
Parameter-Efficient Instance-Adaptive Neural
Video Compression

Hyunmo Yang∗,1, Seungjun Oh∗,1, and Eunbyung Park†,1,2

1Department of Artificial Intelligence, Sungkyunkwan University
2Department of Electrical and Computer Engineering, Sungkyunkwan University

Abstract. Learning-based Neural Video Codecs (NVCs) have emerged
as a compelling alternative to the standard video codecs, demonstrating
promising performance, and simple and easily maintainable pipelines.
However, NVCs often fall short of compression performance and occa-
sionally exhibit poor generalization capability due to inference-only com-
pression scheme and their dependence on training data. The instance-
adaptive video compression techniques have recently been suggested as a
viable solution, fine-tuning the encoder or decoder networks for a partic-
ular test instance video. However, fine-tuning all the model parameters
incurs high computational costs, increases the bitrates, and often leads to
unstable training. In this work, we propose a parameter-efficient instance-
adaptive video compression framework. Inspired by the remarkable suc-
cess of parameter-efficient fine-tuning on large-scale neural network mod-
els, we propose to use a lightweight adapter module that can be easily
attached to the pretrained NVCs and fine-tuned for test video sequences.
The resulting algorithm significantly improves compression performance
and reduces the encoding time compared to the existing instant-adaptive
video compression algorithms. Furthermore, the suggested fine-tuning
method enhances the robustness of the training process, allowing for the
proposed method to be widely used in many practical settings. We con-
ducted extensive experiments on various standard benchmark datasets,
including UVG, MCL-JVC, and HEVC sequences, and the experimen-
tal results have shown a significant improvement in rate-distortion (RD)
curves (up to 5 dB PSNR improvements) and BD rates compared to the
baselines NVC.

Keywords: Video compression · Instance-adaptation · Parameter-efficient
fine-tuning

1 Introduction

In the current digital landscape, we are experiencing unprecedented growth in
video content consumption. Despite technological advancements providing us
with high-speed internet and significant storage capabilities, efficient video com-
pression technology still remains essential to the whole system. Standard codecs,

∗ Equal contribution. Authorship order determined by coin flip.
† Corresponding author.

ar
X

iv
:2

40
5.

08
53

0v
1

 [
ee

ss
.I

V
]

 1
4

M
ay

 2
02

4

2 Yang et al.

including H.264 [50], H.265 [47], and H.266 [5], have played a critical role in en-
suring seamless multimedia experiences.

As an alternative approach to conventional standard codecs, data-driven
learning-based video codecs have gained significant attention due to their promis-
ing compression performance. Numerous studies have adapted and redesigned
deep neural networks to perform encoding and decoding tasks in place of manu-
ally crafted algorithms [2,24,31,39]. By leveraging the power of neural networks
to autonomously learn efficient representations of video signals and showing the
potential of data-driven video codecs, they have sparked considerable interest in
further research and development in this field.

The limitations of Neural Video Codecs (NVCs) primarily stem from their
reliance on training data. While a network trained on large-scale video datasets
may exhibit good performance across a broad spectrum of video types, this
assumption does not always hold true in real-world scenarios due to various rea-
sons, such as the lack of diversity in training data, the presence of uncertainty in
the optimization processes, and the limited expressibility of the neural networks,
among others.

One effective method for enhancing the generalization performance is to fur-
ther fine-tune the pretrained NVCs on the specific video instance. This approach,
known as instance-adaptive fine-tuning, has improved compression performance
across different neural codecs. Lu et al . [38] suggested fine-tuning only the en-
coder since modifying the decoder parts requires quantization before sending the
data to the receiver. This quantization significantly increases the transmitted
bits, resulting in slower framerates at identical bitrates. Despite the drawback
associated with decoder fine-tuning, Rozendaal et al . [44] demonstrated that a
comprehensive fine-tuning approach, encompassing both encoder and decoder, is
often superior to encoder-only fine-tuning when only the difference between pre-
trained and fine-tuned decoder parameters are quantized and transmitted. This
strategic approach, applicable to a broad spectrum of learned-based codecs, holds
the potential to serve as a pivotal method for enhancing the overall performance
of NVCs.

While instance-adaptive methods improve the performance of NVCs, it is
noteworthy that achieving this enhancement requires additional codecs (model
parameters updated) and encoding time to tailor the model to specific videos.
However, fine-tuning the entire model parameters or networks imposes a sub-
stantial load on the fine-tuning process, resulting in longer encoding times and
an increase in the amount of data bits to be transmitted. In this work, we pro-
pose a parameter-efficient instance-adaptive neural video compression method.
More specifically, we suggest utilizing the widely recognized Low-Rank Adapta-
tion (LoRA) [22] method to efficiently update the pretrained neural networks. By
freezing the parameters of pretrained networks and introducing a few trainable
parameters, the proposed instance-adaptive method makes the fine-tuning pro-
cess more efficient, significantly improving fine-tuning (encoding) time compared
to the previous full fine-tuning approaches. Moreover, as only a few parameters
are updated during training, the amount of data required for transmission can

Parameter-Efficient Instance-Adaptive Neural Video Compression 3

be substantially reduced. Furthermore, unlike the full-fine-tuning instance adap-
tation method, the proposed LoRA-based instant-adaptive strategy exhibits a
more stable and robust fine-tuning process.

Among the many well-established neural video codecs, we investigate the
effectiveness of the proposed method on SSF [2]. This particular method stands
out for its high-quality compression performance and consists of a typical set
of video compression modules, such as image compression, flow prediction, and
residual compression. Consequently, the comprehensive research conducted in
this work can be readily transferred to other neural video codecs. The following
are the main contributions of this paper.

– To the best of our knowledge, this work is the first effort to utilize the LoRA
type of parameter-efficient fine-tuning method for video compression tasks.

– We have investigated LoRA variants, examining the methods and locations
for integrating LoRA modules into well-established neural video codecs.

– The extensive experimental results on many standard benchmark datasets
show that the proposed approach has significantly improved the performance
compared to the baseline methods.

2 Related Work

2.1 Neural Video Compression

Building upon traditional codecs like H.264 [50] and H.265 [47], DVC [39] in-
troduces a novel architecture that incorporates optical flow for motion com-
pensation and utilizes an encoder-decoder structure composed of convolutional
layers. This architecture compresses both residual information and motion de-
rived from optical flow. Numerous subsequent studies have further enhanced this
architecture with advanced techniques, including the use of multiple reference
frames [25, 35], recurrent auto-encoders and probability models [53], and con-
textual learning [31–33, 46]. As a well-known way for improving NVCs, motion
compensation has been enhanced through the transition from optical flow to
scale space flow [2], deformable convolution [25,52], or cross-scale flow [15].

Despite their advancements, a notable limitation is their poor generalization,
resulting from dependence on training data. Considering that training all possi-
ble domains is impractical, recent studies have explored the solutions to address
this problem. CANF-VC [20] and its subsequent studies [9,10,16] leverage aug-
mented normalizing flow. MMVC [36] introduces different modes corresponding
to the feature. Among various methods, we select online adaptation to overcome
these challenges.

2.2 Content-Adaptive Compression

Neural data compression methods, trained on extensive datasets, can struggle
with performance degradation when the data domain differs from the training
set or if the data is exceedingly complex. To overcome this constraint, numerous

4 Yang et al.

studies fine-tuned the test data or out-of-domain data. Certain method opti-
mize network without updating decoding parts [1, 6, 13, 14, 54, 55], which has
shown promise for model optimization. Additional network application for do-
main transfer in Neural Image Compression [41, 45, 48] has indicated that fine-
tuning with test data domain can enhance compression quality.

In video compression, Lu et al . [38] demonstrated performance improvement
by updating only the encoder network, without the need to transmit updated
model information. Conversely, some research updates the decoding part. Rozen-
daal et al . [44] employs entire model parameters for overfitting the test data and
transmits the changes after training. This approach has resulted in an enhance-
ment of the compression quality compared with their base models. However,
the improvement was less significant in low-resolution videos because of the in-
creased bit-rate cost associated with the updated parameters. Research has also
been conducted on updating only a portion of the parameters in the decoder net-
work [29, 57], offering a balanced approach between performance improvement
and computational efficiency.

Implicit Neural Representation (INR) methods have also attempted to opti-
mize specific videos. NeRV [8] was one of the pioneers in integrating INR into
the video compression pipeline. Due to its fast decoding time, NeRV was consid-
ered a potential replacement for traditional codecs. However, subsequent stud-
ies [7,17,28,30,34,51,56], despite aiming to enhance quality, have shown worse re-
construction performance compared to traditional video codecs and NVC meth-
ods.

2.3 Parameter-Efficient Fine Tuning

As models continue to grow in size, the increasing computational costs and insuf-
ficient memory storage significantly hinder effective model training. The pioneer
of adapters [43] introduces the injection concept to the architecture. Adapter [21],
comprised of down projection, up projection, and non-linear layers, is designed
to construct a new branch sequentially between the pretrained layers. This se-
quential integration improves memory efficiency and reduces computation costs.
Subsequent studies [11, 12, 37] have expanded the application area of adapters,
broadening the adapter architecture. These advances have yielded successful re-
sults in areas such as image compression [45,48].

Despite these advantages, adapters encounter latency issues during inference,
primarily due to the presence of non-linear operations. LoRA [22] addresses
this concern by eliminating the non-linear layer within the adapter module,
outperforming not only adapters but also full fine-tuning in the field of natural
language processing (NLP). Numerous LoRA-based researches [19, 26, 40] have
successfully extended their applications to various vision areas. Notably, [41]
establishes a connection between image compression and LoRA in the decoder.
Our novel approach involves integrating the LoRA module into the CNN layer
within the decoder of a video codec, a previously unexplored way.

Parameter-Efficient Instance-Adaptive Neural Video Compression 5

Fig. 1: (a) provides an overview of SSF [2] decoding sequences. The quantized adapter
weight must be transferred before decoding the video. (b) illustrates the structure of
the compression model using hyperprior network [3]. AE and AD stand for Arithmetic
Encoding and Arithmetic Decoding, respectively. The input image x is compressed to
the codes y, which are then quantized to ŷ. The image is subsequently reconstructed
to x̂ through the decoder, comprising four transposed convolution layers. We have
attached an adapter module to each layer of the decoder.

3 Method

3.1 Overview

In this section, we describe the proposed method, parameter-efficient instance-
adaptive video compression. We employ the scale-space flow [2] as our baseline
model, which compresses the I-frames (Intra-coded frames, or key frames) and P-
frames (Predicted frames) through encoder-decoder neural networks. As shown
in Fig. 1, This model is characterized by three primary structures, each of which
compresses different parts of the video: the key frame, motion information, and
residual information. Each encoder-decoder pair uses a hyperprior network for
compressing latent information. The proposed method involves the insertion of
an adapter into the decoder layers. This allows us to maintain the original model
parameters while learning new ones, thereby enhancing each video instance’s re-
construction performance. Subsequently, the adapter parameters are transmitted
to the receiver side, ensuring that the receiver can access a video of improved
quality upon receipt.

3.2 Preliminary: LoRA

LoRA [22] is a parameter-efficient fine-tuning technique for large neural net-
works. The core idea of LoRA is to train only a few model parameters dur-
ing fine-tuning, making the fine-tuning more efficient without additional infer-
ence latency due to its linear operations. Given the frozen pretrained weight
W0 ∈ RCout×Cin , where Cout and Cin are the number of input and output

6 Yang et al.

channels, the trainable weight ∆W ∈ RCout×Cin , which is used as an additional
parallel branch layer, is introduced to find the optimal weight W ∈ RCout×Cin by
adjusting only a small subset of the parameters. LoRA assumes that the rank of
∆W is low, and as such, it is composed of a down-projection weight A ∈ Rr×Cin

and an up-projection weight B ∈ RCout×r, where r ≪ min(Cin, Cout). Conse-
quently, the weight matrix can be reparameterized as follows,

W = W0 +∆W = W0 +AB. (1)

Only the low-rank matrices (A and B) are trainable weights and the repa-
rameterization incurs no additional latency during the testing inference.

3.3 Adaptation Modules for Neural Video Codecs

LoRA has been predominantly utilized in transformer architectures and attached
to attention and linear layers. Since neural video codecs typically consist of
multiple convolutional layers, we developed the revised LoRA architecture to
make it compatible with these neural video codecs.

LoRA in convolutional layers At first glance, incorporating the LoRA tech-
nique into convolutional layers may not seem challenging. Since convolution is a
linear operator (it generally holds associativity and distributivity), we can define
a LoRA module with two convolutional filters A and B along with the original
convolutional filter W0 as follows.

W0 ∗ x+B ∗A ∗ x = (W0 +B ∗A) ∗ x = (W0 +∆W) ∗ x, (2)

where ∗ is the convolution operator. Similar to how LoRA operates in fully
connected layers, it can reduce the number of channels in the first layer (with
the filter A), followed by the second convolutional layer (with the filter B) to have
the same number of output channels as the original convolutional layer (with the
filter W0). Except for the non-linear activation functions in the middle, it shares
similarities with the widely known bottleneck convolution block [18].

However, the convolutions in deep neural networks easily break this assump-
tion in practice due to various reasons, such as discrete convolution, small kernel
sizes compared to the input features, and up (or down) samplings. In this work,
therefore, we revised a rather simpler technique to efficiently represent the orig-
inal convolutional kernels.

Factorizing convolution kernels Let W0 ∈ RCout×Cin×K×K be a weight ten-
sor for a convolutional layer, where K represents the kernel size. Given the input
feature Fin ∈ RCin×H×W , where H,W are height and width sizes, a convolu-
tional layer linearly transforms Fin into the output feature Fout ∈ RCout×H×W .
Similar to the original LoRA method, we introduce the trainable weight tensors
A ∈ Rr×Cin and B ∈ RCout×r, where r ≪ min(Cin, Cout). Note that the num-
ber of training parameters is significantly smaller than the original parameters

Parameter-Efficient Instance-Adaptive Neural Video Compression 7

Fig. 2: Illustration of our proposed adapter architecture. (a) represents the original
fine-tuning method that updates all parameters within the network. (b) and (c) only
update the adapter network, where (c) uses more parameters than (b). (b) duplicates
matrices according to the kernel size. (d) illustrates the repeat method applied in (b).

(e.g., Cin, Cout = 128,K = 5, r = 8, we fine-tune only 0.5% of parameters).
To merge the original parameters and the newly introduced factorized matrices,
we perform matrix multiplication and duplicate the resulting matrix to align its
dimensions with those of the original parameters. More formally, the updated
weight can be written as,

Â = repeat(A,K), (3)

B̂ = repeat(B,K), (4)
repeat(A,K) = A⊗ JK , (5)

W = W0 + reshape(B̂Â), (6)

where ⊗ denotes the kronecker product and JK represents K×K all-ones matrix.
Hence, repeat(·, ·) copies the input matrix K2 times and concatenates the dupli-
cated matrices to construct an enlarged matrix as depicted in Fig. 2-(d), and the
repeated matrices have the shapes of Â ∈ RrK×CinK and B̂ ∈ RCoutK×rK . Subse-
quently, we apply a reshape operator reshape(·) : RCoutK×CinK → RCout×Cin×K×K

to construct a ∆W to be added to the original convolutional kernel W0.
Despite its minimal parameter usage, the proposed factorization approach

is remarkably efficient for compressing videos on a per-instance basis. However,
the small number of update parameters sometimes results in limited performance
improvements on some datasets and faces challenges in scenarios requiring high
bitrate compression. Using a larger value for r can easily increase the number of
trainable parameters, but through empirical observation, we have noticed that
merely raising the rank often does not improve the fine-tuning process.

The additional structure we propose largely mirrors the previous approach,
with the key difference being that it does not duplicate the matrix but instead
uses a larger number of parameters. With the slight abuse of notation, this
method involves two matrices that decompose the weight of the convolution W0

into A ∈ RrK×CinK and B ∈ RCoutK×rK , where K continues to represent the
kernel size, consistent with the previous structure. The remaining elements of the
structure are configured similarly to the previous setup. The updated parameter

8 Yang et al.

W can be written as,

W = W0 + reshape(BA). (7)

The proposed method starts to adjust the adapter parameters for a video in-
stance and freeze the pretrained parameters. By initializing the adapter pa-
rameters to zero, the model replicates the output of the original model at the
beginning of the fine-tuning process.

3.4 Instance-Adaptive fine-tuning

Given a video instance during testing time, the proposed method performs fine-
tuning by updating the proposed factorized convolutional kernels. After a few
training iterations, the updated weights are quantized and compressed before
transmission to the receiver. To maximize the compression ratio, they are also
entropy-coded to the bitstream with a prior, along with the latent codes gener-
ated by the encoder. On the receiver side, it already has the pretrained decoder
parameters and updates the convolutional kernels. The resulting model archi-
tecture remains identical to the pretrained model, hence no additional latency
during decoding.

Decoder-only updates Modern NVCs have utilized the encoder and decoder
architectures, where the encoder extracts the codes from the input videos, and
the spatial resolution is downsampled along the feature extraction process. On
the other hand, the decoder upsamples the extracted codes to reconstruct the
videos up to the original resolution. While it is possible to fine-tune both the en-
coder and decoder, our empirical observations indicate that competitive perfor-
mance can be achieved by fine-tuning only the decoder. Fine-tuning the encoder
results in a slight improvement in the compression ratio, but it requires a longer
training time due to the need for backpropagation operations down to the input
layer. Similar results have been demonstrated by Rozendaal et al . [44], showing
the limitations of encoder updates in the case of full-fine-tuning. We will provide
experimental results in the Sec. 4.3.

Vanishing parameters In the fine-tuning stage, we observed that a significant
amount of update parameters are vanishing in the quantization process. This
results in substantial performance degradation on the receiver side. The primary
cause of this issue was the slight modifications made to the parameters, which
can be lost during quantization by falling into the zero bin. To prevent significant
information loss, we use higher learning rates to encourage larger updates to the
parameters. This enhances compression performance and significantly reduces
training time since we achieve good reconstruction quality in fewer training
iterations.

Parameter-Efficient Instance-Adaptive Neural Video Compression 9

Rate-distortion fine-tuning The training loss optimized during the training
is given by the following equation:

L =
1

N

N−1∑
i=0

λD(xi, x̂i) +H(zi) + βH(w̄), (8)

where λ is trade off between D and H, D denotes distortion loss between ground
truth x and reconstructed data x̂, and H is entropy estimation to represent the
compressed latent information from I-frame, motion, and residual. As D can be
either mean square error (MSE) or structural similarity index measure (SSIM),
we use D as MSE loss. H(w̄) with coefficient β represents the number of bits
of the quantized factorized kernel weights. Following Rozendaal et al . [44], we
set spike-and-slab prior [27] to estimate the entropy estimation of the factorized
kernel weights.

p(w) =
N (w|0, σ2I) + αN (w|0, s2I)

1 + α
, (9)

where σ2 and s2 denotes the variances of slab and spike components, re-
spectively, and α is tunable parameter to set the scale of spike prior. The slap
component keeps a lower scale of updates, while spike makes zero-update, en-
abling cheaper and sparser updates.

4 Experiments

4.1 Experimental Setup

Dataset We evaluate the performance of our method on the UVG-1k dataset
[42], MCL-JCV dataset [49], and the HEVC class B and C dataset [4]. We use
RGB format for all video sequences. The resolution of the UVG dataset, MCL-
JCV dataset, and the HEVC class B dataset are 1920× 1080, with 7, 30, and 5
videos in each dataset, respectively. Due to our backbone model, which requires
input sizes with a height and width that are multiples of 128, we crop the video
resolution to 1920× 1024. The HEVC class C dataset consists of 4 videos with a
resolution of 832× 480. For this dataset, We pad the right and bottom sides of
the input image to fit into the model and crop outputs to obtain the final video.

Video adaptation We train each video using an MSE-optimized pretrained
SSF model [2]. We use nine qualities, each trained along to bitrate. We set λ as
0.01 · 2i, where i ranges from -3 to 5, following the original approach. Both full
fine-tuning and adapter fine-tuning methods are applied to train our model. We
set α to 1000 and β to 1 for loss calculation. The baseline model has 4 layers on
the decoder, and we set the rank of the adapter r as 16, 8, 8, and 2, starting from
the first layer. Regardless of the frame length of the video data, we conducted 15
epochs of training for all video sequences. For the learning rate, we use 0.0001
for full fine-tuning and 0.0005 for our approach. We observed that using a high
learning rate for full fine-tuning led to poorer results as training progressed, so

10 Yang et al.

Fig. 3: Rate-Distortion curve comparison with the baseline method, SSF [2] on UVG,
MCL-JCV, HEVC class B, and C datasets

Method UVG MCL-JCV HEVC B HEVC C Avg.

SSF 111.26 22.40 50.63 121.10 76.35
Full fine-tuning 137.03 101.11 52.99 167.35 114.62
Ours (repeat) -0.14 -35.85 -50.42 9.26 -19.29

Ours -6.48 -11.14 -47.47 14.78 -12.58

Table 1: BD-rate (%) comparison with x265. A lower value indicates better perfor-
mance compared to the reference codec.

we selected a value that could stably improve performance. Additionally, we use
the ‘ReduceOnPlateau’ learning rate scheduler. Since we use a higher learning
rate than that used in training and train on a single video, once the model
quickly converges, we reduce the learning rate to allow further training progress.
We set the Group of Pictures (GoP) to 4 during training, with batch size 3. For
testing, we set the GoP to 12. Previous study [2] have reported that training
with smaller GoPs can lead to quicker convergence, and this strategy was also
applied to instance-adaptation. Using smaller GoPs, rather than learning the
testing sequences as they are, was beneficial for rapid convergence.

4.2 Experimental Result

Quantitative Results We evaluate the performance with Rate-distortion (RD)
curve and BD-rate, anchoring on x265. The data for this codec was obtained
from publicly available data online [23]. Fig. 3 shows the RD curve measured
for PSNR and MS-SSIM on the UVG, MCL-JCV, and HEVC class B and C
datasets. Both methods we proposed significantly improved the performance of
the existing model. While the instance adaptive method shows relatively weak

Parameter-Efficient Instance-Adaptive Neural Video Compression 11

Fig. 4: Qualitative result for moving object, numbers in the pictures represent the
corresponding bpp. Our method effectively reduces distortions in P frames, resulting
in a clearer and more accurate representation in similar bpp. (Left) ’BasketballDrive’
sequence from the HEVC class B dataset. (Right) ’ReadySteadyGo’ sequence from the
UVG dataset.

performance on the low resolution data [44], our proposed methods also demon-
strate similar performance improvement on the HEVC class C dataset, which
has smaller resolution compared to other datasets.

Tab. 1 presents the BD-rate results. We also conducted tests on the UVG,
MCL-JCV, and HEVC class B and C datasets. Our method shows significant
improvement compared to the original result, and the result on the 1K dataset
outperformed H.265. Remarkably, the BD-rate of ours with duplication is the
best due to significantly fewer trainable parameters, resulting in a lower size of
sending bits.

Qualitative Results Fig. 4 presents the video compression results. We com-
pared the reconstructed frames with similar bpp. The fine-tuning method has
shown effective adaptability to each video sequence. It was observed that by
adopting the instance-adaptive method, we could achieve outputs that closely
resemble the original. When compared to the original, significant improvements
were observed with reduced motion blur, color distortion, and other artifacts in
moving objects. However, performance improvements were not noticeable in full
fine-tuning. On the left of the Fig. 4, it is evident that the SSF method distorts
color and retains motion information. In contrast, these errors are mitigated in
the instance-adaptive method. Notably, our method reduces degradations, par-
ticularly on the ball and human face.

4.3 Ablation studies

Encoder adaptation Encoder-only updates exhibit limited improvement, as
discussed in Sec. 3.4 and Rozendaal et al . [44]. We performed an experiment
involving attachment to both the encoder and decoder, similar to full fine-tuning
but with a smaller number of updating parameters. As shown in Tab. 2, our

12 Yang et al.

Methods
BD-rate (%)

Training time (min)
Beauty ReadySteadyGo Bosphorus HoneyBee Jockey ShakeNDry YachtRide

Full fine-tuning 91.21 -13.89 39.98 126.56 41.05 59.36 15.50 23
Ours (repeat) -13.89 -62.99 -64.50 -28.68 -41.19 -14.95 -52.85 14

Ours -28.53 -67.52 -64.33 -47.66 -45.84 -16.33 -56.92 14
Ours (enc, dec) -34.44 -66.74 -67.71 -53.17 -50.38 -21.77 -59.00 16

Table 2: BD-rate (%) of each data in UVG dataset (with SSF as the anchor), and
training time (in Minutes) of one video of 1920× 1024 resolution and 600 frames.

method using both encoder and decoder without duplication shows lower BD-
rates and faster training time compared to full fine-tuning, similar with using
only decoder side. However, attaching both sides has a slight gap and longer
training time compared to decoder-only training, leading us to opt for training
only the decoder part.

Instance-adaptive environments We conducted an ablation study on vari-
ous learning rates using ReadySteadyGo, as depicted in Fig. 5. (i) We assessed
the convergence speed in our predefined setting. After just one epoch, the curve
exhibits a notable difference from the baseline, and the interval progressively
narrows as epochs progress, signifies a fast convergence speed. (ii) As mentioned
in Sec. 3.4 concerning gradient vanishing, we trained our method with a learn-
ing rate ranging from 0.0001 to 0.0005. A slight expansion in the RD curve
is observed, considered as quantization loss, which impedes faster convergence.
(ii, iii) The results of our proposed method and full fine-tuning across various
learning rates are presented. RD curves of full fine-tuning notably decline as the
learning rate is increased. This suggests that full fine-tuning requires training at
a lower learning rate, taking a longer time for convergence. On the other hand,
using only factorized kernel during fine-tuning maintains performance regardless
of the learning rate, and achieves this in a shorter time. Therefore, our proposed
method demonstrates robustness across various hyperparameter environments.

Additional decoder bits Before using the video codec, it is necessary to
update fine-tuned information to synchronize the transmitter and receiver side.
After this overhead transmission step is completed, video compression can be
performed as in a typical NVC. Fig. 5 (b) demonstrates the quantized decoder
overhead with BD-rate. Full fine-tuning requires transmitting 10 times or more
weights compared to our proposed methods, despite the increased BD-rate. The
repeated method, with significantly fewer trainable parameters, exhibits lower
weight overheads and a reduced size of total bits. This is due to its reduced
weight to be transmitted, resulting in a decreased total number of bitstreams.
On the other hand, the non-repeated method shows the highest BD-rate among
the three methods, even though the transmitted weight ratio relative to the
overall bitstreams is larger than the repeated method. These results imply that

Parameter-Efficient Instance-Adaptive Neural Video Compression 13

Fig. 5: (a): RD curve varies according to training parameters, as measured on the
ReadySteadyGo Dataset. (b): BD-rate (with the anchor as SSF) per adapter weight
needed for decoding a video. In (a)(i), our method demonstrates that performance gains
can be achieved with just one training epoch. (a)(ii) shows that using a higher learning
rate can lead to a better PSNR. However, graph (a)(iii) suggests that a high learning
rate is not feasible during full fine-tuning. In (b), while the BD-rate of Ours(repeat)
and Ours is quite similar, Ours(repeat) requires significantly less overhead at only
43kB, compared to Ours which requires 1025kB, and full fine-tuning which necessitates
8522kB.

our methods require a smaller weight bit size for transmission while achieving
superior video compression.

Fig. 6: Rate savings for out-of-domain
data. Y axis represents the bitrate com-
pared to H.265(smaller is better).

Hard-to-compress data Agustsson et
al . [2] acknowledged a failure to pro-
duce reasonable results on animation style
datasets, which are out-of-domain. Fig. 6
illustrates the size of encoded data rela-
tive to H.265, indicating the proportion
of data used to compress a video with
an equivalent PSNR. We selected datasets
which yield worse result compared to the
traditional codec. Our proposed method
has demonstrated its effectiveness in re-
ducing the bitrate required for compres-
sion. Therefore, our methods enhance the
motion estimation performance and ex-
hibit better generalization across various
video domains.

Apply to another NVC We applied our methods to another baseline, FVC
[25], an end-to-end video codec. FVC only compresses P-frames, using H.265 for
I-frame compression. As shown in Fig. 7, our method outperforms the baseline
in benchmark datasets. This demonstrates that our proposed approach performs
well even in different architectures, and also can be applied to P-frame settings.

14 Yang et al.

Fig. 7: RD-curve comparison using FVC.

Ours Ours (repeat) Bias-tuning Tsubota et al . Shen et al .

BD-rate (%) -6.48 -0.14 65.84 9.47 11.69

Table 3: BD-rate comparison with previous methods using anchor as H.265

Comparison to the previous methods We did comparisons to the existing
methods applied to other tasks, such as domain transfer and image compression.
Tab. 3 represents the BD-rate on UVG dataset compared to H.265 with bias-
tuning, Tsubota et al . [48](adapter using matrix decomposition) and Shen et
al . [45](adapter using depthwise separable convolution and activation function).
We implemented their methods on video compression tasks, and our methods
show the best results among the other PEFT methods. This supports the effec-
tiveness of the proposed architectural design.

5 Conclusion

We introduce a novel parameter-efficient instance-adaptive method, which is
adapted to scale-space flow models in both I-frame and P-frame settings. Our
approach utilizes linear operations for reparameterization, ensuring no additional
latency during decoding. Training factorized kernels with duplications maintain
performance while reducing the number of bits transmitted in lower bpp areas,
as evidenced by various BD-rate measurements. Training these kernels without
duplications yields superior performance in RD-curves. Additional experimental
results demonstrate the robustness, speed, and generalization capabilities of our
methods. We believe that our work represents a significant step towards enhanc-
ing the efficiency and adaptability of instance-adaptive video compression.

References

1. Abdoli, M., Clare, G., Henry, F.: Gop-based latent refinement for learned video
coding. In: ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). pp. 1–5. IEEE (2023)

Parameter-Efficient Instance-Adaptive Neural Video Compression 15

2. Agustsson, E., Minnen, D., Johnston, N., Balle, J., Hwang, S.J., Toderici, G.:
Scale-space flow for end-to-end optimized video compression. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 8503–
8512 (2020)

3. Ballé, J., Minnen, D., Singh, S., Hwang, S.J., Johnston, N.: Variational image
compression with a scale hyperprior. arXiv preprint arXiv:1802.01436 (2018)

4. Bossen, F., et al.: Common test conditions and software reference configurations.
JCTVC-L1100 12(7), 1 (2013)

5. Bross, B., Wang, Y.K., Ye, Y., Liu, S., Chen, J., Sullivan, G.J., Ohm, J.R.:
Overview of the versatile video coding (vvc) standard and its applications. IEEE
Transactions on Circuits and Systems for Video Technology 31(10), 3736–3764
(2021)

6. Campos, J., Meierhans, S., Djelouah, A., Schroers, C.: Content adaptive optimiza-
tion for neural image compression. arXiv preprint arXiv:1906.01223 (2019)

7. Chen, H., Gwilliam, M., Lim, S.N., Shrivastava, A.: Hnerv: A hybrid neural repre-
sentation for videos. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 10270–10279 (2023)

8. Chen, H., He, B., Wang, H., Ren, Y., Lim, S.N., Shrivastava, A.: Nerv: Neural
representations for videos. Advances in Neural Information Processing Systems
34, 21557–21568 (2021)

9. Chen, M.J., Chen, Y.H., Peng, W.H.: B-canf: Adaptive b-frame coding with condi-
tional augmented normalizing flows. IEEE Transactions on Circuits and Systems
for Video Technology (2023)

10. Chen, P.Y., Peng, W.H.: Canf-vc++: Enhancing conditional augmented nor-
malizing flows for video compression with advanced techniques. arXiv preprint
arXiv:2309.05382 (2023)

11. Chen, S., Ge, C., Tong, Z., Wang, J., Song, Y., Wang, J., Luo, P.: Adaptformer:
Adapting vision transformers for scalable visual recognition. Advances in Neural
Information Processing Systems 35, 16664–16678 (2022)

12. Chen, Z., Duan, Y., Wang, W., He, J., Lu, T., Dai, J., Qiao, Y.: Vision transformer
adapter for dense predictions. arXiv preprint arXiv:2205.08534 (2022)

13. Djelouah, J., Schroers, C.: Content adaptive optimization for neural image com-
pression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops (2019)

14. Gao, C., Xu, T., He, D., Wang, Y., Qin, H.: Flexible neural image compression via
code editing. Advances in Neural Information Processing Systems 35, 12184–12196
(2022)

15. Guo, Z., Feng, R., Zhang, Z., Jin, X., Chen, Z.: Learning cross-scale prediction for
efficient neural video compression. arXiv e-prints pp. arXiv–2112 (2021)

16. Hadizadeh, H., Bajić, I.V.: Lccm-vc: Learned conditional coding modes for video
coding. arXiv preprint arXiv:2210.15883 (2022)

17. He, B., Yang, X., Wang, H., Wu, Z., Chen, H., Huang, S., Ren, Y., Lim, S.N., Shri-
vastava, A.: Towards scalable neural representation for diverse videos. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 6132–6142 (2023)

18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (2026)

19. He, X., Li, C., Zhang, P., Yang, J., Wang, X.E.: Parameter-efficient model adapta-
tion for vision transformers. In: Proceedings of the AAAI Conference on Artificial
Intelligence. vol. 37, pp. 817–825 (2023)

16 Yang et al.

20. Ho, Y.H., Chang, C.P., Chen, P.Y., Gnutti, A., Peng, W.H.: Canf-vc: Conditional
augmented normalizing flows for video compression. In: European Conference on
Computer Vision. pp. 207–223. Springer (2022)

21. Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Laroussilhe, Q., Ges-
mundo, A., Attariyan, M., Gelly, S.: Parameter-efficient transfer learning for nlp.
In: International Conference on Machine Learning. pp. 2790–2799. PMLR (2019)

22. Hu, E.J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L.,
Chen, W.: Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685 (2021)

23. Hu, Z.: Pytorchvideocompression. https://github.com/ZhihaoHu/PyTorchVideo
Compression (2020)

24. Hu, Z., Lu, G., Guo, J., Liu, S., Jiang, W., Xu, D.: Coarse-to-fine deep video
coding with hyperprior-guided mode prediction. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 5921–5930 (2022)

25. Hu, Z., Lu, G., Xu, D.: Fvc: A new framework towards deep video compression in
feature space. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 1502–1511 (2021)

26. Jie, S., Deng, Z.H.: Fact: Factor-tuning for lightweight adaptation on vision trans-
former. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 37,
pp. 1060–1068 (2023)

27. Johnstone, I.M., Titterington, D.M.: Statistical challenges of high-dimensional data
(2009)

28. Kwan, H.M., Gao, G., Zhang, F., Gower, A., Bull, D.: Hinerv: Video compres-
sion with hierarchical encoding-based neural representation. Advances in Neural
Information Processing Systems 36 (2024)

29. Lam, Y.H., Zare, A., Cricri, F., Lainema, J., Hannuksela, M.M.: Efficient adap-
tation of neural network filter for video compression. In: Proceedings of the 28th
ACM International Conference on Multimedia. pp. 358–366 (2020)

30. Lee, J.C., Rho, D., Ko, J.H., Park, E.: Ffnerv: Flow-guided frame-wise neural rep-
resentations for videos. In: Proceedings of the 31st ACM International Conference
on Multimedia. pp. 7859–7870 (2023)

31. Li, J., Li, B., Lu, Y.: Deep contextual video compression. Advances in Neural
Information Processing Systems 34, 18114–18125 (2021)

32. Li, J., Li, B., Lu, Y.: Hybrid spatial-temporal entropy modelling for neural video
compression. In: Proceedings of the 30th ACM International Conference on Mul-
timedia. pp. 1503–1511 (2022)

33. Li, J., Li, B., Lu, Y.: Neural video compression with diverse contexts. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 22616–22626 (2023)

34. Li, Z., Wang, M., Pi, H., Xu, K., Mei, J., Liu, Y.: E-nerv: Expedite neural video
representation with disentangled spatial-temporal context. In: European Confer-
ence on Computer Vision. pp. 267–284. Springer (2022)

35. Lin, J., Liu, D., Li, H., Wu, F.: M-lvc: Multiple frames prediction for learned video
compression. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 3546–3554 (2020)

36. Liu, B., Chen, Y., Machineni, R.C., Liu, S., Kim, H.S.: Mmvc: Learned multi-mode
video compression with block-based prediction mode selection and density-adaptive
entropy coding. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. pp. 18487–18496 (2023)

Parameter-Efficient Instance-Adaptive Neural Video Compression 17

37. Liu, Y.C., Ma, C.Y., Tian, J., He, Z., Kira, Z.: Polyhistor: Parameter-efficient
multi-task adaptation for dense vision tasks. Advances in Neural Information Pro-
cessing Systems 35, 36889–36901 (2022)

38. Lu, G., Cai, C., Zhang, X., Chen, L., Ouyang, W., Xu, D., Gao, Z.: Content adap-
tive and error propagation aware deep video compression. In: Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Pro-
ceedings, Part II 16. pp. 456–472. Springer (2020)

39. Lu, G., Ouyang, W., Xu, D., Zhang, X., Cai, C., Gao, Z.: Dvc: An end-to-end deep
video compression framework. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 11006–11015 (2019)

40. Luo, G., Huang, M., Zhou, Y., Sun, X., Jiang, G., Wang, Z., Ji, R.: To-
wards efficient visual adaption via structural re-parameterization. arXiv preprint
arXiv:2302.08106 (2023)

41. Lv, Y., Xiang, J., Zhang, J., Yang, W., Han, X., Yang, W.: Dynamic low-rank
instance adaptation for universal neural image compression. In: Proceedings of the
31st ACM International Conference on Multimedia. pp. 632–642 (2023)

42. Mercat, A., Viitanen, M., Vanne, J.: Uvg dataset: 50/120fps 4k sequences for video
codec analysis and development. In: Proceedings of the 11th ACM Multimedia
Systems Conference. pp. 297–302 (2020)

43. Rebuffi, S.A., Bilen, H., Vedaldi, A.: Learning multiple visual domains with residual
adapters. Advances in neural information processing systems 30 (2017)

44. van Rozendaal, T., Brehmer, J., Zhang, Y., Pourreza, R., Wiggers, A., Cohen, T.S.:
Instance-adaptive video compression: Improving neural codecs by training on the
test set. arXiv preprint arXiv:2111.10302 (2021)

45. Shen, S., Yue, H., Yang, J.: Dec-adapter: Exploring efficient decoder-side adapter
for bridging screen content and natural image compression. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 12887–12896 (2023)

46. Sheng, X., Li, J., Li, B., Li, L., Liu, D., Lu, Y.: Temporal context mining for learned
video compression. IEEE Transactions on Multimedia (2022)

47. Sullivan, G.J., Ohm, J.R., Han, W.J., Wiegand, T.: Overview of the high efficiency
video coding (hevc) standard. IEEE Transactions on circuits and systems for video
technology 22(12), 1649–1668 (2012)

48. Tsubota, K., Akutsu, H., Aizawa, K.: Universal deep image compression via
content-adaptive optimization with adapters. In: Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision. pp. 2529–2538 (2023)

49. Wang, H., Gan, W., Hu, S., Lin, J.Y., Jin, L., Song, L., Wang, P., Katsavounidis, I.,
Aaron, A., Kuo, C.C.J.: Mcl-jcv: a jnd-based h. 264/avc video quality assessment
dataset. In: 2016 IEEE international conference on image processing (ICIP). pp.
1509–1513. IEEE (2016)

50. Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A.: Overview of the h.
264/avc video coding standard. IEEE Transactions on circuits and systems for
video technology 13(7), 560–576 (2003)

51. Xu, Y., Feng, X., Qin, F., Ge, R., Peng, Y., Wang, C.: Vq-nerv: A vector quantized
neural representation for videos. arXiv preprint arXiv:2403.12401 (2024)

52. Yang, J., Yang, C., Xiong, F., Wang, F., Wang, R.: Learned low bitrate video
compression with space-time super-resolution. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 1786–1790 (2022)

53. Yang, R., Mentzer, F., Van Gool, L., Timofte, R.: Learning for video compression
with recurrent auto-encoder and recurrent probability model. IEEE Journal of
Selected Topics in Signal Processing 15(2), 388–401 (2020)

18 Yang et al.

54. Yang, Y., Bamler, R., Mandt, S.: Improving inference for neural image compression.
Advances in Neural Information Processing Systems 33, 573–584 (2020)

55. Zhao, J., Li, B., Li, J., Xiong, R., Lu, Y.: A universal encoder rate distortion
optimization framework for learned compression. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 1880–1884 (2021)

56. Zhao, Q., Asif, M.S., Ma, Z.: Dnerv: Modeling inherent dynamics via difference
neural representation for videos. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 2031–2040 (2023)

57. Zou, N., Zhang, H., Cricri, F., Youvalari, R.G., Tavakoli, H.R., Lainema, J., Aksu,
E., Hannuksela, M., Rahtu, E.: Adaptation and attention for neural video coding.
In: 2021 IEEE International Symposium on Multimedia (ISM). pp. 240–244. IEEE
(2021)

Parameter-Efficient Instance-Adaptive Neural Video Compression 19

Supplementary material

A Trainable parameters

As shown in Tab. 4, our proposed methods use far fewer training parameters
than the full fine-tuning method. This is mainly because our methods do not
have parameters in the encoder and hyperprior parts that need training, allowing
for a faster learning process. Additionally, our methods only need to update a
relatively small set of parameters, increasing their overall efficiency. Specifically,
the method that repeats parameters has a much smaller number of parameters
compared to the other methods. This points to the high efficiency and practi-
cality of our methods and strengthens their potential for effective use in various
real-world situations.

B Adapter on hyperprior model

We conducted experiments on integrating our adapter structure with hyper-
prior models. As Fig. 8 shows, this did not lead to improvements in PSNR and
MS-SSIM values. Furthermore, the compression performance got worse at lower
bitrates. This can be attributed to the fact that the added structure makes more
bits need to be transferred.

C GoP size variation

As demonstrated in prior researches [32,33], the commonly used practical Group
of Pictures (GoP) size is close to 32. Thus, We also evaluated the performance
with the GoP size set to 32, using the same Rate-distortion (RD) curve. The
datasets for this evaluation remained the same, including UVG [42], MCL-
JCV [49], and HEVC class B and C [4]. As shown in Fig. 9, the RD curves of
PSNR and MS-SSIM displayed largely similar performance to the previous result
with a smaller GoP size. Although there was a slight decrease in performance at
lower bitrates, the overall performance remained consistent, demonstrating the
robustness and applicability of our proposed methods to larger GoP sizes. This
suggests that our proposed methods can be effectively applied even when the
GoP size is increased, further enhancing the versatility of our method.

D Qualitative results

As indicated in Section 4.3, some datasets, especially those with cartoon-style
or complex movements, pose challenges in reconstructing images. Therefore, we
present the qualitative results for each dataset in Fig. 10, Fig. 11, and Fig. 12.
The comparison is made at similar bpp settings, revealing that SSF [2] exhibits
motion blur in complex domains. Moreover, full fine-tuning results in distortion

20 Yang et al.

Total params. (M) Train params. (M)
Encoder Hyperprior Decoder all

Full fine-tuning 34.24 12.70 16.59 4.95 34.24
Ours 35.03 0 0 0.79 0.79

Ours(repeat) 34.27 0 0 0.03 0.03

Table 4: Number of training parameters for video sequence instance-adaptation.

Fig. 8: RD-curve when apply adapter on hyperprior model. Comparison conducted on
UVG dataset.

from the original, failing to accurately represent finer details. In contrast, both
of our methods can effectively represent their respective areas without motion
blur, even in the cartoon domain. These qualitative results highlight the superior
overfitting mitigation capability of our methods.

E PSNR per frame

To assess the detailed performance of our method, we measure the PSNRs for
each frame. As depicted in Fig. 13, the comparison is made between the base-
line and our method with no duplication, focusing on the some of UVG dataset
sequence. Both the baseline and our method show an increasing trend in PSNR.
However, our method exhibits an overall improvement in PSNRs of approxi-
mately 1 dB, with smaller spikes, even though bpp is lower than baseline. This
suggests that our method may be prone to overfitting the input video sequences
with saving the number of bits.

Parameter-Efficient Instance-Adaptive Neural Video Compression 21

Fig. 9: RD-curve with GoP set to 32. Comparison conducted on UVG, MCL-JCV,
HEVC class B, and C datasets.

Fig. 10: Qualititive results of MCL-JCV 10 dataset.

22 Yang et al.

Fig. 11: Qualititive results of MCL-JCV 24 dataset.

Fig. 12: Qualititive results of MCL-JCV 25 dataset.

Parameter-Efficient Instance-Adaptive Neural Video Compression 23

Fig. 13: PSNR for each frame using the same baseline model, tested on the ‘HoneyBee’,
‘ReadySteadyGo’, and ‘Jockey’ sequence. The Number in the legend represent bpp.

	Parameter-Efficient Instance-Adaptive Neural Video Compression

