𝜔

[ 𝜕𝑝
𝜕𝜃 (𝜃, 𝜔)
𝑝 (𝜃, 𝜔) · 𝑓 (𝜃, 𝜔)

]
. (8)

This term accounts for the part of the derivative of E𝑓 related to a
differentiable change of the probability 𝑝 (𝜃, 𝜔) that discrete random
events (e. g. whether an if or else branch is taken) turn out in
the way they do when 𝑓 (𝜃, 𝜔) is computed. As such, (8) should be
added to E(𝑓 ′).
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Figure 3: Geometric structure of the sampling calorimeter.
Figure courtesy of Novák et al. [29, 30].

Indeed, for the function 𝑓2 in figure 2, the bracketed expression
in (8) evaluates to [ −𝑑0.6 · 1.0] when the if branch is taken (60%
probability) and to [ 𝑑

0.4 · 2.0] when the else branch is taken (40 %
probability), giving an expected value of 𝑑 . However, we were only
able to determine the values of the probabilities 𝑝 = 0.6, 0.4 in the
denominators, and their derivatives 𝜕𝑝

𝜕𝜃 = −𝑑, 𝑑 in the numerators,
because the condition of the if statement is very simple.

In the case of MC particle simulations, it is unclear how to deter-
mine 𝑝 , because these simulations typically implement stochasticity
by combining several random numbers and variables depending
on the AD input 𝜃 , in non-linear ways. Additionally, the term (8)
tends to have a high variance [32].

The stochastic AD method by Arya et al. [8] integrates certain
kinds of discrete randomness into pathwise derivatives. For each
intermediate value appearing in theMC program, this method keeps
track of an alternative value that could have been attained with
different random outcomes, and the derivative of the probability of
such an outcome with respect to the AD input. While we consider
it an interesting and promising approach, it appears not to be easily
applicable to a MC particle simulation, because if statements and
discrete randomness originating from comparisons of continuous
random values are not yet supported.

Instead of trying to create an unbiased estimator for (E𝑓 )′, in
this work, we analyze the biased estimator 𝑓 ′ for a MC code with
full electromagnetic physics coverage but simple geometry. It turns
out that when a single physics process called multiple scattering is
disabled in our setup, the variance of 𝑓 ′ is sufficiently low to obtain
reliable estimates of E(𝑓 ′) for moderate 𝑁diff, and E(𝑓 ′) deviates
from a difference quotient approximation of (E𝑓 )′ only by a few
percent. A bias of this magnitude can be perfectly acceptable as the
derivatives only serve as a tool to guide optimization algorithms
(and are not physical quantities that have to match measurements).

Section 2 gives an overview on the simulated hardware setup and
the MC code, which we differentiated following the methodology
described in Section 3. We then report on the stochastic noise of the
MC code (Section 4.1), the variance and bias of the pathwise algorith-
mic derivative estimators (Section 4.2), and a simple demonstrator
using these estimators for gradient-based optimization (Section 4.3),
closing with conclusions and an outlook in Section 5.

Parameter Symbol Arg. Default value
Kinetic energy of primaries 𝑒 -e 10 000MeV
Thickness of absorber layers 𝑎 -a 2.3mm
Thickness of gap layers 𝑔 -g 5.7mm
Transversal dimension 𝑑𝑡 -t 400mm
Number of layers 𝑛l -l 50
Type of primary particles -p electrons
Absorber material

(JSON
file

)
PbWO4

Gap material
(JSON
file

)
liquid Ar

Table 1: Parameters of the simple sampling calorimeter ge-
ometry displayed in figure 3.

2 SIMULATION OF ELECTROMAGNETIC
SHOWERS IN A SAMPLING CALORIMETER

2.1 Detector Geometry
Figure 3 shows the simple detector geometry used in this study. The
detector hardware is a stack of 𝑛l identical pairs of absorber and gap
layers, each with a thickness of 𝑎 and 𝑔 (respectively) and transver-
sal dimensions 𝑑𝑡 × 𝑑𝑡 . The two types of layer are each made from
homogeneous material; in particular, material properties are piece-
wise constant and change only at well-known two-dimensional
volume boundaries. This assumption on the detector geometry is
also made by Geant4 and is usually satisfied in practice. Primary
particles arrive centered and orthogonally with an initial kinetic
energy 𝑒 .

A default set of values for these parameters is specified in table 1.
The setup was created by Novák et al. [29, 30] and is based on
Geant4’s TestEm3 test case; however, the absorber material is lead
tungstate (PbWO4) instead of elementary lead (Pb), as a mixture
of different atoms makes the test case more general. In this study,
the primary energy 𝑒 and the layer thicknesses 𝑎 and 𝑔 will be
considered as AD inputs 𝜃 , and all other parameters are considered
constant.

2.2 Electromagnetic Showers
Electrons, positrons and photons interact with the surrounding mat-
ter through various physical processes: ionization, bremsstrahlung,
annihilation, pair production, the photoelectric effect, Compton
scattering, etc. These processes happen at discrete points in time
and can result in a loss of kinetic energy, change of momentum,
deposition of energy in the surrounding matter, and/or creation of
secondary particles. The interaction rates/cross-sections for these pro-
cesses and their possible outcomes depend on the type and kinetic
energy of the particle, and thematerial composition of the surround-
ing matter. Except for rare lepto- and photo-nuclear interactions
that are neglected in the following, secondary particles are either
electrons, positrons and photons. Secondary particles themselves
interact with the surrounding matter, forming an electromagnetic
shower.

A very small shower is sketched in figure 4. The brown circle
indicates the emission of a photoelectron, depositing the K-shell
binding energy of the ionized atom in the first gap layer. When
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abs. gap abs. gap
layer 1 layer 2

Figure 4: Sketch of a very small shower consisting of electrons
(lines) and photons (wiggly lines). Colours indicate different
mechanisms leading to energy deposition in layer 1.

electrons have lost all their kinetic energy, they stop and become
part of the surrounding material (indicated by a gray background).
Some of the aforementioned processes produce low-energetic par-
ticles very frequently; such interactions are usually modelled by a
continuous energy loss along the entire path of the particle with a
deterministic mean (yellow and gray background) and stochastic
fluctuations. Very small but frequent changes of the momentum
(multiple scattering, MSC) can be modelled by discrete changes of
position and momentum, but this is not shown in figure 4.

The AD outputs 𝑓 (𝜃, 𝜔) analyzed in this study are given by the
energy depositions edep𝑖 (𝜃, 𝜔) in the layers 𝑖 = 1, . . . , 50. Figure 5
shows that disabling MSC (and energy loss fluctuations) has only a
small effect on the energy depositions in our setup (as the dashed
and thick lines are close to each other). The energy depositions
without MSC and fluctuations are represented in figure 5 as a sum of
the energy deposited by the continuous energy loss of electrons and
positrons (sum of yellow and gray), and the much smaller binding
energies that photoelectrons leave behind (brown); other energy
deposition mechanisms are mostly irrelevant in our setup. The
plotted data were obtained with a particle simulation, as detailed
in the next section.

2.3 Particle Simulations
Simulations of electromagnetic showers in material arrangements
like the sampling calorimeter of section 2.1 can be thought of as
a set of nested loops: Every iteration of the outermost event loop
is concerned with a new primary particle, and contains a stacking
loop that iterates over all particles in the resulting shower. Con-
ceptually, each iteration of the innermost stepping loop determines
the remaining pathlength until either a volume boundary is hit or
a discrete physics process happens, and then moves the particle
accordingly and accounts for any effects of physics processes.

TheGeant4 toolkit [4, 6, 7] covers a wide set of particles and pro-
cesses, and has a very general way to handle geometry; accordingly,
it is a very complex software project with around one million lines
of code, mostly written in C++. The G4HepEm toolkit [31] isolates
much of Geant4’s models of physics processes in electromagnetic
showers; e. g., G4HepEm’s run-time functionality includes sam-
pling of the distance to the next discrete interaction and sampling
of interaction outcomes. On the one hand, G4HepEm can be used

0 10 20 30 40 50

0

100

200

300

energy loss of electrons/
positrons without stopping

energy loss that
stops electrons/positrons

photoelectron binding energy

layer index

ed
ep

𝑖
in

M
eV

with MSC, fluc.
no MSC, fluc.

Figure 5: HepEmShow-simulated average energy depositions
in the 50 layers for 𝒆 = 10GeV, 𝒂 = 2.3mm, 𝒈 = 5.7mm,
withmultiple scattering and energy loss fluctuations enabled
(dashed line) or disabled (thick line) in the simulation. A
breakdown of the energy deposition without MSC and fluc-
tuations into the main energy deposition mechanisms is also
shown (yellow, gray, brown).

inside of Geant4 as an alternative to Geant4’s native implementa-
tion of electromagnetic physics processes. Once the relevant mate-
rial data (such as cross-sections) and other information have been
pre-computed into a JSON file using separate initialization-time
functionality of G4HepEm based on Geant4, G4HepEm’s run-time
functionality can also be used independently from Geant4, as a very
compact standalone library for research and development activi-
ties in the field of HEP simulations. The HepEmShow package
[29, 30] consists of two applications: A data generation program
using G4HepEm’s initialization-time functionality and Geant4 to
create the JSON file, and the main simulation that implements event,
stacking and stepping loops in the sampling calorimeter setup de-
scribed above (section 2.1), using physics information solely from
G4HepEm’s run-time functionality. HepEmShow’s energy depo-
sition results, represented by the dashed line in figure 5, are in
excellent agreement with Geant4-G4HepEm’s [29].

2.4 Contributions and Limitations
In this work, we differentiate the standalone run-time part of the
G4HepEm toolkit and the HepEmShow simulation application. Af-
ter disabling MSC in the simulation, we successfully validate our
mean pathwise derivative estimator against difference quotients,
observing only a small bias. To our knowledge, this is the first
time that AD has been successfully applied to a full-fledged HEP
simulation. Furthermore, we demonstrate the usefulness of these
derivatives in a simple gradient-based optimization study.

While this is a major step on the way towards a differentiated
Geant4-scale particle simulator, our setup makes the following key
simplifications:

• As further detailed in section 4, we have to disable MSC
in the simulation. Figure 5 shows that this causes a minor
change in the deposited energies in the simple sampling
calorimeter setup considered by us, but it can potentially
become more important for other use cases of Geant4.
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• HepEmShow is made for one particular parametric geome-
try (figure 3) whereas Geant4 has a very general and flexible
implementation of geometry.

• External electromagnetic fields, which exert forces on charged
particles, are not available in HepEmShow but are fully sup-
ported in Geant4.

• HepEmShow is only meant for simulating electromagnetic
showers consisting of electrons, positrons and photons,
whereas Geant4 supports all particles relevant in HEP, and
many models for physics processes across wide energy
ranges.

• The present study is concerned with a limited set of AD
inputs and outputs, whereas Geant4 users have very broad
access to parameters and output data.

3 PATHWISE ALGORITHMIC
DIFFERENTIATION

The HepEmShow/G4HepEm simulation code computes the aver-
aged per-layer energy depositions edep𝑖 (𝑖 = 1, . . . , 50) from the
input data in table 1, notably the primary energy 𝑒 , absorber thick-
ness 𝑎 and gap thickness 𝑔. We have applied AD to the simulation
program in order to compute averaged per-layer derivatives

𝜕 edep𝑖
𝜕 𝑒

,
𝜕 edep𝑖
𝜕 𝑎

,
𝜕 edep𝑖
𝜕 𝑔

.

To this end, we first applied the machine-code-based AD tool De-
rivgrind in a black-box fashion (Section 3.1). After first promising
observations, we switched to the operator-overloading AD tool
CoDiPack (Section 3.2) with a MC-specific tape size reduction tech-
nique to reduce memory usage in the reverse mode (Section 3.3).

3.1 Machine-Code-Based Differentiation using
Derivgrind

Derivgrind [3] inserts AD logic into the machine code of the pro-
gram to be differentiated. Therefore, only very little modification
of the source code of G4HepEm and HepEmShow is required. Nat-
urally, we had to change a few lines to indicate AD inputs (𝑒 , 𝑎, 𝑔)
and outputs (edep𝑖 ) and to output the derivatives. In addition, a few
G4HepEm-defined math functions like G4Log were replaced with
their standard library counterparts (e. g. std::log), as their imple-
mentations perform real arithmetic via bit-wise manipulations of
floating-point data in a way that might not be correctly understood
by AD tools [2]. After exploratory experiments with Derivgrind’s
forward mode showed encouraging results, we decided to invest
the time to apply a high-performance AD tool.

3.2 Operator-Overloading Differentiation Using
CoDiPack

Results presented in the remainder of this study were obtained by
the operator-overloading AD tool CoDiPack [33]. In the shape of a
C++ header, CoDiPack defines AD types that behave very similar to
the built-in C++ floating-point types like double, but augment all
real-arithmetic operations with AD logic. For maximal flexibility,
we replaced most occurrences of double in the source codes of
G4HepEm and HepEmShow with a type alias G4double, which we
can set to double, codi::RealForward and codi::RealReverse

$ ./ HepEmShow -n 5000 -e 10000:1.0

-a 2.3 -g 5.7 -s 1234

$ cat edeps

4.801 27.30 -0.0001313 7.130e-05

8.884 112.6 0.0002098 7.650e-05

...

293.5 92016.1 0.02713 0.1247

...

68.79 563 6.2 0.00 6464 0.3 673

number of
events value dot value

absorber thick-
ness in mm

gap thick-
ness in mm

RNG
seed

primary energy inMeV

layer 1
layer 2

layer 17

layer 50

average edep
value inMeV

average edep
dot value

Figure 6: User interface of the differentiated HepEmShow
application in the forward mode. Dot values of inputs are
specified in the command line interface (here, shown for -e).
Dot values of outputs are written to a file edeps.

to build non-AD, forward-mode and reverse-mode variants, respec-
tively. The code is available at

https://github.com/SciCompKL/g4hepem/
https://github.com/SciCompKL/hepemshow/

No type exchange has been performed
• in the data generation part of HepEmShow producing the

JSON file (containing pre-computed material data etc.), to
avoid having to differentiate Geant4;

• in the JSON I/O library [26] used by the standalone part
of G4HepEm – instead, conversions between doubles in
the library and G4doubles in G4HepEm have been added
to the interface; and

• for variables declared as constexpr, as they must have a
literal type according to the C++ standards but the CoDiPack
types are not literal.

In addition to the replacements of G4HepEm-defined math func-
tions (Section 3.1), some manual refactoring of the source code
was necessary around uses of the ?:-operator and implicit casts to
integers.

We have extended HepEmShow’s I/O to allow the user to specify
the AD inputs and outputs. As shown in figure 6, in the forward
mode, the user can supply dot values of the primary energy 𝑒 , ab-
sorber thickness 𝑎, and gap thickness 𝑔 and access dot values of the
average edeps. Reverse-mode HepEmShow requires an additional
command-line argument -b with the adjoint values of the mean
edeps in all layers, separated by colons, and output the adjoint
values of 𝑒 , 𝑎 and 𝑔 in a file.

For other variables used by HepEmShow, adding them as AD
inputs and outputs would likely be straightforward. However, as we
have not differentiated the initialization-time functionality (which
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Figure 7: Dependency of the simulated mean energy depo-
sition in layer 17 on the primary energy 𝒆. For every point
in this plot, 𝑵 = 100 events were simulated using the same
random seed. Figure 8 zooms into this plot to see if these
“noisy” functions are differentiable and if their derivatives
match the large-scale slope of 0.025.

uses Geant4), it is not possible at the moment to declare Geant4-
internal data (e. g. cross-section tables) as AD inputs.

3.3 Reduction of the Tape Size
In the reverse mode of AD, operator-overloading AD tools record
a tape data structure storing the real-arithmetic evaluation graph
from the inputs to the outputs. For long-running programs, the tape
size might exceed the amount of available memory. In our case, the
recording of a single event loop iteration occupies roughly around
250MB of memory on the tape (measured for 𝑒 = 10GeV, 𝑎 =

2.3mm, 𝑔 = 5.7mm). As all event loop iterations run independently
from each other, only a single iteration must be stored at a time,
and the corresponding section of the tape can be evaluated and
cleared at the end of each iteration to limit the tape size [21].

As source transformation tools have access to the entire source
code of the function to be differentiated, they can generally use
smaller tapes and apply more advanced code optimizations. As it is
possible to compile the HepEmShow simulation and its G4HepEm
dependency in a single translation unit, it would be worthwhile to
investigate how compiler-based source transformation AD tools
such as Clad [40] perform on the code base.

4 RESULTS
4.1 Stochastic Noise with and without Multiple

Scattering
We first take a look at how the energy deposition depends on the
primary particle energy 𝑒 without AD, in order to be able to explain
our findings with AD in the next section 4.2.

Large scale. Figure 7 shows the simulated mean energy deposi-
tion in layer 17, edep17, averaged over 𝑁 = 100 events per run, as a
function of primary particle energy 𝑒 . Each of the 4001 data points
between 𝑒 = 8000MeV and 12 000MeV was produced by a separate
run of HepEmShow, always using the same initial random seed. The
experiment has been conducted with the full set of electromagnetic
processes available in G4HepEm (red), and with a simplified setup
that had MSC and energy loss fluctuations disabled (blue).

The number of 𝑁 = 100 simulated events for figure 7 is very
small, so the standard deviation of the mean (3) is rather large,
causing the clearly visible stochastic noise. This is expected: If 𝑒 is
perturbed even very slightly, the control flow in the simulator is
likely to change at some point, making a different number of calls
to the RNG and thus leaving it in a different state for the subsequent
execution, which is therefore entirely uncorrelated even though the
same RNG seed has been used initially [1]. Choosing a higher 𝑁
reduces the amplitude of the stochastic noise, but does not eliminate
it.

Despite the noise, figure 7 shows a clear large-scale trend, with
edep17 (𝑒) rising, in both setups, approximately linearly by 100MeV
over the entire range of 𝑒 spanning 4000MeV. Thus, the derivative
(E edep17)′ of the expected energy deposition at 𝑒 = 10 000MeV
can be estimated as

(E edep17)′ := 𝜕
𝜕𝑒

[
E𝜔edep17 (𝑒, 𝜔)

] ≈ 100MeV
4000MeV = 0.025. (9)

This large-scale slope is what is relevant for e. g. optimization pur-
poses, so this is what we want to compute. For validation purposes,
we approximate the large-scale derivative using difference quotients
similar to the right-hand side of (9), taking care that a sufficiently
large number of events is simulated as difference quotients are
poorly conditioned.

When we apply AD to a code computing edep17 , we obtain
the floating-point accurate, local slope edep′17 of the algorithm
implemented in the code. To read this local slope from the plot, we
have to zoom in.

Small scale. Figure 8 shows edep17 (𝑒) plotted over a much
more narrow interval, again using the same seed for all runs of
HepEmShow. For the full physics setup, we observe the same noisy
behavior (top figure), even if we zoomed in further. With MSC and
energy loss fluctuations turned off, however, the function is clearly
piecewise differentiable (bottom figure). This qualitative difference
is very important for AD, as it allows us to confirm that the slopes of
the differentiable segments (which is what pathwise AD computes)
are close to the large-scale slope of about 0.025 as determined
in (9) which we want to compute. There is still more than one
jump per keV on the horizontal axis, due to discrete randomness
and decorrelating RNG states as mentioned above. These jumps
are much larger in magnitude than the differentiable evolution in
between, and they are responsible for the noise visible in figure 7.
However, the differentiable evolution in between the jumps already
accounts for (approximately) the entire large-scale evolution.

In fact, it is not necessary to disable energy loss fluctuations; a
plot in the style of figure 8, with only multiple scattering turned
off, has more discontinuities but still clearly visible increasing dif-
ferentiable segments.

Summary. The qualitative analysis conducted in this section
for a single layer indicates that after disabling MSC, there is only a
small difference between

• the large-scale derivative (E edep17)′ required for applica-
tions and approximated by difference quotients, and

• the local derivative edep′17, or E(edep′17) in the limit of
many simulated events (𝑁diff → ∞), computed by AD
without special care for randomness (thus treating random
numbers as constants).
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Figure 8: Zoom into figure 7, showing a much smaller range
of 𝒆. Again, each point represents a HepEmShow simulation
of 𝑵 = 100 events, always using the same random seed. The
energy deposition computed with the full set of physics pro-
cesses still appears noisy (top). With multiple scattering and
energy loss fluctuations disabled, however, the averaged en-
ergy deposition is a piecewise differentiable function of the
primary energy, and its derivative (i. e. the slope of the seg-
ments) approximately matches the large-scale slope.

In the next section 4.2, we study this hypothesis quantitatively and
in more generality, looking at algorithmic derivatives of energy
depositions in all layers with respect to 𝑒 , 𝑎 and 𝑔.

4.2 Variance and Bias of Pathwise Algorithmic
Derivatives

In this section, we collect results obtained with our CoDiPack-
differentiated version of HepEmShow/G4HepEm (sections 3.2, 3.3).

Pathwise derivatives of the full simulation code including
MSC are noisy. Figure 9 shows the mean pathwise forward-mode
algorithmic derivative of the simulated energy deposition edep𝑖 (𝑒)
in all the calorimeter layers 𝑖 = 0, . . . , 49, with respect to the initial
kinetic energy 𝑒 of the primary particles, at 𝑒 = 10GeV. For the
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Figure 9: Algorithmic derivative of the mean edep in the
calorimeter layerswith respect to the primary energy 𝒆 (blue),
and the corresponding difference quotients (black). Error
bars indicate 68%-confidence intervals (i. e. plus/minus one
standard deviation). Top: Default configuration of G4HepEm
with all physics processes. Middle: All physics processes
except for multiple scattering. Bottom: More samples and
smaller interval for the difference quotient.

top plot, 24M events were simulated using the full list of physics
processes. Mean pathwise derivatives edep′𝑖 (𝑒) of the code seem
to have a very large variance and deviate by orders of magnitudes
from the value of 0.025 suggested by (9). Averaging over many more
events might reduce noise, but as the number of events would need
to rise by a factor of 1012 to bring a standard deviation of the order
of 104 down to the order of 10−2, this is not feasible in practice.
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It should be noted that this observation does not imply that
the physical phenomenon of MSC itself would be inherently non-
differentiable. We can only infer that G4HepEm’s algorithm imple-
menting the Urban MSC model [39] has noisy algorithmic deriva-
tives. This could be related to the often-heard statement that “black-
box” differentiation of iterative numerical algorithms may compute
wrong derivatives [16] and knowledge on the mathematical struc-
ture behind them should thus be included into the AD implementa-
tion. For the remainder of this study, however, we disable MSC in
the simulation, and leave the development of an AD-friendly MSC
model to further research.

Disabling MSC leads to low variance and bias for pathwise
derivatives. The middle plot of figure 9 shows the averaged result
of 24M AD runs at 𝑒 = 10GeVwith MSC disabled in the simulation.
Additionally, 24M primal runs without MSC at 𝑒 = 9.9GeV and 𝑒 =
10.1GeV were conducted to compute a central difference quotient
(DQ) that approximates the large-scale slope (E edep𝑖 (𝑒))′. Both
plots match very well. Thus, disabling multiple scattering is the key
algorithmic change that allows us to obtain algorithmic derivatives
with a sufficiently low variance and an expected value close to the
numerical derivatives.

The bias with respect to difference quotients is around 5%.
The bottom plot of figure 9 has been created with 864M sam-
ples to decrease the stochastic error, and a more narrow interval
9.995. . . 10.005GeV for the difference quotient to decrease the nu-
merical truncation error, again with MSC disabled. We observe
a statistically highly significant but low deviation of the mean
pathwise derivative approximating E(edep′𝑖 ) from the difference
quotients approximating (E edep𝑖 )′. Except for the first and last
few layers, the relative error of the derivatives is around 5 %.

Similar observations can be made for derivatives w. r. t.
layer thicknesses. Figure 10 shows that algorithmic derivatives
of the energy deposition with respect to the absorber and gap
thicknesses as well have a sufficiently low variance and bias (w. r. t.
difference quotients) when MSC is turned off.

Algorithmic and numeric derivatives deviate much more
for individual edep mechanisms. While the mean pathwise
derivatives of the total energy depositions edep𝑖 are close to the
large-scale derivatives approximated by difference quotients, as
described above, this does not hold on the level of individual mech-
anisms to register energy deposition in the simulation code.

We have used figure 5 to illustrate that most of the energy depo-
sition comes from continuous energy loss, followed by the binding
energy of photoelectrons. In fact, G4HepEm registers continuous
energy loss at two main places in the code: As a side action next
to another physical process or a change of volumes in the geome-
try (indicated in yellow) and as the sole action if it uses up all the
remaining kinetic energy of the particle (indicated in gray). Fig-
ure 11 shows the derivatives of these three terms, with respect to
the primary energy 𝑒 again. Interestingly, algorithmic and numeric
derivatives do not match.

To understand the algorithmic derivatives of the two energy loss
contributions, let us imagine that the incoming electron in figure 4
had an infinitesimally higher initial kinetic energy. This would allow
the primary and the secondary electrons to travel infinitesimally
further before they stop, making the gray segments longer and their
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Figure 10: Algorithmic derivative of the edep with respect to
the absorber thickness 𝒂 (top) and gap thickness 𝒈 (bottom).

energy deposition higher. Thus, this mechanism contributes most
to the algorithmic derivative of the energy deposition.

Regarding the difference quotients, we have to imagine a small
but non-infinitesimal increase in the initial kinetic energy. As before,
gray segments become longer, but one of the secondary electrons
may now have enough energy to reach the next layer, and the
energy loss would become a side action. Therefore, difference quo-
tients mainly see an increase in energy loss that does not stop the
particle.

We should note that the distinction between the twomechanisms
to register continuous energy loss comes frommodelling and coding
considerations and is not rooted in physics. Our observation that
algorithmic and numerical derivatives deviate heavily for the two
individual mechanisms, even though they approximately match for
the sum, shows that care should be taken to only declare physically
meaningful data as AD outputs.

Concerning the deposition of binding energies in photoelectric
effect events, difference quotients register an increase that could be
caused bymore events taking place, and/or an increasing probability
of elements with higher binding energies to be selected as the
ionized atom from the material. Both types of dependencies have
the structure of 𝑓2 in figure 2, and are thus not seen by pathwise
algorithmic derivatives, which are therefore zero. This illustrates
that we cannot expect pathwise derivatives to perfectly match the
numerical derivatives. We should note that the deviation stated
here is not equal to the observed bias of around 5 %.
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Figure 11: Breakdown of 𝝏 edep𝒊/𝝏 𝒆 into the dominating energy deposition mechanisms.

Primary 5GeV 10GeV 20GeV
energy time mem. time mem. time mem.
primal 84 5.7 163 5.6 320 5.7
forward 147 5.9 287 5.9 558 5.9
mode (×1.8) (×1.8) (×1.7)
reverse 452 111 867 195 1662 284
mode (×5.4) (×5.3) (×5.2)

Table 2: Runtime (in seconds) and memory (in MB) required
to simulate 10 000 electron events for 𝒆 = 5, 10, 20GeV.

Performance Measurements. Table 2 shows the runtime and
memory consumption of a HepEmShow simulation of 10 000 elec-
trons, in terms of user time and maximum resident set size mea-
sured on an exclusive 2.6GHz Intel Xeon Gold 6126 node at the
Elwetritsch cluster of the University of Kaiserslautern-Landau.

Forward-mode and reverse-modeAD using CoDiPack slow down
the program by factors of around 1.8 and 5.4, respectively. Note
that a single reverse-mode AD run computes an entire gradient,
so reverse-mode AD is faster than central difference quotients if a
gradient with respect to more than two input variables is sought.

Memory consumption increased slightly in the forward mode
because CoDiPack’s forward-mode type has twice the size of a
double. In the reverse mode, the tape occupies a significant but
perfectly manageable amount of memory, which grows with the
primary energy.

4.3 Optimization Using Averages of Pathwise
Derivatives

This section deals with an applications of pathwise algorithmic
derivatives for gradient-based optimization.

The gradient descent algorithm attemps to find the minimizer
𝜃∗ ∈ R𝑛 of a loss function 𝐿 : R𝑛 → R, starting from an initial guess
𝜃 (0) ∈ R𝑛 , by iteratively computing better and better “candidate
minimizers” 𝜃 (1) , 𝜃 (2) , . . . via

𝜃
(𝑘+1)
𝑗 = 𝜃

(𝑘 )
𝑗 − 𝑑

(𝑘 )
𝑗 · 𝜕𝐿

𝜕𝜃 𝑗
(𝜃 (𝑘 ) ) . (10)

The factors 𝑑 (𝑘 )𝑗 are called step-sizes or learning rates, and may be
fixed or computed adaptively. When stochastic estimates are used
instead of the actual gradient, the scheme is known as stochastic
gradient descent (SGD). In machine learning, stochastic estimates
of loss function gradients typically result from computing the loss
on a randomly selected subset of the training data instead of the
entire data. In our case, outputs of the MC simulation, and hence
their derivatives, are stochastic already by definition. Deviations of
the estimated derivatives from the true values steer the optimizer
into a less ideal direction, but it can still arrive at the minimum,
maybe with a larger number of steps.

Automated Design of Scientific Instruments. To demon-
strate that the stochastic and biased pathwise AD gradient estimator
can indeed be useful for optimization, we have designed the fol-
lowing simple parameter identification problem. The parameters in
table 1 have been used to simulate a target edep distribution edep𝑖
across the layers 𝑖 = 0, . . . , 49 of the calorimeter, shown in figure 5.
From this target edep distribution, we wish to infer 𝑒∗ = 10GeV and
𝑎∗ = 2.3mm, assuming that we only know the other parameters
in table 1. The task of identifying a primary energy value 𝑒∗ that
leads to a prescribed energy deposition curve is a model problem
for applications where the position of physical interactions should
be controlled, e. g. for experiment design or in radiation therapy
planning. Derivatives with respect to a geometric parameter 𝑎∗
could be useful for detector optimization problems.

To identify 𝑒∗ and 𝑎∗, we have to search for the minimizer of
the loss function 𝐿 given by the squared error of the resulting edep
distribution,

𝐿(𝑒, 𝑎) =
49∑︁
𝑖=0

(
edep𝑖 (𝑒, 𝑎) − edep𝑖 (𝑒∗, 𝑎∗)

)2
. (11)

Figure 1 shows 16 paths of the stochastic gradient descent scheme
across the loss landscape of 𝐿. We have chosen a step-size of 1
for 𝑒 and 10−7mm2MeV−2 for 𝑎 to account for their different
units and orders of magnitude, and estimate the gradient using
1 k events in each step, for 350 steps. Starting from 𝑒 (0) = 22GeV
and 𝑎 (0) = 3mm, the SGD optimizer robustly converges to the min-
imizer (𝑒∗, 𝑎∗). There is room for further investigation of optimal
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choices of such hyperparameters; e. g., the optimization succeeds
even with only 100 events per step.

5 CONCLUSION AND OUTLOOK
In this work, we have successfully applied AD to a Monte-Carlo
simulation of electromagnetic showers in a sampling calorimeter,
in order to compute pathwise derivatives of the energy depositions
with respect to the energy of the primary particles and the thick-
nesses of the layers. The simulation models all the relevant physics
processes, while the detector geometry has been kept rather simple.
Applying AD to the code without any algorithmic changes led to
algorithmic derivatives of very high variance, but the only problem
seems to be that black-box pathwise AD is not the right tool to
differentiate the algorithm used to model multiple scattering in
G4HepEm. With multiple scattering disabled, variances of algorith-
mic derivatives are sufficiently low and their means are close to the
(numerical) derivatives of the average energy depositions, with a
deviation of about 5%. Errors of this magnitude may be perfectly
acceptable when the derivatives are used for gradient-based op-
timization, as demonstrated by a simple parameter identification
study.

In order to scale our encouraging result to the full generality of
Geant4, we propose the following next steps:

• It could be worthwhile to apply a high-performance AD
tool to the Geant4 codebase, in order to try to reproduce
the findings of our present work with Geant4’s G4HepEm
physics process. This would allow to see if Geant4’s very
general implementation of geometry is an obstacle for AD,
and if not, allow to consider many different detector layouts.

• Subsequently, Geant4’s G4HepEm physics process could
be replaced by the native Geant4 electromagnetic physics
processes.

• Additional efforts should be dedicated to analyze and mit-
igate the incompatibility of AD with multiple scattering,
potentially by creating an AD-friendly MSC model.

• One could then enable uniform and non-uniform electro-
magnetic fields in the simulation to check their compatibil-
ity with AD.

• To conclude physics generalizations, it would be interesting
to include other particles and, in particular, enable hadronic
processes.

• At some point, it may become necessary to go beyond mean
pathwise derivatives, and employ and improve differen-
tiable and probabilistic programming tooling to account for
discrete randomness.

• In particular, systematic efforts should be dedicated to source
transformation AD tools to enable the above workflows.

• Once any pre- and postprocessing software is differentiated
as well, algorithmic derivatives can be used to efficiently
optimize actual experiment designs in their planning phase.
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