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Abstract

Simulations of complex turbulent flow are part and parcel of the engineer-
ing design process. Eddy viscosity based turbulence models represent the
workhorse for these simulations. The underlying simplifications in eddy vis-
cosity models make them computationally inexpensive but also introduce
structural uncertainties in their predictions. Currently the Eigenspace Per-
turbation Method is the only approach to predict these uncertainties. Due to
its purely physics based nature this method often leads to unrealistically large
uncertainty bounds that lead to exceedingly conservative designs. We use a
Deep Learning based approach to address this issue. We control the pertur-
bations using trained deep learning models that predict how much to perturb
the modeled Reynolds stresses. This is executed using a Convolutional Neu-
ral Network that learns the difference between eddy viscosity based model
predictions and high fidelity data as a mapping of flow features. We show
that this approach leads to improvements over the Eigenspace Perturbation
Method.

Keywords: Turbulence Modeling, Uncertainty Quantification,
Computational Fluid Dynamics, Deep Learning, Convolutional Neural
Networks

1. Background And Motivation

Fluid turbulence is an important problem in a variety of problems of
engineering design. In spite of research there is no analytical theory that can
predict the evolution of complex, real-life turbulent flows. Engineering design
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studies have to use turbulence models for simulations. These turbulence
models are simplified constitutive equations that relate quantities of interest
that are challenging to compute to known and easily computable quantities.

There are different turbulence modeling approaches available for engineer-
ing design ranging from Large Eddy Simulations (LES) [1, 2] and Reynolds
Stress Modeling (RSM) [3, 4, 5, 6] to Eddy Viscosity Models (EVM) [7, 8, 9,
10]. These approaches differ in the proportion of turbulence that is resolved
and that which is modeled at different levels of fidelity [3, 11]. This also
leads to a gradation in the computational costs, where LES represents the
most expensive approach from a computational viewpoint. Eddy Viscosity
Models provide reasonably accurate predictions for many complex flows at a
low computational cost. Eddy viscosity based turbulence models represent
the workhorse for flow simulations for engineering design.

Eddy viscosity models use large simplifications in their formulation to
retain computation economy and robustness. These include the gradient dif-
fusion hypothesis [12] and the turbulent viscosity hypotheses (TVH) [13].
These simplifications delimit the extent to which eddy viscosity models can
reflect turbulent physics of complex flows such as those with rotational ef-
fects, streamline curvature, flow separation, etc. This leads to epistemic
uncertainty in their predictions.

Epistemic uncertainties in turbulent flow simulations are produced by
limited understanding of turbulence physics and the limitations in incorpo-
rating physics accurately in turbulence models [14]. Epistemic uncertainties
in turbulence models occur due to many reasons including limited under-
standing of the turbulence physics [15], simplifications incorporated to make
the turbulence model applicable for engineering workflows [16, 17], simplifica-
tions made to make the turbulence model computationally inexpensive [18],
paucity of data to tune the model [19], etc. This epistemic uncertainty can be
structural uncertainty due to the structure of the turbulence model expres-
sions [20] and parameter uncertainty due to the inferred values of the closure
coefficients in the model expressions. The structural uncertainty is often the
dominant source of errors and uncertainties in turbulent flow simulations for
complex real life flows of engineering interest. In the iterative process of
engineering design where hundreds of intermediate designs are sequentially
evaluated using CFD simulations to optimize the final design these errors
and uncertainties can have a substantial impact leading to significantly sub-
optimal designs. So having reliable turbulence model structural uncertainty
estimates is essential for reliable engineering designs. Novel engineering de-
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sign approaches like robust design and reliability based design fall under the
umbrella of the Design Under Uncertainty (DUU) approach [21, 22]. The
success of this approach depends on the quality of the uncertainty estimates
provided to the approach. So, reliable and calibrated uncertainty estimates of
turbulence model structural uncertainty are essential for engineering design.

At the present moment the Eigenspace Perturbation Method (EPM) [23]
is the only data-free approach for turbulence model structural uncertainty
quantification. The EPM uses sequential perturbations to the eigenvalues,
eigenvectors and the amplitude of the modeled Reynolds stress tensor. Prop-
agating CFD simulations via these perturbed Reynolds stresses leads to a dis-
crete set of predictions. The union over these predictions is used as a measure
of the structural uncertainty due to the turbulence models. In the past the
EPM has been applied across different fields of engineering including the de-
sign of urban canopies[24], aerospace design and analysis [25, 26, 27, 28, 29],
application to design under uncertainty (DUU) [30, 31, 32, 33], virtual certi-
fication of aircraft designs [34, 35], etc.

In spite of its provable successes and widespread adoption the EPM has
limitations. An important weakness of the EPM is its reliance on physics
only. Based on physics based precepts the EPM can only delineate the pos-
sible states of turbulence in a specific turbulent flow but not the probable
states of turbulence for that specific turbulent flow. As an illustration while
considering the evolution of the anisotropy of the Reynolds stress tensor the
EPM has to weigh all the states including the limiting states equally. This is
sub-optimal for a homogeneous flow where the 1- and 2-component limiting
states are unlikely. Similarly the EPM applies the same perturbation to all
points in the flow domain. The degree of perturbations reflects the degree
of discrepancy between the turbulence model predictions and high fidelity
data. This discrepancy is not uniform over the entire flow domain and so
the degree of perturbations should not be uniform either. These examples
highlight the need for a marker function that determines the varying degree
(or magnitude) of the perturbations across different regions of a turbulent
flow domain and across different turbulent flow instances.

Researchers have attempted to develop marker functions for the EPM
with limited success. We postulate that a completely physics based marker
function may not be possible as there is no analytical criterion to predict
the discrepancy of a RANS model prediction from the true evolution of the
turbulent flow. A Machine Learning (ML) based approach may be able to
approximate this marker function to arbitrary accuracy. In the recent past
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there have been many successful attempts to use ML models and algorithms
for problems in fluid flows, turbulence modeling, combustion modeling, etc
[15, 36, 37, 38, 39, 40]. Many of these attempts focus on the approximation
capabilities of the ML model without incorporating the physics knowledge.
We attempt to use the basis of the EPM and augment it using domain knowl-
edge informed ML models. Here we identify the absence of non-local model-
ing information as a key delimiter and utilize an inexpensive Convolutional
Neural Network model for the marker function.

This article is arranged in a sequential manner, where the first section
lays out the central question that we are attempting to address the method
that we use. In the second section we provide details of the EPM, the cor-
rection function and the CNN model utilized in this investigation. The third
section gives details of the test cases and data sets used. The fourth section
details the methodology used in this study. This is followed by the results of
our study and their analysis. The article concludes with a summary of the
investigation.

2. Methods and Details

2.1. Eigenspace Perturbation Method (EPM)

Eddy viscosity models use the concept of a turbulent viscosity to close
the evolution equation for the Reynolds stresses. This is also called the
Boussinesq Hypothesis [11]. The instantaneous value of the Reynolds Stresses
is assumed to be linearly proportional to the value of the mean rate of strain
tensor as

⟨uiuj⟩ =
2

3
kδij − 2vt ⟨Sij⟩ , (1)

where k is the turbulence kinetic energy, δij is the Kronecker delta ten-
sor, νt is the eddy viscosity coefficient, and ⟨Sij⟩ is the mean rate of strain.
This assumption reduces the complexity of the RANS equations and makes
engineering simulations less expensive computationally. But this assump-
tion is very limiting and makes eddy viscosity models inaccurate for complex
flows. For example this linear relation asserts that the principal co-ordinates
of the mean rate of strain tensor and the Reynolds stress tensor are identi-
cal. This is not correct for flows with turbulent separation or re-attachment.
This also ignores any effects of the mean rate of rotation on the evolution of
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the Reynolds stresses, limiting its utility in cases with significant streamline
curvature or for rotation-dominated flows.

To estimate the uncertainties due to eddy viscosity based modeling sim-
plifications the EMP [23] introduces perturbations in the spectral represen-
tation of the Reynolds stress tensor predicted by the eddy viscosity model
as

⟨uiuj⟩∗ = 2k∗
(
1

3
δij + v∗inb̂

∗
nlv

∗
jl

)
. (2)

Here b̂∗kl is the perturbed eigenvalue matrix, v∗ij is perturbed eigenvector
matrix, k∗ is the perturbed turbulence kinetic energy. From a modeling
perspective, the EPM replaces the linear, isotropic eddy viscosity assumption
with the general relationship in which the eddy viscosity is a fourth-order
tensor that incorporates the anisotropic nature of turbulent flows[41].

2.2. Correction function for RANS predictions

Computational studies in turbulent flows can use different approaches
that differ in the details of the scales that are resolved and the scales that are
modeled. In Direct Numerical Simulations (DNS) all the scales of turbulent
flow are resolved. DNS is also extremely computationally expensive and not
feasible for engineering problems. In Large Eddy Simulations (LES) some
scales are resolved and the smaller scales are modeled. While LES is less
expensive it is still too computationally expensive for the iterative design
methodology used in engineering design. In Reynolds Averaged Navier Stokes
(RANS) based modeling all the scales of turbulence are modeled. So RANS
based modeling is inexpensive but not as high fidelity as DNS or LES. We
use a correction term focusing on the discrepancy between the RANS model
predictions and high fidelity DNS data. We refer to this as the correction or
the marker function.

In the present study, we aim to utilize an inexpensive CNN-based model
to enhance the accuracy of predictions of k, crucial in the construction of k∗

as defined in Equation 2. For both the RANS and DNS simulation, we can
summarize their results as the function of the perturbed turbulence kinetic
energy k∗:

k∗ = f(x, y). (3)
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where x and y are coordinates in a two-dimensional computational do-
main, and f is the function map from each coordinate (x, y) to k∗, expressed
using a tuple (x, y, k∗) in simulation results.

Without assuming any form, the correction function for RANS is a map-
ping between two functions:

Z : fRANS(x, y) → fDNS(x, y) (4)

with kDNS = fDNS(x, y) and kRANS = fRANS(x, y), we can rewrite Z as a
mapping ζ between points that comprises fRANS and fDNS

ζ : (x, y, kRANS) → (x, y, kDNS) (5)

Considering the model error for RANS and DNS in terms of kinetic en-
ergy, we have

pRANS (Kg | x, y) = p
(
kg = kRANS | x, y

)
(6)

pDNS (Kg | x, y) = p
(
kg = kDNS | x, y

)
(7)

where Kg is the unknown ground truth of kinetic energy at (x, y).
Kinetic energy resulted from DNS simulation results pRANS can be esti-

mated with kinetic energy from RANS simulation pDNS and its correction
function g as

pDNS (Kg | x, y) = g
(
kRANS, x, y

)
p
(
kRANS | x, y

)
(8)

As kDNS = fDNS(x, y) and kRANS = fRANS(x, y), at each x, we have that
kDNS
x = fDNS

x (y) and kRANS
x = fRANS

x (y), assuming both fRANS
x and fDNS

x are
continuous. In other words, we can learn ĝ with paired (kRANS

x,y,δ ,kDNS
x,y,δ).

2.3. CNN-based Correction Function
This investigation employs a one-dimensional convolutional neural net-

work (1D-CNN) to learn the correction function ĝ from paired RANS and
DNS simulation estimated kinetic energy (kRANS

x,y,δ ,kDNS
x,y,δ). As our approxi-

mated correction function ĝ depends on the neighbor of kRANS and coordi-
nates (x, y) are only used to group neighbors of kRANS, we grouped simulation
data by x and transformed (y, k) at x into kRANS

x,y,δ via a rolling window pa-
rameterized by window size. Our 1D-CNN has four-layers and in total 86
parameters: a single model for all zones at any x to correct RANS towards
DNS.
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Figure 1: The computational domain and boundary conditions for the SD7003 airfoil
case: far field, outlet, and no-slip walls. A three-dimensional version of the computational
domain is provided with freestream (U∞) encountering the leading edge at 8◦ AoA.

3. Turbulent Flow Test Cases Details

This investigation uses two datasets for training the CNN model:

1. an in-house paired RANS and DNS dataset

2. an open source dataset made of paired RANS and DNS data.

For the first dataset, the DNS data was generated by simulating flow over
an SD7003 airfoil at 8 degrees angle of attack, Reynolds number based on the
cord length of Rec = 60000 and a Mach number (Ma) of 0.2. In this setting,
for the spanwise direction, a periodic boundary condition is adopted, and the
spanwise domain extends to a length of 0.25 times the chord length. The
DNS mesh has 1200 nodes in the spanwise direction, 800 nodes in the axial
direction, and 96 nodes in the last direction. The detailed information about
the DNS dataset and its generation is available in the thesis of [42].

For the RANS data corresponding to the first paired dataset, RANS simu-
lation is carried out for airflow around the SD7003 airfoil. Here the freestream
inlet velocity (U∞) transitioned to turbulence on the suction side of the airfoil
at an angle of attack (AoA) of 8 degrees relative to the freestream, corre-
sponding to Rec = 60, 000. The solution domain has a two-dimensional C
topology grid with a resolution of 389 (along the streamwise axis) by 280
(along the wall normal axis) by 1 (along the spanwise axis) control volumes
shown in Fig. 3. The grid approximates that of a prior referenced case (768
by 176) in [43]. To ascertain the effect of grid resolution on the RANS so-
lution a grid independence study focusing on the near wall zone was carried
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out. The study exhibits that employing a finer mesh did not substantially
change the accuracy of the RANS predictions. The influence on the mean
velocity profile as well as Reynolds shear stress profile was less than 1%.
In the current manuscript the plots for grid convergence are excluded for
brevity. For this investigation, we utilize the less resolved mesh (389× 280)
for simulations. A low inlet freestream turbulence intensity level is assumed
and set at Tu = 0.03%. The outlet conditions use a zero gradient boundary
condition for variables including mean streamwise velocity in the x-direction,
mean velocity in the y-direction, turbulence kinetic energy, and pressure. As
is customary no slip boundary conditions were used at the walls. The initial
grid nodes in the wall-normal direction were positioned at y+ ≈ 1 within the
turbulent boundary layer utilizing over 20 control volumes.

The RANS based transition model of Langtry and Menter [44] is used for
the closure of the continuity and the momentum equations (detailed in Ap-
pendix A. The transport equations are discretized using finite volumes and a
staggered mesh. Spatial discretization used second-order upwind scheme and
gradients are estimated with the Gaussian linear scheme. With OpenFOAM
the unsteady PIMPLE solver is used for coupling pressure and velocity fields.
We use a maximum Courant number of 0.6. Regardless OpenFOAM dynam-
ically adjusts the time step to maintain the specified maximum Courant
number.

Convergence tracking was carried out by monitoring both residuals along
with the lift and drag coefficients with time (T ). On convergence, specifi-
cally at T ≈ 0.3 or normalized time T = TU∞/c ≈ 6.75, where U∞ is the
freestream velocity magnitude, the energy and momentum residuals had de-
creased by over four orders of magnitude. At the same time the lift and drag
coefficients exhibited negligible variation. Similar behavior was seen in the
study by Catalano and Tognaccini [43] for a low Reynolds number flow over
a SD7003 airfoil at AoA = 10◦. Our sampling started at T = 0.6 (twice
the time of convergence) and finished at T = 1.4, involving roughly 35000
iterations over the simulations.

3.0.1. RANS/DNS approach for 2D channel flow over periodic hills

This section introduces the outline of the approach for obtaining the Voet
dataset. Detailed information is given in the prior publication of [45]. The
Reynolds number is set at 5600 for the RANS simulations and the DNS
simulation. At this regime of Reynolds numbers, the spectrum of turbulent
scales is broad enough to make a RANS approach possible while the DNS
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Figure 2: The 2D periodic hills computational domain used in this investigation.

simulation is feasible computationally. The DNS simulations are carried out
on a grid sized Lx×Ly××Lz = 9.000h×3.036h×4.500h, where h represents
the hill height, as shown in Figure 2. The coordinate system is orthogonal
and the x-axis is aligned with the stream-wise direction, the y-axis with
the vertical direction, and the z-axis with the spanwise direction [45]. A
structured mesh of 512 × 257 × 128 mesh nodes in the directions is used.
A y-stretched mesh is used, with refinement around the walls. The spatial
resolution exceeds that of prior numerical studies conducted at the same
Reynolds number. The boundary conditions used are a periodic interface
in both the streamwise and spanwise directions, and a non-slip condition at
the top and bottom walls of the channel. The initial setup of the horizontal
velocity profile in the channel uses a Poiseuille flow condition given by

u(y) = U0

(
1−

( y

H

)2)
, (9)

where H is the semi channel height and U0 the center line velocity. The
DNS is conducted using the high-order flow solver, Incompact3d [46, 47].
More information about the DNS dataset for flow over periodic hills is given
in [45, 48].

Two dimensional RANS simulations are carried out using the Star-CCM+
software. The computational domain, as shown in Figure 2, is represented
as a two-dimensional domain while maintaining the size of the domain at
Lx × Ly = 9h × 3.036h. For the upper and lower walls, we use a no slip
boundary condition. For the inlet and outlet of the fluid domain, we use
a periodic boundary condition. The k − ω Shear Stress Transport (SST)
turbulence model is used [49]. The RANS simulations run for over 10, 000
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iterations, with residuals below 4 × 10−10 for the continuity, U and V mo-
mentum, turbulent kinetic energy, and turbulent dissipation rate equations,
as shown in the reference test case (α = 1, γ = 1). For a given Reynolds
number, the flow over periodic hills is centrally influenced by two factors:
the steepness and the spacing of the hills. The two parameters, α and γ as
defined, are used to manage the uncertainty of the geometry. The parameter
α changes the steepness of the hills, so altering the adverse pressure gradient
on the flow when moving down the hill. It is expected to impact the sepa-
ration point. The parameter γ changes the spacing between successive hills,
and is expected to influence the reattachment point. By varying the values
of γ and α, 7 data points are obtained from DNS studies and 30 data points
are obtained using RANS simulations. The details on this dataset are given
in Appendix B.

4. Numerical Experiments

The primary objective of this study is to use computationally feasible
convolutional neural networks to modulate the application of the Eigenspace
Perturbation Framework. Our specific focus is to develop a marker function
that can control the magnitude of the eigenvalue perturbation while varying
it over the computational domain. With this objective we use the CNN-based
approach to approximate this correction function for RANS simulations on
two distinct datasets: an in-house RANS/DNS [42, 50] dataset for an SD7003
airfoil at 8◦ angle of attack (referred to as SD7003 in the following text) and
the public RANS/DNS dataset [45] for two-dimensional channel flow over
periodic hills.

4.1. Data Flow and Model Configuration

For the two set cases outlined earlier, we set up experiments of the 1D-
CNN model following the simulation data generation as outlined in Figure
3. The DNS data is treated as the ground truth to evaluate the 1D-CNN
corrected RANS prediction. We use the non-corrected RANS prediction as a
control sample. As the DNS and RANS often use different grids, we select x-
coordinates common to both DNS and RANS meshes. We split x-coordinate
grouped pairs of (kRANS

x,y,δ ,kDNS
x,y,δ) into a training set and a validation set by the

key x. We utilize a 80%–20% split of the raw dataset for training and testing
purposes.
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Correction Function

RANSx(y, k) → CorrectedRANSx(y, k) 

RANS

Simulation

RANSx(y, k)

DNS

Simulation
DNSx(y, k)

Training/Validating

1D-CNN

Corrected RANS

RANSx(y, k)Testing

Sampled Pairs
(y, k); x

Figure 3: The data flow and methodology used in this investigation. The blue path is the
training path,the red path is the validation path.

To train the model, we use the Mean Absolute Error (MAE) as the ob-
jective function. In contrast to the Mean Squared Error (MSE or L2 loss)
the MAE (or the L1 loss) does not penalize incorrect predictions as heavily
and better final models were developed in this study using the MAE loss
as the objective function. The MAE loss is computed for the uncorrected
RANS and the MAE loss of 1D-CNN corrected RANS. These are compared
to exhibit the efficacy of our approach.

Figure 4 reports the architecture of the convolutional neural network used
in this study. We arrange the input from RANS with a window size of 11
for each DNS reading (window size of 1). The 1-dimensional convolutional
layer is configured with a kernel size of 3, and a stride of 1. This layer is
able to learn representations of the high-level features from the input data
through convolution operations. After the convolutional layer we have two
dense layers interpreting the feature extracted by the prior layers. Following
these, we have a Pooling layer (max pool). The model training requires the
use of the Adam optimizer with a learning rate of 0.001 for 800 epochs with
a batch size of 10.

5. Results, Analysis and Inference

As outlined in the data flow diagram of the prior section, we apply and
verify the performance of the CNN approach at all paired (RANS, DNS)
datasets at the common x locations. In this section, we report the results
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Figure 4: Architecture of the Convolutional Neural Network used in this study
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are four representative x axis spans. These locations are spanning across the
separated region: for the SD7003 dataset with RANS and DNS based on the
airfoil geometry, x/c = 0.17, 0.25, 0.32, 0.44; and for the Voet dataset based
on the two-dimensional periodic hills, x/H = 0, 0.035, 1.961, 4.885, 6.847.

In the series of figures 5 - 6 we report the results for test case of a flow over
SD7003 airfoil and 2D periodic hills. From Figures 5 - 6, the CNN predicted
profiles in the first row are smoothed with the moving average with a window
size of six steps. The CNN prediction for the turbulent kinetic energy profile
closely matches the ground truth DNS in spite of the small size of the training
data. The turbulent kinetic energy is unscaled for Figure 6, and normalized
turbulence kinetic energy is used for 5, i.e., k+ = k/U2

∞. In Fig. 5, the CNN
predicted DNS profiles approximate the qualitative features of ground truth
DNS profiles. A discrepancy is observed at x/c = 0.7 within the separated
region. As the flow travels further downstream, the CNN-predicted DNS
profiles are closer to the ground truth, showing improved accuracy of the
CNN correction function in the region. The corresponding L1

c(pred) value
shows a substantial decrease for all positions, approximately by two orders of
magnitude, indicating enhanced accuracy in the CNN predictions. Appendix
C shows an example of the application of the CNN correction function on
the suction side of the SD7003 airfoil to predict turbulent kinetic energy.

For this investigation, we carried out additional analysis on the public
RANS/DNS dataset [45] to train the CNN model. In Fig. 6, we use this
model, trained on the case two from the RANS/DNS dataset [45], to predict
the k profiles of DNS for case seven from the RANS/DNS dataset. For case
2, α = 0.8 and γ = 1.0, while for case 7, α = 1.2 and γ = 1.0, where α
changes the hill steepness while γ changes the successive spacing of the hills
(the reader is directed to Appendix B for details). Turbulent kinetic energy
is not scaled for this comparison. From Fig. 6, the CNN predicted DNS
profiles approximate well the ground truth DNS profiles at all positions, ex-
cept for x/H = 0.034, where a discrepancy is observed. This is due to the
highly turbulent state of the flow at this location, caused in part by the high
degree of separation. The associated L1

c(pred) shows large discrepancy close
to the wall at x/H = 0.035 and x/H = 1.961. This highlights the necessity
for our CNN-based correction function to concentrate on enhancing predic-
tive accuracy, particularly within a strongly separated region. As the flow
proceeds downstream, the overall L1

c(pred) value remains approximately 1-2
orders of magnitude lower than L1

c(rans), suggesting improved predictions.
A central limitation of ML models is their inability to generalize from their
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Figure 5: Results for SD7003 dataset. DNS-based CNN prediction for normalized turbu-
lence kinetic energy. First row: CNN predicted DNS (pred) compared with ground truth
(dns). Second row: Validation of 1D-CNN by comparing L1 loss between L1

c(rans) and
L1
c(pred).

training dataset to other, different flows. Our experiments exhibit that this
CNN model is robust and retains good predictions across different training
data sets.

In this investigation we use a CNN model to approximate the correction
function that reduces the discrepancy between RANS simulation and DNS
data. This correction function reflects the discrepancy in the RANS simu-
lation results and so it acts as a spatially varying marker function for the
eigenvalue perturbations by providing guidance on the magnitude of pertur-
bation for k∗ required in Eqn. 2. We experiment and apply this method on
two diverse datasets.

While the datasets corresponding to very different flows, both include
flow separation and re-attachment, leading to the presence of separation bub-
bles. In both the flow test cases, the CNN model’s correction function can
significantly reduce the discrepancy between RANS predictions and DNS-
simulations.

In both the test cases, our model was trained on a relatively small dataset.
Additionally the CNN model was robust to covariate shifts where the model
trained on one flow test case gave consistently good predictions on the other
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Figure 6: Results for the Voet dataset for periodic hills. DNS case2-based CNN predic-
tion for dimensional turbulence kinetic energy. First row: corrected DNS case 2 (pred)
compared with ground truth (dns) case 7. For DNS case 2: α = 0.8 and γ = 1.0; DNS
case 7: α = 1.2 and γ = 1.0. Second row: Validation of 1D-CNN by comparing L1 loss
between L1

c(rans) and L1
c(pred).

test flow case. At present there are few studies for using ML models to
develop marker functions that indicate the degree of discrepancy in RANS
predictions, thus assisting in the Eigenspace Perturbation Method. Recently,
the study of Chu et al. [50] analyzed the use of polynomial regression to the
perturbed turbulence kinetic energy. This CNN model correction method has
implications on practical applications such as, to be coupled to the EPM. The
EPM has been implemented within the OpenFOAM framework to construct
a marker function for the perturbed turbulence kinetic energy [50]. In fu-
ture work, this CNN model correction method will be utilized as a spatially
varying marker function to guide the degree of eigenvalue perturbation.

6. Summary, Conclusions and Future Work

This investigation seeks to use deep convolutional neural networks to for-
mulate a spatially varying marker function that can modulate the magnitude
of the eigenvalue perturbation in the EIgenspace Perturbation Framework.
In the recent past there have been investigations that seek to utilize Ml
models to modulate and improve the Eigenspace Perturbation Framework
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[51, 52, 53]. However the present study is the first to analyze the projec-
tion from RANS prediction space to the space of DNS data using the CNN
models. Our use of convolutions allows the possibility of the inclusion of
non-local information in the uncertainty estimation. The results show that
the CNN models learn the discrepancy between RANS simulations and DNS
data, resulting in a surrogate model for the marker function.

Appendix A. The correlation-based transition model of Langtry
and Menter

If the flow can be assumed to be 2-dimensional, unsteady and incompress-
ible, the governing equations can be simplified to

∂ ⟨Ui⟩
∂xi

= 0, (A.1)

D ⟨Uj⟩
Dt

= −1

ρ

∂ ⟨P ⟩
∂xj

+ ν
∂2⟨Uj⟩
∂xi∂xi

− ∂ ⟨uiuj⟩
∂xi

(A.2)

where ⟨ ⟩ represents time-averaging operation. ρ is density, ⟨P ⟩ is the
time-averaged pressure, and ν is the kinematic viscosity. ⟨Ui⟩ are the time-
averaged velocity components. Note that the Reynolds stress term in Eqn.
A.2 is unknown and is approximated using a turbulence model. We use a two-
equation linear eddy viscosity model of Langtry and Menter [54, 55, 56, 49]
that is used in engineering, for example aerospace industry. This RANS
model is based on the Boussinesq turbulent viscosity hypothesis as follows:

⟨uiuj⟩ =
2

3
kδij − 2νt ⟨Sij⟩ , (A.3)

where k is the turbulence kinetic energy, δij is the Kronecker delta, νt is
the turbulent viscosity, and ⟨Sij⟩ is the rate of mean strain tensor. In Eq.
A.3, the deviatoric component is

aij ≡ ⟨uiuj⟩ −
2

3
kδij

= −νt

(
∂ ⟨Ui⟩
∂xj

+
∂ ⟨Uj⟩
∂xi

)
= −2νt ⟨Sij⟩ .

(A.4)
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The transition model by Langtry and Menter [54, 55, 56, 49] does not
approximate the physics of transition. instead, the transition process is rep-
resented via correlations. There are two additional transport equations in-
troduced in this transition model for the intermittency and the transition
production. The first transport equation for the intermittency λ is:

∂(γ)

∂t
+

∂ (⟨Uj⟩ γ)
∂xj

= Pγ − Eγ +
∂

∂xj

[(
ν +

νt
σf

)
∂γ

∂xj

]
. (A.5)

In Eq. A.5, intermittency lies between zero to one. In the freestream, the
intermittency is assumed to be one to improve robustness across applications.
The transition production term is:

Pγ1 = Flength ca1S [γFonset ]
0.5 (1− ce1γ) , (A.6)

where S is the strain-rate magnitude. Both Flength and Fonset are di-
mensionless functions to modulate the intermittency in the boundary layer.
Flength is a correlation to modulate the length of the transition region, and
Fonset engenders the onset of transition through the local vorticity Reynolds
number [57] Reν . So the transition onset is formulated as:

Reν =
y2S

ν
, (A.7)

Fonset1 =
Rev

2.193 ·Reθc
, (A.8)

Fonset 2 = min
(
max

(
Fonset1 1, F

4
onset1

)
, 2.0

)
, (A.9)

RT =
k

νω
, (A.10)

Fonset3 = max

(
1−

(
RT

2.5

)3

, 0

)
, (A.11)

Fonset = max (Fonset2 − Fonset3, 0) . (A.12)

The final expression in Eq. A.6 modulates the maximum the intermit-
tency, i.e., the value of intermittency is always lesser than one. In Eqn. A.7,
the constant ce1 of 1.0 is used, and y is the wall distance. In Eqn. A.8, Reθc
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is the critical Reynolds number at which turbulence grows in the boundary
layer. Reθc precedes the transition Reynolds number R̃eθt where the velocity
profile deviates from the laminar profile. Like Flength, Reθc is an empirical
correlation. Both the Flength and Reθc [44] correlations are functions of R̃eθt
[44].

In Eq. A.5, the transition destruction source term is:

Eγ = ca2ΩγFturb (ce2γ − 1) , (A.13)

where Ω represents the vorticity magnitude. The destruction source term
enables reduction of intermittency to zero in the laminar boundary layer.
Once the transition criteria are no longer met in the Fonset function, the
model anticipates relaminarization by setting the intermittency value to zero.
The coefficients Ca2 of 0.06 represents the intensity of the destruction term,
ensuring it remains smaller than the source term. The constant Ce2 of 50
modulates the minimum threshold of intermittency. Fturb [44] is used to
deactivate the destruction source term outside the laminar boundary layer
or inside the viscous sublayer.

This investigation focuses on transition flow separation over a SD7003
airfoil. A benefit of Langtry and Menter’s correlation-based transition model
[44] [58, 59, 44] is its capability to predict the separation-induced transition.
The modification to the intermittency for separation-induced transition is:

γsep = min

(
s1max

[
0,

(
Reν

3.235Reθc

)
− 1

]
Freatach, 2

)
Fθt, (A.14)

Freatach = e
−
(

RT
20

)4

, (A.15)

γeff = max (γ, γsep) , (A.16)

s1 = 2. (A.17)

The constant s1 = 2 modulates the size of the separation bubble. Freattach

deactivates the separation based transition when the viscosity ratio is high
enough for reattachment to occur. The effective intermittency value γeff
is determined from Eq. A.5, except in the separation-induced transitional
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boundary layer. This leads to an excessive generation of turbulent kinetic en-
ergy, forcing the boundary layer reattachment. If the value of s1 is increased,
the length of the separated region decreases, and vice versa.

The second transport equation for the transition Reynolds number is:

∂
(
R̃eθt

)
∂t

+
∂
(
⟨Uj⟩ ˜Reθt

)
∂xj

= Pθt +
∂

∂xj

[
σθt (ν + νt)

∂R̃eθt
∂xj

]
, (A.18)

where Pθt represents the source term. Outside of the boundary layer, Pθt

causes the transported scalar R̃eθt to match the local value of Reθt, calculated
via a correlation [44]. The source term is formulated as

Pθt =
cθt
t

(
Reθt − ˜Reθt

)
(1.0− Fθt) , (A.19)

t =
500ν

U2
, (A.20)

where t is a time scale derived from dimensional analysis, and U =√
U2
1 + U2

2 + U2
3 the mean velocity. The blending function Fθt deactivates

the source term within the boundary layer. The blending function Fθt is

Fθt = min

(
max

(
Fwake · e−(

y
δ )

4

, 1.0−
(

γ − 1/ce2
1.0− 1/ce2

)2
)
, 1.0

)
, (A.21)

where

θBL =
˜Reθtν

U
; δBL =

15

2
θBL; δ =

50Ωy

U
· δBL; (A.22)

Reω =
ωy2

ν
; Fwake = e

−
(

Reω
1×105

)2

. (A.23)

The Fwake function suppresses this blending function in the wake regions.
The model constants cθt = 0.03 and σθt = 2.0 are used to modulate the
source term and the diffusion coefficient.

The transition model [58, 59, 44] interacts with the SST k − ω [54, 55,
56, 49] turbulence model as:
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∂

∂t
(k) +

∂

∂xj

(⟨Uj⟩ k) = P̃k − D̃k +
∂

∂xj

(
(ν + σkνt)

∂k

∂xj

)
, (A.24)

P̃k = γeffPk; D̃k = min (max (γeff , 0.1) , 1.0)Dk; (A.25)

Ry =
y
√
k

ν
; F3 = e

(
− Ry

120

)8

; F1 = max (Florig, F3) . (A.26)

where Pk and Dk are the production and destruction terms in the SST k−
ω turbulence model [54, 55, 56, 49]. The effective intermittency term in Eq.
A.16 modulates the source term in the turbulence kinetic energy transport
equation. The bending function Florig for the SST k − ω model [54, 55,
56, 49] is developed exclusively for the turbulent boundary layers and ceases
operation at the center of the laminar boundary layer. To capture transition,
the model needs to be active in laminar and in transitional boundary layers.
Therefore, the transition model proposed by Langtry and Menter [58, 59, 44]
defines the blending function F1 to enable its activation within a laminar
boundary layer.

Appendix B. The Voet Data Set

The open source data of Voet et al. [45] was used to train the Con-
volutional Neural Network model in this study. In this study, we use the
data stored in the rms files1.dat files. The featture or column names from
left to right in rms files1.dat file are x, y, uumean, vvmean, wwmean, and
p, respectively. Physically they represent x coordinate, y coordinate, time-
averaged turbulent velocity component in x, y, and z directions. The DNS
data of x dns, y dns, k dns are used in training our CNN model, i.e., x dns

= x, y dns = y, and k dns = 1/2 (uumean, vvmean, wwmean).
The RANS data are shared with the names of Results bump(\d+).csv,

where (\d+) is the case index written in the syntax of regular-expression. The
column names are clearly given: "Velocity[i] (m/s)" as x, "Velocity[j]
(m/s)" as y, and "turbulence kinetic Energy (J/kg)" as k.

According to Voet et al. [45], both the DNS and the RANS simula-
tions should have their x and y normalized by the characteristic length hill
height H = 0.028m. Therefore, the data format of x RANSnDNS and
y RANSnDNS is used in training the CNN model. Voet et al. [45] defined
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two main parameters α and γ to influence the flow over the periodic hills. It
is noted that the DNS and RANS cases are not paired by case index; instead
corresponding DNS and RANS cases can only be determined using α and γ.
We compared these two parameters across DNS cases and RANS cases, and
found that DNS Case1 is matched with RANS Case18, similarly, DNS Case2
with RANS Case6, DNS Case3 with RANS Case16, DNS Case4 with RANS
Case13, DNS Case5 with RANS Case12, DNS Case6 with RANS Case24,
DNS Case7 with RANS Case30.

Appendix C. Application of the lightweight CNN-based correc-
tion function on UQ for an SD 7003 airfoil

Once trained, the Convolutional Neural Network model from this study
can be applied to predict the correction function for different flow cases. Here
we outline its application for a specific flow case.

We report the RANS profiles with the CNN model based corrections,
as compared to the baseline (uncorrected) RANS and the DNS (ground
truth/high fidelity) profiles in Figs. C.7 (a) and (b), respectively. The nor-
malized turbulence kinetic energy profiles are equally spaced for the ab and
cd zone with x/c = 0.01, and a spacing of x/c = 0.02 is used for the ef
zone. These normalized turbulence kinetic energy profiles are more densely
packed for the ab and cd zones, due to the separattion and re-attachment in
this region. From Figs. C.7 (a) and (b), the CNN corrected RANS profiles
exhibit a similar trend as that for the ground truth dataset and the baseline
RANS predictions, as both profiles show a gradual increase in the ab and cd
zone. Then a reduction of the profile is observed further downstream in the
ef zone.

Further, in Fig. C.7 (a), CNN corrected RANS profiles in general increase
in magnitude as the flow moves further downstream, which is qualitatively
similar to the ground truth profiles. It should be noted that the CNN-
corrected RANS profiles increase in a somewhat larger magnitude than that
for the ground truth right at the outset of the ab zone. The discrepancy
gradually reduces as the flow moves further downstream, which indicates
that better accuracy of our CNN model is yielded further downstream. This
behavior becomes more clear for the cd and ef zone. In the region where the
end of the cd zone meets the beginning of the ef zone, the ground truth pro-
files are clustered due to the complex flow feature of the reattachment [60].
Our CNN model successfully captures this clustering behavior, as shown in
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Figure C.7: (a) CNN corrected RANS (CNN RANS) (solid-dotted lines) of the normalized
perturbed turbulence kinetic energy and (b) ground truth (DNS actual) along the suction
side of the SD7003 airfoil (geometry depicted by gray line): from left to right are zone ab,
zone cd and zone ef . There are 32 positions on the suction side of the airfoil.

Fig. C.7 (a), albeit with a lesser degree of intensity than the ground truth.
In the ef zone, our CNN model gives overall accurate predictions for the
normalized turbulence kinetic energy profiles, i.e., the CNN corrected RANS
profiles and the ground truth profiles are almost identical. Nevertheless, in
Fig. C.7 (b), the comparison shows an overall relatively large discrepancy
between the CNN-corrected RANS profiles and the baseline profiles across
every zone. Additionally, the baseline profiles do not show a discernible
clustering behavior as observed in the CNN-corrected RANS profiles, which
becomes apparent in the ground truth DNS profiles. This suggests the supe-
rior performance of the current CNN-based correction function for accurately
constructing k∗.
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