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Abstract—With the sensor scaling of next-generation Brain-
Machine Interface (BMI) systems, the massive A/D conver-
sion and analog multiplexing at the neural frontend poses a
challenge in terms of power and data rates for wireless and
implantable BMIs. While previous works have reported the
neuromorphic compression of neural signal, further compression
requires integration of spike detectors on chip. In this work,
we propose an efficient HRAM-based spike detector using In-
memory computing for compressive event-based neural frontend.
Our proposed method involves detecting spikes from event pulses
without reconstructing the signal and uses a 10T hybrid in-
memory computing bitcell for the accumulation and thresholding
operations. We show that our method ensures a spike detection
accuracy of 92-99% for neural signal inputs while consuming
only 13.8 nW per channel in 65 nm CMOS.

Index Terms—Brain-machine interfaces (BMI), neuromorphic
compression, spike detection, in-memory computing (IMC).

I. INTRODUCTION

Brain-machine interfaces (BMI) opened up the possibility
of real-time control of prosthetic devices for patients with
paralysis and other neurological diseases. In this scenario,
the neural activities are recorded by the micro-electrode array
(MEA) to analyze the neural spikes (action potentials or AP)
for further intention decoding. Next-generation BMI systems
are expected to support the parallel recording of thousands
of channels to improve decoding performance and enable
complex control of effectors [1] [2]. However, increasing
the number of channels, Nchan, have brought challenges in
digitizing the immense amount of neural data and transmitting
it off-chip within the power and bandwidth constraints of
wireless distributed BMI systems. Additionally, the use of
massive analog multiplexing can decrease the accuracy and
efficiency of the neural frontend.

Various data compression efforts have been made to min-
imize digitization and multiplexing at the neural frontend
and realize scalable, low-power, and wireless BMI systems.
Inspired by event-based image sensors, [4] and [5] exploited
the spatial and temporal sparsity of neural signals through
wired-OR interactions within a single-slope ADC array. A
lossy compression was achieved by dropping samples around
the baseline while retaining critical samples that indicate
the neural spikes. An event-based neural recording (EBNR)
system proposed in [6] utilized address event representation
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Fig. 1. Comparing system architecture of (a) conventional and (b) proposed
HRAM-based IMC-SPD for event-based neural frontend. The compressive
neural frontend consists of a low-noise amplifier and a variable gain amplifier
combined with a delta modulator in each channel, similar to the architecture
in [3].

(AER) to convert the neural signals into asynchronous digital
pulse streams through in-pixel thresholding and thus digitize
data mostly during action potentials. [3] extended [6] to assess
the potential for scaling EBNR to thousands of channels with
collision management. While EBNR is promising, further data
reduction is needed for the scalability of this approach since
data rates remain higher than typical wireless transmission
capabilities.

Following the compressive neural frontend, significant data
rate reduction could be achieved by edge computing, i.e.
integrating more computation such as spike detection (SPD)
at the sensor interface [7]. Previous studies have been reported
on spike detection algorithms and hardware trade-offs [8] [9].
Some low-power neural spike detector implementations have
also been proposed [10] [11]. However, earlier works have
not addressed the memory requirement for storing the digital
output for thousands of channels before SPD–this becomes
an emergent issue with large memories [12]. For example,
assuming Nchan = 10K, 12-bits, 30 kbps ADC and np = 7
samples for SPD, a conventional architecture in Fig.1 (a)
requires 102.5 kB memory for input buffer of SPD resulting
in read-dominated power of ≈ 9 − 24 mW for SPD alone
based on 45 nm estimates [12]. Since the amplifier array can
be designed within a power budget of 10 mW [13], the SPD
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Fig. 2. (a) Spike detection method from event pulses based on Non-linear Energy Operator (NEO) approximation, X-axis represents time in samples. (b)
Proposed 10-T HRAM bitcell structure. HRAM bitcell working in (c) accumulation phase with an indication of the pulse inputs and the sum of accumulated
DRAM voltages, (d) SRAM phase with first thresholding of capacitor voltage and (e) final detection phase with second thresholding.

memory buffer becomes a bottleneck (latency considerations
are even more demanding). While EBNR frontends can reduce
writes to memory, they cannot reduce the size of the memory
buffer due to unpredictability of spike locations in the buffer.
Moreover, signal reconstruction and on-chip storage are still
required for current solutions.

To address these challenges, we propose an In-memory
computing (IMC) based SPD architecture for EBNR frontends
that can perform SPD operations within memory as indicated
in Fig. 1 (b) and thus saving memory access energy [14].
The main contribution of this work could be summarized as
follows:

1) We presented and evaluated an efficient SPD method
for EBNR frontends by estimating the nonlinear energy
operator from the event pulses without signal reconstruc-
tion.

2) Inspired by the hybrid SRAM-DRAM IMC for image
processing in [15], we proposed a 10T hybrid RAM
(HRAM) bitcell to perform the pulse accumulation and
thresholding operations for spike detection using IMC.

II. METHODOLOGY

A. Spike Detection from Events

The temporal sparsity of action potentials in neural record-
ings enables high compression rates when using an AER-
based delta modulation mechanism. Functionally, the delta
modulator produces two types of digital pulses (ON or OFF)
if the input signal changes by a fixed positive or negative
amount respectively. This process converts the analog spike
recording Vin(t) into an asynchronous event pulse stream

Vpulse(t). Instead of recovering a stair-step reconstruction
V̂in(t) =

∫
Vpulse(t)dt ≈ Vin(t) as in [3], [6], we proposed a

nonlinear energy operator (NEO) based spike detection method
from event pulses directly, as described in Fig. 2 (a).

Due to the noisy nature of neural recordings and the
variability in spike shapes, a typical spike detection process
includes an emphasizer to estimate the instantaneous change
in amplitude and frequency and then applies thresholding to
derive the detection output. The NEO is a commonly used

emphasizer given by NEO(Vin(t)) =
(

dVin(t)
dt

)2

− d2Vin(t)
dt2 ·

Vin(t). To perform SPD on event pulses, we begin with
an approximation of NEO introduced in [10]– a low-pass
filtered version of (dVin/dt)

2 which can be approximated by∫
(dVin/dt)

2dt. Inspired by this, we propose an approximation
as follows:

NEO’(Vin(t)) =

∫ Ts

0

(dV̂in/dt)
2dt (1)

The benefit of this approximation is that (dV̂in/dt) is ex-
actly equal to the ON/OFF pulses Vpulse(t) from the EBNR
frontend and since pulse amplitude is fixed, squaring is a
trivial operation requiring only the multiplexing of both ON
and OFF pulses to the same wire. While mathematically
(dV̂in/dt)

2 ̸= (dVin/dt)
2, the approximation can still be used

to distinguish neural AP from background noise with proper
choice of Ts. For the EBNR frontend, the integral in Eq. 1
reduces to a summation and the final NEO’ value after Ts is
thresholded to indicate the presence of a neural spike in that
time bin. To reduce false positives further, the binary values
from ns successive time bins are summed and compared with



a second threshold and a 1ms refractory period is added to give
the final spike detection result. The whole process is illustrated
in Fig. 2(a).

B. Proposed HRAM Bitcell

Inspired by an IMC-based image processor for image recon-
struction, we proposed a DRAM and SRAM hybrid bitcell to
implement the pulse accumulation and thresholding operations
described above. Each bitcell could be used for the NEO
approximation and thresholding of a time bin in the above
method. Figure 2 (b) shows the details of the proposed 10T
HRAM bitcell. The bitcell can be divided into two parts: 1) a
3T1C DRAM consisting of an input access transistor Min, a
MOS capacitor Mcap, together with a pull-up variable resistor
Mres and a pull-down reset transistor Mrst; 2) An SRAM
latch (inv1, inv2) with a transmission gate sw between the
output node of inv2 and the storage node to disable the latch
when needed. In addition, a horizontal detection line DL H
connects the bitcells in a channel, and both DL H and DL V
can be configured as pull-up, pull-down, or floating at different
phases. In particular, the DRAM storage device Mcap is a
versatile component that can be used either as a MOSCAP
with its drain and source grounded or as a transistor with its
gate controlled by the SRAM.

The in-memory computing SPD has three sequential oper-
ation phases during each spike detection cycle: accumulation
phase, thresholding phase, and detection phase.

1) Accumulation Phase: In this phase, the SRAM latch is
disabled by setting sp = 1 and sn = 0 to give the equivalent
circuit in Fig. 2 (c). Both detection lines, DL H and DL V ,
are connected to the ground, which allows the use of Mcap

as a MOSCAP. Additionally, the active low event pulses
input to the bitcell is enabled during the allocated time bin
to accumulate charge on the DRAM capacitor. Each event
pulse input would result in a voltage jump on Mcap, and the
accumulated voltage of all input pulses over Ts approximates
NEO’. Mres and Mcap determine the voltage jump per event
pulse.

2) Thresholding Phase: Shortly after the accumulation
phase, the switch is enabled by setting sp = 0 and sn = 1 to
latch the accumulated voltage as in Fig. 2 (d). The trip point
of the SRAM, THSRAM , is designed to apply a thresholding
process on the NEO’. Therefore, the accumulated voltage is
converted into a binary value stored in the SRAM indicating
the presence of a neural AP. The SRAM holds its value
until all the successive cells accomplish the accumulation and
thresholding operations.

3) Detection Phase: After the SRAMs have latched a bi-
nary value for the time bin, DL V is pulled up to VDD while
the horizontal detection line DL H is floating. The data stored
in the SRAM determines whether the bitcell would charge the
detection line as indicated in the equivalent circuit Fig. 2 (e).
The sensed potential at the detection line (corresponding to
sum of ns HRAM cells in the row) is then compared with
a reference detection threshold voltage to give the final spike

detection output. At the end of each detection cycle, the reset
signal is pulled up to clear the oldest SRAM value in the row.

C. System Level Architecture

A Nchan×ns HRAM memory array is required to store the
output of the EBNR frontend. The ns bitcells in every row are
organized as a circular buffer by using a pointer in the memory
controller. In every Ts time bin, the memory controller directs
events from the frontend to a column location based on this
pointer. After the final detection by summing over ns cells
in the row, the memory pointer is incremented and the new
location is reset before a new accumulation phase starts.

III. RESULTS

We simulated one channel of the HRAM memory array in
a 65nm CMOS process to estimate hardware performance in
terms of power dissipation as well as SPD accuracy compared
to software baselines. In our simulations, we followed the pro-
cessing pipeline as shown in Fig.3, where a SPICE-informed
MATLAB model was used for design space exploration.

A. Datasets

The dataset used in this work is a synthetic dataset provided
in [16]. It consists of actual spike shapes placed in time using a
Poisson distribution superimposed with realistic noise at levels
of 0.05, 0.1, 0.15, and 0.2. We applied delta modulation on
the dataset to convert the 24 kHz sampled neural signal into 1
ns ON/OFF pulses similar to [3]. The event pulses were then
used as input to the IMC-based spike detector.

B. Choice of Parameters

We determined optimal values of the time bin for accumu-
lation Ts and number of cells ns by running an equivalent
algorithm in MATLAB. Our evaluation revealed that when
the time bin is too short, it leads to a small peak of the
pulse count that is hard to recognize. On the other hand,
when the time bin is too long, the noise in neural signals
tends to accumulate. Accordingly, Ts ≈ 125 µs and ns ≈ 5
was chosen. However, as shown later, the performance is not
sensitive to small changes in these values.

The choice of SRAM trip voltage (THSRAM ) and the
threshold for the detection output comparator (THdet) are
crucial parameters for IMC-based neural SPD. To optimize
these parameters and validate the robustness of our HRAM-
based spike detection, we ran a DRAM simulation with SRAM
disabled (accumulation phase). We recorded the maximum
accumulated voltage on the DRAM for each time bin using

Fig. 3. Flow chart of the data processing pipeline for HRAM-based in-
memory computing spike detection simulations.



Fig. 4. (a) Spike detection accuracy heatmap for different SRAM trip voltage
and comparator threshold. (b) 200-run MC simulation results showing the
variation of DRAM peak voltage for 10 ms noise recording input and action
potential input.

Fig. 5. (a) Measured sensitivity, FDR and accuracy of proposed HRAM
spike detection cell. (b) Comparison between proposed HRAM SPD accuracy
and NEO on original signal and reconstructed signal.

four 6-second neural recordings at different noise levels and
then swept across different THSRAM and THdet values. We
averaged the accuracy over 4 noise levels to create the heatmap
shown in Fig. 4 (a). The results indicate that an SRAM
binarization threshold of ≈ 600 mV and a spike detection
threshold of 2 are optimal to reduce false detections. Moreover,
the accuracy is high over a broad range of values making the
detection tolerant to variations.

In order to further assess the effect of mismatch, we
evaluated the process variation of the DRAM peak voltage for
a 10 ms noise input and for a 10 ms neural spike input in a 200-
run Monte Carlo simulation. We selected the size of the SRAM
inverter transistors for a nominal threshold voltage of 600 mV
to distinguish between noise and neural signals. It can be seen
in Fig. 4 (b) that even with mismatch of Mres and Mcap, the
HRAM cell has a wide margin to differentiate between noise
and neural spike. In addition, a negative feedback mechanism
for gate voltage control in [15] can be employed to keep the
MOS resistance stable with process and temperature variation.

C. Measurement Results

To validate the function of our proposed design, we tested
the accuracy of spike detection. The metrics used to compare
spike detection algorithms are sensitivity (S), accuracy (A) and
false detection rate (FDR), as presented below :

S =
TP

TP+FN
,A =

TP
TP+FP+FN

,FDR =
FP

TP+FP
(2)

where True Positive (TP) represents truly detected spikes,
False Positive (FP) represents wrongly detected spikes while

TABLE I
COMPARISON WITH OTHER LOW-POWER NEURAL SPIKE DETECTORS

This Work [10] [18] [19]

Technology (nm) 65 65 65 65
Implementation Analog Analog Digital Digital
Supply Voltage (V) 1.0 0.7 1.2 1.1
Pre-emphasizer Event NEO ED+LPF ADF Dual NEO
Power (nW/Ch) 13.8 40 38 70
SPD technique IMC Analog Digital Digital
Accuracy [min,max] [92%,99%] [94%,99%] [96%,99%] [97%,99%]

False Negative (FN) represents the undetected spikes. The
single-channel IMC spike detector takes 6-second delta-
modulated neural recordings at four noise levels as input.
Fig. 5 (a) shows the spike detection accuracy at different
noise levels. The X-axis of the plot σn is the noise level
normalized to the spike amplitude. It can be seen that the
proposed HRAM-based spike detector has a high accuracy
for low-noise neural input. At high noise level, the proposed
method could still retain relatively high sensitivity but a drop
in accuracy is observed due to FDR rise.

In Fig. 5 (b) we compared the proposed HRAM-based
spike detector with software NEO-based spike detection with
a threshold multiplier setting in [17] applied both on the
original neural signal and the stair-step reconstructed signal
from event pulses similar to [3]. The proposed HRAM-based
spike detector outperformed the reconstructed signal at low
noise since the proposed method had higher sensitivity while
the reconstructed signal is affected by the reconstruction noise,
but the accuracy of the proposed method at high noise level
is slightly lower than software NEO at around 92%.

We have compared our proposed low-power neural spike
detector with other recently proposed detectors in Table I. Our
HRAM bitcells consume an estimated power of 0.32 nW per
channel, excluding the peripheral circuitry and comparators.
Other implementations may consume more power due to the
power consumed by memory banks. However, our design
maintains comparable detection accuracy while achieving very
low power consumption. Additionally, the memory require-
ment for the SPD buffer (Fig. 1) has been reduced to only
Nchan × ns = 6.1 kB from 102.5 kB for the conventional
approach. Despite the ≈ 4X increase in bitcell size of HRAM
compared to foundry SRAM, the proposed system achieves a
4.2X reduction in memory area.

IV. CONCLUSION

In this work, we proposed an efficient HRAM IMC-based
spike detector for compressive EBNR frontend. We proposed a
SPD method from event pulses without signal reconstruction
by accumulating event pulses and thresholding for a binary
value indicating the pulse density. We also designed a 10-
T SRAM and DRAM hybrid in-memory computing bitcell
for accumulation and thresholding operations. We simulated
the single-channel spike detector and showed that our method
achieves SPD accuracy ≈ 92 − 99% while dissipating only
13.8 nW per channel and enabling 4.2X reduction in memory
area.
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