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ABSTRACT

Decision-making processes often involve voting. Human interactions with exogenous entities such as legislations or products
can be effectively modeled as two-mode (bipartite) signed networks—where people can either vote positively, negatively, or
abstain from voting on the entities. Detecting communities in such networks could help us understand underlying properties:
for example ideological camps or consumer preferences. While community detection is an established practice separately
for bipartite and signed networks, it remains largely unexplored in the case of bipartite signed networks. In this paper,
we systematically evaluate the efficacy of community detection methods on bipartite signed networks using a synthetic
benchmark and real-world datasets. Our findings reveal that when no communities are present in the data, these methods often
recover spurious communities. When communities are present, the algorithms exhibit promising performance, although their
performance is highly susceptible to parameter choice. This indicates that researchers using community detection methods
in the context of bipartite signed networks should not take the communities found at face value: it is essential to assess the
robustness of parameter choices or perform domain-specific external validation.

Introduction
Social groups often make decisions by voting. From politicians passing legislation, to online marketplaces where users
review products, to social media users voting on popular content, these interactions reveal complex patterns, such as political
affiliations, consumer preferences, or ideological camps. In such systems, individuals do not interact directly with each other,
but with different entities (e.g., bills, products, articles) by voting for, against, or abstaining. These interactions can be modeled
as bipartite signed networks, where two different types of nodes (bipartite) are connected through both positive and negative
relationships (signed). A key insight that can be recovered from those networks is the presence of communities1—groups of
people with similar voting patterns. These indicate alliances between politicians, hidden groups trying to promote products or
articles, or ideological groups in the presence of polarization.1 While many methods exist to analyze community structures in
bipartite and signed networks separately2–6, it is not clear whether they can handle the complexity of bipartite signed networks.

Community detection, a key research topic in network science1, often aims to uncover structural patterns by identifying
groups with dense intra-community connections and sparse inter-community connections. In the case of signed networks, it is
not enough to have dense intra-community connections, but these connections should be positive, while negative connections
should occur mainly between communities. Existing methods7–9 primarily focus on these principles of intra-community
agreement and inter-community disagreement. These methods incorporate the information of negative relations in areas where
it is crucial, such as finding communities in a network of friendships and enmities, to networks of alliances and wars10–12.
However, the structure of agreement and disagreement in bipartite networks presents a unique challenge: interactions occur
between different sets of entities, while most methods assume a unique type.

Here, we investigate the suitability of community detection methods to capture different groups on bipartite signed networks.
To address this question, we developed a benchmark (pictured in Figure 1) to evaluate community detection methods devised
for signed networks. Our approach involves generating synthetic bipartite signed networks, where users (who may be in one or
two communities in different scenarios) vote on articles. We then apply two well-established algorithms and systematically
evaluate their ability to recover user-level communities. We apply our methodology on two datasets: voting records from the
US House of Representatives (1990-2022)13 and user interactions on the Menéame platform14, a Reddit-like news aggregator.

Our findings reveal that community detection methods often identify spurious communities not anticipated by the generative
process, and the results are highly sensitive to parameter choices.

This paper is organized as follows. Section Background contextualizes our contribution within the existing literature. The

1Instead of finding clusters of people with similar voting patterns, community detection methods could also be applied to find groups of entities (e.g.,
legislation, products or online content) that are voted similarly. In this paper, we focus only on clustering people.
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Methods section is subdivided into a description of the mathematical framework of bipartite signed networks (subsection bipartite
signed Networks: Mathematical Framework), a detailed explanation of our benchmark (subsection Generating synthetic bipartite
signed networks), and a contextualization of the community detection methods tested in this paper (subsection Community
Detection Methods) along with the clustering evaluation metrics (subsection Evaluating Community Similarity). The Results
section demonstrates the effectiveness of the community detection methods on the synthetic and real-world datasets employed.
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Figure 1. Synthetic bipartite signed networks. We combine synthetic scenarios and insights from data to generate synthetic
networks. Given a synthetic scenario, i.e., ideologies of users and stories modeled from probability distributions pU and pS,
which can be either unimodal or bimodal (step 1), we sample users’ and stories’ ideologies, xU and xS, from those distributions
(step 2). For each pair of user and story, the user then either votes positive, negative, or abstained from voting depending on the
difference between the user and story ideologies (step 3), where the vote depends on two voting thresholds, t+ and t−, set to
match the voting probability in real datasets. Given the bipartite network, we then project it into a unipartite network and apply
the community detection methods for a wide range of parameter choices (step 4).

Background

Community detection is an extensively researched problem in the field of network science1. When dealing with unsigned
networks, most techniques for detecting communities aim to maximize edge density within a community while minimizing it
between communities. This interdisciplinary goal finds applications in various fields, such as biology (e.g., protein-protein
interaction networks in cancer metastasis15), social media studies (e.g., political blogs’ ideological affiliations16), and the
science of science (e.g., scientists’ collaboration network17). However, signed networks provide additional information—the
sign of the edge—that can be relevant for determining and interpreting communities in the network6, 18, 19.

Research on signed networks is closely tied to the influential work of Heider20 on Structural Balance Theory (SBT), later
formalized by Harary and Cartwright21. SBT is based on the principles of “the enemy of my enemy is my friend” and “the
friend of my friend is my friend”. In network-theoretical terms, SBT posits that triangles with zero or two negative edges are
balanced, while triangles with one negative edge are unbalanced. This concept extends to cycles (closed paths) of length ≥ 3,
stating that a cycle is balanced if the product of the edge signs is positive (i.e., there is an even number of negative interactions
in a cycle). A network is considered strongly balanced if all cycles are balanced21.

SBT is regarded as one of the most relevant underlying mechanisms for the formation and evolution of signed networks, with
various extensions that account for longer closed walks18, 22–24 used to understand situations like alliances among countries25, 26
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and polarization on social media27. Methods for community detection in signed networks typically do not maximize structural
balance directly but instead minimize a related metric, frustration. Aref and Wilson28 defined the frustration count as the sum
of the number of negative edges within a community and the number of positive edges between communities28. As expressed
by Doreian and Mrvar9, there is a parallelism between structural balance and frustration minimization. Two theorems by
Cartwright and Harary21 and by Davis29 state that it is possible to find optimal partitions in a balanced network and that strong
balance corresponds to null frustration (i.e., no frustrated edges).

While SBT and frustration provide a way to define communities in signed networks, applying them to bipartite signed
networks has a key challenge: SBT and frustration are deeply linked to the presence of triangles, while bipartite networks
have no cycles of odd length30. Bipartite networks exhibit disassortative properties, with two sets of nodes forming edges only
across different sets. Often, the two sets of nodes have different types, such as movies and actors31 or buyers and products on
an online marketplace32. A potential solution is to project the networks: create a one-mode network where two nodes interact if
they are connected to the same entity in the bipartite network. For example, this involves connecting politicians who voted on
the same bill.

A body of literature within political science has traditionally dealt with a specific type of signed bipartite networks:
co-voting networks of the United States Senate and House of Representatives33, 34. The goal of that body of literature is to
estimate legislators’ ideology, for which they use ideal point models, where the probability of voting positive versus voting
negative or abstaining is modeled as a function of a latent difference in ideology between the legislator and the bill35–39. The
US co-voting networks have also been used to measure ideology40, 41, calculate community structure42, 43, points in which
voting dynamics change44 or to predict the sign of the votes32, 45. However, given the dense nature of voting interactions
(i.e., most legislators would vote to all the roll calls), these methods consider only a binary choice between agreement and
disagreement—i.e., disagreement encapsulates both negative and absence of interactions. Our work complements this body of
literature by extending the study of voting patterns to sparse (offline) voting records, allowing us to understand how network
density affects community detection.

Methods
Bipartite Signed Networks: Mathematical Framework
Consider a network G = (V,E), where V is the set of nodes of size N, and E is the set of edges of size M. In a bipartite network,
nodes are divided into two disjoint sets, which we label U and S to represent users and stories (or legislators and bills)2. The
edges connect nodes from one subset to the other only, i.e., E ⊆U ×S. A network can be uniquely represented by an adjacency
matrix A of dimension N ×N, with each element given by the edge weight such that Ai, j = ωi, j if the edge (i, j) ∈ E, else
Ai, j = 0. The edge weight, in the case of signed networks, can be either binary (negative or positive, ω : E → [−1,1]) or real
(ω : E → R). In this paper, we consider the edge weights as simplified to the binary choice. As a special property of undirected
bipartite networks, the adjacency matrix can be written as

A =

(
0 B

BT 0

)
,

by ordering the nodes such that {v1, . . . ,v|U |} ∈U and {v|U |+1, . . . ,vN} ∈ S. The matrix B is called the incidence matrix (or
biadjacency matrix) and has dimension |U |× |S|. The elements of B represent users’ (in rows) votes on stories (columns).

From the incidence matrix, it is possible to obtain the bipartite projection of the network, denoted as P = B ·BT . In the
bipartite projection, nodes correspond to those from set U, and edges represent the presence of a common connection to nodes
in set S. In the case of a weighted bipartite network, the edge weight in the bipartite projection is the sum of the edge weights

ωkl = ∑
z s.t. (k,z) and (l,z)∈E

ωk,z ωz,l . (1)

To provide intuition, if two politicians always agree on their votes, the edge between them has a positive weight, representing
agreement. Conversely, if they always vote differently, their edge has a negative weight, representing disagreement. We project
the bipartite signed network to analyze the performance of the community detection methods designed for unipartite networks,
where all nodes are of the same type (e.g., we aim to find communities of users on social media or members of the US Congress).
We use the adjacency matrix for the methods that can accommodate bipartite structures. In the following, we provide a detailed
description of the generative mechanism to create synthetic bipartite signed networks.

2V =U ∪S and U ∩S = /0.
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Generating synthetic bipartite signed networks
To assess the performance of current community detection methods, we generate synthetic networks with and without a
community structure, with realistic voting mechanisms. We consider four scenarios that entail different choices for the user and
story ideologies. In two scenarios, the ideology of the users is drawn from a Gaussian distribution. Therefore, we expect the
community detection algorithms to find one community. In the other two scenarios, the ideology of the users is polarized (drawn
from a mixture of two Gaussian distributions), and we expect the community detection algorithms to find two communities.
The generative process is illustrated in Figure 1 and the following paragraphs.

1. Sampling ideologies. We assign a latent ideology score to each of |U | users and |S| stories, representing the two types
of nodes in the bipartite signed network. While we focus our example on users voting on news stories for simplicity,
this latent score could represent the ideology of politicians and bills, or the type of consumer preferences and product
characteristics (e.g. gelato vs ice-cream). For each type of entity (U and S) we sample the ideology score from either one
Gaussian distribution or a mixture of two Gaussian distributions with given averages (µi) and standard deviations (σi).
Specifically,

xU ∼ pU (xU ) = πU ·N (µ1, σ
2
1 )+(1−πU ) ·N (µ2, σ

2
2 ),

xS ∼ pS(xS) = πS ·N (µ3, σ
2
3 )+(1−πS) ·N (µ4, σ

2
4 ),

(2)

where pU (xU ) and pS(xS) are respectively the probability distributions of users’ and stories’ ideologies. When the
ideology is sampled from one Gaussian distribution, πU = πS = 1. When is sampled from a mixture of two, we set
πU = πS = 0.5, which means that we assume that there is no imbalance in the sizes of two groups of ideologies. We set
σ1 = σ2 = σ3 = σ4 = 0.1 and µ depending on scenario’s choice. The four scenarios, illustrated in Figure 1A, are:

• Users and stories not polarized (U NP S NP): we consider both users and stories as not polarized. In other words,
both ideologies are drawn from one Gaussian-distribution (µ1 = µ2 = µ3 = µ4 = 0 in eq. 2). We expect to find all
users in the same community.

• Users not polarized, stories polarized (U NP S P): Users are not polarized, and stories are polarized. In other
words, users’ ideologies are drawn from one Gaussian distribution (µ1 = µ2 = 0) and stories’ idelogies are drawn
from a mixture of two Gaussian distributions (µ3 =−µ4 = 1). We expect to find all users in one community.

• Users polarized, stories not polarized (U P S NP): Users are polarized, and stories are not polarized. In other
words, µ1 =−µ2 = 1 and µ3 = µ4 = 0. We expect to find all users in two communities.

• Users and stories polarized (U P S P): We consider both users and stories as polarized. In other words, µ1 =
−µ2 = 1 and µ3 =−µ4 = 1. We expect to find all users in two communities.

After this step, every node has an ideology assigned. Users will vote positive to a story if the difference of their ideologies
is below a threshold, negative if it is above a threshold, and abstain otherwise.

2. Computing the ideology difference distribution. If two random variables are Gaussian-distributed, then their linear
combination is also Gaussian-distributed. For a detailed proof, please refer to the Appendix Ideology Difference. The
ideology difference between users and stories is distributed as a Gaussian Mixture with at most four peaks, e.g., in the
case when all averages are different:

xU − xS ∼ pdiff(xU − xS) = πU ·πS ·N (µ1 −µ3, σ
2
1 +σ

2
3 )+πU · (1−πS) ·N (µ1 −µ4, σ

2
1 +σ

2
4 )+

+(1−πU ) ·πS ·N (µ2 −µ3, σ
2
2 +σ

2
3 )+(1−πU ) · (1−πS) ·N (µ2 −µ4, σ

2
2 +σ

2
4 ).

(3)

3. Extracting voting probabilities from data. The thresholds determining the type of vote (positive, abstain, or negative)
are calculated so the voting probability in the simulation matches the voting probability in the real data (Section Datasets).
In the simplest case, we define constant voting probabilities extracted from data. Voting probabilities v+ (v−) are
computed as the average number of positive (negative) votes per user, normalized by the number of stories. We also
consider a more sophisticated alternative (Appendix Degree-corrected synthetic networks), where we assign different
voting probabilities to each user, given the distribution of voting probabilities in the real data’s bipartite network.
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4. Defining voting thresholds. We determine voting thresholds, denoted as t+ and t−, that meet the following conditions:∫ t+

−t+
pdiff(x)dx = v+ and

∫ +∞

t−
pdiff(x)dx =

v−
2
. (4)

where pdiff is the ideology difference distribution given in Equation 3, v+ and v− are the voting probabilities obtained
from data. In this way, we have an amount of positive and negative votes proportional to what is expected from real data.

5. Creating the bipartite signed network. Finally, for each user and story with ideologies xU and xS, the vote of user U to
story S is determined by

v(xU ,xS) =


+1 if |xU − xS|< t+,
−1 if |xU − xS|> t−,
0 otherwise.

(5)

After this step, we obtain a bipartite signed network, where the voting patterns respect both controlled, synthetic settings,
and real data properties.

Finally, given the incidence matrix of the synthetic network, we obtain the bipartite projection where the nodes are the users
and the edge weight is given by Equation 1.

The generative approach allows us to generate synthetic bipartite signed networks with voting probabilities matching real
datasets, but where we modify the number of clusters expected (either one or two).

Community Detection Methods
We compare two widely used community detection methods: SPONGE and community-spinglass. Both methods infer
communities by minimizing network frustration—i.e., assigning nodes into communities in a way that minimizes the number of
positive edges and maximizes the number of negative edges between communities. Since this problem is NP-hard28; different
approximations have been proposed. As an additional test, we also analyzed an algorithm that does not necessarily follow that
principle—the Stochastic Block Model (SBM). For more details and results on the SBM, please refer to Appendix Weighted
SBM with Edge Attributes).

SPONGE
The SPONGE method (Signed Positive Over Negative Generalized Eigenproblem), introduced by Cucuringu et al.7 minimizes
the number of “violations”, which is equivalent to frustration minimization. These violations consist of positive edges between
communities and negative edges within communities. The method achieves this objective by incorporating a regularization
term for the size of the partitions. This regularization term avoids setting each node in its community.

The optimization problem is formulated as follows:

min
C1,...,Ck

k

∑
i=1

xT
Ci
(L++ τ−D−)xCi

xT
Ci
(L−+ τ+D+)xCi

, (6)

where {C1, . . . ,Ck} represents the communities, L+ and L− are the Laplacian matrices of the network with only positive and
negative edges, respectively, and D+ and D− are diagonal matrices. xCi with Ci ∈ {C1, . . . ,Ck} are vectors where (xCi) j = 1 if
node j ∈Ci, and 0 otherwise. The latter terms (τ D) correspond to the previously mentioned regularization for the partition size,
while the Laplacian acts as a frustration count. This optimization problem is equivalent to a spectral problem, as discussed in
detail in the original paper7. An open-source Python implementation of the SPONGE algorithm is available on GitHub46.

The number of clusters k is a required parameter, while default values for the regularization parameters are set to τ+ = τ− = 1.
We conducted tests for different values of k, ranging from k = 1 (no communities) to k = 10.

community-spinglass
The community-spinglass method, initially proposed by Reichardt and Bornholdt for unsigned networks47, presents a community
detection approach grounded in statistical mechanics. Traag and Bruggeman later extended this method to signed networks8.

The method is based on finding a Hamiltonian’s ground state (i.e., minimal energy), defined as a function of the partition of
nodes into communities {σ}. The final form of the Hamiltonian, detailed in the original paper by Traag and Bruggeman8, is
given by:

H ({σ}) =−∑
i j

[
Ai j −

(
γ
+p+i j − γ

−p−i j

)]
δ (σi,σ j) , (7)
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Here, A is the adjacency matrix (could be both the adjacency matrix previously defined as A, or, as in our case, the bipartite
projection matrix P), and γ+ (or γ−) is a parameter rewarding the presence (or absence) of positive (or negative) links within a
community. The term δ (σi,σ j) equals 1 when nodes i and j are part of the same community (σi == σ j), and thus counts only
interactions found in the same community. If γ = 1, present positive and missing negative edges are given equal importance.
The case γ+ = γ− = 0 corresponds to frustration minimization. The parameters pi j represent the expected value for the link
between two nodes in a random null network. There is an open-source implementation of this algorithm in the Python version
of the igraph package48. To determine the sensitivity of the results to the γ parameters (the one that recovers the real community
structure in our synthetic scenarios), we conducted tests with combinations of {γ+,γ−} ∈ [0.5,1,2].

Evaluating Community Similarity
To assess how well the different community detection methods capture the community structure, we use the Rand Index49

implemented in the Python scikit-learn package50. Since we draw the user ideology from a mixture of Gaussian distributions,
we know which users belong to the same community. Given this true community labeling and the estimated labeling using the
community detection algorithms, the Rand Index is defined as:

RI =
TP+TN(n

2

) , (8)

where TP (TN) is the number of pairs of elements found in the same (different) community in the true and estimated
community labeling. The denominator accounts for all possible combinations of pairs between the nodes. The Rand Index
is bounded between 0 (indicating that every pair of users is clustered in the wrong community) and 1 (indicating a perfect
matching). We focus mostly on the Rand Index since it produces interpretable estimates even when only one community is
present in the data. We also consider other evaluation metrics, but they fail to account for situations where only one community
is expected (see Appendix Clustering evaluation metrics).

Datasets
In addition to evaluating the community detection methods on simulated network data, we apply and compare them on two
real-world datasets: the Menéame votes and the US House of Representatives votes. These examples represent two different
interaction modalities: sparse interactions, typical of the online world, and dense interactions, typical of the offline world.

Sparse voting: Menéame social platform
We gathered data from the Spanish social media platform known as Menéame14. In this paper, each post is referred to as
a story and includes a hyperlink to a news article and a summary provided by the user sharing the story. Users can engage
with the story by liking, or disliking them. For each story, positive votes were encoded as +1 and negative votes as −1. We
constructed an incidence matrix BM where the rows represent users, and the columns represent the stories on the homepage.
We collected data from 11,628 users and 48,561 stories, covering the period from the 27th of November 2022 to the 17th
of July 2023. The bipartite projection network comprises 11,628 nodes and 9,834,491 edges. The voting probabilities are
vM
+ = 1.30741% and vM

− = 0.15602% respectively for liking and disliking. We use these probabilities to create synthetic
networks (Section Generating synthetic bipartite signed networks) with 1,000 users and 4,176 stories. The number of stories is
set to match the proportion of stories/users found in the data.

Dense voting: House of Representatives
We obtained data from the Clerk of the House of Representatives website13. For each bill, we retrieved the following information:
the name of the Representative, their party, and their vote. Each Representative could cast a vote of Aye (previously Yea), which
was encoded as a positive vote with a weight of +1, Nay (previously No), encoded as a negative vote with a weight of −1, or be
categorized as Present or Not Voting, both encoded as a null vote with a weight of 0. From this, we created an incidence matrix
BH of the bipartite network, where the rows are the Representatives and the columns are the Bills. We collected data from 1990
to 2022, encompassing votes from 1801 members of the House of Representatives on 20385 different Bills. Table A3 in the
Appendix Descriptive statistics of co-voting networks of House of Representatives presents basic descriptive statistics for each
snapshot network. The average number of nodes per snapshot is N = 441 with a standard deviation of SD = 4. The average
number of edges is M = 96726 with a standard deviation of SD = 1653. We computed voting probabilities for each snapshot,
and the average positive voting probability is vH

+ = 60.09% with standard deviation SD = 4.82%, while the average negative
voting probability vH

− = 33.14% with standard deviation SD = 5.14%.
For both datasets, we then obtained the (dis)agreement unipartite network by multiplying the incidence matrix by its

transpose, resulting in PH = B BT (as defined in Subsection Bipartite Signed Networks: Mathematical Framework). This
projection is used for the SPONGE and community-spinglass algorithms.
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Results and Discussion
Sparse (social) networks
Evaluation on synthetic networks
We first tested the performance of the algorithms on a sparse network, similar to those observed in online social networks.
Figure 2 shows the results using our preferred measure for performance (the Rand Index), while Figure A6 in the Appendix
shows that the results hold for other similarity measures. When analyzing the scenarios in which the users’ ideology was drawn
from a mixture of two Gaussian distributions (and thus two communities are expected), we found that community-spinglass and
SPONGE had a Rand index over 75%—i.e., more than 75% of user pairs are clustered in the right community (Figure 2A,C).
The constant performance of SPONGE indicates that when enforcing a higher number of communities than expected, the
algorithm identifies those communities by adding a few users to the remaining communities. community-spinglass performed
better when the negative votes within a community were penalized more (i.e. when γ− is low or medium)—i.e., with parameters
matching the principle of frustration minimization.
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Figure 2. Community Detection on Sparse Synthetic Networks. We tested the community detection methods on the four
synthetic scenarios. Panels (A,C) show the results for the scenarios with two communities of users, while panels (B,D) show
the results with one community. We used the Rand Index to evaluate the performance of the algorithms with different
parameter choices. Higher values of the Rand Index indicate better alignment between expected and empirical communities.
Panels (A-B) show the results for community-spinglass. We experimented with different combinations of the parameters
{γ+,γ−} ∈ [0.5,1,2]. Lower values of γ+ indicate less importance given to positive ties in a community, whereas lower values
of γ− penalize the presence of negative links within a community. Note that γ− = 0.5 is generally the best parameter choice, as
it finds the expected communities for the synthetic scenarios. Panels (C–D) show the results for SPONGE. We conducted tests
for different values of the number of clusters k, ranging from k = 1 (no communities) to k = 10. Note that the algorithm
correctly identifies the expected communities in scenarios with polarized users (panel C), while it generates spurious
communities in cases where stories introduce a latent ideology to a crowd of neutral users (the U NP S P case in panel D).
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The results were more diverse for the scenarios in which the users’ ideology was drawn from one Gaussian distribution
(and thus one community is expected, Figure 2B,D). Similarly to the previous case, the community-spinglass method correctly
recognizes all expected scenarios when negative votes within a community are penalized heavily (γ− = 0.5), while the results
were independent of the weight of positive links within a community (γ+). SPONGE performs relatively well when neither
the users nor the stories are polarized—Rand index over 70% even for a high number of clusters, but not when the stories are
polarized. In the latter case, increasing the fixed number of clusters drastically reduces the Rand Index value, likely due to the
latent ideology of the stories that split the group of users into those that are closer to one type of story and those that are closer
to the other (even when the users are not very different from each other).

Finally, we allowed different users to have different voting probabilities, finding similar results (see Figure A5 in Appendix
Degree-corrected synthetic networks) except for the scenario where neither users nor stories are polarized. In this scenario,
SPONGE recovers the correct results (one community of users), while community-spinglass is only able to recover the
correct results when both negative votes within a community, and positive links within a community are weighted more
(γ− = 0.5,γ+ = 2).

Evaluation on real networks: Menéame data
We applied the community detection methods on the Meneame co-voting network. We find that both community-spinglass and
SPONGE find two or three large communities (depending on the parameter choice) and several small communities.

Table 1 presents the results for community-spinglass. We restricted γ+ and γ− to [0.5,1], the choices giving best results on
synthetic networks. The algorithm identifies one larger community, followed by another of less than 1000 users when γ+ = 0.5
is selected. Setting γ+ = 1 results in three main communities. Therefore, by emphasizing the importance of negative ties while
treating positive links as neutrally relevant, we observe a structural tripartition of this empirical network.

community id. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
γ+ γ−

0.5 0.5 10629 978 8 5 1 1 1 1 1 1 1 1
0.5 1.0 10756 858 8 2 1 1 1 1
1.0 0.5 6166 2902 2323 121 39 28 17 10 6 3 3 2 2 1 1 1 1 1 1
1.0 1.0 6059 3002 2530 13 9 6 3 2 2 1 1

Table 1. Community-Spinglass on Menéame Network. We tested the community-spinglass algorithm on the co-voting
network extracted from the social media platform Menéame. We used the parameter choices found most suitable on synthetic
networks (see Figure 2A–B). When γ+ = 0.5, we observe the presence of a single prominent community, followed by a
secondary one with less than 1000 users. In contrast, with γ+ = 1, the users are divided into three main communities, with
approximately 6000, 3000, and 2000 users.

Next, we applied the SPONGE algorithm on real data, as highlighted in Table 2. Our findings indicate that by increasing the
fixed number of clusters, a larger community of approximately 7000 users can be identified. Additionally, we observed that a
community initially consisting of over 4400 users tended to bifurcate. It resulted in two distinct communities, one with around
3400 users and the other with approximately 680 users.

Since the Menéame data does not contain information about the political leanings of the users, we compare the overlap
between users for the parameter choices when both algorithms find either two or three communities (Appendix Comparing
algorithms on real data, Figure A9). In the case of two communities, there is no overlap between both methods. Both
communities of SPONGE, of 7,087 and 4,396 users, get mapped to the largest community of community-spinglass, of 10,629
users.

We find considerable overlap in the case of three communities. 88–89% of the users in the two largest communities of
community-spinglass are mapped to the two largest communities of SPONGE, while all users in the smallest community of
community-spinglass (683 users) are mapped to the smallest community of SPONGE (2,323 users, the rest being mapped to the
largest community of community-spinglass). Our results highlight the sensitivity of the results to parameter choice, and stress
the need for more robust assessment and external validation when dealing with real data.

community id.
no. of clusters 0 1 2 3 4 5 6 7 8 9

1 11628
2 11591 37
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community id.
no. of clusters 0 1 2 3 4 5 6 7 8 9

3 11583 37 8
4 7087 4496 37 8
5 7172 4410 25 13 8
6 7247 4325 25 13 10 8
7 7436 3471 665 25 13 10 8
8 7401 3453 708 25 13 10 10 8
9 7412 3459 687 25 13 10 10 8 4
10 7417 3450 683 25 13 10 10 8 8 4

Table 2. SPONGE on Menéame Network. We tested the SPONGE algorithm on the network of interactions on Menéame.
When we set the number of communities (clusters) to be 1–3, the algorithm over 99% of all users in one community. When we
set the number of clusters to be larger than 3, the algorithm identifies a community with approximately 7000 users and a
secondary one containing approximately 4400 users. When the number of clusters increases above 7, the secondary community
is further split into two communities of 3400 and 600 users.

Dense (political) networks
Evaluation on Synthetic Networks
Offline voting contexts—such as legislative bodies—are typically dense: there are very few abstentions. This lack of “missing
data” could simplify the task of community detection. However, we find the opposite to be true. Compared with the sparse
case, both SPONGE and community-spinglass perform worse in all synthetic scenarios (Figure 3 and Figure A7 for the other
similarity measures).

Similar to the sparse case, we find that both algorithms perform well when both users and stories are polarized (case UP SP
in Figure 3A,C). Unlike the sparse case, increasing the fixed number of clusters in SPONGE decreases the performance (Figure
3C). When users are polarized but stories are not polarized, 50–80% of the user pairs are correctly identified, depending on
parameter choice.

The results of the two algorithms differ when users are expected to be found in a single community (Figure 3B,D).
Community-spinglass algorithm performs well in the case where users and stories are not polarized (for γ− = 0.5), and performs
poorly when stories are polarized but users are not, irrespectively of parameter choice. SPONGE performs extremely poorly for
the entire parameter space (except for the trivial case where we force the algorithm to find only one cluster). Increasing the
number of clusters results in users being uniformly distributed across all communities.

Evaluation on real networks: US House of Representatives data
We applied the community detection methods to the US House of Representatives data and considered the political affiliations
of the representatives (Democrats, Republicans, and Independents) as the “true” communities.

We find that community-spinglass correctly identifies the political communities by choosing γ− < 2 (Figure 4A) for all
years except 2001. The algorithm is unable to find the political affiliation for 2001 with parameters {γ+,γ−}= {1,0.5} and
{γ+,γ−}= {2,0.5}. This could be due to the 9/11 attacks. In that year, a large fraction of the legislation51 is attributed to the
attacks and received broad support across partisan lines. We find an increasing correlation over time between voting behavior
and political affiliation36–i.e., we are increasingly more able to recover the correct political affiliation from the votes alone.
This reflects the increase in partisanship levels through the years observed by Andris et al.34 among others.

In the case of SPONGE (Figure 4B), the political affiliation of the representatives is correctly identified when the number
of clusters, k, is set to 2–4, with a gradual decrease as k increases. Similar to the community-spinglass case, we evidence an
increasing ability to recover political affiliations through the years.

The good recovery of political affiliations for a wide parameter range in both community-spinglass and SPONGE indicate
that both US representatives ans US bills are polarized. This is perhaps unsurprising, since bills are themselves introduced by
US representatives.

Conclusion
In this paper, we systematically assessed the performance of community detection algorithms designed from unipartite signed
networks on bipartite signed networks, using both synthetic and real-world data. We analyzed sparse networks resembling
users’ behavior on online social platforms, and dense networks resembling US politicians’ votes on bills.
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Figure 3. Community Detection on Dense Synthetic Networks. We tested the community detection methods on the four
synthetic scenarios. Panels (A, C) show the results for the scenarios with two communities of users, while panels (B, D) show
the results with one community. We used the Rand Index to evaluate the performance of the algorithms with different
parameter choices. Higher values of the Rand Index indicate better alignment between expected and empirical communities.
Panels (A, B) show the results for community-spinglass. We experimented with different combinations of the parameters
{γ+,γ−} ∈ [0.5,1,2]. Lower values of γ+ indicate less importance given to positive ties in a community, whereas lower values
of γ− penalize the presence of negative links within a community. Note that scenarios where users and stories are either
polarized or neutral (i.e., U NP S NP and U P S P) are correctly identified for low values of γ−. Panels (C, D) show the results
for SPONGE. We conducted tests for different values of the number of clusters k, ranging from k = 1 (no communities) to
k = 10. The algorithm correctly identifies the expected communities in scenarios with polarized users (panel C), while it
generates spurious communities when users are not polarized (panel D).

For sparse networks, the algorithms’ performance depended on the underlying network structure. Both algorithms were
successful at recovering communities in the scenarios where two communities of users existed but often identified several
communities when only one community of users existed. The results were generally highly dependent on parameter tuning,
emphasizing the importance of careful selection in real-world applications.

In the context of dense synthetic networks, both algorithms performed well when both user and story ideologies were
polarized, but generated spurious communities in all other scenarios. This was particularly the case for SPONGE in the
scenarios when only one community of users existed. Both methods well performed on the US House of Representatives data,
finding an increasing level of political polarization over time.

In conclusion, our study contributes to the understanding of community detection in bipartite signed networks. The
presented benchmark and systematic evaluation provide a foundation for future research in developing robust algorithms for
various real-world scenarios. Future studies using community detection in bipartite signed networks can use our framework and
open-source code to generate synthetic scenarios with realistic voting probabilities. These scenarios will enable researchers to
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Figure 4. Community Detection on US House of Representatives Networks. We tested the community detection methods
on 33 co-voting networks resulting from the (dis)agreement of members of the US House of Representatives on several bills,
divided per year. We considered the subdivision into political parties (i.e., Democratic, Republican, or Independents) as the
“true” communities. Panel (A) shows the results for community-spinglass. We found that parameter choices with γ− < 2
consistently capture the subdivision of Representatives into political parties. Panel (B) shows the results for SPONGE.
Confidence intervals represent the standard deviation range among different runs. We conducted tests for different values of the
number of clusters k, ranging from k = 1 (no communities) to k = 10. For k = 1, we consistently find that the true subdivision
is not recovered. However, for subsequent values of k, we observe a peak for values k ∈ [2,4] in most of the networks, with a
gradual decrease in the method’s efficacy as k increases. Note that the Rand Index increased for more recent years.

select optimal parameters and evaluate the potential sensitivity of the results to parameter choice.
Two lessons can be learned from our results. First, the sensitivity of results to parameter choices underscores the importance

of robustness tests. Using different parameter choices implies defining communities in different ways. For example, giving
more weight to negative ties will create communities without dissent. Giving extra importance to positive ties may help to
recover small organized groups. We emphasize the importance of using robustness tests to validate the recovered communities.
In particular, external validation (e.g., political affiliation or clustering of user comments in online media) should be used when
feasible.

The second lesson to be learned is the importance of negative ties. For both the dense and sparse network cases, giving
extra importance to negative ties in community-spinglass resulted in enhanced inference of political affiliations in both sparse
and dense networks. This indicates that negative ties are more indicative of communities than positive ties in voting networks.

The analysis presented has several limitations that open up additional avenues for future research. The first limitation is that
we focus on three algorithms for community detection in signed networks frequently used in the literature. Future work could
use our benchmark to compare an expanded number of algorithms.

The second limitation is the projection of bipartite networks into unipartite networks, which creates information loss. At the
same time, we test a method that is able to work directly with the bipartite networks (Stochastic Block Model, see Section
Weighted SBM with Edge Attributes, Figure A8), this algorithm is unable to recover the community structure for the scenarios
when two communities are expected. We highlight the need for new methods tailored to bipartite signed networks.
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Data and Code Availability
The data and code associated with this research are publicly available on GitHub. Interested readers can access the repository
at the following URL: https://github.com/elenacandellone/signed-bipartite-nets. This repository
includes the datasets used in the study, as well as the code implementations of the methods and algorithms discussed in the
paper.
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Appendix
Ideology difference distribution
Section Generating synthetic bipartite signed networks shows the benchmark we devised to create synthetic networks with
simulated voting behavior. To compute voting probabilities, we combined controlled scenarios with real data. In this section, we
demonstrate that the distribution of the difference between two random variables is a Gaussian Mixture, under the assumption
that the two random variables are also distributed as Gaussian Mixtures.

Take two random variables X and Y distributed as in Equations 2. Their characteristic functions are given by
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Then, the random variable X −Y has the following characteristic function
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that lead to the conclusion that X −Y is distributed as of Equation 3.
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Degree-corrected synthetic networks
To generate more realistic synthetic bipartite signed networks, we can extend the procedure explained in Subsection Generating
synthetic bipartite signed networks. Instead of using fixed voting probabilities for all users, we can employ a voting probability
distribution. This implies that we can replace step 3 in the previous mechanism with a range of probabilities, as follows:

1. Extract from data the positive and negative voting distributions;

2. Assign randomly to each user a positive and negative “degree”, keeping the same coupling as in the data;

3. Repeat the voting procedure as before, but when the user reaches their assigned “degree”, stop assigning votes.

With this modification, we aim to preserve the skewness of the voting distribution. In other words, we sample a realistic voting
behavior from the data. It is particularly meaningful in the case of sparse networks, where a few users vote for almost every
story, while most users will barely vote a few times.

Figure A5 displays the results for sparse networks. Similar to the case of uniform voting probabilities, community-spinglass
better captures the expected communities for lower values of γ−, except for the scenario where both users and stories aren’t
polarized (U NP S NP). One possible explanation lies in the increased complexity of the model, as users exhibit similar voting
behaviors compared to real data, making them less identifiable within a neutral, unique group. However, SPONGE outperforms
all scenarios, identifying approximately 80% of the user pairs in the correct clusters, except for the scenario U NP S P, where
increasing the number of clusters leads to a decrease in accuracy. We observe that, when introducing additional complexity to
the model, community detection methods perform similarly or even worse than in the uniform voting case.
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Figure A5. Community Detection on Menéame Synthetic Networks, degree-corrected version. We tested the community
detection methods on the four synthetic scenarios, with voting probabilities sampled from sparse data’s voting distributions.
Panels (A)-(B) show the results for community-spinglass. Lower values of γ+ indicate less importance given to positive ties in
a community, whereas lower values of γ− penalize the presence of negative links within a community. Note that γ− = 0.5 is
generally the best parameter choice, as it finds the expected communities for the synthetic scenarios, except for the case where
users and stories aren’t polarized. Panels (C)-(D) show the results for SPONGE. We observed that the algorithm correctly
identifies the expected communities in scenarios with polarized users (panel C), while it generates spurious communities in
cases where stories introduce latent ideologies (U NP S P case).
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Clustering Evaluation Metrics
Section Evaluating Community Similarity explained the metric used to evaluate the similarity between the expected communities,
both in real data with ground truth and in synthetic networks, to the empirical ones found by the community detection methods.
However, the Rand Index is not the only metric available for clustering evaluation. It is possible to correct the RI for random
assignments, and it is called the Adjusted Rand Index52, defined as:

ARI =
RI−E[RI]

max(RI)−E[RI]
. (9)

Another metric implemented in the scikit-learn package is based on the information-theoretic concept of Mutual Information
(MI)53. The MI is defined as

MI(σT,σE) =
|σT|

∑
i=1

|σE|

∑
j=1

|σ i
T ∩σ

j
E |

N
log

(
N|σ i

T ∩σ
j

E |
|σ i

T ||σ
j

E |

)
, (10)

and can be normalized, obtaining the so-called Normalized Mutual Information,

NMI(σT,σE) =
MI(σT,σE)

mean(H(σT),H(σE))
, (11)

where σT and σE are respectively the true and empirical configurations. Another possible clustering evaluation measure is
called the v-score54. It is defined as the harmonic mean of two functions, the homogeneity h and the completeness c, defined as

h = 1− H(C|K)

H(C)

c = 1− H(K|C)

H(K)
.

Figure A6 complements the results presented in Figure 2 by including the other evaluation metrics explained in this section.
We show that metrics such as the ARI, NMI, and v-score, while generally preferable due to their adjustments for randomness,
may fail to evaluate cases where we expect to find a single community. We find a coherent pattern in the case of the US House
of Representatives Networks (Figure A7), where we chose as expected communities the political affiliations (i.e., Democrats,
Republicans, and Independent), therefore the four metrics highlight the same behavior as the Rand Index.
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Figure A6. Community Detection on Menéame Synthetic Networks, comparing several evaluation metrics. We
conducted tests on four synthetic scenarios to evaluate community detection methods. We used four evaluation metrics: Rand
Index (RI) in panels (A)-(E), Adjusted Rand Index (ARI) in panels (B)-(F), Normalized Mutual Information (NMI) in panels
(C)-(G), and v-score in panels (D)-(H). We compared the results of community-spinglass and SPONGE. We found that the last
three metrics showed similar behavior in failing to identify cases where one community was expected.
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Figure A7. Community Detection on US House of Representatives Networks, various evaluation metrics. We tested the
community detection methods on the US House of Representatives data. We compare four evaluation metrics: Rand Index (RI)
in panels (A)-(E), Adjusted Rand Index (ARI) in panels (B)-(F), Normalized Mutual Information (NMI) in panels (C)-(G), and
v-score in panels (D)-(H). We show the results for community-spinglass and SPONGE. As we identified the “true” subdivision
as a tripartition in political affiliations, we found a coherent pattern among metrics.
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Descriptive statistics of co-voting networks of US House of Representatives

year number of nodes number of edges | year number of nodes number of edges

1990 435 94169 2007 444 98202
1991 441 96716 2008 445 97982
1992 435 94232 2009 447 99444
1993 443 97315 2010 447 99543
1994 442 97290 2011 440 96530
1995 443 97787 2012 439 95854
1996 439 95844 2013 443 97541
1997 439 95334 2014 438 95527
1998 439 95485 2015 445 98239
1999 439 95833 2016 438 95437
2000 436 94671 2017 443 97331
2001 444 98122 2018 442 96777
2002 437 94981 2019 449 100026
2003 436 94603 2020 443 97293
2004 438 94977 2021 441 96943
2005 438 95464 2022 449 99752
2006 437 95035

Table A3. Snapshot co-voting networks of US House of Representatives. We collected data from 1990 to 2022 of the
House of Representatives votes. We then subdivided the dataset per year and we generated the bipartite network of
Representatives and Bills into (dis)agreement unipartite networks where the nodes are the Representatives and the edges are the
co-votings between two Representatives. The weight of those edges is given by Equation 1.
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Weighted SBM with Edge Attributes
The Stochastic Block Model (SBM)55 is a generative process for creating networks that exhibit a partition into blocks. This
model is highly flexible, allowing not only the generation of networks with a predefined block structure but also the inference
of communities in existing networks56. Given our context of weighted signed networks, we implemented the weighted version
of the SBM57, incorporating the sign as an additional edge attribute. We utilized the SBM version in the Python package
graph-tool58. As suggested in the package documentation, we sampled the logarithm of the absolute value of edge weights
from a normal distribution and the edge sign, rescaled to values between 0 and 1, from a Bernoulli distribution. In contrast with
previous methods, frustration minimization is not the explicit mechanism to generate communities. Therefore, it would also be
possible to find communities with maximal frustration, with only negative edges inside a community and positive between
communities.

Figure A8 depicts the results obtained by applying SBM to both the bipartite network, without the projection (with the
option to add set membership as a node attribute), and the unipartite, projected networks. In both cases, we employed a
hierarchical SBM. However, in both cases, the algorithm does not correctly identify the expected communities. Nonetheless,
this is not necessarily a limitation, as the algorithm is not constrained to a specific optimization problem like previous algorithms.
Instead, at the lower hierarchical levels it detects numerous smaller groups that may represent different optimal scenarios
compared to the expected ones.
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Figure A8. Stochastic Block Model on Sparse Synthetic Networks. We applied the hierarchical SBM to four sparse
synthetic scenarios. Panel (A) displays the results on the bipartite network, i.e., the user-story network without projecting to a
user-user network. An additional node attribute, the set membership, is given as a parameter of the algorithm. Panel (B)
illustrates the results of the bipartite projection. We observe that in both cases, after two hierarchical levels, all four scenarios
collapse into a unique community. This results in the maximum Rand Index (RI) for the U NP cases and approximately 50%
for the other two cases. However, examining the lower hierarchical levels reveals that the SBM identifies a high number of
communities for all scenarios, in contrast to the other algorithms analyzed in this paper.
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Comparing algorithms on real data
Results subsection Menéame data shows that, depending on the choice of the parameters, both methods recover either two or
three main communities in the Menéame Network. To further investigate the accuracy of these results, we examine whether the
primary communities identified by each algorithm were the same or not. Figure A9 displays two distinct parameter choices that
generate either two or three main communities. We observe that in the former case, communities 0 and 1 contain 60% and 40%
of the largest community respectively, as detected by SPONGE. In the latter case, both SPONGE and community-spinglass
accurately detected communities 0 and 1 with an accuracy of around 88-89%. These results show that although the methods
follow the same principle of frustration minimization, they produce varying results and do not consistently generate stable
communities for all parameter choices.
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Figure A9. Comparing methods results on Menéame data. We found that when using specific parameter choices, both
community detection methods recover either two or three main communities. Panel (A) displays the results for parameter
choices that yield two larger communities for both algorithms. It is normalized by row and smaller communities are not shown.
We observed that 60% of community 0 in community-spinglass is shared with community 0 in SPONGE, with the remaining
40% found in community 1 of SPONGE. Panel (B) shows the results for parameter configurations presenting three main
communities. Communities 0 and 1 from community-spinglass can be identified respectively as communities 0 and 1 from
SPONGE with an accuracy of around 88-89%.
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