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Abstract

This paper investigates an extremely classic NP-complete problem:
How to determine if a graph G, where each vertex has a degree of at most
4, can be 3-colorable(The research in this paper focuses on graphs G that
satisfy the condition where the degree of each vertex does not exceed 4.
To conserve space, it is assumed throughout the paper that graph G meets
this condition by default.). The author has meticulously observed the re-
lationship between the coloring problem and semidefinite programming,
and has creatively constructed the corresponding semidefinite program-
ming problem R(G) for a given graph G. The construction method of
R(G) refers to Theorem 1.1 in the paper. I have obtained and proven the
conclusion: A graph G is 3-colorable if and only if the objective function
of its corresponding optimization problem R(G) is bounded, and when
the objective function is bounded, its minimum value is 0.

1 Introduction

The question of whether every problem that can be verified in polynomial
time can also be solved in polynomial time was proposed by the computer
scientist Stephen Cook in 1971, which is the famous P vs NP problem[1]. Among
the 21 NP-complete problems Karp listed[2], the Graph Coloring problem is
included: to color all vertices of a graph such that no two adjacent vertices
have the same color. In fact, even when the graph is restricted to very specific
conditions, the Graph Coloring problem remains NP-complete. In 1981, Holyer
concluded that the edge coloring problem for 3-regular graphs is NP-complete|[3].
This problem is actually equivalent to the vertex coloring problem for 4-regular
graphs (subsequent papers refer to k-coloring as vertex coloring). This paper
successfully proves that for any graph G where the degree of each vertex does
not exceed 4, there exists a polynomial-time algorithm for the 3-colorability
decision problem.

In the late 20th century, mathematicians embarked on an in-depth study of
the theory of semi-definite programming. It began with Rajendra Karmarkar’s
introduction of the interior-point algorithm for linear programming [4]. Fol-
lowing this, many mathematicians extended the interior-point algorithm to
semi-definite programming, including Michael J. Todd [5][6], Goemans, M. X.,
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Williamson, D. P. [7], Nesterov, Y., Nemirovskii, A. [8], among others. Nesterov
and Nemirovskii systematically discussed the theories related to semi-definite
programming in their paper and demonstrated that their algorithm possesses
polynomial-time convergence.

A completely positive matrix: For an n-th order matrix A, if A can be
expressed as A = C*C, and all elements of matrix C are non-negative, then A
is said to be a completely positive matrix. This can be denoted as A € CP,.
A copositive matrix: For an n-th order matrix A, if for any n-dimensional non-
negative vector z, the quadratic form ‘Az is greater than or equal to 0, then A
is said to be a copositive matrix. This can be denoted as A € COP,,. Regarding
the theory of copositive and completely positive matrices, Abraham Berman and
Naomi Shaked-Monderer discuss these topics in detail in their book [9]. Here,
we will not elaborate further.

This paper obtains the following beautiful theorem:

Theorem 1.1. For a given graph G = (V, E) of order n(The degree of each

vertex in graph G is at most 4.) , the following semi-definite program is
constructed((1)-(17)):
ming, p.,
(@) (1)
s.t.
D(G)+ P(G) =0 (2)

D11 Dip D3
- Dy1 Das Doz ---
D(G) = D(G)" = D31 D3s D3z ---| = (Di,j)(n—i-l)x(n-i-l) (3)

T di,’i,l di,’i,4 di,’i,5
Dii=Dj;= |diia diiz diie| (1<i<n) (4)
diis diie dii3

din+1,1
Di,nJrl = D;1;+1)i = di,n+1,2 (1 < 1 < n);DnJrl,nJrl = [dn-l-l,n—i-l] (5)
din+1,3

If vertices v; and v; in graph G are adjacent(i # j), then ((6)):

. dijai dij2 dijs
Dij=Dj,= |dija dijs dije|(1<i<n1<j<n) (6)
dij7 dijs dijo

If vertices v; and v; in graph G are not adjacent(i # j), then((7)):

111
D;j =Dl =d;, 1 1 i (1<i<n,1<j<n) (7)



Pii Pip Pi3
P1 Pap Po3

P(G) = P(G)T = |Ps1 P3p P3z | = (Pi,j>(n+1)><(n+l)

)

P, =Pl =(0)3x3(1 <i<n)

0
0
0

Pini1 =Py ;= (1<i<n),Poyine =[0]

If vertices v; and v; in graph G are adjacent(i # 7), then ((11)):

P, = Pﬂ- = (0)3x3s

(8)

(9)

(10)

(11)

If vertices v; and v; in graph G are not adjacent(i # j), then((12)(13)):

Pij1 Pij2 DPij3

P =Pl = |pija pijs Pijs|(1<i<n1<j<n)

Dij7 Dij8 Pij9

ik <01 <i<n1<j<n1<k<9)

n

Z Z fii(G)+4 Z(di,n—i-l,l + dint1,2+ ding1,3) + 6dnt1,n+1
i=1 j=1 i—1

= f(G)
If ¢ = j, then:
[ij(G) =2tr(D;;), (1 <i <n)
If vertices v; and v; in graph G are adjacent(i # j), then:
[ij(G) =dija+dij3+dije+dijat+dijr+dijs
If vertices v; and v; in graph G are not adjacent(i # j), then:

fij(G) = 6d, ;

Next, we will prove the correctness of this statement.

(12)

(14)

(17)

(Note that d, are variables.), We refer to the above semi-definite programming
problem as the Deng-semi-definite programming problem for graph G, denoted
as R(G).For a given graph G, the following conclusions can be drawn: If G is
3-colorable, then the minimum value of the objective function f(G) for its cor-
responding Deng-semi-definite programming R(G) is 0. If G is not 3-colorable,
then the objective function f(G) for its corresponding Deng-semi-definite pro-
gramming R(G) is unbounded.



2 Example

Since I am just an undergraduate majoring in Information and Computa-
tional Science from the School of Mathematical Sciences at Tiangong University
(TGU) in China, I believe it is necessary to provide examples to summarize the
main ideas of this paper to prevent it from being overlooked by the mathematical
community. Firstly, for K5 , which is 3-colorable, referring to the statement of
Theorem 1.1 in the paper, the minimum value of the objective function f(K>)for
the corresponding semi-definite programming problem R(K3) is 0:

ming,

f(K2)=2(d122+d123+d126+di2a+dior+dias)
2 (18)
+4 Z(di’g’l +diso+diss)+4ds s+ 2tr(D(K2))

i=1

s.t.

dii1 dijga dins diga dipg2 digs disa
di1a dige dine diga dipgs dige di3ze
dins diie diiz digr dipgs digg dizgs
D(K3) = |di21 diga digr dapoi dooa doos dasi| =0 (19)
dio2 dios dipog dooa dopo dooe do3o
dio3 dige dipg doos dooe doo3z dosgs
|d131 diz2 diss d2si1 d2sa dozs  dsgs |

proof:The 6 group 3-coloring methods for Ko are: v is red, ve is yellow; v
is red, vo is blue; v1 is yellow, vo is red; v1 is yellow, vy is blue; vy is blue,
ve is red; wy is blue, vy is yellow. Essentially, these 6 coloring methods are
equivalent under the permutation of the three colors red, yellow, and blue. For
each vertex v;, coloring it red corresponds to vector 1 = [1, 0, 0], coloring it blue
corresponds to vector zo = [0,1,0], and coloring it yellow corresponds to vector
x3 = [0,0,1]. The 6 colorings of K5 correspond to vectors XV = [z1 1, 1],
X =[z1,23,1], X® = [x9,21,1], XW = [29,25,1],X®) = [x3,27,1],and
X () = [z3, 29, 1], respectively. It is not difficult to calculate that :

6
F(K2) =3 XOD(E)X D" >0 (20)

=1

When D(K3)is a zero matrix, the value of the objective function f(K2) becomes
Zero.

In fact, we can explore more 3-colorable graphs such as K3, and obtain
inequalities similar to Equation (20) through similar discussions. However, for
graphs that are not 3-colorable, since they do not have a 3-coloring scheme, it is
not possible to derive inequalities similar to (20). Furthermore, if the objective



function of their corresponding R(G) is bounded, then the dual problem R*(G)
will have a solution (as seen in Theorem 3.1 of the paper). Through some
delicate construction, this solution can lead to a completely positive matrix,
which will be the solution to another dual problem K*(G) (as seen in Theorem
3.3 of the paper). This would contradict Theorem 3.3 of the paper. Hence, for
graphs that are not 3-colorable, the objective function of their corresponding
R(G) must be unbounded. The previous discussion outlines the central thesis of
the paper, and we will now engage in a detailed demonstration of the argument.

3 Some important theorems

Theorem 3.1. For a given n-th order graph G(The degree of each vertex in
graph G is at most 4.) , the dual problem of the corresponding semi-definite
program R(G) is R*(G):

max
0

s.t.
Z(G) =0 (21)
((1)3x3, Zij) = 6,(1 <i,j <n) (22)

Zi1 Zip Z13
- Za1 Zao Zaj3 :

Z(G) = Z(G) = Zg)l Zg)g 23)3 RN (Ziqj)(n-l-l)x(n-l-l) (23)

2 0 0
0 0 2
2
Zigr1 = Zpi1 = |2| A <0 <), Zngingr = [6] (25)
2
If vertices v; and v; in graph G are adjacent(i # j), then:
0 1 1]
Zij=11 0 1|(1<i<n1<j<n) (26)
1 1 0

If vertices v; and v; in graph G are not adjacent(i # j), then:

Zijl  Zij2 i3

_ T _

Zij=2;;= |%ija Zij5 Zij6 (27)
| Zij,7 %8 %9




zijk20,(1<i<n1<j<nl1<k<9) (28)

A graph G is 3-colorable if and only if there exists a matrix Z(G) that satisfies
equations (21) to (28).

Theorem 3.2. A D-graph is defined as a graph that is not 3-colorable, and in
which each vertex has a degree of at most 4, and the graph becomes 3-colorable
after removing any single edge. We refer to such a graph as a D-graph. For
a D-graph G, construct its copositive programming K (G)(Let t be any given
positive constant.):

mins,
9(G) +t Z pii(G) (29)
1<i<j<n
s.t.
S(G) S COPgn_H (30)
S Si2 Sigs
. So1 S22 Sags
S(G) = S(G) = 5371 5372 5373 RN (Si-,j)(n-l-l)x(n-i-l) (31)
Sii, 1 Sig4 Si6,5
Sii= Sfl = (84 Sii2 Siie| (1<i<n) (32)
Sii,5  Si,4,6  S4,4,3
Sin+1,1
Si,nJrl - thLLi = | Si,;n+1,2 (1 S 1 S n)7 Sn+1,n+1 - [Sn-i-l,n-l—l} (33)
Si,n+1,3

If vertices v; and v; in graph G are adjacent(i # j), then:

Sijl  Sij2  Sij3
t . .
Sij =155 = [Sij4 Sigs Sije| (1<i<n,1<j<n) (34)
i, 7 Sij8  Sij9

If vertices v; and v; in graph G are not adjacent(i # j), then:

Sij=(0)3x3(1 <i<n,1<j<n) (35)

Z Zgi,j(G) +4 Z(Si,n—i-l,l + Simnt1,2 + Sint1,3) + 6Snp1nt1
i=1 j=1 i=1 (36)

=g(G)

If ¢ = j, then:
9i.5(G) = 2tr(S;i),(1 <i<n) (37)



If vertices v; and v; in graph G are not adjacent(i # j), then:
9i.5(G) = pij(G) =01 <i<n1<j<n) (38)
If vertices v; and v; in graph G are adjacent(i # j), then:
Gii(G) = Sij2+ 8ij3+ Sij6+ Sija+ Sijr+Sijs (39)

pij(G) = 9(G) — 29:4(G) +4tr(S; ;) (1 < i <n,1 < j <n) (40)
For the D-graph G, the objective function of the corresponding completely

positive programming K (G) is unbounded.

Theorem 3.3. For a given D-graph G of order n, the dual problem of its corre-
sponding copositive programming K (G) is the completely positive programming
K*(G)(Let t be any given positive constant.):

max
0
s.t.
B(G)+t Y Ei;(G)€CPsy (41)
1<i<j<n
Bi1 Bia Big
. Bs1 Baas Bagz -
B(G) = B(G) = B371 B372 B373 el = (Biqj)(n-l-l)x(n-i-l) (42)

2 0 0
Bii=10 2 0| (1<i<n) (43)
0 0 2
2
Biny1 =B, = (2| (1 <i<n),Buiins1 = [6] (44)
2
If vertices v; and v; in graph G are adjacent, then:

01 1
Bij=1|1 0 1{(1<i<n1<j<n) (45)
110

If vertices v; and v; in graph G are not adjacent(l < i < n,1 < j <mn),
then:

bija bij2 bijs
t
Bij=DBj;= |bija bijs5 bijs (46)
bijr bijs bijo



If vertices v; and v; in graph G are adjacent, then:

2 0 0
ei;=10 2 0] (1<i<n) (47)
0 0 2
E; j(G) = (ex1) (n+1)x(n+1), (1 <k <n, 1 <1 < m), (48)
2
Cintl = efz-i—l,i = |2 7(1 < 1 < n)7 Entlntl = [6] (49)
2

If vertices vy and v; in graph G are adjacent, then:
when (k,1) = (i,5):

2 00
exy =10 2 0 (50)
10 0 2]
when (k,1) # (i,5):
[0 1 1]
ek = |1 0 1 (51)
|1 1 0]
If vertices vy and v; in graph G are not adjacent, then:
ex = (0)3x3 (52)
If vertices v; and v; in graph G are not adjacent, then:
Ei j(G) = (0)sninyx@nin (1 <i<n, 1 <j <n) (53)

For the D-graph G, there does not exist a matrix B(G) that satisfies equations
(41) to (53).

4 Proof of Theorem 3.2 and Theorem 3.3

Based on the duality theory of copositive programming [9], we know that
for a given D-graph G, the objective function of its corresponding copositive
programming K (G) is bounded if and only if its dual problem K*(G) has a
feasible solution that satisfies the constraints. This means that we only need to
prove Theorem 3.2. We first prove several lemmas, and then present the final
proof of Theorem 3.2.

Lemma 1. If U is a positive definite matrix, and the minimum solution of
XUX'+oX'+uis Xo, and XoUX{E+vX{+u > 0, XoHXE+hXE+w =0, then
there exists a positive constant Cy such that : X HX! +hXt+w+Cy (XUX? +
v X' +u) > 0(Forany X).



proof:Write out the matrices A and B corresponding to the given quadratic

R e Py

From the conditions of the problem, we know that matrix B is positive definite.
It is not difficult to know from the related knowledge of positive definite matrices
that there exists a positive constant C7 such that A + C1B is also a positive
definite matrix. This proves the statement.

Lemma 2. Ti,j (G) = a(Ii.Ij + YiY; + ZiZj) + b(xzyj + Tizj + Yilj + Yizj + 2T +
When z; + y; + z; = 1,2;=00r1,y;=00r1,z;=0or1,
then :

T(G)=>> kiT.;(G) >0 (55)
i=1 j=1
(k; jare given constants, taking the value of 0 or 1.).There exist positive con-
stants C3 and Cy such that the matrix corresponding to the quadratic form
T(G)+Cs Z(Uci +yi+ 2 —1)2+Cy Z(iﬂiyi + 2z + Yizi) (56)
i=1 =1
is a copositive matrix.

proof:Let’s first discuss the 3™ cases where z; = t;,y; = 0,2z; = 0 or x; =
0,y; =ti,zi=0o0r z; =0,y; = 0,2, = ¢t; (for i = 1 to n). By applying Lemma
1, we analyze each of these cases and know that there exists a positive constant
C5s such that the quadratic form

n
T(G)+C5 Y (rityi+2—1)7>0 (57)
i=1
for each of these 3" cases.

Then we can decompose the original problem into the 3" cases where x; =
ti;yi = aiti,zi = bltz or r; = aiti,yi = ti,Zi = bztl or r; = aiti,yi = bltl,zz = ti
(for ¢ = 1 to n, where a; and b; are positive constants less than or equal to 1).
We discuss these cases using the theory of positive definite matrices. For each
case, we need to further classify the discussions:

1.From the previous discussions, combined with the properties of positive
definite matrices, we can know that there exists positive constants ¢ and Cj
such that when a;,b; (for i = 1 to n) < ¢, in each of these cases we have:

n
T(G)+Cs» (wi+yi+2z—1)7>0. (58)
i=1

2.When there is an a; or b; greater than or equal to ¢, it can be proven that
there exists a p > 0 such that in each case we have:

n n
Z(xz +yi 2z —1)2 4+ Z(xzyz + 22 + yizi) > p. (59)
i=1 i=1



Then, by Lemma 1, we know that there exists a C; > 0 such that when there
is an a; or b; greater than or equal to p,in each of these cases we have: :

n

T(G) + (05 + 04) Z (CL‘l + Y + 2 — 1)2 + Cy Z(:viyi +xiz; + yizi) >0 (60)
i=1 i=1

, which proves Lemma 2.

Proofof Theorem3.2: For the D-graph G, we construct the following
quadratic form:

sW@ = > sG), (61)

1<i<j<n

If vertex v; in graph G is adjacent to vertex v; : SM(G);; = a(ziz; + viy; +
zizj) + b(wiy; + xizj + yix; + vizj + zixj + zy;). I vertex v; in graph G is not
adjacent to vertex v;: SM(G);; = 0.

If vertex v; is colored red, then [x;,y; , 2] = [1,0,0] ; if it is colored yellow,
then [z;y; z;) = [0,1,0] ; if it is colored blue, then [z; y; z;] = [0,0,1] . Then,
if a set of colorings is applied to the D-graph G, for adjacent vertices v; and v;
, if they have the same color, then S(l)(G)i,j = q; if they have different colors,
then SM(G);; = b. It satisfies: mb < 0,a + (m — 1)b > 0 (where m is the
number of edges in graph G). Due to the properties of the D-graph G, it is
not difficult to obtain: when x; + y; + z; = 1, where x;, y;, 2; are 0 or 1, then
SM(G) > a+ (m —1)b> 0. From Lemma 2, there exist positive constants C'
and Cj such that the matrix S?(G) corresponding to

n n

SW(G) + Cs Z(%‘ +yi+zi— 12+ Cy Z(iﬂiyi + @izi + yizi) (62)
i=1 i=1

is a copositive matrix. Substituting S®(G) into the copositive programming
K (G) corresponding to graph G, at this point,
g(G)+t > pij(G)=6(mb+m(a+ (m—1)b)t) (63)

1<i<j<n

, and mb+ m(a + (m — 1)b)t can take any negative value. This is how I prove
Theorem 3.2.

5 Proof of Theorem 1.1 and Theorem 3.1

From the duality theory of semi-definite programming, we know that Theo-
rem 1.1 is equivalent to Theorem 3.1. Therefore, we only need to prove Theorem
1.1.

Lemma 3. Any graph G(with each vertex of degree at most 4) that cannot be
3-colored has a subgraph K (Assuming the subgraph K has indices i1, ig, ..., 15)

10



that is a D-graph, and if the semi-definite programming R*(K) corresponding
to this D-graph K does not have a solution that satisfies the constraints, then
the semi-definite programming R*(G) corresponding to the graph G also does
not have a solution that satisfies the constraints.

proof:By contradiction, If the graph G(with each vertex of degree at most
4) has a matrix A that satisfies the constraints of R*(G), then there necessarily
exists a principal submatrix of A(with rows and columns indexed by: 3i; —
2,3ia—2,...,3is—2,3i1 — 1,310 — 1, ..., 3is — 1, 3iq, 3ia, ..., 3is, 3n+ 1) that serves
as a solution satisfying the constraints of R*(K).

Lemma 4. If both A and B are positive semi-definite matrices,and the quadratic
forms zAz” and zBzT satisfy kerB € kerA,and A = ETE, B = FTF, then
the set of row vectors of E can necessarily be expressed linearly in terms of the
set of row vectors of F.

proof:From the given conditions, we have ker(F') € ker(FE), which means F'
can be augmented to form F° such that ker(E) = ker(F°). Therefore, the rank
of E is equal to the rank of F°, that is, r(E) = r(F°). It follows that E = 0 is
equivalent to z(E FY) = 0, which is in turn equivalent to zF° = 0. This implies
that the rank of E is equal to the rank of (E F°), which is also equal to the
rank of F°. Hence, the sets of row vectors of E and F© are equivalent.

Lemma 5. For the graph G, the kernel of the matrix that satisfies the semi-
definite programming constraint R*(G) contains the following set of vectors:

21 Zy -+ Zn xo] Zi=[Qi Qi Qi (64)
S Qitm=0 (65)
1=1

proof:From Equation (21)-(28), the proof can be immediately derived.

ProofofTheoreml.1:

=

In the context of graph G and its corresponding D(G) in Theorem 1.1,ex-
pressed as a quadratic form:

XD@GX" =33 XiDi; X[ +2) Dipi1 X +dniingr  (66)
j=11i=1

i=1
X=[X1 Xo - X, 1 X;=[2 yi =] (67)
For the vertex v;, coloring it red corresponds to X; = [1,0, 0],coloring it blue

corresponds to X; = [0, 1, 0], and coloring it yellow corresponds to X; = [0, 0, 1].
For a set of colorings of graph G, there are six permutations of red, yellow, and
blue: red-yellow-blue, red-blue-yellow, blue-red-yellow, blue-yellow-red, yellow-
red-blue, and yellow-blue-red. These colorings can be represented by six vectors,
denoted asX, X2 x @) x®) xG) x () If this set of colorings ensures that
no two adjacent vertices have the same color, it is easy to see that :

11



If vertices v; and v; in graph G are adjacent:

6 T
STXID XM =dijo+digs+dige + diga+digs+digs (68)
k=1

If vertices v; and v; in graph G are not adjacent:

6
T
ST XD xPT = 6di (69)
k=1
, and consequently
6 T 0 T
(&) =3 XxPpe)x® > -3 x®Bp@e)x® >0 (70)
k=1 k=1

. The sufficiency is thus proven.

<=

Let’s introduce two definitions:

1.D-Coloring: For a D-graph, there exists a set of colorings such that only
one edge e; ; has associated vertices v; and v; that are colored the same. We refer
to this set of colorings as the D-coloring with respect to the edge e; ;. According
to the definition of a D-graph, every edge has a corresponding D-coloring.

2.D-Coloring Matrix: For a set of colorings in a D-graph, for each vertex v;,
coloring red corresponds to e; = 1, f; = 0,¢g; = 0; coloring yellow corresponds
toe; =0, f; =1,g; = 0; and coloring blue corresponds to e¢; = 0, f; = 0,¢9; =
1. This set of colorings can be permuted in six ways: red-yellow-blue, red-
blue-yellow, blue-red-yellow, blue-yellow-red, yellow-red-blue, and yellow-blue-
red. The corresponding assignments are denoted as ez(-k), fi(k), ggk)(k =1,..,6).
Construct a quadratic form:

6 n

S+ @i+ Pyt g2 = XLXT (71)
k=1 =1
X = [Xl Xy 0 X, 1} X; = [ZCz' Yi Zi} (72)

. If this set of colorings is a D-coloring, then the matrix L corresponding to the
quadratic form X LX? of this set of D-colorings is referred to as a D-coloring
matrix of graph G with respect to the edge e; ;,It can also be called the D-
coloring matrix of this set of D-colorings.

By contradiction, if the graph G is not 3-colorable, but the objective func-
tion value of its corresponding semi-definite program R(G) is bounded, then
the dual problem R*(G) of R(G) must have a solution that satisfies constraints
(15) to (21). By Lemma 3, it follows that there necessarily exists a subgraph K
of G that is a D-graph, and the semi-definite program R*(K) corresponding to
subgraph K must have a matrix Z(?)(K) that satisfies constraints (21) to (28).

12



For graph K (where the order of graph K is n*), if we choose any vertex v;
and any edge associated with v;, we can obtain a set of D-colorings for this edge,
and consequently, we can obtain a corresponding D-coloring matrix, denoted as
A;.

Since the degree of v; is necessarily less than or equal to 4, for this set
of D-colorings, if we only change the color of v; while keeping the colors of all
other vertices the same, we can obtain the D-coloring matrix B; for another
edge associated with v;. Performing this operation for each vertex allows us to
obtain

W = Z(aiAi + biBi) (73)
i=1
(where a; and b; are undetermined coefficients,and both are greater than 0.).
Then, we construct a D-coloring matrix L., for each edge and sum them

to obtain
Y = ceLe (74)

(where ¢, are undetermined coefficients,and both are greater than 0.). Clearly,
W +Y is a completely positive matrix.

Due to the construction of A; and B;, it is not difficult to prove that the
kernel of W +Y can only be the set of vectors

(Zy Zy -+ Zne wo] Zi=]Qi Qi Qi (75)
Z Qi +x9=0 (76)
i=1

Therefore, by Lemma 4 and Lemma 5, the row vector group of Z (0)(K ) can be
linearly expressed by the row vector group of W + Y.

We can choose coefficients a;, b;, c., to be sufficiently large so that ZO)(K)+
W +Y is a completely positive matrix[9].

At this point, we can express Z(O(K) + W +Y in the form of (Assuming
that the D-coloring matrix corresponding to the edge e; ; is A, then Z (0)(K )+
A — E; j(G) must satisfy equations (41) to (53).)

ZOE)+ Y mi B (K) (77)

1<i<j<n*

(where Z()(K) satisfies conditions (41) to (53), and the definition of E; ;(K)
can be found in Theorem 3.3). By continuing to increase the coefficient m; ;
until they are all equal, we obtain

ZO(K)+ > tEj(K) (78)

1<i<j<n*

(where Z(?)(K) satisfies conditions (41) to (53)). The above operations ensure
that
ZOE)+ Y tE(K) = O(K) (79)

1<i<j<n*
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is a completely positive matrix. In fact, O(K) is the solution to the completely
positive programming K*(K) corresponding to graph K that satisfies the con-
straints (41) to (53). However, based on the already proven Theorem 3.3 and
the 3-coloring intractability of graph K, we derive a contradiction. Therefore,
the necessity of the theorem is established.

6 P=NP

By Theorem 1.1, the problem of determining whether a graph G (with each
vertex of degree at most 4) is 3-colorable can be converted into a semi-definite
programming problem. In the process of designing the code, we can add a con-
straint f(G) > —100 to ensure the halting criterion. Then, the minimum value
output by the code is 0 when the graph G is 3-colorable, and the minimum value
is -100 when the graph G is not 3-colorable. The coding is not difficult, and I
have uploaded the code to my personal homepage ((1. https://b23.tv/1d3ICCG2
2. https://www.zhihu.com/people/deng-zi-58-20,Copy the link and open it in
the browser ) ). It is easy to see from Theorem 1.1 that the semi-definite
programming problem R(G) corresponding to graph G, with the additional
constraint f(G) > —100, can be solved in polynomial time[10][11]. Since the
3-coloring problem for graph G (with each vertex of degree at most 4) is an
NP-complete problem [3], this implies P=NP.
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