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Abstract—Radio localization and sensing are anticipated to
play a crucial role in enhancing radio resource management
in future networks. In this work, we focus on millimeter-
wave communications, which are highly vulnerable to blockages,
leading to severe attenuation and performance degradation. In a
previous work, we proposed a novel mechanism that senses the
radio environment to estimate the angular position of a moving
blocker with respect to the sensing node. Building upon this
foundation, this paper investigates the benefits of cooperation
between different entities in the network by sharing sensed data to
jointly locate the moving blocker while mapping the interference
profile to probe the radio environment. Numerical evaluations
demonstrate that cooperative sensing can achieve a more precise
location estimation of the blocker as it further allows accurate
estimation of its distance rather than its relative angular position
only, leading to effective assessment of the blocker direction,
trajectory and possibly, its speed, and size.

Index Terms—Sensing, Cooperation, Blockages Prediction,
mmWave Communications, Network densification, 6G Networks.

I. INTRODUCTION

Millimeter-wave (mmWave) communication has emerged
as a promising solution to meet the exponentially growing
demand for high-speed data transmission and ultra-low la-
tency applications. Operating at high frequencies (ranging,
e.g., between 28 and 300 GHz), mmWave communications
benefit from the availability of a large spectrum resource to
enable next-generation wireless systems. However, mmWave
technologies also come along with a critical challenge: com-
munications at mmWave frequencies are highly vulnerable
to blockages. Blockages, caused by various environmental
factors, such as buildings, trees, human body, or moving
objects, can severely disrupt mmWave communication links,
leading to link outages, reduced throughput, and degraded
network performance. For example, penetration losses through
the human body can vary between 20 and 40 dB, while
attenuation through buildings can reach 40 to 80 dB.

Frequent interruptions and long-duration blockages can lead
to severe degradation of end-user quality of service (QoS),
requiring frequent handover procedures that affect network per-
formance [1]. Therefore, efficient blockage prediction mecha-
nisms are essential to enable effective radio resource manage-
ment (RRM). In this context, radio-localization and sensing
techniques are envisioned as potential key enabler of intelligent
RRM [2]. Indeed, the sensing functionality can help measure
or image the surrounding environment of communicating de-
vices, enabling cognitive RRM and intelligent services [3].
Here, we are interested in blockage prediction by sensing the

surrounding environment of communicating devices to help
anticipate on possible link failure and enable proactive RRM
such as handover. This fundamental research topic has attracted
a particular attention from academia and industry [4]–[9].
One potential solution for predicting and preventing blockages
in mmWave systems is to use in-band mmWave signal and
data rate observations. By analyzing the fluctuations in the
received signal strength (RSS) prior to the shadowing event,
the authors in [10] train a deep neural network to predict
the future time at which a blockage will occur. However,
the prediction accuracy decreases as the blocking object is
further away from the mmWave link. Therefore, this approach
is mostly effective when the blocking object is close to the
mmWave communication beam. Another approach, proposed
in [11], uses deep reinforcement learning techniques to predict
handover timings by analyzing fluctuations in the data rate
prior to a shadowing event. This approach allows anticipating
on the handover procedure before the degradation of user
QoS. For the same purpose, the authors of [12] propose an
alternative approach that involves the use of an additional
passive mmWave beam (called a “guard beam”) next to the
main communication beam. This guard beam is intended to
sense the environment by expanding the field of view of the
base station (BS). By monitoring the fluctuations in the RSS
from the guard beam, it is possible to detect a blocking object
at an earlier stage. In a previous work [13], we proposed
a mechanism that makes use of side-lobes information for
passively and opportunistically sensing the surrounding of a
dense mmWave network. Unlike the aforementioned studies,
this approach leverages existing communication infrastructure,
exploiting side lobes information to enable ubiquitous passive
sensing. It exploits the spatial diversity of wireless network
nodes and interference fluctuation in antenna side lobes caused
by the existence of moving blockers in angular sectors around
the communication link of concern.

In this previous work [13], we consider applying this ap-
proach in an uplink-communication scenario where the base
station is the sensing device and show that the proposed
solution is capable of estimating the relative angle of the
blocker w.r.t. the sensing node orientation and hence, w.r.t. to
the communication link itself. The present work builds upon
this approach while considering a downlink-communication
scenario where the user equipment (UE) are the sensing de-
vices. Most importantly, we propose a cooperative framework,
sharing the information sensed by distributed UEs to jointly
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locate a moving blocker and map the interference profile,
thus allowing a seamless sounding of the radio environment.
This approach makes it possible to accurately predict the
trajectory and obviously the velocity of the blocker, allowing
early anticipation of blockage events and avoiding link outages
by triggering, e.g., a handover procedure.

II. SYSTEM MODEL

A. Network Model

We consider a mmWave network composed of a set B =
{b0, ..., bM−1} of M densely deployed BSs in a bi-dimensional
Euclidean space of radius R to provide service coverage to a
set U = {u0, ..., uK−1} of K UEs. We assume BSs and UEs
form two distinct homogeneous Poisson Point Processes (PPP)
with densities λb [m−2] and λu [m−2] respectively such that
in average, E[M ] = λbπR

2 and E[K] = λuπR
2. We consider

downlink communications. For simplicity, we assume each
UE gets associated with the closest BS in an initial access
phase where the UEs perform beam training and alignment
mechanisms, configuring the appropriate beams, which exploit
the maximum directivity gain w.r.t. serving BSs for the service
phase. In this dense network, a mobile and passive object,
modelled as a cylindrical object of radius rB moves around
with a relatively low velocity (e.g. walking human, industrial
or wheeled mobile robots), causing the blockage of interfering
and direct communication paths. In this work as in [13], we
consider the existence of only one moving blocker, however
our approach could be extended to detect multiple blockers.
We leave this to future work. Let (xB(t), yB(t)) denotes its
instantaneous location w.r.t. UE u0, referred to as the typical
UE and taken as the reference point in the following. In our
previous work [13], we propose a novel approach for the
passive sensing of such a moving object, by leveraging the
interference perceived in the side lobes of the antenna radiation
patterns.

B. Sensing of side lobes interference

We assume spatial reuse of the spectrum across the network.
For simplicity of analysis, we adopt a Friis path-loss model,
where the received power PRx(t) is given as a function of the
transmit power PTx, and the distance d between two nodes:

PRx(t) = χ(t)ζ(t)PTxGTxGH(d)GRx. (1)

Here, χ(t) = A exp (−0.125rB
−2ψB(t)

2) denotes the shad-
owing coefficient due to the passive object1 moving around
the corresponding link, where A represents fully-shadowed
attenuation and ψB(t) is the relative blocker angle to the
main communication link [13]. Also, ζ(t) denotes the fading
coefficient, GH(d) denotes the path-loss gain, and GTx and
GRx are the transmitter and receiver antenna gains respectively.
In addition, let I(i)(ψ, t) denote the total interference perceived
at time t by UE ui as a function of interference signal angle
of arrival (AoA) ψ . When a blocker moves around the
primary communication link of UE ui, it shadows the per-
ceived inference signals, causing the fluctuation of interference

1We assume BSs and UEs are fixed and do not cause blockages.
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Fig. 1: Network model viewed from UE u0 perspective,
consisting of 3 BSs interfering on the communication link (b0
→ u0). In this network, a mobile robot moves around causing
blockages.

level2, which we fully exploit to detect the moving blocker.
To do so, the framework proposed in our previous work [13]
considers dividing the space around every UE ui into n + 1

contiguous angular sectors, each of angular width 2α =
2π

n+ 1
,

as represented in Fig. 1 that shows the sectorization w.r.t. UE
u0 as an example. This previous work introduces a novel
metric called signal-to-sectored-interference-plus-noise ratio
(S-SINR) γ(i)sk , computed by aggregating the sum-interference
level perceived in each sector k as in [13]:

γ(i)sk
(t) =

P
(i)
Rx(t)

I
(i)
sk (t) +N0B

, (2)

where P (i)
Rx(t) is the received power by UE ui from BS bi at

time t, B is the bandwidth, N0 is the noise power spectral
density, and the aggregated sector interference reads as

I(i)sk
(t) =

∫
sk

I(i)(ψ, t)dψ. (3)

Consequently, for an observation window of size τ , each UE
ui computes a sensing matrix Λ

(i)
τ,n(t), an ordered-collection

of S-SINR measurements in different sectors at different time-
scale:

Λ(i)
τ,n(t) =


γ
(i)
s0 (t) . . . γ

(i)
sn (t)

γ
(i)
s0 (t− 1) . . . γ

(i)
sn (t− 1)

...
. . .

...
γ
(i)
s0 (t− τ) . . . γ

(i)
sn (t− τ)

 , (4)

The idea behind defining such matrix is that, the blockage
of an interfering link around a certain UE in the sectorized
regions induces fluctuations of the values of the sectors S-
SINR values observed by UE ui. Applying a blind source
separation technique based on singular value decomposition
(SVD), the mechanism extracts the blocker signature matrix to

2Obviously, the order of magnitude of such fluctuations is affected by
several factors, including the blocker size, velocity, and trajectory.
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Fig. 2: Cooperative localization scenario to localize robot
blocker at (xB , yB) with N = 3 UEs.

estimate the active sector absolute angle3 θi(t) = f(Λ(i)
τ,n(t))

in which the blocker is thought to be located as shown in
Fig. 2. This previous work [13] focuses only on one sensing
entity (which was a base station in the uplink scenario) and
studies the blockage detection using one sensing matrix to
estimate the blocker relative angle w.r.t. the sensing entity. In
contrast, the present work considers a downlink scenario and
cooperation between different UEs in the network by sharing
their estimated angles, in order to enhance the accuracy and
effectiveness of blockage localization.

III. PROPOSED COOPERATIVE LOCALIZATION SCHEME

We now assume that each UE ui located at (xi, yi) ∈ D ⊂
R2 has estimated the relative angle of the blocker located at
(xB , yB), as shown in Fig. 2, computing the active sector from
its sensing matrix (4) via the processing techniques proposed
in [13]. Let θi denote the estimated orientation of the active
sector. Following [13], the accuracy of the angle estimation
depends on the distance of the blocker to the sensing device,
and is affected by multiple factors including false alarms or
environment randomness such as channel fading. Therefore,
we herein consider the cooperation between sensing devices
via e.g. information exchanges (i.e., with each other or with
a central entity). Such data sharing enables to jointly locate
the moving blocker and map the overall interference profile,
hence contributing to accurately sound the radio environment.
To do so, let us consider that the typical UE u0 cooperates
with N neighboring UEs, which we denote with the set N0. By
leveraging inter-user cooperation, as well as the natural spatial
diversity allowed by sensing devices distribution, the typical
UE can then compute the overlapping between different sectors
and accordingly, pinpoint the absolute position of the blocker
within the network, while mapping the interference conditions
around each sensing node.

In the following, we describe our proposed approach to
estimate the location of the blocker by computing the inter-
section of active sectors, as represented by the blue region

3Specifically, θi corresponds to the estimated active sector absolute angle
w.r.t. a global/shared angular reference system, given that the relative orienta-
tions of sensing devices are all known. We refer the reader to [13], for more
details on the processing method f(·) applied for computing θi.

in Fig. 2. This requires the knowledge of the detected active
sector from each cooperating sensing device, as well as its
absolute position. Thus, for a given UE ui, we consider the
quadruplet (xi, yi, θi, αi), where 2αi is the sector width, which
depends e.g. on the device capability and/or sensing proce-
dure. However, for simplicity, in the following we consider
αi = α, ∀i. From a single sensing node standpoint, when the
blocker is detected in a sector, its estimated location (x̂B , ŷB)

4

is uncertain and can take any position along a line crossing
(xi, yi) with a slope tan(θi+ϵ), where ϵ is a random variable,
which follows a uniform distribution ϵ ∼ U(−α,+α); i.e.,

∃ϵ ∈ [−α, α], s.t. ŷB = yi + tan (θi + ϵ) (x̂B − xi). (5)

To compute the intersection of active sectors, we proposed
to solve a least square estimation problem, following the
approach proposed in [14]. Specifically, for a given active
sector with orientation θi, assume ϵi ∈ [−α, α] is the localiza-
tion error w.r.t. the relative sector orientation. Let (x(∗)i , y

(∗)
i )

define the closest point to (x̂B , ŷB) along the line crossing
(xi, yi) with orientation θi + ϵi. We formulate the following
optimization problem, which finds the location that minimizes
the Euclidean distance between the estimated position of the
blocker and the closest points (x

(∗)
i , y

(∗)
i ) of all cooperators:

(x̂, ŷ) = argmin
(x,y)

∑
ui∈N0

Eϵi

[
(x− x

(∗)
i )2 + (y − y

(∗)
i )2

]
. (6)

The following Lemma shows how to compute the values of
Eϵ[x

(∗)
i ] and Eϵ[y

(∗)
i ] (its proof is provided in the Appendix):

Lemma 1. Given point (x̂, ŷ), point (x(∗)i , y
(∗)
i ) along a line

(y − yi) = tan(θi + ϵ)(x − xi) closest to (x̂, ŷ), where ϵ ∼
U(−α,+α), is such that:

Eϵ[x
(∗)
i ] =

1

2α
[A0,ix̂+A1,iŷ −A1,iyi +A2,ixi], (7)

Eϵ[y
(∗)
i ] =

1

2α
[A1,ix̂+A2,iŷ +A0,iyi −A1,ixi], (8)

where,

A0,i = α+
1

2
cos (2θi) sin (2α),

A1,i =
1

2
sin (2θi) sin (2α),

A2,i = α− 1

2
cos (2θi) sin (2α).

Then, with the data sensed by the set N0, minimizing the
Euclidean distance in (6) simplifies to:

(x̂, ŷ) = argmin
(x,y)

∑
ui∈N0

(x− Eϵ[x
(∗)
i ])2 + (y − Eϵ[y

(∗)
i ])2 (9)

= argmin
(x,y)

1

2α

∑
ui∈N0

(A2,ix−A1,iy +A1,iyi −A2,ixi)
2

+ (−A1,ix+A0,iy −A0,iyi +A1,ixi)
2,

whose solution, following the work in [14], is presented in the
following lemma.

4To ease the reading and without loss of generality, we exclude the
dependency on time.



Lemma 2. The minimum sum squared distance is found for
point (x̂, ŷ) that satisfies the following linear equation:[ ∑

ui∈N0
A2,i −

∑
ui∈N0

A1,i

−
∑

ui∈N0
A1,i

∑
ui∈N0

A0,i

] [
x̂
ŷ

]
=

[ ∑
ui∈N0

A2,ixi −A1,iyi∑
ui∈N0

−A1,ixi +A0,iyi

]
(10)

Hence, the position of the blocker is estimated by solving the
linear equation (10) to obtain (x̂B , ŷB). This can be efficiently
computed at the typical UE or at a central orchestrator by
gathering information (xi, yi, θi), ui ∈ N0 of neighboring
sensing devices.

IV. NUMERICAL ANALYSIS

We consider a network of M BSs and K UEs distributed in
the space of a circular industrial environment of radius R =
100 m according to homogeneous PPP with densities λb =
8×10−4 m−2 and λu = 2×10−3 m−2 respectively. Each UE is
associated to its closest BS and performs side lobes sensing. A
typical UE u0, located at the center of the network, is taken as a
reference. It cooperates with its N neighboring UEs, via e.g. a
centralized entity or information exchange between each other
to locate a moving blocker. Applying the proposed cooperative
localization approach described in Sec. III, u0 estimates the
position of the blocker (x̂B , ŷB) at every time t. For all sensing
UEs, we set the width of the angular sectors to 2α = 10°
(i.e. n + 1 = 36 sectors overall, covering the 2D space), and
the size of the observation window is set to τ = 50 s. We
consider the same antenna and channel propagation model as
in [13]. Other simulation parameters are presented in Table I.

TABLE I: Simulation parameters

Parameters Values
Carrier frequency 28 GHz

Bandwidth B 400 MHz
Pathloss 60.1 + 14 log(d [km]) [15]

Transmit power PTx (BS) 33 dBm
Noise power spectral density N0 −174 dBm/ Hz

Small-scale fading ∼ m-Nakagami m = 3
Tx beamwidth ϑ 10°
Rx beamwidth θ 135°

G0(z) π(21.32z + π)−1 [16]
GTx

s G0(ϑ)
GTx

m G0(ϑ)× 102.028

GRx
s 0

GRx
m 2G0(θ)× 102.028

Blockage Attenuation A 100 dB

σB

√
8 rB

A. Detection of Blocker Trajectory

For a random network deployment, we consider a mobile
object of radius rB = 1 m moving along a random trajectory
with an arbitrary velocity (∼ [0.5, 2] m/s). Fig. 3a shows
an example of network deployment, where M deployed BSs
jointly provide service to K UEs. The reference UE u0
cooperates with its N = 30 closest UEs to estimate the
position of the blocker at each time step. To avoid cumbersome
computations, we assume that the network area is partitioned
into a mesh grid G consisting of 3 m × 3 m cells. For a

(a) Deployment and blocker trajectory.

(b) Blocker Trajectory Estimation

Fig. 3: Example of blocker trajectory detection using our
proposed cooperative side lobes sensing mechanism.

quantitative evaluation of the detection accuracy, we consider
the following average location error, i.e. the distance between
the actual position of the blocker (xB , yB) and the estimated
position (x̂B , ŷB), in each cell (c ∈ G):

δ = E(x,y)∈c

[√
(xB − x̂B)2 + (yB − ŷB)2)

]
. (11)

Fig. 3b shows the mean estimation error in each cell the
blocker passed by. We can notice that the proposed method
allows to localize the blocker and estimate its trajectory with
very high accuracy, especially as it gets closer to the reference
UE, as then it is more likely to cause blockages and get
detected by the neighbor UEs of u0. This information makes
it possible to predict the trajectory and speed of the moving
blocker, allowing for a plurality of resource management
schemes, including anticipation of a blockage event and pro-
viding sufficient time to trigger proactive resource reallocation
such as handover.
B. Localization accuracy vs blocker characteristics

In this section, we assess the localization accuracy w.r.t. the
blocker characteristics: size and velocity. With the same de-



Fig. 4: Localization error vs blocker speed and size. Here the
number of cooperators is set to N = 10.

ployment as in Fig. 3a and the same resolution grid G, we
consider a mobile object of radius rB scanning all the area
in the red square zone of side 50 m with a velocity υB . UE
u0 cooperates with its N = 10 nearest UEs to localize the
blocker. By varying the blocker velocity υB and radius rB , we
assess the localization error in each cell as shown in Fig. 4.
We can observe that as the blocker size increases, the accuracy
improves as the blocker gets more detectable. This is because a
larger blocker is more likely to cause blockages of interference
coming from different angles. We also observe that when the
blocker is slower, it’s more detectable by the UEs. This is due
to the fact that with lower velocities, the blocker is more likely
to be captured by the UEs at the time of sensing, making it
possible to keep track of the blocker at every time step.

It is noticeable that the detection accuracy gets higher as
the blocker approaches the center where u0 is located. This
is obviously because the cooperating UEs (N0) are chosen as
the nearest to u0, making the blocker more detectable in this
region. To get a wider view of the network, it is however still
possible to select farther UEs to share sensed information with.

C. Localization error vs neighborhood size
The size of the user neighborhood has a great impact on

the detection range and the localization error of the proposed
approach. Similar to the previous experiment, we present
in Fig. 5, the impact of N0 on the estimation accuracy in
each cell of the network. The blocker moves with a velocity
υB = 1 m/s. The reference UE u0 cooperates with its
nearest UEs in N0. The size N of this neighborhood varies
between 10 and 59. The results are presented in Fig. 5.
We can notice that as the number N of cooperating nodes

Fig. 5: Localization error vs neighborhood size. Here the radius
of the blocker is set to rB = 1m.

increases, the localization coverage is also improved since the
area covered by the sensing UEs widens. However, even with
large neighborhood sets, the accuracy degrades as the blocker
approaches the edge of the network, since it gets farther from
the sensing UEs that cooperate in the location estimation step.

As we are interested in locating mobile objects in
millimeter-wave networks in order to anticipate and avoid
blockages, the main region of interest, where it is crucial to
detect blockages, is the region around the link to be protected
against blockages (here around u0). We can then notice that
even a small set of neighbors (e.g. N = 10) is sufficient to get
a high estimation accuracy (δ ≤ 1 m) in the main region of
interest, which makes it possible to detect and avoid blockages
with the least communication cost.

D. Discussion
The preceding numerical experiments demonstrate that our

proposed cooperative approach can achieve a precise location
estimation of a moving blocker. Compared to previous studies,
this approach leverages existing communication infrastructure
without requiring any additional system, and it is capable to
detect and track moving objects all around the sensing device,
rather than being confined to a specific area. It is evident
that our methodology holds significant promise for practical
applications in anticipating and avoiding potential blockages
in mmWave systems. While this paper primarily focuses on
detecting a single moving object, it could be further extended
to detect multiple blockers by extracting the signatures of
all moving objects responsible for SINR fluctuations and
employing filtering techniques such as clustering to distinguish
between them.



V. CONCLUSION

This paper proposes a novel collaborative framework that
enables the sharing of sensed information between different
UEs in the network. With this new framework, we can locate
and map accurately a moving blocker within the surrounding
environment of a sensing UE. This is achieved by utilizing the
fluctuations in the SINR values caused by the blocker’s pres-
ence in the angular sectors around the communication link of
interest. By using this collaborative approach, we can improve
the accuracy and efficiency of the detection and localization
of moving objects in mmWave networks, which is a crucial
task for maintaining reliable mmWave communications. Our
numerical analysis shows that the proposed approach allows
effective estimation of blocker position within the vicinity of
the reference sensing device. It provides a level of localization
accuracy, compliant with the anticipation of a blockage event,
thus providing sufficient time to trigger proactive resource
reallocation such as handover.

Future work will consider data association and tracking
problems in the same context in the presence e.g. of multiple
blockers. The results of this work shall also be used further
to investigate smarter handover management mechanisms, and
real-world experimentation is to be considered to validate the
effectiveness and practical applicability of our methodology in
dynamic and unpredictable environments. Furthermore, as our
approach is flexible and scalable, it could be easily extended to
more complex scenarios, e.g. for 3D network operations [17].
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APPENDIX
Here, we provide the formal proof of Lemma (1).

Proof. Let ai = tan(θi+ ϵi), then, following [14, Eq. 6-7] we
have :

x
(∗)
i =

1

1 + a2i
x̂+

ai
1 + a2i

ŷ − ai
1 + a2i

yi +
a2i

1 + a2i
xi, (12)

y
(∗)
i =

ai
1 + a2i

x̂+
a2i

1 + a2i
ŷ +

1

1 + a2i
yi −

ai
1 + a2i

xi. (13)

Hence, we can compute the expected values of x(∗)i and y(∗)i

as follows:

Eϵ[x
(∗)
i ] = Eϵ

[
1

1 + a2i
x̂+

ai
1 + a2i

ŷ − ai
1 + a2i

yi +
a2i

1 + a2i
xi

]
=

1

2α

∫ ϵ=α

ϵ=−α

[
1

1 + tan2 (θi + ϵ)
x̂+

tan (θi + ϵ)

1 + tan 2(θi + ϵ)
ŷ

− tan (θi + ϵ)

1 + tan2 (θi + ϵ)
yi −

tan2 (θi + ϵ)

1 + tan2 (θi + ϵ)
xi

]
dϵ

=
1

2α
[A0,ix̂+A1,iŷ −A1,iyi +A2,ixi] ,

where,

A0,i =

∫ α

−α

1

1 + tan2 (θi + ϵ)
dϵ = α+

1

2
cos (2θi) sin (2α)

A1,i =

∫ α

−α

tan (θi + ϵ)

1 + tan2 (θi + ϵ)
dϵ =

1

2
sin (2θi) sin (2α)

A2,i =

∫ α

−α

tan2 (θi + ϵ)

1 + tan2 (θi + ϵ)
dϵ = α− 1

2
cos (2θi) sin (2α)

Similarly,

Eϵ[y
(∗)
i ] =

1

2α
[A1,ix̂+A2,iŷ +A0,iyi −A1,ixi] , (14)
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