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Abstract

We study the problem of constructing an estimator of the average treatment effect (ATE)
that exhibits doubly-robust asymptotic linearity (DRAL). This is a stronger requirement than
doubly-robust consistency. A DRAL estimator can yield asymptotically valid Wald-type confi-
dence intervals even when the propensity score or the outcome model is inconsistently estimated.
On the contrary, the celebrated doubly-robust, augmented-IPW (AIPW) estimator generally re-
quires consistent estimation of both nuisance functions for standard root-n inference. We make
three main contributions. First, we propose a new hybrid class of distributions that consists of
the structure-agnostic class introduced in Balakrishnan et al (2023) with additional smoothness
constraints. While DRAL is generally not possible in the pure structure-agnostic class, we show
that it can be attained in the new hybrid one. Second, we calculate minimax lower bounds for
estimating the ATE in the new class, as well as in the pure structure-agnostic one. Third, build-
ing upon the literature on doubly-robust inference (van der Laan, 2014, Benkeser et al, 2017,
Dukes et al 2021), we propose a new estimator of the ATE that enjoys DRAL. Under certain
conditions, we show that its rate of convergence in the new class can be much faster than that
achieved by the AIPW estimator and, in particular, matches the minimax lower bound rate,
thereby establishing its optimality. Finally, we clarify the connection between DRAL estimators
and those based on higher-order influence functions (Robins et al, 2017) and complement our
theoretical findings with simulations.

1 Introduction

The effect of a binary random variable A on an outcome Y is often measured by the average
treatment effect (ATE). Letting Y denote the potential outcome that one would observe had
treatment been set to A = a, the ATE is defined as E(Y' — Y). Suppose a sufficiently rich
set of covariates X € RP is collected. Under consistency (A = a = Y = Y), positivity
(P(A=1|X) €(0,1)) and no-unmeasured-confounding (A 1L Y* | X), we have

EY!'-YY) =E{E(Y |A=1,X)-EY |A=0,X)}.

In this work, we consider the problem of estimating E(Y! — Y?) identified as above. For simplicity,
however, we focus on ¢y = E{E(Y | A =1, X)}, with the understanding that the same results apply
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to E{E(Y | A =0, X)}. The parameter v captures the average outcome if every unit in the popu-
lation takes A = 1; it can also be interpreted as the population mean outcome under missingness
at random (Rubin 1976). Here, we consider estimation of v regardless of its interpretation.

One key feature of 1 is that it can be estimated at n~1/2 rates even in nonparametric models where
the best rate of convergence for estimating b(X) = E(Y | A = 1, X) is slower than n~/2. One way
to see this is to consider a randomized trial whereby the probability of receiving treatment given
the measured covariates, P(A = 1| X), is known. Because ¢ can be expressed as ¢ = E[AY a(X)],
for a(X) = {P(A =1| X)}~!, by Chebyshev’s inequality, it can be estimated at n~'/2 rates simply
as =13 | A;V;a(X;). In non-randomized studies, however, both nuisance functions a(X) and
b(X) are unknown. In this sense, the convergence rate of an estimator of ¢ will typically depend
on how accurately these nuisance parameters can be estimated. A vast literature has thus focused
on weakening the dependence of the estimator on the nuisance functions’ estimation error.

In the context of nonparametric modeling, many widely adopted estimators of ¢ rely, in some form,
on estimation of both b(X) and a(X). The augmented-inverse-probability-weighted (AIPW) esti-
mator (Robins et al. 1994) and those based on Targeted-Maximum-Likelihood Estimation (TMLE)
(Van der Laan & Rose 2011, 2018) are two prominent examples. In particular, these two approaches,
based on the first-order influence function of v, are agnostic with respect to how the nuisances are
estimated. Other approaches consider more specific, clever estimators of these nuisances, but can
still be considered as variants of the two approaches above. Finally, the list of available estimators
of 1 also includes other strategies, such as those based on matching (see, e.g., Imbens 2004).

In non-randomized studies, where both b(X) and a(X) are unknown, the state-of-the-art to conduct
inference on v is to assume that both nuisances are estimated well enough. A standard requirement
is that the product of the root-mean-square-errors is asymptotically negligible, i.e., it converges in
probability to 0 when scaled by /n. In this case, an asymptotically valid confidence interval is
simply the Wald interval.

When it is not possible to estimate the nuisances with the accuracy required for the validity of the
Wald interval, one option is to attempt to estimate and take into account the bias of the original
estimator. This idea is connected to the development of the general theory of Higher Order Influence
Functions (HOIFs) (Robins et al. 2017a, 2008, 2009a,b; van der Laan et al. 2018), as well as the
discovery of estimators that can be y/n-consistent even if the model for b(X) or a(X) is misspecified
(Benkeser et al. 2017; Dukes et al. 2021; Van der Laan 2014). In this work, we build upon these
two streams of literature and propose a novel estimator of ), which remains /n-consistent even if
one of the two nuisances is not consistently estimated. A more detailed list of our contributions,
including minimax lower bounds, appears in Section 1.3, after introducing notation and the basic
problem statement.

1.1 Notation

We assume that one observes n iid copies O" = Oy, ..., Oy, where O = (Y, A, X) € Y x {0, 1} x R%.
Let f(z) denote the density of X and

T(X)=PA=1|X), aX)=1/7(X), bX)=EY |A=1,X), and ¢g(X)=n(X)f(X).

The parametrization of the density in terms of a(z) instead of 7(x) is natural and convenient when
deriving the lower bounds results in Section 2, but it is not essential for deriving the properties of



the estimators described in Section 3. With this notation, we can write

¥ = E{b(X)} = E {7:(1;)} — E{a(X)AY} = / a(2)b(x)g()dz.

Let us use the notation P, f = n= 13" | £(0;), Pf = [ f(0)dP(0) and | f||>= Pf2. We also let
a A b denote min(a,b), a V b denote max(a, b) and a < b denote a < Cb for some constant C' that is
independent of the sample size n. To lighten the notation, when it does not induce confusion, we
will also use a = a(X), b = b(X), a; = a(X;) and b; = b(X;). A similar notation will be used for the
estimators a(x) and b(x). We also use the notation IEXl‘XQ{f(Xl)} = E{f(X1) | X2}. Throughout,
we assume that a(xz) and 3(3:) are computed on a sample D" that is independent of O™. This
can be accomplished by splitting O™ is subsamples and then swapping the roles of the samples for
training the nuisance estimators. Further, we assume that all observations and nuisance functions
are bounded; in particular, we assume that a(z),a(x) € [1, M,], |b(x)|< M, and |b(x)|< My, for
some constants M, and M,.

Finally, recall the definition of a Hélder smooth function. We consider this function class when we
introduce our estimators in Sections 3.2 and 3.3.

Definition 1. Let a € [0,1] and C be a positive constant. A function f(x) is Holder of order « if

|f(z) — f(y)| < C|lz —y||* for every z,y in the domain of f.

Because our subsequent results only pertain to the vanishing rate of the mean-square-errors of our
estimators as a function of the sample size, we will not keep track of constants. In this light, we
will say that a function is smooth of order « if it satisfies Definition 1 for some constant C'. Finally,
letting || denote the greatest integer less than «, we say a function f is Holder of order o > 1 if
f is |a]-times differentiable with [«]*™" derivative Holder of order a — || in the sense of Definition
1, and if f has all derivatives up to order |« bounded above by some constant.

1.2 Problem statement

The AIPW estimator, also known as the doubly-robust (DR) estimator, is defined as
~ 1 <& ~ ~
Upr = — > AGX){Yi — b(Xi)} + (X)) = Pu, (1)
i=1

where p(O) = Aa(X){Y —b(X)} + b(X) is the (uncentered) influence function of 1. The variance
var(p) is the semiparametric efficiency bound for estimating 1, i.e. the smallest variance any
regular estimator of ¢ can achieve (Kennedy 2022; Newey 1990; Tsiatis 2006). Under certain
conditions, ¥pr achieves this semiparametric bound and it is thus efficient. This can be seen from
the following decomposition. Let @ and b denote the limits, as n — oo, of @ and b. In this sense,
let us assume, without essential loss of generality, that ||@ — a|= op(1) and |[b— b||= op(1). Letting

?(0) = Aa(X){Y —b(X)} + b(X), we have
YpR — ¥ = (Pn —P)(Z—B) + (Pn —P)T+P(Z— ).

The central term, when scaled by /n, converges to N(0,var(@)) by the central limit theorem.
Thus, by Slutsky’s theorem, \/n(y — 1) ~» N(0,var()) as long as the first and last terms on the
right-hand-side are op(n~'/2). Notice that var(@) = var(p) if @ = a and b = b. Next, in light of



Lemma 2 in Kennedy et al. 2020 (restated in the Appendix as Lemma 4) and the fact that @ and
b are trained on a separate sample, the first term is O]p(n_l/ 2). The most difficult term to control
is the third one, which equals

R, =P(@—¢) = /{5(38) — a(z)H{b(x) — b(x) }g(z)dz. (2)
In this light, we rewrite the decomposition @DR — ) as

YpR — ¥ = (Bn — B)P + Ry, + op(n ™). (3)

For inference, we assume throughout that equation (3) holds. The quantity R, is the conditional
bias of ¥pr given the training sample D". By the Cauchy-Schwarz inequality,

[Ral S 1@ = allllo — bl = Wpr — ¥ = Op (™2 VE{|a - al|llb— b]}})
Thus, in general, asymptotic negligibility of this term is guaranteed if
E{|[a — all[lb - b]1} < {E([@ - a*)}"/? - {E(|Ib = b]*)}'/* = o(n™"/?),

leading to the standard n~!/4-rate requirement on the nuisance root-mean-square-errors. This is
remarkable because n~/4-rates are achievable in nonparametric function classes under appropriate
structural conditions, e.g. sufficient smoothness or sparsity. For example, if ¢ and b are Holder
smooth of order s and are estimated by rate-optimal estimators (see, e.g., Section 1.6 in Tsybakov
2008 for a discussion on local polynomials), then E{||@ — al|||b — b||} = o(n~'/2) follows if s > d/2.
More generally, for some sequences of constants €, and §,, the Cauchy-Schwarz bound yields that
Eltpr — | < n Y2V 6p6, whenever ||@ — al| < e, and [[b— b|| < 6,.

When the condition ensuring €,d,, = o(n~1/2) fails, the Cauchy-Schwarz bound does not guarantee
that the bias of ¥pg is vanishing at a rate faster than n=/2, the order of the standard error. The
foundational work on Higher Order Influence Functions (HOIFs) by Robins and co-authors offers
a general, principled way to carry out functional estimation optimally. This approach has led to
new estimators of ¢ based on higher-order U-statistics, which have been shown to be optimal in
certain nonparametric models (Liu et al. 2017; Robins et al. 2017b, 2008, 2009a). This general
theory considerably expands the use of U-statistics for optimal functional estimation, which has
a long history in statistics; see, e.g., the literature on estimating integral functionals of a density
(Bickel & Ritov 1988; Birgé & Massart 1995; Laurent 1996, 1997). With respect to the settings
considered here, higher order corrections for estimating ¢ can be viewed as effectively estimating
R, and subtract it off from YpR, leading to better bias-variance trade-offs. Higher order corrections
can also be done in the context of TMLE (Diaz et al. 2016; van der Laan et al. 2021; van der Laan
et al. 2018). With a more direct focus on inference, Van der Laan 2014 and Benkeser et al. 2017
have discovered TMLE-based estimators of ) that are v/n-consistent and asymptotically normal
even if one between @ or b is not consistent. This represents an improvement upon 1/JDR because,
at best, the rate of convergence for @ and b is of order n~1/2 (corresponding to correctly specified
parametric models), so that, if the Cauchy-Schwarz bound on |R,| is employed, R, would not be
asymptotically negligible if @ or b are inconsistent. We remark that their estimators do not directly
build on the theory of HOIFs and, in particular, do not employ U-statistics.



1.3 Main contributions

In this work, we make at least three main contributions. First, we propose and develop a new
function class, which is data-dependent and can be viewed as a hybrid between the completely
structure-agnostic ones considered in Balakrishnan et al. 2023 and more traditional ones based on
smoothness conditions. The structure-agnostic class of distributions considered in Balakrishnan
et al. 2023 is defined as the set of all distributions P(e;, d,) for which it holds that [[a — a|| < e,
and [|b—b|| < 6, for some rates €, and d,. We study a subset of this class that additionally impose
some smoothness constraints on certain regression functions for which the estimators a(X) and b(X)
enter as covariates. We find that the convergence rates admitted over this more regular class can
be potentially much faster than those holding over the completely structure-agnostic ones studied
in Balakrishnan et al. 2023. As our proposed function class does not directly impose regularity
restrictions on a and b and yet can potentially admit fast rates of convergence, it can provide
a nice middle ground between complete agnosticism at one extreme and much more structured
smoothness, say encoded in Holder smoothness restrictions on a and b, at the other.

Our second contribution is to provide minimax lower bounds for estimating v in the new hybrid
class proposed, as well as in the pure structure agnostic one. We find that, over P(e,,d,), i.e.,
if the rate-condition for estimating a and b is the only information available (together with mild
boundedness regularity conditions), the rate of convergence n=/2V (¢,8,) for 1 is not improvable
in a minimax sense. This shows that, in this framework, @DR is not improvable without the
introduction of additional assumptions. Our current construction only covers the case €, < .
However, in a work concurrent to ours and developed independently, Jin & Syrgkanis 2024 show
that the bound €,46, also holds when €, > §,; their proof is conceptually similar to ours but employs
a different parametrization of the data generating process.

On the contrary, the lower bound derived for estimating ¢ in the proposed hybrid model is of order
n~Y2 v (€ A 82). In this sense, imposing additional smoothness constraints on P(e,,d,) allows
for potentially much faster rates of convergence. The rate €2 A §2 does not rule out the existence
of valid confidence intervals shrinking at the rate n~'/2 even if one of the two nuisance functions
is not consistently estimated, i.e., even if one between ¢, or §, does not converge to zero. It thus
allows for the possibility of conducting doubly-robust root-n inference. As mentioned above, in
virtue of the lower bound rate €,0,, the purely structure-agnostic class of distributions studied in
Balakrishnan et al. 2023 and Jin & Syrgkanis 2024 does not allow for doubly-robust root-n inference
in nonparametric nuisance function classes.

Our third contribution is the construction and analysis of a new estimator that achieves the rate
n~1/2v (€2 A §2) under certain conditions. As this rate matches our minimax lower bound rate for
estimating v in the proposed hybrid function class, this new estimator is a minimax optimal one.
We view our new estimator as a hybrid between the estimator of the ATE based on the approxi-
mate second-order influence function (Diaz et al. 2016; Robins et al. 2009a) and the estimator(s)
considered in Van der Laan 2014, Benkeser et al. 2017 and Dukes et al. 2021 that are specifically
designed to conduct doubly-robust inference. Our estimator can be used for doubly-robust inference
under arguably more transparent conditions than the ones previously considered in the literature,
which did not posit a hybrid smoothness/structure-agnostic model like we do here. In addition,
our constructions can be easily adjusted to conduct doubly-robust inference in settings where this
is not readily feasible using currently available estimators, such as to estimate the parameters in a
partially linear logistic model (see Appendix A). Finally, we evaluate the performance of the newly
derived estimator against that of ¥ypr and that of the estimator described in Benkeser et al. 2017



and implemented in the R package drtmle (Benkeser & Hejazi 2023). The code to replicate the
simulations can be found at https://github.com/matteobonvini/dr_inference.

2 Structure-agnostic viewpoint

2.1 Purely structure-agnostic class of distributions

In this section, we describe the optimality viewpoint introduced in Balakrishnan et al. 2023. They
consider the problem of functional estimation with nuisance parameters when all that is known
are convergence rates for estimating the nuisance components. In our setting, we aim to derive
the best possible rate for estimating ¢ when the only information available are bounds of the
form ||[a — a|| < €, and ||b — b|| < §,,. This framework is particularly helpful for understanding
how precisely one can estimate ) without imposing structural assumptions on the data generating
process; e.g., smoothness or sparsity on a(x) and b(x). In deriving the lower bounds in this section
and the next one, we assume Y is binary and X is supported in [0, 1]d.

Given two arbitrary estimators a(z) and 3(;1:), the class P(ey, d,,) consists of all densities such that
la —al <€, and ||b—0b|]| <6,. Our first result is that the rate of convergence of any estimator of
® over this class cannot be faster than n=1/2V ¢, - §,. Our current proof breaks for data generating
processes where €, > d,. However, both cases are covered by the concurrent work by Jin &
Syrgkanis 2024. The class P(ep, 6,) aims to describe the setting where one constructs a(-) and b(-)
on a separate independent training sample. The informatioll available would then be encoded in
the form of high-probability bounds for ||a — a|| < €, and ||b — b|| < §,,. Without essential loss of
generality, in what follows, we assume these bounds hold exactly (not just with high probability)
and refer to Section 3.1.1 in Balakrishnan et al. 2023 for further discussion.

Proposition 1. Let P(en, dy) denote the class of all densities such that sup,cpie, s,)llap—all2 < €

and SUPpep (e, 5, 1p —B||2 < 6p. Then, provided that €, < dy,

inf  sup E|T, —¢p| 2 €,0n.
Tn pep(fnaén)

Proof. See Jin & Syrgkanis 2024 for a full proof that also covers the case when ¢, > §,,. Our proof
relying on €, < d, is reported in Appendix B.2. O

Proposition 1 establishes that, if the only assumption on the data generating process consists of
error bounds for estimating a and b, then ¢ cannot be estimated at a rate faster than the product
of these bounds. This means that, to improve upon the AIPW estimator ¢pr, which achieves this
rate under mild conditions, one needs to introduce other assumptions in addition to rate conditions
on the nuisance components. Furthermore, if either a or b is inconsistently estimated, so that
either €, or §,, do not vanish as n goes to infinity, then 1 cannot be estimated at a rate faster than
€n N On, without introducing other assumptions. This implies that nonparametric, doubly-robust
root-n inference is possible only if one relies on additional conditions. Note that this is meant as
a clarifying technical statement; we do not claim that relying on such additional conditions should
necessarily be avoided in practice.

We conclude this section with a remark highlighting a connection between the result from Propo-
sition 1 and the seminal results on optimal estimation of functionals indexed by Hoélder nuisance
components.


https://github.com/matteobonvini/dr_inference

Remark 1. Suppose that a and b are Holder smooth functions on a d-dimensional domain of orders «
and . Then, there exist rate-optimal estimators in these classes that satisfy, with high probability,
@ — a|| < n/Catd) and |[b—b|| < n PGB e €, = Cun~/Rotd) and §,, = Cyn A/ (28+d)
for some constants C, and C,. Suppose that the good event ||[@ — a||< €, and |[b — b||< 8, holds.
Proposition 1 (in the case of @ > () or more generally Theorem 2.1 in Jin & Syrgkanis 2024
yield that no estimator of ¢ can achieve a rate faster than n=/2 V ¢,6,. This rate is slower than
the minimax rate for estimating « in this model, which is of the order n=/2 v n=4/4std where
s = (v + )/2 (Robins et al. 2008, 2009b). This does not contradict Proposition 1: the class
P(n~/Ratd) ,=B/(26+d)) is larger than the class of densities such that a and b are a- and -
Hoélder smooth. In fact, the worst-case construction used to prove Proposition 1 relies on nuisance
functions that are not necessarily Holder smooth. In this sense, Proposition 1 suggests that imposing
smoothness assumptions on a and b induces regularity on ¢ that is in addition to the regularity
induced on a and b. This then results in a model where ¥pg is no longer optimal and one has to
rely on additional corrections for optimal estimation, such as those based on HOIF's. This intuition
aligns with the result that in a Holder model where o + 8 > d/2, ¢ can be estimated at n—1/2
rates without the need for consistent estimators of a and b. However, if the nuisance functions’
estimators are consistent, then the HOIFs-based estimator is also semiparametric efficient in the
sense of having the smallest asymptotic variance among all regular estimators. See Liu et al. 2017,
particularly Corollary 5 and Remark 7.

2.2 Hybrid structure-agnostic class of distributions with smoothness

Next, we introduce our main hybrid class, as well as two other hybrid models that are tailored
to settings where it known whether a or b is easier to estimate. In defining these classes, we
depart from the structure agnostic framework introduced in Balakrishnan et al. 2023, encoded in
P(€n,0n), to introduce certain smoothness conditions. In particular, we consider P,(e,) denoting
the collection of all densities such that ||[a—a| < €, and E{0(X) | A=1,a(X) = t1,a(X) = to, D"}
is smooth. The reason why this class can be of interest in the context of estimating ¢ is that one
can write R,, as

R, = E [A{@(X) — a(X)Hb(X) = B(X)} | D"]
= E[A{a(X) - o(X)}E{b(X) | A= 1,a(X),a(X), D"} | D"] — E [A{a(X) - o(X)}b(X) | D"]
= E[{AG(X) ~ JE{b(X) | A= 1a(X),a(X), D"} | D"] ~E [{4a(X) ~ 1J5(x) | D"
IfE{b(X)| A=1a(X),a(X),D"} was known, R,, could be estimated by a sample average with
accuracy of order n=1/2. The hope is that if this additional nuisance function is unknown, as it
would be in practice, but smooth enough so that it can be estimated well, one may still estimate
with n~1/2-accuracy. A more structure-agnostic way to define Pa(€r,) would be to simply impose a

rate condition on the accuracy with which E{b(X) | A = 1,a(X),a(X), D"} can be estimated, as
opposed to assuming this function is smooth. We leave this refinement for future work.

Motivated by writing R,, as
R, =E [A{Y ~B(X)}a(x) | D"} ~E [A{Y CHXNE{a(X) | A= 1,5(X),b(X), D"} | D],

we also consider the class of densities Py(d,,) such that ||/l; —b|| <, and E{a(X) | A = I,E(X) =
t1,b(X) = to, D™} is smooth.



Finally, we consider Py (€p, dy,), the main hybrid class that we propose. It restricts Pen,0n) to
include only densities for which E{a(X) | A = 1,b(X) = t1,b(X) = t3,a(X) = t3,D"} and
E{b(X)| A=1,a(X) =t1,a(X) = t2,b(X) = t3, D"} are smooth. In the following proposition, we
derive a minimax lower bound for each of the three hybrid classes considered.

Proposition 2. We consider three cases:

1. Let Po(en) denote the class of all densities such that sup,ep, (e, llap —all < €, and E{b(X) |
A=1,a(X) =t1,a(X) = te, D"} is infinitely smooth. Then,

inf sup E|T, — | > €.
T pePa(en)

2. Let Py(6n) denote the class of all densities such that sup,cp, (s, lbp —BH < 6, and E{a(X) |
A=1,b(X) =t1,b(X) = to, D"} is infinitely smooth. Then,

inf sup E|T, — | > 62,
Tn PEP(n)

3. Let Pap(€n, n) be the class of all densities such that 1) sup,ep,, [|ap—al|< €, and sup,ep_, [|bp—
BI< 60, 2) B{H(X) | A = La(X) = t1,a(X) = £,0(X) = ts; D"} and E{a(X) | A =
1,b(X) = t1,b(X) = to,a(X) = t3; D™} are infinitely smooth. Then,

inf  sup  E|T, — 1| 2 02 A€l
Tn PEPapb(€n,0n)

As exemplified in the third claim, the smaller class Pyp(€n,dn) is an example of a collection of
densities for which our lower bound allows for the possibility of doubly-robust, root-n inference.
In fact, 62 A €2 = o(n~Y/2) if either ||a — al|= o(n~'/4) or Hg— bl|= o(n='/%). In Section 3.3, we
construct an estimator achieving this rate, under certain conditions. This estimator can then be
used for conducting doubly-robust inference via a standard Wald confidence interval.

Remark 2. All the lower bounds from Propositions 1 and 2 can be strengthened by taking the
maximum between the rates shown and the parametric rate n~/2. Even if the nuisance functions
a(x) and b(x) were known exactly, one would not typically be able to estimate v are a rate faster
than n~1/2. The resulting lower bounds can be derived by a standard argument; see, for example,
Section B.3 (Case 1) in Balakrishnan et al. 2023.

3 New estimators of

3.1 Preliminaries and overview

In this section, we consider three new estimators of ¢ and derive upper bounds on their risk. Each
estimator will be written as the doubly-robust estimator ¢pg (1) plus a term 7,, taking a different
form depending on the assumptions invoked. That is,

¥ = YR — Ty = Pu — Ty, where (0) = Aa(X){Y = b(X)} + b(X).

We view T, as an estimator of R,, (from (2)) that stems from merging ideas from the theory of
HOIF's and some observations previously made in the doubly-robust inference literature. Relative



to the HOIF-based estimators of ¢, our constructions do not directly approximate z — a(z) —a(x)
and x — b(x) — b(x) with a dictionary of basis functions; in particular, they do not require the use
of computationally expensive tensor products bases to approximate these functions. Relative to
existing estimators proposed in the doubly-robust inference literature, ours are “one-step” in the
sense that they do not require iterative procedures. Further, the conditions under which they can be
used to construct valid Wald-type confidence interval are arguably more transparent. For example,
in contrast with the estimators studied in Benkeser et al. 2017 and Dukes et al. 2021, under mild
assumptions, the limiting variance of the estimators studied in this work does not depend on which
nuisance function is consistently estimated.

As noted, for instance, in Van der Laan 2014 and Benkeser et al. 2017, and briefly discussed in
Section 2, R,, can be written in different ways other than as in equation (2). In this work, we
consider a slight departure from their parametrizations of R,, which is, however, still based on
their idea of considering additional nuisance functions taking the form of regressions with both
estimated outcomes and covariates. Define

sa(ty,t2; D") = E{b(X) —b(X) | A =1,a(X) = t1,a(X) = t2, D"},
sp(t1,to; D™) = E{a(X) — a(X) | A=1,b(X) = t1,b(X) = t5, D"},
Falti,ta,t5; D) = E{b(X) = b(X) | A = 1,a(X) = t1,a(X) = ts,b(X) = t5, D"},
Folt1, ta, t3; D) = B{a(X) — a(X) | A = 1,b(X) = t1,b(X) = t5,4(X) = t3, D"}.

Notice that

sa(ti,te; D) = B{Y = b(X) | A =1,3(X) = t1,a(X) = t5, D"},
falti,to,t5; D) = B{Y —b(X) | A =1,0(X) = t1,a(X) = ta,b(X) = t3, D"},

but s, and f;, cannot be written as regressions of observed outcomes on partially observed covariates.
The functions f, and fp enter the definition of the model considered in Claim 3 of Proposition 2,
while s, and s; are similar but not quite the same functions as those defining the models considered
in Claims 2 and 3 of Proposition 2.

The bias R, can be written an expectation of an observed random variable times one of the four
functions above:

Ry, = B{(A@ — 1)54(a,a; D") | D"} = E{(Ad — 1) fa(@,a,b; D") | D"}
= E{A(Y —b)sy(b,b; D) | D"} = E{A(Y —b)fy(b, b,a; D) | D"},

where, for shorthand notation, @ = a(X) and b= /b\(X ). If either s,, sp, fo or fp were known,
then R, could be estimated efficiently by a sample average. In Section 3.2, we derive estimators
tailored to models where s, or s; are Holder functions. These estimators will improve upon ¥pg,
and match the lower bound rates from Claims 1 and 2 in Proposition 2, when it is known whether
Sa OF Sp is smoother and thus easier to estimate. Without such knowledge, they would perform, in
terms of mean-square-error, as well as )pr but not necessarily better. To remedy this, in Section
3.3, we construct an estimator that, under certain conditions, can improve upon ¥pgr without the
knowledge of which nuisance function is easier to estimate. Further, it is shown to achieve the
lower bound rate from Claim 3 in Proposition 2. We view this estimator as a possible one-step
counterpart to the TMLE ones proposed in Benkeser et al. 2017, although the additional nuisance
functions entering the parametrization of R, that they use are not exactly the same as ours.



All these nuisance functions depend on estimated outcomes and covariates. The problem of non-
parametrically estimating a regression function when some covariates need to be estimated in a
first step has been considered, for example, by Mammen et al. 2012, Sperlich 2009 and Dukes
et al. 2021. In non-randomized experiments, regression adjustments based on the propensity score,
e.g. via matching (Abadie & Imbens 2016) or ordinary least squares (Robins et al. 1992; Vanstee-
landt & Joffe 2014), represent instances of such a general estimation problem. To understand one
of the main challenges in this problem, due to its intrinsic non-smoothness, consider estimating
E(Y | f(X) =), for some function f(X), estimated by f(X), and observable random variables Y’
and X. Regressing Y onto f(X) via some local method that depends on a vanishing bandwidth A
will need to ensure that h does not shrink faster that the error f — f or else the localization would
be “misplaced.” This, in turns, leads to difficulties in choosing the correct order of h as well as
to potentially a dramatically slow rate of convergence since one may expect the error f — f to be
inflated by multiplication by h~! (see, e.g., Theorem 1 in Mammen et al. 2012 and Theorem 3 in
Dukes et al. 2021).

In the context of our problem, one approach is to assume that, say, s,(@a, a; D™) is sufficiently close
to E{b(X) —b(X) | A =1,a(X),D"} and then proceed by bounding the error in estimating this
latter regression function. This route was taken by Dukes et al. 2021 and Benkeser et al. 2017
and it relies on estimating a regression function with unknown but estimable covariates; in light of
the discussion above, this can be challenging. Instead, we impose smoothness conditions directly
on sq(t1,t2; D™) and find that simply regressing b(X) — b(X) on a(X) among units with A = 1
would yield a good estimate of s,(t1,%2; D™) up to an error depending on @ — a. Which bounding
approach, if any, is appropriate likely depends on the application considered. We conclude this
section by providing some intuition for when one may expect that s,, sp, fq and f; possess some
smoothness. However, a formal investigation that takes into account specific estimators of a(X)
and b(X) is left for future work.

Remark 3. Our proofs of Propositions 3 and 4 below require control only for ¢; and to of the form
t1 = a(xg) and ty = a(xg) for some arbitrary zp in the support of X. In this light, in this remark,
we take sq(a(zp),a(zp); D™) as the example and consider two cases where one may expect this
function to be smooth. We leave the conditioning on A =1 and D™ implicit.

Perhaps the easiest case to consider is when s,(a(X), a(X); D") = E{b(X) —E(X) | a(X), D"}, ie.,
b(X) —b(X) =m(a(X)) + €, where € is mean-zero given both a(X) and a(X). If this is the case,
then one needs to assume that m(-) possesses some smoothness, which is arguably a more standard
requirement as it does not involve a generated regressor.

Next, we consider the case where, conditional on D", (b(X) —B(X), a(X),a(X)) is jointly Gaussian:

~ 2 - -

b(X) — b(X) b %5 “ab-b) “ap-b)
a(X) ~ N a5 | Pap) o2 Oda , where o, = cov{v(X),w(X)}.
a(X) % Oapb)  Oda cr%
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We have that

sa(a(0), a(wo); D") = sa(a(21), a(21); D")

2
Tab-0)% ~ 9aa% -5 . %ab-0)% ~ Pqb—p)%aa
:( : (),202_0.2 “ )> {a($0)—a(951)}+< e e ){a(xg)—a(xl)}

= Aufa(eo) — a(e1)} + Aofa(zo) — alen)}.

Therefore, s(a(zo),a(xo); D™) would be Lipschitz if |Aj| and |A2| are bounded. Letting pg, =
cor{a(X),a(X)}, we can write

A = Ta-b) 1 %a(b-b) 0a—0a | Paa %(@—a)(b-b)
0500 1+paa 0502 1—p2  0a0a (1—p2)°

Ay — Ta-b) 1 %a(b-b) 0a—0a 19 (afa)(bi)'
060qa 1+ pgaa O%O‘a 1-— p%a 050 (1— p%a)

So,ifo, 21,05 21, loz— 04| S 1—p2, and |O‘ (G—a)(b— b)| < 1—p2 , then |Aq| and |As| are bounded
and so sq(a(zg),a(xg); D™) is Lipschitz. These straightforward calculations provide an example
of more primitive conditions, albeit under idealized conditions, under which s,(t1,t2; D™) may be

expected to possess some smoothness.

3.2 FEstimators exploiting the smoothness of either s, or s, but not both.

In this section, we present two estimators, @a and @b, that are tailored to models where s, and s
have some smoothness, respectively. We will focus on @ba, but the same reasoning essentially applies
to 1/}1, as well. Recall the notation a; = a(X;) and @ = a(X). Consider the estimator wa wDR Tha
for

n(@; — @) 5
Tna Z Z AjiA] (}/j - bj), where

1<17éj<n Q(al)

Kp(u) = h~ YK (u/h), for some vanishing bandwidth h, and Q(al) (n—1)"1 > i AiKn (@ —a;).
Throughout, we assume the following:

Assumption (Kernel). The kernel K (u) is a non-negative, bounded, symmetric function (around
zero) that is supported on [—1, 1]. One example is K (u) = 0.51(Ju| < 1).

It can be seen that our approximation of R,, with T}, is based on a second-order U-statistic inspired
by the theory of HOIFs. We expand on the similarities and differences between our contributions
and the literature on HOIF's in Section 4.1. A more detailed comparison between our estimators and
those proposed in Benkeser et al. 2017 can be found in Section 4.2. Interestingly, the term T, is
similar to the correction in the approximate second-order estimator of 1) proposed (but not analyzed
in detail) in Section 3.2 in Diaz et al. 2016. However, they consider different nonparametric models
and thus do not derive results comparable to ours. In fact, they conclude that their estimator, at
least in terms of rates, does not improve upon estimators based on the first-order influence function,
such as @DR.

If E{A; K} (a; —a;) | X;, D") and @*1@-) are bounded, then by the Cauchy-Schwarz inequality:

[E(Tha | D™)| S [[@ — alll]b = bl].

11



In this light, this term has expectation of the same order as Ry, the conditional bias of QZDR, and
thus one may hope to not degrade the performance of ¥pg, at least asymptotically, by including
The in the final estimator. A formal calculation, however, would need to consider the variance of
Tha as well. Next, we outline the reasoning for why and when subtracting off T}, from ¥pr may
lead to a better estimator.

We write
Aj(Y; = b)) = Ajsa(@i, ai; D") + Aj{sa(@j, a5 D") = sa(@i, ai; D™)} + Aje;,
and notice that, by definition of Q(a):
1 . Ky(a; —a;) o IR o
Py p— ZZ{AMM - I}WAjsa(ai, a;; D) = - Z{Aiai — 1}sq(a@;, ai; D).
1<i#j<n 4 i=1

Conditioning on the training sample D™, this term has mean exactly equal to R,. Next, by
definition:

E(Aje; | @, a5, D) = E[A;{Y} — bj — s4(aj,a;; D™)} | G5, a5, Aj, D"] = 0.

This implies that E(Aje; | aj, Aj, D") = 0 and, by independence of O; and O; for i # j, also that
E(Aje; | aj,a;, Ai, Aj, D™) = 0. In this respect, we have

R Kp(d2 —a . .
E(Th, | D) = Rn + E | A (a1 — al)h(@(z/\)l)Ag{sa(ag, ag; D™) — sq(@1,a1; D)} | D .
ai
If s4(t1,t2; D™) is Holder of order « € [0, 1] (Definition 1), we have
|54 (@2, ag; D) — sq(@1, a1; D™)| < {(@2 — @1) + (a2 — a1)?}°/?
< {4(@y — @1)% + 3(ag — @)% + 3(a1 — a1)?}*/?

S las —ai|* + |ag — az|® + |a1 — a1

We therefore have

AyK )y Gy —
IE(Tha | D) — Ro| <E |[a — aﬂM]sa(@,ag;D”) — sa(a1, a1; D")|| D”]
Q(ay)
R AoK Gy —G1) R R
<E|[a —al\w“ag — a1l + |ag — as|® + a1 — a1|*} | D"] .
Q(ay)

If Q(a1) is bounded away from zero and E{ A3 K}, (@2 — G1) | X1, D"} is bounded, then
BT | D) = Ra| S (Il — a ™™ + [[@ — allh®) A @ — all[b— b].
For a =1, i.e., s4(t1,t2; D™) is Lipschitz, choosing h =< n~2 yields
E( | D)~ | £ [1a—all> A [[a — al [ 1.

The bound on the right-hand-side of the display above improves upon the conditional bias of @ZDR
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in the case when ||a — a| is of smaller order than H/b\— bl|.

Next, we look for an estimator that achieves a bound on the bias of order b—b]12 A |[a—all|[b—b.
A natural candidate is % T/JDR T, Where:

T = gy o 0 (A~ )R A ),

1<z;éj<n *1(bj

Q-i(bj) = (n—1)~ ZAKhb—m

s=1,s#1

o~

We remove the i*" observation in @_i(bj) because we need to ensure that
N AR - K= _
E {(Alal - 1)@\(]/\))14](}/} — bj) | Dn} =E {Al(az - al)z,j(JA))AJ(Y} — bj) | Dn} .

This would not be the case if the residual A;a; — 1 gets multiplied by a term @(/l;]) involving A;.
With this modification in place, calculations analogous to the ones above for v, yield that

- - a—allb— 0 _ ~
E(T,, | D") — R,| < [ [0 =% v h2([b— b y Na=alllb=bll\ e e .
|E(Ty | D™) IN(I | | | N I Il |

when sy (t1,to; D") is Holder 8 € [0,1]. When 8 = 1 and h =< n~'/2, the bound reduces to
[y | D7) = 0| S 72V B - b)) A J@—all[b—b].

Therefore, 1, would have smaller conditional bias than ¢pg if b(x) is easier to estimate than a(z) so
that ||b—b||? is the dominant term. In the following proposition, we collect more formal statements
on the conditional bias and variance of v, and .

Proposition 3. Suppose that E{A;K}(a; —a;) | X5, D"} <1 and that @@j) is bounded away from
zero for 1 <i# j <mn. Then, if sq(t1,t2; D™) is Holder of order a € [0,1], it holds that

E(va =9 | D")| S (h%lfa —all v [[a—al'**) A @~ all|[b - b]

y la—al? b - o

var(iha | D") S 07tV (nh) -

Suppose that E{Ath(/l;j —/b\,) | Xi, D"} < 1 and that @_Z(/b\]) is bounded away from zero for
1 <i#j<n. Then, if sp(t1,ta; D™) is Holder of order 8 € [0,1], it holds that

E(¢, - | D")

~ ~ [@—allo =0\ . .~
< (hﬁnbbu Vb= bl|'E v ) Ma—aliz -

@ — al|?|[b — b||2
nh

var(@b | D") < n~tv (n2h)_1

The results from Proposition 3 yield that @Za can improve upon the performance of QZDR in models
where a is easier to estimate than b, while v, can improve upon ¥pgr when b is easier to estimate

13



than a. The main requirement for the proposition to hold is that s, and s, possess some minimal
smoothness encoded in the Holder condition. It can be seen from a standard change of variables
argument that the conditions E{A; K}, (a;—a;) | X;, D"} and E{A4; Kh( bi) | X;, D™} are satisfied
if a(X) and b( ) have densities with respect to the Lebesgue measure, respectlvely We expect the
assumption that Q(aj) and Q_;(b ;) are bounded away from zero to hold in practice as long as the

sample size is large enough and a(X) and b(X ) are evenly distributed on their support.

Remark 4. It is reasonable to consider applications where a and S could be greater than 1, i.e.,
sq and sp are potentially smoother than what considered in Proposition 3. This higher-order
smoothness could then be exploited using higher-order kernels or kernels of local polynomials, for
example. However, our analysis (not reported in the interest of sp\ace) suggests that the bound on
the bias would still contain terms of order |[@ — a||**@ ) and |[b — b||**(BA). This is consistent
with our lower bound analysis (Proposition 2), which establishes that the rate of convergence for
¥, and 1y, in these models cannot be faster than |@ — al|? and Hb b||2, respectively. Attempting to
track higher order smoothness, however, may have benefits in terms of more flexibility in choosing
the bandwidth h, particularly in finite samples. We leave the study of higher-smoothness regimes
for future work.

Remark 5. Suppose that « = 1 and set h < n —1/2 1f ||a—al||= op(n=Y*), then |¢)a Y|= Op(n=1/2).
Further, by the decomposition (3), v/7t(thg —1b) ~ N (0,var()). This means that Vo can be used for
constructing a Wald-type confidence interval even if b is not consistent. However, if ||b b||= op(1),
then wa will also achieve the semiparametric efficiency bound var(y) because, in this case, o = ¢
since @ = a and b = b. Similar considerations apply to 1/)b with the roles of @ and b reversed.

3.3 Main estimator

To be useful in practice, the estimators presented in Section 3.2 require knowledge of whether a or
b is easier to estimate. In this section, we consider the estimator ¢ = ¢pgr — T}, for

h(/l; —bi)K.
D ! L

1<z7£]<n Q(

Knl@5 = @) 4y 5.
) Aj(Y; = b)

where Q(a;,b;) = (n — 1)"' Y, AjKn(@; — @;)Kn(bj — b;). We will show that, under certain
conditions, this risk of this estimator is of the same order as the lower bound on the risk of any
estimator derived in Proposition 2 (Claim 3), thereby establishing sufficient conditions under which
this estimator is minimax optimal.

A key difference between 17/[}\ and either @Ea or 12() is that @Z is tailored to models where both
fa(ti,to,t3;D™) and fp(t1,te,t3; D™) have some smoothness. The central term multiplying the
two residuals A;a; — 1 and A;(Y; — EJ) is meant to act as a kernel of a local regression on (a,B)
rather than on @ or b alone. The reason for this change is that J is designed to correct the bias
of @DR by subtracting off an estimate of R, even when it is not known whether a or b is easier to
estimate. In fact, one can see that estimating f,(a,a,b; D™) and f(b, b, a; D™) can be carried out
simply by modifying the outcome variable as both residuals would be regressed onto (’d,g). This
then allows for the construction of estimates of R,, that would be essentially the same whether one
expresses Ry in terms of f, or f. One caveat is that summing over ¢ in the expression for 7;, should
return an estimate of fb(b], bj,aj; D™), but this is not exactly the case because Q(al, ;) is localized
at (ai,&) instead of at (aj,Zj). In Proposition 4, we deal with this issue by invoking a Lipschitz

assumption on the density of (a,b) among units with A = 1. Whether this condition (or similar
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ones) can be avoided remains an open question. The main advantage of using {b\ versus either 12);
or 1y is that w is able to correct for R, when R, is expressed as a function of f, or f, using the
same term 7). Relative to wa and zpb, the price is a moderate increase in the variance because of
the product of two kernels, which is needed for estimating the regressions on a two-, as opposed
to one-, dimensional domain. The following proposition summarizes our bounds on the bias and
variance of .

Proposition 4. Suppose that the distribution of (Zi,g) among units with A =1 has a density with
respect to the Lebesque measure that is Lipschitz. Suppose that @(ﬁi, b;) is bounded away from zero
for 1 < j <n. Further, suppose that fq(t1,t2,t3; D™) and fy(t1,t2,ts; D™) are Hélder smooth order
a and B, respectively, with a, B € [0,1]. Finally, assume that nh?> — co. Then,

E($—¢ | D")

_ . in o ~ ~ [@ — al||[b— b]
< (l[a - allh vw—aw+)A<w—bmﬁvw—mP“v,m2

Ala = alllfo o]
L, b la—alPb—b|?
V

S <L
var(y | D") 5 n v (nh)? nh?

It can be seen from Proposition 4 that TZ has the potential to improve upon 1//;(1 and 1@, in the
sense that its bias is the minimum between their biases. This comes at the price of a smoothness
assumption on both f, and f, as well as a Lipschitz condition on the density of (a(X X),b(X)). Under
these conditions, @D also improves upon Q,Z)DR and can deliver doubly-robust root-n inference when
cither @ or b converges at n~ /4 rates, as long as & = 8 = 1 and h =< n~'/%. In practice, choosing
h can be nontrivial. In Section 5, we select the cross-validated bandwidth that an estimator of
the regression of f,(t1,te,t3; D™) would choose. This choice can be implemented using off-the-shelf
routines but we do not claim any optimality for it. How to choose the bandwidth in practice
remains largely an open question. We note that this difficulty in selecting the tuning parameter
also arises in Dukes et al. 2021.

Remark 6. The assumption that the density of (@(X),b(X)) among units with A = 1 is Lipschitz
could potentially be relaxed to requiring that the density is Holder of order v € [0,1]. However,
our bound on the bias would then be

E(v - | D")| < (la - allh® v j@ - all"*) All@ — all[b - bl

- - a—alllb—o| _ ~
a5 = nf v p - e v NE=alllb =Bl iz g )
(H | | I Ny I Il |

Remark 7. Consider the case where a = 8 =1 and set h < n~'/4. Then, it holds that

E@ - | DY) S la—al A b - bl + op(n/?)

var(ip | D) Snt v 2@ — af?lfb - b))%,

In this light, from (3), \/ﬁ(@g — ¢) is asymptotically normal as long as |[@ — al|= op(n~/*) or
b — b= op(n~*). Further, it is semiparametric efficient if, in addition, ||@ — a||= op(1) and
16— bl|= op(1).
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Remark 8. We believe our construction of 121\ sheds light on a point raised by Benkeser et al. 2017
about the putative superiority of TMLE over one-step corrections when it comes to performing
doubly-robust inference (Section 4 in Benkeser et al. 2017). The authors note the difficulty in
deriving doubly-robust, asymptotic linear estimators that take the form of ¢pr plus a correction
term. This apparent difference in performance is surprising, as one-step estimators and TMLEs are
grounded in the same semiparametric efficiency theory and typically, at least asymptotically and in
regimes where 1 admits root-n-consistent estimators, share largely the same properties. Proposition
4 shows that, under certain conditions, there exists in fact an estimator that can estimate R, “in
one step” and could thus be used for doubly-robust inference.

Finally, in Appendix A, we briefly discuss how our approach can be applied to the partially linear
logistic model. This is a type of parameter which the approach from Dukes et al. 2021 does not
readily extend to. Instead, we show how a suitable modification of ¢ can deliver doubly-robust
inference in this setting as well.

4 Connections to other literature

4.1 Higher order influence functions

In this section, we expand on the similarities and differences between @/D\ and the estimator of v
based on the (approximate) second-order influence function. The estimator is described in detail
in a series of articles by Robins and co-authors (Liu et al. 2017; Robins et al. 2017b, 2008, 2009a).
It takes the form:

- - 1 ~ - _
YHorF-2 = Ypr — nln—1) Z Z(Azai — pf Q7 'p Ay (Y = b)),

1<i#j<n

where p(z) = (po(x), p1(2), ..., pr(x)) is a vector of basis functions suitable for approximating the
functions a(z) —a(z) and b(x) —b(x), and Q = E{Ap(X)p? (X)}. When X is multivariate, p(x) can
be taken to be a tensor product of univariate basis functions. The tuning parameter k is chosen
to diverge with the sample size n to obtain progressively better approximations of R,,. A natural
estimator of € is its empirical counterpart. However, in regimes of low-smoothness, k is selected
to grow faster than n so that the empirical version is not invertible. In this case, an alternative
estimator, which requires estimating the density of X, is [ p(z)p’ (z)g(x)dz, where g(x) denotes
the density of X among the units with A = 1 multiplied by P(A = 1). See Liu et al. 2017 and Liu
& Li 2023 for additional details.

One can see that @Z and QZHO]F_Q differ only in that ﬁk(:z:l, xj) = pfﬁ_lpj is replaced by

~ o~

Ty (s, bi, g, by) = Q" (@5, by) Kn (@ — ;) Kn(bs — by)

in the former. The kernel ﬁk(:m, xj) is designed to approximate the kernel of an orthogonal pro-
jection in Ly(g). That is,

Ez,1pn [e(Xs, X;5) A;{Y; — b;(X)}] = b(X3) —b(X;) 4 approximation error.

The larger the size of the image of the projection (i.e., the larger k), the smaller the approximation
error is. However, the variance of ¥ gorp_o increases with k, so k needs to be carefully tuned
to minimize the mean-square-error. In practice, one needs to use II; in place of II, so that the
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approximation error depends also on the accuracy with which  can be estimated. Additional
higher-order corrections are needed when [|Q~! — Q71||o, or [|[§ — g]|e are not sufficiently small.
One key feature of the population version Iy (z;, z;) is that it satisfies

E {(Aiai — DI(Xs, X)) A (Y — D)) | D”} - /Hk(a — ) (@) (b — b)(2)g(x)dz,

where I, (f)(z) = p(z)TQ~! [ p(x)f(z)g(x)dz denote the weighted orthogonal projection (with
weight g) of f onto the space spanned by p. This is crucial to obtain that

Ry~ B {(A — DI (X X5) 4,0 = 5) | D"} = [(1 =)@ = a)(@)(T = )b~ D))o,

which is a remainder error term that is particularly small because it is a product of approximation
errors. The kernel 11, (@;,aj, b, bj) appearing in ¢ does not yield a product of approximation errors
even if the true Q(aj@-) is used. However, it is designed to achieve the similar goal of approximating
the kernel of a local regression in the sense that

Ez,pn [Hh(ai,@,aj,Bj)Aj{Yj —b;(X)} = fala, as, bi; D™) + approximation error.

Crucially, it retains a symmetry property from IIj(x;,x;), which is that taking the expectation
with respect to Z; yields an approximation of f,(a;, ai, bj; D™), while taking the expectation with
respect to Z; yields an approximation of f,(b;,b;, a;; D™):

o~

Ez, pn [ﬁh(ai,@,aj@)(Aia(Xi) — 1)} = fy(bj, bj,a;; D") + approximation error.

This then allows for the estimation of R, relying on f, or f, depending on which one is smoother.
One advantage of ¢ over ¥ gorr—2 (or higher order versions) is that the kernel IIj, in ¢ is low
dimensional no matter how large the dimension of X is. The advantage of estimators based on
HOIFs is that they can better exploit the regularity of a and b (as opposed to being agnostic with
respect to their structure and instead exploiting the regularity of f, and f;) when the dictionary
of basis functions is chosen appropriately. Further, they are grounded in a very general theoretical
framework for functional estimation.

4.2 Doubly-robust inference

Van der Laan 2014 and Benkeser et al. 2017 derive estimators of ¢ that remain \/n-consistent and
asymptotically normal even when either 7 = 1/a or b (but not both) is misspecified. More recently,
Dukes et al. 2021 have also proposed estimators enjoying this property but focused on the expected
conditional covariance functional, defined as E{cov(Y, A [ X)}. In this section, we briefly outline
some similarities and differences between 1 and the estimator proposed in Benkeser et al. 2017 and
implemented in the R package drtmle (Benkeser & Hejazi 2023).
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To start, the authors write R,, = P(qZJ\DR — 1) as

R, =1(7 = W)E{(b_ b)ff_”) | D”} +1(b= b)E{@_ T =) D"}

+E{<3—b>7<r%—w> |Dn} +E{<B—b><%—j><%—w> ,Dn}

3

v

where we recall the notation 7 and b to denote the limits as n — 00 of # and b respectively. The
last two terms are asymptotically neghglble as long as 7™ and b converge to their corresponding
limits at n~'/4-rates and either b = b or ¥ = 7. Next, they make the observation that the first
term can be written as

E{(b O)(F =) ]D"}:—E[E{Y—b X)|A=1,7(X), (X),D"}{W}]D”]
A=
1/a

, (X)), m(X), D"} is essentially sq(t1,t2; D™) up to the parametriza-

Notice that E{Y —b(X) |
=1/a(x ) as opposed to a(r), and with b replacing b. Next, they show that

tion in terms of 7(x)

E {@_ T =m) | D"} —E | A{Y —B(X)}E{A;gg(i 60,400, 2} | D"
m E{A | b(X),b(X), D"}

Because one does not know whether 7 = 7 or b = b, following the guiding principles of TMLE,
they propose fluctuating 7, b, as well as the estimators of the three other nuisance functions,

IE{A ") |1 5(X), D } E{A | b(X),D"}, and E{Y — B(X) | A = 1,7(X), D"}, so that they

51multane0usly satisfy:

= {Y—b* i)} =0,

- ok _A* — ;[_\* n *(Xl) B A’L ~
R;E{Y V(X)) | A=1,7"(X )D}{W*(Xi) } 0,

- B AR x), o)
”; { ) E*{A|b*(X), D"}

They propose an iterative procedure to solve these three moment conditions. However, their results

are in terms of high-level conditions and the convergence properties of their algorithms are not fully
analyzed. For example, two conditions are that

/ [IE*{Y —b(X) | A=1,7(x),D"} —E{Y —b(X) | A = 1,7(z), 7(z), Dn}}2 dP(z) = op(n/?),
/ By —B(X) [ A= 1.3 (@), D"} ~ E{Y ~ B(X) | A=1L(2).D")] dB(x) = op(n”"/2)

In certain applications, the last condition can be hard to justify because it pertains to the estimation
of a regression function on unknown covariates for which the convergence rate can be slow; see
Mammen et al. 2012 and Theorem 3 in Dukes et al. 2021.

18



Our construction relies on smoothness assumptions imposed directly on f, (@, a,g; D™) and fp (/l;, b,a; D™).
This allows us to avoid devising an iterative procedure. However, we do not claim that our esti-
mator should be preferred to that proposed in Benkeser et al. 2017 in applications, which in fact
performs well in the small simulation study described in the next section. We view the introduction

of a hybrid structure-agnostic class where doubly-robust inference is possible and the analysis of a
one-step estimator in this context as our main contributions.

5 Simulation experiments

In this section, we consider simulation experiments to investigate the finite-sample properties of the
estimators studied. The main goal is to verify that the estimator introduced in Section 3.3 yields
a performance comparable to its Doubly-Robust TMLE counterpart implemented in the R package
drtmle (Benkeser & Hejazi 2023). We consider the following data generating process:

o X = (X1, Xs), where X; ~ Unif(—1,1) for i € {1,2}, X1 1L Xo,

e A~ Binom(r(z)) and Y = AY'+(1—A)Y?, where Y1 ~ Binom(b(x)) and Y° ~ Binom(0.5),
o (z) = explt([ :U}Tﬁa), where 3, = [—().5 2 O.5]T

o b(z) = expit([l ] By), where B, = [-2.5 5 2]"

7(w) = expit([1 «]" Ba), where By = fu + N(n ™7, n7"),

° /b\(a:) = expit([l x}TBb), where Bb =0+ N(n="v,n"").

In this set-up, the target parameter is ) = E{6(X)} ~ 0.66 and @ and b converge to a and b at rates
n~"* and n~" respectively. We vary r4, 1 in {0, 0.3} and the sample size n in {500, 1000, 2000, 4000} .
We also consider a scenario where ﬁa = Bb = [0 -2 O]T, i.e., both a(x) and b(x) are completely
mis-specified but they are fixed across iterations. The reason why we investigate this scenario as
well is that we noticed that for @ = 0, injecting N(1,1) noise in 3, often results in propensity
scores that are quite extreme and potentially not very realistic. We run 500 simulations. We
select the bandwidth for constructing wa, wb and 121\ as the one that we would choose to estimate

E(Y — b( )| A=1,a(X), b(X ), D™}. In particular, we use the cross-validation-based selector from
the R package sm (h.select () function) (Bowman & Azzalini 2024). Our theoretical results do not
justify this choice, but, in this simulation set-up, it yields reasonable results. As a benchmark, we
also consider the performance of an oracle estimator that has access to the true nuisance functions

a(z) and b(x).

Figure 1 reports the distribution of /n(y) — y) for different choices of ¢ and the 4 possible com-
binations of («, ) plus the case when either f3, or By is inconsistent and set to [0 —2 0] while
the other nuisance functions is consistently estimated at rate n=0-3. The sample size is n = 2000.
We leave out the three cases Where elther re = 0 or r, = 0 and either 5a or Bb is set to [0 — 2 O]

in these settings, as expected, wDR, ¢ wa and wb present very large errors. However, surpr1smgly,
drtmle still performs well. We conjecture this is due to the the fact that, for drtmle, the highly
mis-specified a(z) and b(x) are suitably fluctuated to solve the relevant moment conditions, whereas
the other four estimators take these estimated nuisances as given. The main take-away from Figure
1 is that ¥pg is the only estimator suffering from the mis-specification of one nuisance function.
Surprisingly, 121\, 121\(1 and 12)\1, perform similarly. We conjecture this could be due to the fact that the
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kernel in their corrections give similar weights to the observations even when the kernel involves a
mis-specified covariate. However, this warrants further investigation.

Figure 2 reports the coverage of a Wald confidence interval as a function of the sample size n.
The most noticeable pattern is that an interval based on QZDR fails to achieve nominal coverage
in all scenarios considered except when both nuisance functions are correctly specified. When at
least one nuisance function is correctly specif/i\ed, the performance of drtmle is remarkable. This
is also the case for the estimators v, ¥, and 1, except that they exhibit under-coverage when the
propensity score is mis-specified by injecting N(1, 1) noise to the true function. Our investigation
of this issue reveals that this appears to be due to the fact that injecting N(1,1) often leads to
extreme propensity scores and an underestimation of the standard error. Possibly a better choice
for the bandwidth could improve inference, but this is beyond the scope of this paper. Finally, as
expected, when both nuisance functions are mis-specified all estimators exhibit under-coverage.

10 10 10

v x (estimate — truth)
o

Vn x (estimate - truth)
o

¥ x (estimate — truth)

o O 9, §, ©OF drtmle o O O, O, O drtmle o O 9, §, OF drtmle

(a) r, = 0.3 and r, = 0.3. (b) r, = 0.3 and r, = 0. (¢)re =0.3and B, =[0 —20]T.
10 10 10

Vn x (estimate - truth)
Jn x (estimate — truth)

v x (estimate — truth)
o

o O 9, §, O drtmle o O O, §, O drtmle g O &, §, OF drtmle

(d) 7, =0 and r, = 0.3. (e) 7o =0 and r, = 0. (f) Ba =[0 —2 0] and r, = 0.3.

Figure 1: Distribution of the errors scaled by y/n, where n = 2000. “Or” stands for “oracle,” which
refers to the estimator that has access to the true nuisance functions.
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Figure 2: Coverage as a function of the sample size n. .

6 Conclusions

In this work, we have investigated the possibility of constructing estimators of the ATE functional
that remain asymptotically linear even if one of the two nuisance functions is not consistently
estimated. We have proposed a novel function class that is a hybrid between the purely structure-
agnostic one proposed in Balakrishnan et al. 2023, and analyzed in detail in Jin & Syrgkanis 2024,
and more traditional ones based on Holder smoothness. In completely structure-agnostic models,
where all that is known are rates of convergence for the two nuisance functions, our Proposition
1 (covering the case when the propensity score can be estimated at an equal or faster rate than
the outcome model), and, more generally the concurrent work by Jin & Syrgkanis 2024, show
that nonparametric, doubly-robust root-n inference is not attainable. On the contrary, we show
that this is possible in the new hybrid class proposed. Further, merging ideas from the literature
on doubly-robust inference and that on HOIFs, we have constructed an estimator that, under
certain conditions, exhibits doubly-robust asymptotic linearity (DRAL). The sufficient conditions
needed for DRAL that we have derived are relatively straightforward to describe, although they
pertain to nonstandard regression models where both the outcome and the covariates depend on
a training sample used to estimate the nuisance functions. In addition, we have shown that this
estimator is minimax optimal in the new hybrid model proposed. In future work, it would be
interesting to expand the results presented in Proposition 2 to cover cases where, for example, the
additional nuisance functions involving generated regressors are Holder smooth of orders less than
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1. Furthermore, it would be also interesting to study other nonparametric models where these
additional nuisance functions satisfy structure-agnostic rate conditions instead of the smoothness
constrains that we have imposed.
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A Example: partially linear logistic model

We revisit Example 3 in Dukes et al. 2021. Here, the goal is to derive an estimator of § under the
model

logitP(Y =1 A, X) = 0pA + mp(X),

where A € R and mo(X) =E(Y | A =0,X). Tan 2019 showed that a doubly-robust estimator of
f can be found by solving the empirical version of the moment condition

$(00) = E [{A - v HYe A0 _ (1 -v)}] =0

where v(X) = E(A | Y = 0,X). By the usual decomposition for M-estimators, the conditional
bias of 6 solving the empirical version of the moment condition above can be derived from the
conditional bias of the moment condition itself. Tan 2019 has shown that such conditional bias is

R,=E [(1 —Y) (emom—ﬁom - 1) {v(X) - (X))} | D],

which is not of the variety of remainder terms studied in Dukes et al. 2021. Our work shows that,
if one is willing to assume smoothness of the functions

foltr, o, ts; D) = E {0 7m0 _ 1|y = 0,5(X) = 1, 0(X) = ta, o(X) = t, D" |
fm(tl,tz,tg; Dn) = E{’U(X) - i)\(X) ‘ Y = 0, f)\lg(X) = tl, mo(X) = tQ,i]\(X) = t3, Dn} s
then it is possible to derive an estimator of 6 that admits doubly-robust asymptotic linearity. In

fact, such estimator would be based on an augmented moment condition of the same variety as the
estimator considered in Section 3.3. In particular, let 8 solve

~

$(0) = B, [{A (X)) Hy e 0A-mo(X) _ (1 Y)}] T, where
T,

1 oA K (0; — 0;) K (i — ;) ~
h = ———— e VMTMY, (1 -Y; ~ 1-Y;)(A; —v;),
e Z;{ (1-Y)} 56 ) (1= Y))(4; — )
A IR e
Q@i, mi) = —— > (1= Y Kn(Bs — 6) Kp(is — i),

s=1,s#1
where we recall the notation v; = v(X;), m; = mo(X;).

A proposition analogous to Proposition 4 can be derived for 1 (6p) — 121\(90). To see this, notice that

Ry = E{(1 = Y)fu(@, 0 0: D") (v = ) | D"} = E{(1 = ¥) ("™ ~ 1) (0, mo,v: D) | D" |
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Furthermore, for Q(3;, ;) = E{Q (%}, M) | Xi, D"}:

Ky (v; — v;) Kp(m; —my ~
EZj|D7L{ AG C;Z%],%S; m])(l_yj)(Aj_vj)}

Ky (v; — vj) Kp(m; — my) ~
— e { FHEESIBEL I vy, - )

Kn (B — 5,) K (g — ;) S
:EZ]"D” { Q(i)\“ml) (1 _}/J)fm(m]7m]7v‘7’Dn)

= fm(mi, mi, v D*) + O(h® + [[m —m||*)

where the last equality follows if f,(m, m,v; D") is Holder of order «. Similarly, for Q(v;,v;) =
E{(L— Y)K(® — ;) Kn( — ;) | D"}:

N KT — DK (0 — s
Bz pn [{e‘“rmiYé—(l—Yé)} (0 — 05 Ky mj)]

Q(vj,my)
_E emi_ﬁ” —1 Kh(@ — @)Kh(ﬁ% — fﬁj)
= LD\ T At Qv;,m;)
_ N Kp(vi — vj) Kp(m; —m;)
= Eapr {“ ¥ (e ) Qo my)

. . Ky (v; — vj) Kp(mi — my)
= E | D™ 1— }/7: v Vi, Ui,y i Dn ~ o~
Zi|D {( ) fo (03, vi, M0 ) Q(;, ;)

= fo(0j,vj,mj; D™) + O(h? + |5 — v||?)

where the last equality follows if f, (v, v, m; D™) is Holder of order 5. The errors @ (U3, M) — Q(v;.m;)
and Q(v;, m;) —Q(vj, m;), as well as the variance calculations, can be carried out in a way analogous
to that used to prove Proposition 4.

B Proofs regarding the lower bounds

B.1 Useful Lemmas

First, we recall the definition of Hellinger distance. Let P and ) be two probability measures with
densities p and g relative to some o-finite dominating measure v.

Definition 2 (Hellinger distance). The Hellinger distance between P and @ is
1/2
H(P,Q) = {/(\/i)— \/a)le/} :

The following Lemma is a restatement of Theorem 2.15 in Tsybakov 2008 and Lemma 1 in Balakr-
ishnan et al. 2023 with a few simplifications tailored to our settings.

Lemma 1 (Lemma 1 in Balakrishnan et al. 2023 / Theorem 2.15 in Tsybakov 2008). Let F'(0) be
a functional and {Py,0 € O} be a statistical model. Consider two priors distributions po and py on
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© and define the posteriors:
P;(A) = /Péz(A)uj(dG), for all measurable A and j € {0,1}.

Assume that
1. There exists ¢ and s > 0 such that po(6: F(0) <c)=1 and p1(0 : F(0) > c+ 2s) = 1.
2. The Hellinger distance satisfies H>(Py, Py) < o < 2.

Then, it holds that

1—+y/a(l—a/4
inf supE|T,, — F(6)] > s - all —a/4)

Tn 9cO 2

Lemma 2 (Theorem 2.1 in Robins et al. 2009b). Let k in N, let X = U;?:lXj be a measurable
partition of the sample space. Given a vector A = (\1,..., ;) in some product measurable space
A =X X A let Py and @y be probablity measures on X such that

1. Py(X;) = Qx(X;) = p; for every X € A, for some probability vector (p1,...,pk)-
2. The restrictions of Py and Qx to X; depend on the jth coordinate \j of X = (A1,..., A) only.

For py and qy densities of the measures Py and Q that are jointly measurable in the parameter A
and the observation, and w a probability measure on A, define p = [ padw(X) and ¢ = [ grdm(N),
and set

—n)2d o 24 —02d
J X Jx Y25\ P 7 ox Jx Px by JooxJx Px Py

J J J

If np;j(1V 81V &2) < A for all j and B < py < B for positive constants A, B, B, then there
erists a constant C' that depends only on A, B, B such that, for any product probability measure
T=m&: & Pk,

HQ(Pl, Pg) S C’n2(maxpj)(5§ + (5152) + CTZ53
J

We proceed essentially as in the proof of Theorem 3.1 in Robins et al. 2009b, but choose certain
parameters and the fluctuations in their construction differently in accordance with the assump-
tions defining P(ep, 0r), Pa(€n) and Py(dy,), and Pyp(€p, 6r). The construction is conceptually very
similar to the one used in Balakrishnan et al. 2023. The only changes pertain to the choice of the
fluctuations for the nuisance parameters, which are tailored to the ATE functional considered here.

Let B : RY — R be a function with support on [0, 1/2]¢ such that [ B(u)du = 0 and [ B?(u)du = 1.
Let k be an integer and Aj,..., Ay be traslates of the cube k=1/9]0,1/2]¢ that are disjoint and
contained in [0, 1]%. Let my, ..., my be the bottom left corners of these cubes. Let A = (A1, ..., \x) €
{—1,1}*. For shorthand notation, let B;(x) = B{k"/(x —m;)}.

26



B.2 Proof of Proposition 1

Suppose that €, < d,, and define:

k -~ k
. ~ b(x)
i (7) = g, () = ) +en DA By(0), by () = B(w) —enz 5 D7 By )
] Jj=1
5 k
and by, (z) = ba(z 300 ;AJBJ
We have [[a — ap, [l2 = [[a — ag, || = €n, [[b = by || < €n < 6, and |[b — by, || < 8, Consider the

densities py(z) and gy(z) for Y, A € {0,1} and X € [0,1]%

pA(Y, A, X) = g(X){ap, (X) = 1y, ()7 {1 = by, (O} 7
(Y, A, X) = g(X){ag, (X) — 1} bg, (X) {1 — b, (X)} )4

By construction, py and gy are part of P(e,,8,). Set g(X) = g = { [ @(z)dz}~" so that the density
of X, fp,(x) = fo.(x) = ap, (x)g9(x) = aq, (z)g(z), integrates to 1. We have

Ypy = g/am@)bm@)dﬂ? = g/a( z)dx — ge2 Z:/B2 b Z

i = [ an @ @ltalde =ty e | Z B ()@@} 'da

This means that |¢g, —p, | 2 €n0y, for every A. Let w(X) denote a product prior on A = (A, ..., Ag)
such that wj(A = —1) = w;(A = 1) = 1/2. Let O = (X, A,Y) and define O = U§:10j7 where
O; = &; x {0,1}%. Notice that p; = foj padv = foj ¢ dv = k1. Next, we have

p(0) := /pA(Y A, X)dw(\) = g(X){@(x) — 1} Ab(x) {1 - b(x) )4,

PA(0) = p(0) = g(X){ay, (X) = O}~ [{by, (X) = BX)PY {b(X) = by ()},
g (0) — pA(O) = Ag(X){bgy (X) — by, (X) Y {bp, (X) — by (X))},

4(0) - p(0) = / (Y, A, X) = pa(Y, A, X)}dw(N).

Next, we apply Lemma 2. Notice that 6; < €2, d2 < 62 and 63 = 0. Therefore,

~ N’

Joe ( [ e, [ quwm) <25 1 82E2).

In this light, choosing k large enough yields that the Hellinger distance is bounded. The lower
bound then follows by Lemma 1.
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B.3 Proof of Proposition 2
Claim 1. To prove this claim, we modify the definitions of py and g¢y. Let ap, (z) = a(x),

g, (2) = A(2) + en Y5y AjBj(2), by, (2) = 1/a(2),

P S NCS B S S D ¥ NPV
» a(x) a2(z) a(x) a2(z) ’

and g(z) = g = {Ja(z)dz}~!. In this light, E,, {b,, (X) | A = 1,a,,(X) = t1,a(X) = ts, D"}
and Eq, {bg, (X) | A =1,a4,(X) = t1,a(X) = ta, D"} are infinitely smooth functions in ¢; and t5.
Further, ||@ — ap,||= 0 and ||a — aq, ||= €n, so px and gy belong to P,(ep).

With these modifications in place, we have 1,, = g and

k
Vg, = Up, —gei;/

B; (x)

2
a*(z)

dzx,

so that |1y, — ¢q,| 2 €2 for every \. Following the same of reasoning to prove Proposition 1, we
have §; = 0, 52 < €2 and 83 = 0. Therefore, for k large enough, Claim 1 follows.

Claim 2. To prove Claim 3, we modify py and gx. We set ap, () = {g(m)}_l, by, (z) :3(@,

ag, () = L bqk(:c)—g(x): 1 ) s N;Bi(x and
o (T) B(x)+ 62(30) /b\(x)_‘_ n; iBj(z),

k
bay () = b(x) — b* ()0, Y _ A; By ()

j=1

Under this construction, both py and ¢, are contained in P,(d,), because ||3 — by, ||= 0, ”3 —
bQAHg On, as well as EPA{QPA(X) | A= 17/5(X)7bpx(X)7Dn} = {B(X)}—l and ]EQ)\{QQ)\(X) | A=
1,6(X), by, (X), D"} = {b(X)}™ + {ba(X) — b(X)}{b2(X)} ™, which are both infinitely smooth
functions of b and b. We have

k
Yoy =g, and g =ty — 602 / (2) B2 (2)da
j=1

where g = { [ 1/b(z)dz} ! under both gy and py. Therefore, for any A, [V, — Ygs |> 2. Because
b
b(a)
[on@de) = [ by (@do(n) =)

[ an@don) = [ g @)dotx) =

we have 0; = 0, d < 02 and d3 = 0. In this light, for & large enough, by proceeding as in the proof
of Proposition 1, Claim 2 follows.
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Claim 3. Let v, = €, A §,, and define

~ k ~ Z(m) k
ap, () = agy (2) = @(@) + 90 Y AjBj(w), by, (2) = b(@) = vz > NjBy(2)
j=1

k
and by, (z) = by, (2) + == > A;Bj(x).
a(x) =

We have [[a — ap,[| = [[@ — aq,[| < m < €n, [|bp, —/I;H S Y < Op, and |[bg, _/b\H S M < On.
Furthermore,

apy () = ag, (x) = a(z) + = =a(z) + 4 :

b () =) - D ZED) i y (0) = -

Therefore, E{ay, (X) | A = 1,b(X) = t1,by, (X) = t2,@(X) = t5, D"}, E{ag,(X) | A = 1b(X) =
tl,qu(X) = tg,&(X) = t3,Dn}, E{bp)\(X) | A= 1,?1\( ) = tl,apA(X) = tQ,b(X) = tg,Dn}, as well
as E{by, (X) | A = L,a(X) = t1,aq,(X) = t2,b(X) = t3,D"} are all smooth functions. In this
respect, py and g belong to Pap(€n, ). Set g(X) = g = {[a(z)dr} ! and define the densities:
PA(Y, A, X) = g(X){ap, (X) = 1} b, ()7 {1 = by, (X))} ],
(Y, 4, X) = g(X) gy (X) = 1Ay, (X)Y {1 = by (X)Y]A.

We have
.
U =9 [ ox@h@its = g [ - 02> [ 2D B,

B (x)
A@) oo

k
Vg = Vpy +g'77212/
j=1

so that [y, — Vg, | = 72 = €2 A 62 for every A. To conclude the proof, it is sufficient to note that
62 <~2, 62 <~2, and 63 = 0 and then follow the arguments made to establish Proposition 1.

C Proofs regarding the upper bounds

C.1 Useful lemmas

Lemma 3 (Lemma 6 from Robins et al. 2009a). For any measurable function f : X? — R, and

fi(zy) = [ f(21, 22)dP(x2),

1 4 2
W{n(nl) 3> f(Xi,Xj)} < g1P>f12 + mpﬂ

1<i#j<n
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Lemma 4 (Lemma 2 from Kennedy et al. 2020). Let .]?(0) be a function estimated from a sam-
ple ON = (Ony1,...,0n) and let P, denote the empirical measure over (O1,...,0y), which is

independent of ON . Then,
(B ~P)(F - f) = O (”f‘f”> .

NG

C.2 Proof of Proposition 3: bias and variance of zza

Recall the notation a = a(X) and a; = a(X;) and that
Sa(t1,t; D) =E(b—b| A=1,a=t1,a =ty, D).
The estimator is g = Pn@ — Ty, where ©(0) = Aa(Y —b) + b and

Z > (A V(@) Kn (@ — @) Aj(Y; — b;)

1<z;éj<n

~

for Q(a;) = (n—1)~! D=t jri A Kh(aJ a;). From the decomposition (3), we have that E(iZ— (8
D™) =R, —E(T, | D") and Var( | D™) < n~tvvar(T, | D™).

C.2.1 Bias of 1,

The bias bound follows exactly as described in the main text. We briefly report the calculation
here for convenience. From the decomposition

Aj(Y; = bj) = Aysa(@i, ai; D™) + Aj{sa(@j, a5 D") = sa(@s, s D™} + Aje,

we obtain that

1 ~ ~
T, = - Z(Az‘@i — 1)sq(a;, a;; D™)
= 1
ZZ @) Kn(@j — @) Aj{sa(@j, a;; D") — s4(@;, ai; D™) + €;}.
1<z7éj<n

Next, notice that

3\’—‘

n
{ Z a; — 1)s, az,az,D”)]D”}_Rn
=1

and that

E(Aje; | Ai, Aj,aj,a;, D") = E(Aje; | Aj, a5, D")
= E{E(4j¢; | AjaajﬂjaD”) | Aj,a;, D"}

E(E [A {( ) Sa(a]7a]7Dn)} | Aj7ajvaj7Dn] ’AjvaJ'?Dn)
E(E[A;{(b; — bj) — sa(@j,a;; D)} | A;,dj,a;,D"] | Aj,@;, D")

=0
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Therefore,

E(R, — T, | D")
D) 2 2 B (A~ Q7 @) K ~ 50 A {sulds, 053 D) — sula ais D)} | D]
1<z;£j<n

Under the assumption that @(ﬁi) is bounded away from zero, we have
!E(R —Tn | D")|

ZZ]E{AMZ ai|Aj Ky (a; — @i)|sa(@j, aj; D) — s4(@i, a;; D™)|| D™}

1<1;£]<n
By the Holder smoothness assumption,
|50 (@), 053 D") = sa(@i,ai; D) S{(@ —@)* + (a5 — @5)° + (@ — a;)*}*"?
S laj —ail|® + [a; — as]™ + [a; — ag®
We bound each of the 3 terms as follows. First, it holds that
E (A — ail A Kn(@; — @9)[a; — @l D"} < hE (3 — aiE{A;Kn(@; @) | X;, D"} | D)
< hflla—al,

under the assumption that E{A; K, (a; —a;) | X;, D™} < 1 and because K (u) has support in [—1, 1].
The last equality follows because [|a(z) — a(z)|dP(z) < |[@ — al|. Next, by the Cauchy-Schwarz
inequality:

[E{As[a; — il A; K (@5 — ai)|@; — ag|*| D"}

<E[(@ — ai)*B{A;Kp(a; — @) | Xi, D"} | D" E (@5 — a;)**B{A; Ky (@5 — @) | X;, D"} | D"]
SE{(@ —a)* | D"}E{(@; —a;)** | D"}

< @ — al***

where the last inequality follows by Jensen’s inequality because |z|* is concave for o < 1. Similarly,

E {(/dZ — ai)Ho‘Ath(aj — az) ‘ Dn} = E [(ZL\Z — ai)HaE{Ath(aj — ’dz) ‘ Dn,XZ'} ‘ Dn]
< lla—alt*te.

Thus, we conclude that

[E(Rn — T | D) S @ — al ™ + h*[[a - al.

C.2.2 Variance of zza

To bound the variance, we use Lemma 6 from Robins et al. 2009a (Lemma 3). Let T, be equal to
T,, except that Q(a;) is replaced by Q(a;) = E{Q(a;) | D", X;}. Then,

~
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Under the assumption that E{A4;K}(a; —a;) | X;, D™} < 1, we have
~ 2
E <[(A,~ai — 12Q2(@)E { Kn(@; — @) 4;(Y; — by) | D", X;, Ai}] | D”> <1,
E{ (A = 12Q (@) A; KR (@ — @) (Y; = b)) | D"} S h™".

Therefore, var(fn | D) <n~t + (n?h)~! by Lemma 3. Finally, we have:

T =T = s $ 3 (A~ Q7 @) @)1Q(@) ~ QK@ — )4, ~5)
1<z7£]<n
= oo 22 T
1<z;é]<n

We can break the square of the double sum as a sum of seven different terms:

2
Z Z Tij | = Z Z (TZ% + 15 Ty;) + E Z Z(TijTil + 13T + T35135)

1<ij<n 1<i#j<n 1<iF#j#I<n

220 2 TiTu

L<ij#l#k<n
and bound the expectation of each term separately. In particular,
Th S h ' AjKp(a; —a;)  and  |Ty;Ty| S b A A Ky (a; — @),

so that, in light of E{A;K}(a; —a;) | X;, D"} S 1

ZZ DD | <n(n—1)pL

1<i#£j<n
Next, we have
T3 10| S AiAjKn(a; —ai) Kn(@ — @), |TTul S AjAKR(@; —a;) Kn(a —a;)
T3 Til S AjAIKp(a; —ai)Kp(@ —a;), and  |T;T| S AjKn(a; —a;)Kn(a; —@).
Because
E{A;A; Ky (a; —a;) Kp(a; —ap) | D"} = E[A; Ky (a; — a))E{A; Kp(a; — a;) | Xi, D"} | D"]

S E[A;Ky(a; —ap) | D"]
<1,

~

we have

EQD 3D (TyTu+ TyTy + T;yTy) | D" p S nln—1)(n - 2).

1<i#j#I<n
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Finally, to analyze the terms of the form T;;7};, and T;;7;;, we need to address the fact that @(ZL}-)

and @(al) contain the random variables A; and A;, respectively. This adds a minor complication

to the bound because E{A4;a; — 1)Q~1(a;) | D"} # E{A;(@; — a;)Q ‘(@) | D"}, for example. In
this light, we write

~

Q(a;) _n—l Z A Kp(as — a;)

s=1,s#1
1 °  AK (G —a
_ S AKA(@, )+ AiKn(ay — ai)
— n—1
S:]-vs#(i?l)
~ A Kp(a; — a;
= 0@y + 2@ =a)

n—1

This way, one has

A Ky (ay — a;) <
(n— 1)@@')@—1@') -
AiKp(a; —a) < Kn(ai —a)
(n— 1)Q@)Qi(@)| ~ .

Kp(a; —a;)
n—1

)

n—1

Next, we write

Ty T = (A — D{QZ] (@) — Q1(@)} Kn (@) — 6:) A (Y; — b))
x (Aiay — D{Q"H@) — QY @) YK (@ — ax) Ar(Ys — by)
— (A — ) AR OB ) )

(n —1)Q(a;)Q—i(a;) ~

x (Aga; — D{Q (@) — Q7 (@) Y Kn (@ — ar) A (Vi — by)
— (A — D{Q 7} (@) — Q71 (@)} Kn(@; — @) A;(Y; — b))

% (A — 1),41-1(,1@- —AalA)Kﬁ(alA—a
(n —1)Q(@)Q—:(a)

The expectation of the last two terms can be upper bounded as

k)Ak(Yk —by)

E‘P&ﬁ A= B — 80 5y )
(n —1)Q(a;)Q—i(a;)
x (Aia — D{Q™ (@) — Q1 (@)} Kn(@ — ar) A (Ys, — bi)
— (A — D{Q} (@) — Q1 (@)} Kn(@; — @) A;(Y; — by)
. AiKp(a; — ap) Kp(a; — ay,) - n
Aja; — 1 — — A(Yi. — b D

< D@ k)']

Aj AR AK (ay — a;) K (a; — @) Ky(ap — ag) | -,
< {® (n—1) 07}
<p!
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The last inequality follows because

E{A; A A Ky (ar — a;) Ky (a; —a;) Ky (a; —ay) | D"}
=E[A;A K (a; — a;)Kp(a; — a;)) E{ A Ky (a; — ax) | X;, D"} | D"]
S E{A; A Ky(a; — a@;) Kp(a; —a;) | D™}

= E[A Kn(a — a;)E{A; Ky (a; —a;) | X3, D™} | D]
SE{AKp(a;—a;) | D"}

=E[E{AKy(a —a;) | X;,D"} | D"]

<1

Next, we proceed to bound the first term appearing in T;;7j;, which is the main term.

When k = j, we have the bound

N R A 1
|E(T;;Ti;) | D™|S E{A;A; Aj A Ky (@; — ai)Kp(a; —ag) | D™} + o <1

In this light,

E<N SN "1, | DMy Snln—1)(n—2).

1<izj#l<n

Next, we proceed for k # j. We have

‘IE

A

:(Aiai — D{Q7} (@) — Q '(@) }Kn(@; — a;)A;(Y; — b))

x (Ai@ — D{QZH@) — Q@) } K (@ — @) Ar(Ys, — by | D”]
E[Ai(@: — a){Q7} @) — Q@) Kn(@; — ) A; (b — )

x Ai(@ — a){Q=1 (@) — Q" (@) }Kn (@ — Gx) Ax(br, — br) | Dn}

E [@ — ai||bj —ngal — alek —/Ek|AiAjAkAlKh(aj — ai)Kh(al — ak)

<B{10-4() ~ Q@)@ — Q| As Ajs Ak, A1, X, X, X1, X, D] D

Next, by the Cauchy-Schwarz inequality:

[B{10-1@) ~ Q@)IQ-+(@) — Q@] Ai, 4j, Ag, A X, X, %1, X, D"} |
<E [{@—l(al) - Q(az)}2 | AjaAkaXianvXk'leaDn:|

~ 2
x K [{Ql(a\l) - Q(al)} ’ Aijk‘,Xi)Xj)kaleDn] .
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We have

2
{@—l(az’) - Q(@')}Q - 1 Y {AKy(@s @) - Q(ai)}]

1<s<n,s#(3,l)

= YD {AKWE — @) — Q@) HAmKn(@n — @) — Q@)

1<s#m<n,(s,m)#(i,l)

. S {AKL@ - @) - Q@)

(n—1) .
1<s<n,s#(4,l)

Furthermore,

E [ 3> {AKy (@5 — @) — Q@) HAm K (G — @) — Q(@:)} | Aj, Aw, Xi, X, X, X1, D”]

1<s#m<n,(s,m)#(i,l)
= |2{A; Kn(a; — @) — Q(as) H{ArKn(ar — a;) — Q(ai)}|
Sh?

and

E [ > {AKW(@s — ;) — Q@) | D", Ay, A, X, X5, X, X,
1<s<n,s#£(i,0)

= |(n — DE [{AK(@ — @) — Q(@)}* | D", X.]
+E [{A;Kp(a; —a;) — Q@;)}* | D", Ay, Xy, X;]
+E [{AcKn (@ — ;) — Q(@)}* | D", Ap, Xy, Xi]|

<(n—4)h L+ h2

In this light, under the condition that nh — oo, we have reached

PO RT i )
E {Q—l(ai) - Q(al)} | DnaAijkin7Xj7kaXl S %
An identical reasoning yields
DU R ) .
E {in(al)_Q(al)} | D", Ay, A, Xi, Xy Xy Xi | S

Therefore, we have reached

~ o~ N N 1
E{1Q-1(@) — Q@)IQ—i(@) — Q@I D", Ay, A, Xi, Xj, X0, X} S —,
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which yields

[E(T5Tix | D™))|
1

1 N N . N . o~ ~
g % x E “az — aiHal — al\AinAkAlKh(aj — ai)Kh(ak — al)]bj — bJku - ka Dn} + ;

E [‘ZL\Z — ai’AiAth(aj — /CL\Z)|/5J — b]H Dn:| E [AkAlKh(Ek — 6;)@ — alH/I;k — ka Dn} 1
+

- nh n
< [a — all?[|b —b]? 21
nh n

The last inequality follows by the Cauchy-Schwarz inequality:
~ 2
{E (i — ail 4:A;K0(@; - @)[b; — byl D) |
< E[(@ - @)*B{A; Kn(@; — @) | Xi, D"} | D" E | (b — b)) B{A:Kn(@; — @) | X;, D"} | D"
< ll@—all*[b - b]*.
Finally, this means that we have reached that

o | <t D 2 gy JE— PP b1
E(Y S NS 1yTn | D | Snln—1)(n - 2)(n - 3) H 1

1<i#j#l#k<n

Putting everything together, we conclude that

= o1, 1 lla—al?[b—b|?
E{(Tn—Tn)2|D}§E\/m\/ - .

This concludes our proof of the bound on Var(gza | D™).

C.3 Proof of Proposition 3: bias and variance of 121,

The proof essentially follows that for the bounds on the bias and variance of &a, SO we omit certain
details. Recall that

Q-i(b)) = !

Z AsKh(/b\s _/b\j)a

n—1
s=1,s#1

and define
Qb)) = E{Qi(b) | X;,D"} = / {a(2)} ' Kn(b(x) — b(X;))dP(x)

=PA=1) / K (u)dPy 4, po(uh+b(X;)).
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Recall that @Zb =P,p—T, =P,p— T, + (fn —T,), where

1<z;£]<n
- ZZ — 1{Q(b;)} K (b — b;) A;(Y; — bj).
1<z;éj<n
For R, = P($ — ¢), we have
B — o | D) = [ER, — Ty | D7) + [BCE -7 | D7)

var(thy | D™) < n~t v (n2h) "V E{(T, — T,)? | D"}

The inequality for the variance relies on Lemma 3, the boundedness of the observations, a(X) and
b(X), as well as Lemma 4.

C.3.1 Bias of Jb

We start by bounding E(R,, — T}, | D™). We have

E(T, | D") =E { 1;2: @ — D{Q(b;)}~ 1Kh(82-3j),4j(yj@)pn}
= Z#Z {Ai@ — (@)Y Kb~ ))A,(Y; = 5y) | D}
- n_l 127&2 {Assulb, b5 D")QU;) Y Kb — B;) 4;(Y; — by) | D"}
<z
T ey zﬁzm: A (b1, biz D) = so(03.by: D)} Kb = by {Q(B,)} " A5 (¥; ~ B) | D"
= 1;;: | Aifsu(bi, bis D) = (b, g3 D) (B; — 5){Q6;)} " Ay (b; — By) | D" .

The third equality follows because
E{ A (d@; — a;) — Aisp(bi, bi; D) | A, A, Y;,bi, b, D"}
= E{4;(@ — a;) — Aisp(b;, b; D™) | A;,b;, D™}
~E [E{Ai(ai — ;) | Ay, bi,bi, D™ — Aysy(bi, by D) | Ay, by, D"
= E{A;sp(b;, bi; D™) — Assp(bi, b; D™) | Ay, by, D"}
=0.
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The last equality follows because

=T 2 2 B { i By bjs DQE) T KB = ) A%~ By) | D"}

1<z7$y<n
1 @ ~ >
== Y E {Sb(bja bj; D™)A;(Y; — bj) | D"}
j=1

=R,.

Under the smoothness condition of sb(?)\j, bj; D™), one also has

o~

K (b; — b))
Q(by)
SE [{ij —b;i|® + [b; = b;|7 + b — bil Y AA KR (b — b;) (b — by) | D"]

E | A;{sy(bs, bi; D™) — sp(bj, bj; D™)}

Aj(bj = bj) | D"]

SHPb—b| + b —b| 7.
Next, we have
)E(Tn T, | D”)‘
=T |2 2 B[ 1@ B) — @ ) KA~ B3) 445~ B3) | D"
1<i#j<n
Because @ ( ;) does not depend on A;, we have
[E [(Aias = (@1 (B5) — Q' (by) Kby — B;) 45V — ) | D"
= B [4i(@ — a){Q=}(b;) = Q7' () Kn (b — B;)4;(b; — b;) | D"}
S [E[1@ - alB{1Q-i(65) — QI Ay, X, X, D"} A A K (b — By)lb; = Byl D"

By the same reasoning used to bound E[{@_l(&i) —Q@@)}¥?* | 4j, A, Xi, X, X1, Xy, D] in proving
the variance bound for 1,, we have

~ o~ ~ 1
E{|Q—i(b;) — Q(b))I| Aj, X3, X5, D"} S T
under the condition that nh — co. In this light, we have
E[(Ag, — DIO-1B)) — 0~ BV (B — DA, pn Ha—aHHE—bH
(@i = D{Q7} (b)) — Q' (by) K n(bs — b)) As(Y; — b)) | —\/1% :
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Putting everything together, we have reached that

E({ﬁ\b —¢ ’ Dn) S |E(Rn =Ty ’ Dn)| + E(T’n =Ty ‘ Dn)

Ib—bllja—al

S —bl| + [[b—blI" + T

Finally, we also have the bound

E(h— ¢ | D")| S [P@ - )| + [E(T, | D)| < [@— alllfp— bl + |E(T, | D)
and
B(Tn | D)< oy | 2 D0 B{ (i = D@L 6)Kn(bi = 55)4;(¥; ~ ;) | D"

1<i#5<n

Sla—alllb—b.
This concludes our derivation of the bound on the bias of z/ﬂ\b given the training sample D™.

C.3.2 Proof of Proposition 3: variance of 121,

Recall that var(¢p | D) < n=t v (n2h)"L v E{(T, — T,)% | D"}. Thus, we only need to bound
E{(T}, — T,,)? | D"}. Let

and notice that

(Tn _Tn)2 = ZZ iy

1<ij<n

=D D (TE+TyT) + Y > > (TyTu + Ty + Ty + TyTiy) + ) ) > > TifTiwe

1<izj<n 1<ijAl<n 1<ijAlAk<n

Just like in the proof of the bound on the variance of @a, we have

o~

T2 S A Kby — by), | TyTyil S b~ A Kn (b — b))
T35 Tl S Aj Ay (b; — b
\TijTjMSAjAlKh(g —b;

~

VLD =), |Tii T S AidiKn (b — by) K (b — by)
NER(; — b)), |TiThy] S AjKy (b — b)) K (b — by),

i<
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which yields that

<n(n -1t

{ZZ (T + Ti5T0) D"}

1<i#j<n

ESY D> (TyTu + TyTi + TiyTy) | D™ 3| S nin —1)(n —2).
1<i#£j#l<n
Next, define
~ o~ 1 n ~
Qalb)=——= > AKn(bs—1by),
s=1,8#£(3,l)
so that
P A K, (b — b,
0a(by) - Oi(hy) — A )

n—1

In this light, we have

Ty Tk = (Ait; — D{Qh(b;) — Q7 (bj)}Kn(bi — b) A;(Y; — bj)
x (Ajar = D{QZ}(bk) — Q™ 1(bk)}Kh(bl — by) A (Y — by)
A K (b _gj)f(h(/\z

— (Aga; — 1) L 1
(n—1)Q_u(b;)Q- (b)
h Q"

(Alaz —1{Q 1 (o) — Q7 (br) YK (b — i) Ak (Vi — by
— (Aja; — D{Q=L (b)) — Q1 (b)Y Kn(bi — b)) A;(Y; — by)

AiKh(bi — bk)Kh(bl — bk)

Aa; —1 R TR A (Y — b)),
A=) TG G0y KT
Notice that
~ A,Khwz—b)ffh@ —b;) -
E Aiai— <~ < =< A:(Y: —b;
( (n—1)Q_a(b;)Q(b)) 15 = b)
x (A~ D{Q7} (Bp) = Q7 (i) }n (b — Br) Ax(Yi ~ By) | D"

_ E{A,AjAkKh@l —b;) K (b; — b;) K (b — by) D"
~ (n=1)

Snh
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and, similarly,

B [(Aia; — ){Qh(B) — @ (by) n(bi — B) 4(Y; — By)
. AiKh(Bi —gk)Kh@l _gk) ~ n

Aa; — 1 — — AL(Y. — b D
=) G G0y ) ]

<n L
Therefore, when k£ = j, we have the bound

~ 1
[E(T35 T35 | DS B{AA; At AR Kn(bi — bj) Kn(br = be) [ D"} + — S 1,

so that

Sn(n—1)(n—2).

E{zzzm Dn}

1<iZjAl<n
Finally, we consider the case k # j:
B [(A: — )4Q74(B) — Q7 by a (b — 5) A;(Y; — By)
x (Asay — D{Q7 5 (bk) — Q" (bi) S (by — i) Ak (Vi — by.) | D”}

~

< [E [[@: — @il A4 KB = By)1b; — b | AcAREn (b — B — aul b — b

<B{1Q(53) — QEIIQ—a(n) — QEWI| Ay, Ay, X;, X, Xi, Xy, D"} | D"

- — S {AKG —b) — QBN HARK(m ~ ) - Qb))

L<s#m<n,(s,m)#(i,0)

o~

L1 S {AKw(bs —b;) - Q(0)))?,

_1)2
(n—1) 1<s<n,s#(i,0)
Further,

1<s#m<n,(s,m)#(i,l)
= 2{Ap K (b1 = bj) — Q(bj) HA;j Kn(bj — bj) — Q(b;)}|
Sh?
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and

E Z {AsKh(gS_g])_Q(gj)}Q | Aj)AkuXiququvXku-Dn
1<s<n,s#£(3,l)
= (n— E [{AKn (b = by) — Qb)Y | X5, D"| + {AkKn (b — by) = Q)
+{A KR (D) = b)) = Qb)Y
<(n—4)ht+hn?

Thus, under the condition that nh — oo, it holds that
~ o~ ~ 1
E [{inl(bj) —Q(bj)}* | Aj,AkvXquvXk,XuD"] S
By the Cauchy-Schwarz inequality, we have

o~ o ~ 1
E{lQ-ia(bj) — Qon)Q—ia(b) — QUow)I| Aj, Ar, Xi, X, Xo, X, D"} S —-.

In this respect, we conclude that
B [(Aids = 1{Q74(B) — Q7 () Hn(bi — B) 4,5 ~ by)
x (A = D{Q =} (k) — Q" (Br) (B — be) Ak (Vie = By) | D"

~ 217 _ B2
< lla—al|[b— bl
~ nh

Putting everything together, we have reached that

- [a — al?[lb — b]?
nh '

E{(Tn —T,)? | D"} Sn”

Thus, we conclude that

R P
var(fy | D) 5 v (nzmy~1y 122 ,!b blI*
n
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C.4 Proof of Proposition /4: bias and variance of 121\

For shorthand notation, let us use the notation a(X;) = @;, @ = a(X) and so on. Also let Kp;(a;) =
h 1K (a’ af) and define Khl(b ) similarly. Further, let

Pt 1 R ~
Q@) = ——= > AjKn(a;) Kni(by),

1<j<n,j#i
Q@G b) =E {@(ai,@) |i(i,D”}
= / {a()} 7 Kn(@(z) — a(X:) Kn(b(x) — b(X,))dP(x)
=P(A= 1)/K( VK (0)dP 54—y o (B +G(X5), ho + B(X5)),
Q@) = [{ale)) ™ Ki(ale) - (X)) Kn(bla) - D) ()

:IP’(A:I)/K( VK (0)dP 5 4y po (i +@(X;), ho + (X)),

where dP_ (u,v) is the density of (ZZ(X),Z(X)) among units with A = 1 keeping a(-) and

b|A=1,Dn
b(-) as fixed functions given the training sample D". Recall that ¢ = P, — T, where $(0) =
Aa(Y —b) + b and

ZZ (Aa; — 1) {Q a;, )}_lKhi(aj)Khi(Aj)Aj(Yj _3 = ZZ Tij.

1<z7£]<n 1<17£]<n

C.4.1 Bias

Bound 1. We start with the following decomposition:

~

Ty = (A — D{Q(@;, b))} " Kni(@;) Kni(b) Aj (Y — bs) + Tasj + T,
where
Tyij = (Asa; — 1) [{ (@, i)} {Q(aia/gi)}_l] Khi(aj)Khi(gj)Aj(Yj _/gj)v

Tyij = (At = 1) [{Q(@1, )}~ = {Q(5 5} | Kni (@) Kna (b)) 4(Y; = By).
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We have

=Ty 2 2 (At = DIQ(@; )} Ko@) Kni(by) 4, (Y = by) | D
1<z7£]<n
=E ZZ Ai(@ — a){Q(@5, b))} Kni(@;) Kni(b;) A; (Y; — by) | D
1<7,;é]<n

1 - o R - -
=B | ——— > )" Aifolbi, bi, @i D"){Q(@;, b))} Kna(@5) Kni(by) A (Y; — bj) | D"

n(n —1) 1<i#j<n

o~

=E o D> Aifulby by a DMAQ(E;, b)Y Ko@) K (by) A5 (Y — by) | D™

1<z;£]<n
1 ~ ~ A K@) Kni(bj) (bj — bj)
+E| —— Ai{ fo(bi, by @z D) — fio(bs, by, @53 D)= | D"
|:n(n -1) E;#]ZS; Q(aj, bj)
=R, +E ZZTh”D
1<7,;é]<n
The second equality follows because
E{A;(@ — a;) — A fy(bi, b, @i D) | Ay, Ay, Y5, @1, b, by, D™}
= E{Ai(@i — a;) — Ai fy(bi, bi, @3; D") | Ai, G, bi, D"}
=E [E{Ai(az’ — a;) | A, @, bi,bi, D"} — A; fy(bi, bi, Gy D) | Ai,aiagi,Dn}
=E {AiE<ai —a; | Ay = 1,@;,b;,b;, D") — A, fy(bi, bi, @;; D) | Az‘ﬁi@,Dn}
=0
The last equality follows because
1 N -~ n ~ T \1— —~ T N n
E |- > > Aifulby by ays D"){Q(@5, )} Kni(@) Kni(b;) A (Y; — bj) | D
n(n—1) s
E A Khz a; Khz ) n -~ n
5| Sy P O) | X5 D% Gy g DAY, —B) | D
i 1<z7$j<n Q(aj, b;)
=E ( ZZfb ijbjaaﬁ )A](}/}_bj)’Dn
L 1<17éj<n
1 . T ~ n N n
=E ﬁZfb(bj’bj’aﬁD )JA;(Y; —bj) | D ]
L =1
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Thus, we have reached
1
ZZ T;; | D" p =Ry + E aio D) >N Tuij+ Toij + Tsij | D"
1<z7£j<n 1<i#j<n
so that
E() — ¢ | D") =E(R, — T, | D") =E (n_l 722D T+ Ty + Ty | D"
1<i#j<n

We bound each term separately.

Term T7. By the smoothness assumption on fp, the last term can be upper bounded as

n(n Z Z T | D™

1<17éj<n
: R R A s Kns(B) (b —
BSOS Ay bias DY) — fulBy, by, o)y 2@ Knabi) by = bi) |y
n(n—1) = Q(aj, bj)

o~

<E { (AZ\E- — ;1% + |b — b;|? + [a; — aj’ﬁ) A Kpi (@) Kpi(bj)|bj — by Dn}
<E{4; (B + b~ Bl + |3'—b‘fﬁ)A'Khi(aj)Khi(gj)’bj—ng D"}
hﬁE[ {A Kni(@) Kni(b;) | X; D”} 1b; — b D"}
+ (B B { 43K @) Kni(b) | X, D" } (b = B:) | D"]>1/2
< (B [B{ 4kn(@) Kb XJ,D"} ;12| D))"
+ B B {4 Ki(@) KnilBy) | X5, D"} b = By"+7| D]
< Wb~ + b~ b+
where the last inequality follows because E {A iKni(a;) K, h,( i) | X, D"}

Term Ty. Let A™ = (Al, ..., Ap) and A", = A"\ A;. Because Q(al, l) does not depend on A;, we
have E{Q(a;, b;) | X", A", D"} = Q(a, Z) Therefore:

n n ( ) ( ) ~ 7 3 A
E Tij X", ,l,D = = Kp; a; Kpi(b; a;, b; g, 04
(Tij | ) 0@ 50T i (@) Kni (0,){Q (@i, bi) — Q(@, bi)}
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Therefore, we have

Ai(@; — ai)Aj(bj — b))
Q(ai’bi)Q(awbz)
SE {@ — ai||b; — bj| A A Kpi(a;) K (b)) ‘Q i, bi) — Q(ai, by)

|E(T2; | D")| <E

Kni(@) Kni (5:){Q (@i, 1) — Q(@i, z)}||D”]

}

|Aj,Xi,Xj,D”} | D”}

~ o~

= B [l — aillb; — Byl 4iA; i@y Kna (5)E { Q. bi) — Q@ b)

Next, we bound

~

E{‘Q(ai,a (az, b;) ]Aj,X,-,Xj,D"} < (E [{Q(ai’a) Q\(al, Z>} ‘AJ,Xi,Xj,D”]>1/2

We have

~

2
{@(ai@) - Q(@'@)F = [ ! > {AKwi(@s) Kni(bs) — Q(ai,gi)}]

n—1
1<s<n,s#i

= SN {AKRi(@) Kni(bs) — Q@i bi) H Am Ki (@) i (bm) — Q (@i, bi) }
1<s#m<n,(s,m)#i
LY (ARG Kn() — Qb))

_ 2
(n ) 1<s<n,s#i

Notice that

E { ZZ { A (@) Kpi(bs) — Q@3 bi) H Am Kni (@m) Kni(bin) — Q (@, b3)} | A]aXianaDn:|

1<s#m<n,(s,m)#i
=0

because, for any s # (i, j), E {ASKM(aS)KM(BS) — Q@;,b;) | D", A, X, Xj} = 0 and either s # j

or m # j in the double sum above (since s # m). Next, notice that:

~

E{mll)z S (A (@) Knilh) — Q(@i, b)) | Aj,Xi,ijDn]

1<s<n,s#1
1 ~ ~
=E|—= AsKiAsKi s) — Ai>i 2 X“Dn
Y (AKERNG) - Q@B
1<s<n,s#(4,5)

4 K@) Kni(b)) — Q(@s, b))
(n—1)2
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In this light, we have

1 ~

E m Z {ASKhl(aS)KhZ( s) _Q(au z)} |AJ7X17X]7Dn
1<s<n,s#i
(n—2) ~ o~ 1
e BUARKN @ Kni(b) - Q@i b)) | Xi, D"} 4 g
~(n— )th {‘ ni(@ ) hl(b) Q(alvbl) ‘ (2 }+ (n— 1)2h4
1
~ nh?

under the condition that nh? — co. Putting everything together, we have reached

oy A . 1
E{’Q(ai,bi)—Q(%bi) | A;, X, X;,D }5 —

Therefore, we have

E{@.—ainb 0] Ai Ay Kpi (@) Kni (b, )!D”}<Ha_a\|uz—b\|

nh? ~ nh?

[E(Taij | D™)| <

so that

[@ — al||[b— b
nn ) 22 T | D) | S o

1<'L7£]<n

Term T3. We have

N (al — ai)(bj 6 )
E(T5; | D") =E b,
(Thij | D") [Q@,b»cz(ag,ba)

AiAj Kni(ay) Kni(b){Q (@5, b;) — Q(@:, i)} | D"]

Under the assumption that the density of (a,b) given A = 1 is Lipschitz:
1>}*1)Q<az,bz> Q(@;.by)
‘/K d]P’abm | pe(Wh 4T, vh+b;) — dPog 1Dn(uh+aj,uh+3j)})
S fa —ajl + (b — by,
Therefore,
[E(Taij | D")| S E [[ai — aillby — b i (@) Kni (B){[@ — @] + B = by} | D"
< WE {[@i — ail by — b | Kni(@,) Kni(b5) | D"}

< hlfa — all|[p — b|
< hllb—b]].

where the last inequality follows by the Cauchy-Schwarz inequality.
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Putting everything together, we have reached that

1

n(n —1)

E( —¢ | D")| =E >N Tuij+ Toij + Tsij | D"

1<i#j<n

b 7 a—all|b—0b
< BB — bl + B — b 1+e + J@=alllb =8l
nh?

Next, we proceed with a different bound on the bias.

Bound 2. Recall that

T, = n(nl_ 5 2 D (A8 = DIQ@: b)) ™ K (@) Kia(by) 4;(Y; — by) D B) B

1<i#j<n n(n—1) 1<i#j<n
so that
E(T, | D*) = ZZ — D{Q(@s, b:)} " Kni (@) Kni(b;) A; fal@j, a5, by; D") | D"

1<27éy<n

=E| oD > " (Adai — 1) fa(@s, ai, b D) | D"

1<z76]<n

K a; K b ~ N n n
S5 (gt — 1) S@ERG) o op G B D — fu(@sasBi DY) | D
n(n—1) 1<¢ < Q(ai, bi)
i£j<n
=R, +E ZZ Ai(a; — a;) MA {fa(aj,aj,bj7D ) — fa(@i,a;,b;; D™)} | D™
1<z;éj<n Q(a’u Z)

The first equality follows because

E{A;(Y; - bj) — Ajfa(@j,a;,b;; D") | Aj,@;,bj, As, @i, b, D™}

:E{A](Y} b) Afa(aj7a]7 )‘AhaJuvaD }

=E |E{4;(Y; - b;) | Aj,@j,aj,b;, D"} — A; fa(@;,a5,b5; D) | Ajaaj,bbD"}

=B (BIE{4;(Y; — b;) | Aj,5,a5,5, X5, D"} | Ay, a5,b5, D") = A; ful@j 05,553 D") | Aj,5,b;, D")

=K E{A(b —/b\) | Aj,aj,aj,gj,D”} — Ajfa(aj,aj,gj;D") | Aj,aj,/l;j,Dn}

=E A fa(a],a],b D ) Ajfa(aj,aj,gj;D”) ]Aj,aj,gj,D"}
=0.

The last equality follows because Q(az, ;) does not depend on A; so that

E{(4;a; — )Q (@i, b;) | X", A", D"} = <a — 1) Q (@i, bi)
Qg

= E{(A:i(@ — a;)Q (@, b;) | X", A", D™},
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where X" = (Xy,...,X,,) and A", = A"\ A;.

Next, by the smoothness assumption on f, and the boundedness assumption on @_1(@-,&), we
have

fa(@j, a5,b5; D") = fa(@s, a5, b3 D")| S aj — @l + |aj — ai™ + [bj — bi[*
Slaj —a@l® + ;- a)|* + @ — ail® + [b; — bil*
so that

B WIS o FS ) A, 15, D) = o D)) | D
SE | — al AiAs K (@) Kni () {15 — @l” + [d; — a5|” + [ — ail” + [b; = B[} | D"
S WOE [[G; — [ E{A;Kni(@;) Kni(b;) | Xi, D"} | D"
+ E { [ — ail Ai A K @) Kna (by)[a; — a31°| D" |
+E [(@ - a) B{A Kn (@) K (By) | X, D]
S hola—all + la - af**e

o~

under the condition that E{A;K;(a;)Kp;i(b;) | X;, D™}. Thus, we also have that
[E($ — ¢ | D")| = [E(Ty, | D") = Ra| S h*[l@— al| + [[@— al/"**.
Combining Bound 1 and Bound 2, we conclude that

[@ — alll|b = b

E(— 1 | DM < [ BPb=b| + b —b||'tF +
E(y - | )!(H |+ 1160l Ny

) A (haua— all + |la — aHHO‘) .
This concludes our proof of the bound on the bias.

C.4.2 Variance

The proof of the bound on the variance of @/Z; conditional on the training sample D™ follows exactly
the same logic as in the proof used to derive the bound on the conditional variance of 1,. Hence,
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we omit some details. Recall the definitions

o~ 1 n N ~
Q(aia bl) = m Z 4AsKhi(as)Khi( s)
s=1, j#i
~ o~ 1 n R ~
Qi@ bi) = — > AKpi(@s) Kpi(bs)
s=1, s#(i,l)

Q(al’ 2) E{Q(ala ) ‘ Xi’Dn}
/{a } UKL (@(x) — a(X0) Kn(b(x) — b(X,))dP(z)

—P(A=1) /K (0)B, 514y o (uh + G(X,), vk +B(X)

The estimator is {p\ = ]P’nqz; - T, = }P’nzz — T, + (Tn —T,), where

ZZ (Aiis — D{Q(@i, bi)} " Kno(@5) Kini (b)) Aj () — by),
1<276]<n

=Ty 2 2 (A = D{QUE b} K@) Ko (6:) 41 — By)

1<z;é]<n
Therefore, we have
var(ip | D™) < var(Pn@ | D) + var(T,, | D) + E{(T, — T,,)* | D"}
<n7 'V (nh)"2VE{(T, — T,)* | D"}.

The last inequality follows by the independence and boundedness of the observations, as well as by
Lemma 3 because

o~

~ ~ 2
E ([(Aiaz‘ —1)*Q*(ai, bi)E {Khi(aj)f(m'( i) A;(Y; = bs) | D"’Xz',AiH \ D"> Sl
E{ (A — 12Q72(@, b) KR @) K3 (b;) 4,(Y; — 5) | D"} S h72

Finally, we have

o~ ~

Tn - ZZ - 1 {Q (au z) - @ (au )}Khz(a])Khz( J)AJ(Y} - b])

1<z;éj<n

P IP KL

1<z;éj<n
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Just like in the proof for the bound on the variance of Ja, we break the square of the double sum
above in seven terms:

Zznj =D > (TE+TyTu) + > > (TyT + TyTii + Ty T + Ty Tyy)

1<i#j<n 1<i#£j<n 1<i£j#l<n

2.2 > T

1<ij#lAk<n

We have

o~ ~

T2 < Ajh_QKhi(/a\i)Khi( 2) and ’ngT]z| S AZAjh_thl(aZ)Khz( z)

1] ~

In this light,

NS T2+ YN 1T | D | S nn - 1R,

1<i#j<n 1<ij<n

o~

under the condition that E{A;Kj;(@;)Kp;i(b;) | X;, D"} < 1. Next, notice that
T35 Ta| S AjAiKRi(a7) Kni(b;
T Thi| S AiAjKni(a;) Kni(b
T35 Tl < AjAiKni(a;) Kpi(bj
T Th5| < Aj Kni (@) Kni () K (@) K (br).

In this light, we have

~

E(|T3Tul| D") < B{A; A Kpi(a;) Kni(b;) Kni (@) Kpi(b) | D"}
— E [ A Kni(@) Kini (5 E{ A Ki (@) KoBr) | X, D"} | D"
S E{A; K@) Kni(by) | D"}
— B [E{A4;Kni(@;) Kni(b5) | Xi, D"} | D"

<1

The expectation of the terms |7T;;7;| and |T;;7);| can be similarly upper bounded by a constant.
Therefore, we have

ZZ Z(TijTil + Ty Ty + TijTy) | D™ p Sn(n—1)(n —2).

1<ijAl<n
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The remaining term to control is that involving the terms 7;;7},. We have

~ 0~ 1 n R R
s=1,s#1
1 3 o~ ™ A K i a K i /[;
= LY A (@) KBy + AT
s=1,s#(3,0)
A Kpi (@) Kni(bi)

= Q\—l(aia/l;i) +

n—1

Next, we write

T;iTik = (Aia; — 1){@ (al, Z) _Q_ (au )}Khz(aJ)Khz( )A; (Y )
(Azaz —1{Q=} @1 b) — Q~ (az,bz)}Khz(ak)Khl(g )AR(Yi — b
AyE (@) Kpi (b)) K (@) K (b))
(n — 1)Q(@s, b:)Q_1(a@i, by)
(Azaz — 1{Q ™ (@1, br) — Q @y, by)} K (k) K (br) Ax (Vi — by.)
— (Aqfis = D{Q7) (@, bi) — Q" @i, b)Y i (@) i (b) A (V) = by)
Ay K (@) K (0:) K (@) K (b

— (Aa; — 1) A;(Y; _/gj)

X (Alal — 1) ~ _ ~ =~ . = Ak(Yk _/l;k:)
(n —1)Q(ar, b)Q—i(ar, br)
The expectation of the last two terms can be upper bounded as
1y A (@) K b Vi (b -
(n - 1) (alv )Q ((ZZ, bl)
Q"

x (Aja — D{Q™ (@, by) — b)) K (1) A (Yie — by

— (At — D{Q] (@i, br) — Q" (@i, bi) }ni (@) Kni (b) A5 (Y; — by)

AiK (@) K (b i) K }/L\(ak)K/i\zl(bk) |Dn]
(n — 1)Q(@y, b)) Q—i(ay, by)

< E{AlAjAkKhz‘(al)Khi(bl)Khi(aj) i (07) K (@) K (by,) | D”}

@
b;

X(Alal - ) Ak‘(Yk _gk)

(n—1)

-1
<n

This means that, for k = j, we have the bound

- - n 1
|E(Ti;Ti; | D")|S B{A:A; A A Kpi(ay) Kni(bj) Kni(ay) Kni(by) | D™} + - S,

so that

E{ZZZ%TU | D”} Sn(n—1)(n-2).

1<ij#l<n
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Finally, for k& # j, we have

o~

B[ (4@ — D107 @ b)) — Q" (@i bi) Hna (@) Kna(by) 45 (Y — By)
x(Asay — D{Q (@1, br) — Q" @r, bi) Kt (@) Kona (br) A (Vi — b | D”}
— |E [44(@ — a){Q} @, 5) — Q@1 Bi) Vi @) K (B) A (b — ;)
%A@ — a){Q= 1@, Br) — Q@ bu) (@) K (bk) Ax (b — B) | D]
S [E {18 = aullby = Bla — aullbg — Bl A Ay A A K@) K b Ko ) o ()

X}E{‘Q (a“ Z) ((I“ )HQ_Z(ahbl) Q(alagl)H Aj7Ak)Xi)Xj7Xl)Xk7Dn}] |DTL

Further, we have

n—1 )
1<s<n,s#£(3,l)

2
{Q@.b) - Q@@-)f{ Y (A0 K - Q@)

~

= (n _1 1)2 Z Z {As Kni(@s) Kpi(bs) — Q(@i, 0:) M Am K ni (@m) Kni(bm) — Q(@s, b;) }

1<s#m<n,(s,m)#(3,l)

~

+ (TL _1 1)2 Z {ASKhz(as)Khz( s) — Q(al,/l;s)}2

1<s<n,s2(i,1)

In addition,

E |: Z Z {AsKpi(a@s) Kpi(bs) — Q(ai, by)}

1<s#mn, (s,m)#(i,])

XL A i (@) Ko (bm) = Q@ B)} | Ay, A, Xi, X, X, X1, D" |

= ‘2{Athi(aj)Khi( i) — Q@i bi) M AR Kni(@n) Kni (bi) — Q(@i, bi)}
Sh?

and

E| > {AKn(@s)Knbs) — Q@i b)Y | D", A, A, Xi, X, Xi, Xy
1<s<n,s#(i,l)

= | — B [{AsKi(@) Kni (b) — Q@@ b)Y | D, Xy
+ B {450 @5) Kni(by) — Q@ b)) | D", Ay, X, X
+E [{AkKhi(ak)Khi@k) — Q@ b)) | D",Ak,xi,xk} ‘
<(n—4h2+n™!
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In this light, under the condition that nh? — oo, we have reached

[~ o~ | 1
E {Q*l(aivbl) Q(a‘h Z)} ’ D" A]>Ak7Xla kaXl S F
An identical reasoning yields
PO PRI } .
E {Q—i(alabl) - Q(alabl)} | D", Aj, Ay, Xi, X5, X3, Xp| S o

Therefore, by applying the Cauchy-Schwarz inequality, we have reached

2 {10, ) - Q@ 510 (al,/b\l)—Q(al,/l;l)HD",Aj,Ak,Xi7Xj,Xl7Xk}va
which yields

[E(Ti;Tiy. | D")]
1 . R R ~ . ~ ~ 11
S xE [Iai — ai|[ar — ar| Kpi(a;) Ai Aj A A Ky (b5) K (ar ) K (be) [ — bjl[br — be|| D } +
E [ — ail Ai A K @) Ki(5;)[0; = bl| D*| B | ApAi K@) Kbl — adllbr = bill D] 4
+ —
nh? n

~ 21 _ BlI2
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~ nh? n

This means that we have reached that

a—al?|b—b|?
ZZZZszTzHD" <n(n—1)(n—2)(n—23) (’ ﬂLhHQb ol —i—l)

1<i#j#l#k<n
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Putting everything together, we have that

L, 1 la-af? b — oI
(nh) nh?

E{(T, - Tu)* | D"} S S5

This concludes our derivation of the bound on var(t | D™).
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