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Abstract. Let f : C → C be a transcendental entire function.
In 1989, Eremenko asked the following question concerning the set I(f) of points

that tend to infinity under iteration: can every point of I(f) be joined to ∞ by a curve
in I(f)? This is known as the strong Eremenko conjecture and was disproved in 2011
by Rottenfußer, Rückert, Rempe and Schleicher.

The function has relatively small infinite order: it can be chosen such that log log |f(z)| =
(log|z|)1+o(1) as f(z) → ∞. Moreover, f belongs to the Eremenko–Lyubich class B.

Rottenfußer et al also show that the strong Eremenko conjecture does hold for any
f ∈ B of finite order. We consider how slow a counterexample f ∈ B can grow. Suppose
that Θ: [t0,∞) → [0,∞) satisfies Θ(t) → 0 and

(log t)−βΘ(log t)/Θ(t) → 0 as t → ∞
for some 0 < β < 1, along with a certain regularity assumption. Then there exists a
counterexample f ∈ B as above such that

log log|f(z)| = O
(
(log|z|)1+Θ(log|z|)) as f(z) → ∞.

The hypotheses are satisfied, in particular, for Θ(t) = 1/(log log t)α, for any α > 0.

1. Introduction

Let f : C → C be a transcendental entire function. The escaping set of f is defined as

I(f) ..= {z ∈ C : fn(z) → ∞ as n→ ∞},

where fn denotes the n-th iterate of f .
Already in 1926, Fatou [Fat26, p. 369] noticed the existence of curves contained within

the escaping sets of certain transcendental entire functions and asked whether this is true
of general transcendental entire functions. In 1989, Eremenko [Ere89] was the first to
study the set I(f) in general. In particular, he made Fatou’s question more precise,
stating “It is plausible that the set I(f) always has the following property: every point
z ∈ I(f) can be joined with ∞ by a curve in I(f).”
This is known as the strong Eremenko conjecture and was answered in the negative

by Rottenfußer, Rückert, Rempe and Schleicher [RRRS11, Theorem 1.1]. To discuss
this example, let us introduce some terminology. An entire funcion f belongs to the
Eremenko–Lyubich class B if its set of critical and asymptotic values is bounded (see
Section 2). Moreover, f has finite order if

log log|f(z)| = O(log|z|) as |f(z)|→ ∞,

and infinite order otherwise. By [RRRS11, Theorem 1.2], the strong Eremenko conjec-
ture holds for any f ∈ B of finite order.
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The function f in [RRRS11, Theorem 1.1] belongs to the class B, so its order must
be infinite; it can be checked that

(1.1) log log |f(z)| = O
(
(log|z|)M

)
as |f(z)| → ∞

for some M > 1 [RRRS11, Proposition 8.1]. We investigate how close a counterexample
to the strong Eremenko conjecture may be to having finite order of growth.

In [RRRS11], the authors also discuss, without giving all details of the analysis, certain
modifications of the construction. Using these, f can be chosen so that (1.1) holds for
every M > 1; in other words,

log log|f(z)| = O
(
(log|z|)1+o(1)

)
as |f(z)| → ∞;

see [RRRS11, Proposition 8.3] and [Rem13, Theorem 1.10].
The goal of this paper is to give more precise estimates on the possible growth of

such counterexamples. More precisely, suppose that Θ is a positive decreasing function
(defined for all sufficiently large positive real numbers) such that Θ(t) → 0 as t → ∞.
When does there exist a counterexample f ∈ B to the strong Eremenko conjecture such
that

(1.2) log log|f(z)| = O
(
(log|z|)1+Θ(log|z|)) as |f(z)| → ∞?

As f must have infinite order, we may suppose that

(1.3) Θ(t) · log t→ ∞ as t→ ∞.

Let us also require the following regularity condition:

(1.4) Θ(t2)/Θ(t) → 1 as t→ ∞.

Theorem 1.1. Let Φ be a positive decreasing function of one real variable such that
Φ(t) → 0 as t→ ∞, and such that (1.3) and (1.4) hold. Suppose that, additionally, for
some 0 < β < 1, the function Θ satisfies

(1.5) (log t)−βΘ(log t)/Θ(t) → 0 as t→ ∞.

Then there exists f ∈ B satisfying (1.2) such that I(f) contains no curve to infinity.

It is plausible that the condition (1.5) is essentially optimal, in the following sense: If
f ∈ B and there is β > 0 such that

(1.6) (log t)−βΘ(log t)/Θ(t) → ∞ as t→ ∞,

then the strong Eremenko conjecture holds for f .
It is easy to check that, for any α > 0, the function

Φ(t) ..=
1

(log log t)α

satisfies the hypotheses of Theorem 1.1.
Let us remark on the condition 1.4. It is a regularity condition, but also implies that

Φ tends to zero more slowly than 1/(log t)α for any α > 0. It is easy to check that
the latter functions do not satisfy (1.5) (in fact, they satisfy (1.6)). In other words,
requiring the regularity condition 1.4 in the presence of (1.5) does not impose additional
constraints on how fast Φ may tend to 0.
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Notation and basic definitions. In this article the Riemann sphere is denoted by

Ĉ = C ∪ {∞} and the right half-plane by H ..= {z ∈ C : Re z > 0}. We also make use
of what is known as the standard estimate [Mil06, Cor. A.8]. If V ⊂ C is a simply
connected domain, then the desnity λV of the hyperbolic metric on V satisfies

(1.7)
1

2 dist(z, ∂V )
≤ λV (z) ≤

2

dist(z, ∂V )
.

Structure of the paper. Section 2 introduces the Eremenko–Lyubich class B functions
and the logarithmic coordinates that arise naturally. Loosely speaking, we construct
domains (tracts) in the logarithmic coordinate system that contain large ‘wiggles’, in-
troduced in Section 3. These rectangular tracts, similar to those seen in [BR21], are
adapted to include small openings at the initial turning point of each wiggle section so
that the growth of the function can be maximised at parts of the tract where it has the
least impact on the overall order of growth. We then show how such tracts can lead to
counterexample functions in Section 4.

Once we have functions satisfying counterexample conditions, we then proceed in
Section 5 to demonstrate how to estimate the growth of the function within the lower
parts of the ‘wiggle’ sections, where the rate of growth is the greatest compared with
the real part of the argument.

Given the improved growth estimate, we proceed in Section 6 to construct tracts
that will be partially predetermined by a recurrence relation using a growth function
ϕ between the real part of the end point of one wiggling section and the placement of
the next wiggle. This is to aid us in estimating the order of growth of the function
by capitalising on the mapping behaviour [RRRS11, Theorem 6.3 and Theorem 8.1].
Once this is determined the work required is to then ensure that the conditions for
counterexamples are still met, which reduces to a ‘shooting’ problem of showing that the
small openings included can be selected in a manner which still meets the counterexample
conditions of Section 4.

In Section 7, the order of growth of the conformal isomorphism is determined and,
with a further assumption on the function ϕ, we show how the tract constructed satisfies
counterexample conditions and has the order of growth we desire.

Section 8 is spent on showing, using approximation methods of [Bis15], how the ar-
tificially constructed tract and conformal isomorphism in logarithmic coordinates can
correspond to a class B function f that is a counterexample to the strong Eremenko
conjecture and has the order of growth desired.

2. Eremenko–Lyubich Class B functions

Given a transcendental entire function f : C → C we recall that the set of critical
values of f is CV (f) ..= {f(z) ∈ C : f ′(z) = 0}.

We say that a ∈ C is an asymptotic value of f if there exists a curve
γ : [0,∞) → C with limt→∞|γ(t)| = ∞ such that a = limt→∞ f(γ(t)) and we write
the following AV (f) ..= {a ∈ C : a is an asymptotic value of f}.

With these two sets, we define the set of (finite) singular values of f to be

S(f) ..= CV (f) ∪ AV (f).
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We define the Eremenko–Lyubich class B to be the class of functions f where S(f) is
bounded as a subset of C.

Given f ∈ B and suppose D ⊂ C is a bounded Jordan domain that contains
S(f) ∪ {0, f(0)}. Set W ..= C \D and V ..= f−1(C \D). The connected components V
of V are called tracts of f . It can be shown that these tracts are simply connected and
that f : V → W is a universal covering.

By ensuring {0, f(0)} ⊂ D, we know that 0 /∈ V for all V ∈ V . This means that we
can make a logarithmic change of coordinates.

We now let U ..= exp−1(V) and H ..= exp−1(W ). We know that there exists an
analytic function F : U → H such that exp(F (z)) = f(exp(z)). We call F a logarithmic
transform of f . The components U ∈ U are referred to as the tracts of F .

From the construction, we can see that the following conditions hold:

(a) H is a 2πi-periodic Jordan domain that contains a right half-plane;
(b) Every component U of U is an unbounded Jordan domain with real parts bounded

below, but unbounded from above;
(c) The components of U have disjoint closures and accumulate only at infinity; that

is, if (zn)
∞
n=0 ⊂ U is a sequence of points all belonging to different tracts, then

zn → ∞’
(d) For every component U of U , F : U → H is a conformal isomorphism. In partic-

ular, F extends continuously to the closure U of U in C;
(e) For every component U ∈ U , exp |U is injective;
(f) U is invariant under translation by 2πi.

We denote by Blog the class of all F : U → H such that H, U , and F satisfy properties
(a) – (f) regardless of whether they arise from an entire function f ∈ B or not. If F is
also 2πi-periodic then we say that F belongs to the class Bp

log. In this paper, keeping
with tradition and to paraphrase, we work in Blog and harvest in B with the aid of
approximation theory.

From [EL92, Lemma 2.1] we can see that for F ∈ Blog there is an ρ0 > 0 such that

|F ′(z)| ≥ 2

whenever ReF (z) ≥ ρ0.
For F ∈ Blog, we say that F is of disjoint type if U ⊂ H. If our functions are of

disjoint type, iteration is defined for all forward images and we consider the following
sets.

Given F ∈ Blog define

J(F ) ..= {z ∈ U : F n(z) is defined and in U for all n ≥ 0} and

I(F ) ..= {z ∈ J(F ) : ReF n(z) → ∞ as n→ ∞}.

Note that if f ∈ B and F is a logarithmic transform of f then exp(J(F )) ⊂ I(f)
and if F is of disjoint type then exp(J(F )) = J(f). It is also known for f ∈ B that

J(f) = I(f) [Ere89, Corollary, p. 344]. Overall, given a disjoint type logarithmic
transform F of a class B function f , if I(F ) does not contain a curve to infinity, then
I(f) does not contain a curve to infinity also.
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3. Tracts

In the construction of our counterexample, we will be considering tracts T that are
contained in a half-strip that is 2π in height, that is,

T ⊂ {z ∈ C : Re z > 4, |Im z| < π}.

Definition 3.1. Let T be the collection of T such that:

• 5 ∈ T ,
• ∂T is locally connected
• There is only one access to ∞ in T .

Proposition 3.2. For any T ∈ T , there exists a unique conformal isomorphism F : T →
H such that F (5) = 5 and F extends continuously to ∞ where

lim
z→∞

F (z) = ∞.

Proof. There exists a conformal isomorphism F : T → H such that F (5) = 5 which
is unique up to postcomposition by a Möbius transformation that fixes 5. By the
Carathéodory–Torhorst theorem [Pom92, Theorem 2.1], F−1 : H → T extends continu-
ously to H ∪ {∞}. By the unique access to ∞ in the definition of T , there is precisely
one point ζ ∈ ∂H ∪ {∞} such that F−1(ζ) = ∞. By postcomposing F with a Möbius
transformation we may assume ζ = ∞ which makes F unique. Given that H ∪ {∞} is
compact, F extends continuously to infinity. □

We denote the collection of these conformal isomorphisms by the following:

Definition 3.3. H ..= {F : T → H : T ∈ T , F (5) = 5, and F (∞) = ∞}.

From the results in B we can also write the following.

Proposition 3.4. T is homeomorphic to H.

Proof. Riemann map from H to D and then use appendix results. □

Definition 3.5. Given T ∈ T with corresponding conformal isomorphism F ∈ H and
ρ > 0 we define Γρ

..= {z ∈ T : |F (z)| = ρ}. We refer to Γρ as a vertical geodesic of T .

We further define the following subclass of H:

Definition 3.6. For ν > 0,

Hν
..= {F ∈ H : for all ρ > 0, diam(Γρ) < ν}

where the diameter is understood to be taken in the Euclidean sense.

Finally define the following subset of T for a given F

Definition 3.7. For F ∈ H let X(F ) ..= {z ∈ T : F n(z) ∈ T for all n ≥ 0}.
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3.1. Wiggles and gates.

Definition 3.8. Let (rj)
∞
j=0, (Rj)

∞
j=0, (εj)

∞
j=0 and (τj)

∞
j=0 be sequences of positive real

numbers such that, for all j ≥ 0:

• r0 > 6, Rj > rj + 30, and rj+1 > Rj + 60.
• 0 < εj ≤ 1,
• rj < τj < Rj − 1− 3π.

Giving: Rj > 36 + 90j and rj > 6 + 90j We refer to a collection of such information by
ξ0 ..= (rj, Rj, εj, τj)

∞
j=0 and further let Ξ0 denote the collection of all possible data sets

ξ0.

We will now construct tracts from data sets.

Definition 3.9. Given ξ0 ∈ Ξ0, let

L = Lξ0 ..=
∞⋃
j=0

[
{rj + ti : t ∈ [−π, π/3]} ∪ {t+ πi/3: t ∈ [rj, Rj − 1]}

∪ {t− πi/3: t ∈ [rj + 1, Rj]} ∪ {Rj + ti : t ∈ [−π/3, π]}

∪ {τj + ti : t ∈ [π/3, 2π(1− εj)/3]} ∪ {τj + ti : t ∈ [2π(1 + εj)/3, π]}
]
.

Let T = T ξ0 ..= {z ∈ C : Re z > 4, |Im z| < π} \ Lξ0 .

r0 R0 r1 R1

T

5

Figure 1. A tract with gates.

For a given ξ0 ∈ Ξ0, there is a corresponding tract, T ξ0 ∈ T , and conformal isomor-
phism, F ξ0 ∈ H, such that F ξ0 : T ξ0 → H.

Definition 3.10. Let T Ξ0 ..= {T ξ0 : ξ0 ∈ Ξ0}.

Note that T Ξ0 ⊂ T .

Definition 3.11. HΞ0 ..= {F ξ0 : T ξ0 → H : T ξ0 ∈ T Ξ0} ⊂ H.

Proposition 3.12. There exists ν0 > 0 such that HΞ0 ⊂ Hν0 .

Proof. This result follows from [BR21, Proposition 8.1]. □

By invoking the results of Appendix A we can achieve a concrete value of ν0 in the
context of the tracts considered.

Proposition 3.13. HΞ0 ⊂ H60.
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Proof. We consider rectangles that have a height:width ratio of 1:4 with the horizontal
sides contained in the boundary of T . We know that the vertical geodesic passing through
the midpoint must have an endpoint on each of the horizontal sides. The following
diagram shows how to contain any possible geodesic by ‘bricking up’ the section of the
tract surrounding any given point. □

Throughout the rest of the paper we will refer to ν0 achieved in Proposition 3.12
rather than using 60 so that it can be seen when we are making use of the fact that our
vertical geodesics have bounded diameter.

We will make a simplification to our tracts by fixing the positions of the ‘epsilon gates’,
τj, relative to the position of the corresponding Rj.

Definition 3.14. Ξ ..= {ξ0 ∈ Ξ0 : Rj−rj > 2+3ν0, τj = Rj−2−2ν0 for all j ≥ 0} ⊂ Ξ0

and denote the corresponding subclasses of tracts and isomorphisms by T Ξ and HΞ. We
refer to the elements of this subclass of data by ξ.

Instead of writing ξ = (rj, Rj, εj, Rj − 2− 2ν0)
∞
j=0 we will just write ξ = (rj, Rj, εj)

∞
j=0

whenever ξ ∈ Ξ. We will typically suppress the explicit reference to the data set ξ and
just write T and F to maintain clarity.

4. Conditions for counterexamples

If we impose a small set of conditions on the spacings between rj and Rj and geodesics,
we are able to produce a set of data that leads to a tract T and conformal isomorphism
F where X(F ) does not contain a curve to ∞. In section 8 we will show how this F can
be used to determine the existence of an f ∈ B that is a counterexample to the strong
Eremenko conjecture.

Definition 4.1. Given T ∈ T Ξ let us define

Wj
..=
{
z ∈ T : rj ≤ Re z ≤ Rj and − π ≤ Im z ≤ π

3

}
.

This corresponds to the ‘bottom two-thirds’ of a wiggle.
Let us further define the corresponding subsets

W+
j

..=
{
z ∈ Wj :

−π
3

< Im z <
π

3

}
,

W−
j

..=
{
z ∈ Wj : − π < Im z <

−π
3

}
.

Definition 4.2. Suppose, for a set of data ξ ∈ Ξ with corresponding T ∈ T Ξ and
F ∈ HΞ, that for each j ≥ 0 there are vertical geodesics Cj and Ċj and numbers ρj+1,

ρ̇j+1 > 0 where Cj
..= Γρj+1

and Ċj
..= Γρ̇j+1

such that the following conditions hold for
some constant κ > 0:

(a) rj + 2 ≤ ρj < ρj + κ <
ρ̇j
2
< ρ̇j < Rj − 2− 4ν0

(b) Cj and Ċj have real parts strictly between Rj − 2− 3ν0 and Rj − 2− ν0
(c) Cj has imaginary parts between −π

3
and π

3

(d) Ċj has imaginary parts between −π and −π
3

We then say that ξ ∈ ΞC and similarly define classes of corresponding tracts, T ΞC , and
conformal isomorphisms, HΞC .
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Theorem 4.3. If ξ ∈ ΞC defines the tract T ∈ T ΞC and corresponding conformal iso-
morphism F ∈ HΞC , X(F ) contains no curve to ∞.

Proof. We proceed by contradiction after proving some initial claims.

Claim 1. If, for some j ≥ 0, there is a curve γ : [0, 1] → T such that γ(0) ∈ W+
j and

γ(1) ∈ W−
j then there exists a t∗ ∈ (0, 1) such that γ(t∗) ∈ (rj − πi/3, rj + 1− πi/3).

Proof. Assume initially that γ([0, 1]) ⊂ Wj. The intermediate value theorem implies the
existence of a t∗ ∈ (0, 1) such that Im γ(t∗) = −π/3. This must occur on the segment
(rj − πi/3, rj + 1 − πi/3) by the construction of T and definition of Wj. In the case
where γ([0, 1]) ̸⊂ Wj it is possible to find a subcurve that satisfies the initial case by
considering the maximal or minimal times when γ re-enters Wj either from above or the
right hand side (respectively). △

Claim 2. Suppose w0 ∈ X(F ) \ {5}, let F (w0) = w1 and let F (wj) = wj+1. There exists
m ∈ N such that, for all j ≥ 0, Cm+j separates wj from ∞ and |wj+1| < ρm+j+1.

Proof. We proceed by induction. Given w0 ∈ X(F ) there exists some m ≥ 0 such that
|w0| ≤ rm and consider the vertical geodesic Cm. Since F (Cm) splits H into two regions,
one bounded and one unbounded, T \ Cm is subsequently composed of one bounded
region and one unbounded. It can be seen that w0 is contained in the bounded region
and therefore separated from ∞ since it can be connected to 5 by a curve that doesn’t
intersect Cm.

Now assume that wj is separated from ∞ by Cm+j, that is, part of the bounded
segment of T \ Cm+j. This tells us that F (wm+j) = wm+j+1 lies in the bounded part of
H \ F (Cm+j), or, |wj+1| ≤ |F (Cm+j)| = ρm+j+1 which proves the claim. △

Suppose there is a curve γ ⊂ X(F ) that tends to ∞ and let w0 ∈ γ. From the claim
above there is an m ≥ 0 such that wj is separated from infinity by Cm+j for all j ≥ 0.
Thus |wj| < ρm+j < ρ̇m+j < ρm+j+1 < ρ̇m+j+1. This means F j(γ) contains a subcurve

connecting F (Cm+j) and F (Ċm+j); which means that F j−1(γ) contains a subcurve, γ̃

connecting Cm+j and Ċm+j. From the first claim there exists a point zj−1 in this subcurve
that lies on the segment (rj−1 − πi/3, rj−1 + 1 − πi/3); and from assumption (a), zj−1

is also surrounded by F (Cm+j−1) and F (Ċm+j−1). Let γ̃ be this particular subcurve.
From an argument analogous to the that in the first claim, γ̃∩W+

m+j and γ̃∩W−
m+j both

contain further subcurves connecting F (Cm+j−1) and F (Ċm+j−1). By repeating this, we

conclude that γ contains 2j subcurves connecting Cm and Ċm.
Since the curve can be parameterised, parameterise the subcurve that covers the

section of γ between Cm and Ċm by

r : [0, 1] → X

where r(1) is the final time γ intersects Ċm.
Since r is a map from one compact metric space to another it must be uniformly

continuous. Here we take the metric on X, dX(r(a), r(b)), be the hyperbolic length of
the curve segment connecting r(a) and r(b) in T . As a consequence of uniform continuity,
if, for a given ε > 0 and for some x and y ∈ [0, 1] dX(r(x) − r(y)) > ε then there is a
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δ > 0 such that |x − y| > δ. From our assumptions we know that for all u ∈ Cm and
v ∈ Ċm, the length of any path joining the two must have a Euclidean length at least 2
since 1 < Rj − 2 − 4ν0 − (rj + 1) and by invoking the standard estimate (1.7) we can

deduce for any u ∈ Cm, and v ∈ Ċm that dX(u, v) ≥ 3/π > 1/2. For any single subarc
connectintg Cm and Ċm, parameterised by r on the subinterval [ak, bk], the distance
between the endpoints dX(r(ak), r(bk)) > 1/2 which means bk−ak > δ0 for some δ0 > 0.
We can write the following:

2j∑
k=1

(bk − ak) > 2jδ0.

Since this holds for an arbitrary j, this diverges to infinity which contradicts

2j⋃
k=1

[ak, bk] ⊆ [0, 1].

This proves the theorem. □

rk Rk rk+1 Rk+1

T ........ Ck

Ċk

F (Ck) F (Ċk)

Ck+1

Ċk+1

Figure 2. The mapping behaviour of counterexample tracts

We spend the following sections showing how we can in fact produce a set of data
that gives us an F ∈ HΞC which also satisfies certain growth conditions.

5. Growth of functions in HΞ

The following result is analogous to the growth estimate in [BR21] so the proof pro-
ceeds in a similar manner.

Theorem 5.1. There exists a C > 1 such that, for any ξ ∈ Ξ with corresponding tract
T and conformal isomorphism F : T → H, the following inequality holds for all j ≥ 0
and z ∈ Wj:

1

C

(
Rj +

j∑
k=0

log

(
1

εk

))
≤ log|F (z)| ≤ C

(
Rj +

j∑
k=0

log

(
1

εk

))
.
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Proof. Consider the arc that connects 5 to ∞ within T defined in the following way:

α ..= [5, r0 −
1

2
] ∪
⋃
k≥0

(
rk −

1

2
, i[0, 2π/3]

)
∪
(
[rk −

1

2
, Rk −

1

2
] + 2πi/3

)
∪
(
Rk −

1

2
+ i[0, 2π/3]

)
∪ [rk +

1

2
, Rk −

1

2
] ∪
(
rk +

1

2
+ i[−2π/3, 0]

)
∪ ([rk +

1

2
, Rk +

1

2
]− 2πi/3) ∪

(
Rk +

1

2
+ i[−2π/3, 0]

)
∪ [Rk +

1

2
, rk+1 −

1

2
]

We will split α into a part α0 that consists of the pieces that pass through the gates,
and which must hence (if εj is small) pass close to the boundary of T , and a comple-
mentary part α1, which stays away from ∂T by a definite amount. More precisely, write
α = α0 ∪ α1 as follows:

α0 ..=
⋃
k≥0

{z ∈ α : τk − 1 ≤ Re z ≤ τk + 1, Im z = 2π/3}

α1 ..= α \ α0

For z ∈ α, let us denote the part of α that connects 5 to z by αz. Similarly write
αz = α0

z ∪α1
z where α0

z = αz ∩α0 and α1
z = αz ∩α1. Now let z ∈ α∩Wj for some j ≥ 1.

We will estimate the hyperbolic length of αz in T , ℓT (αz), by estimating the hyperbolic
lengths of α0 and α1 separately.

Since α1
z stays away from the boundary, by (1.7) its hyperbolic length is comparable

to its Euclidean length, ℓE(α
1
z), which in turn is comparable to Rj by the definition of

α. More precisely:

Claim 1. 1
4π
Rj ≤ ℓT (α

1
z) ≤ 16Rj.

Proof. By definition of α,

ℓE(α
1
z) ≤ Rj − 5 +

8π

3
j + 2π + 2

j∑
k=0

(
Rk − rk − 3

)
≤ Rj − 5 + 9(j + 1) + 2

j∑
k=0

(Rk − rk)

≤ Rj − 5 + 9(j + 1) + 2Rj ≤
31Rj

10
+

2

5
≤ 4Rj.

Similarly,

ℓE(α
1
z) ≥ Rj −

1

2
− 5 +

8π

3
j + π + 2

j−1∑
k=0

(Rk − rk − 3) ≥ Rj − 5.

Overall, since Rj > 36, we conclude that

Rj

2
≤ Rj − 5 ≤ ℓE(α

1
z) ≤ 4Rj.

Recall that the distance to the boundary of any point ζ ∈ α1
z is at least 1/2 and at

most π. So by the standard estimate, we have 1/2π ≤ λT (ζ) ≤ 4. The claim follows. △
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Now we turn to estimating the hyperbolic length of α0
z, which is the section of αz that

passes through the epsilon gates. Let α̂k be the piece of α0
z that belongs to the k-th

wiggle; i.e., α̂k = [τk − 1, τk + 1] + 2πi/3. If we define µk(t) = max(|t− τk|, πεk/3), then
for z ∈ α̂k,

µk(Re z) = max(|Re z − τk|, πεk/3) ≤ dist(z, ∂T )(5.1)

≤ |Re z − τk|+ πεk/3 ≤ 2µk(Re z).

We have∫
α̂k

|dz|
µk(z)

= −2

∫ πεk/3

1

dt

t
+

∫ πεk/3

−πεk/3

3dt

πεk
= 2 log

(
3

πεk

)
+ 2 ≤ 2 log

(
1

εk

)
+ 2.

By the standard estimate (1.7) and by (5.1), 1/(4µk(Re z)) ≤ λT (z) ≤ 2/µk(Re z) for
z ∈ α0

k. Hence
1

2
log

(
1

εk

)
≤ ℓT (α̂k) ≤ 4(log

(
1

εk

)
+ 1).

We can then write

1

2

j∑
k=0

log

(
1

εk

)
≤ ℓT (α

0
z) ≤ 4

(
j + 1 +

j∑
k=0

log

(
1

εk

))
1

2

j∑
k=0

log

(
1

εk

)
≤ ℓT (α

0
z) ≤ 4

(
Rj

25
+

j∑
k=0

log

(
1

εk

))
.

Overall we find

1

4π
Rj +

1

2

j∑
k=0

log

(
1

εk

)
≤ ℓT (αz) ≤ 16Rj + 4

(
Rj

25
+

j∑
k=0

log

(
1

εk

))
.

For a general z ∈ Wj, let us consider the vertical geodesic Γ|F (z)| and let z̃ ..= F−1(|F (z)|).
The Euclidean length of any path of any curve connecting 5 to z must be at least Rj−6.
Using this and considering the minimal contribution from passing through the gates, as
seen in the discussion above, we can say

distT (5, z̃) ≥
1

4π
(Rj − 6− (j + 1)) +

1

2

j∑
k=0

log

(
1

εk

)
≥ 1

25

(
Rj +

j∑
k=0

log

(
1

εk

))
.

We need to provide an upper-bound on distT (5, z̃). From A.1 we know that a vertical
geodesic is contained in the rectangular region {z ∈ T : Rj+1/2 ≤ Re z ≤ Rj+1/2+8π}
that passes through the midpoint w ..= Rj + 1/2 + 4π ∈ α and also separates z and z̃
from ∞. We estimate the hyperbolic length of αw \ {z ∈ T : Re z ≤ Rj}.

distT (Rj − πi/3, w) ≤ 4

(
1

2
+

2π

3
+ 4π

)
< 65.

Thus

distT (5, z̃) ≤ distT (5, z) ≤ distT (5, w) ≤ 16Rj + 4

(
Rj

25
+

j∑
k=0

log

(
1

εk

))
+ 65.
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Since F is a conformal isomorphism standard results in hyperbolic geometry give us the
following

distT (5,Γ|F (z)|) = distT (5, z̃) = distH(5, |F (z)|) = log|F (z)| − log 5.

We can then say

1

25

(
Rj +

j∑
k=0

log

(
1

εk

))
+ log 5 ≤ log|F (z)| ≤ 25

(
Rj +

j∑
k=0

log

(
1

εk

))
+ log 5 + 65,

1

30

(
Rj +

j∑
j=0

log

(
1

εk

))
≤ log|F (z)| ≤ 30

(
Rj +

j∑
k=0

log

(
1

εk

))
.

Which follows for suitably large enough choice of r0. □

We will refer to the constant C rather than take any particular value (e.g. 30 in the
final steps of the proof) so that it is clear when this growth estimate is being used.

Corollary 5.2. There exists a C > 1 such that for any z ∈ Uj+1
..= {ζ ∈ T : Rj <

Re ζ < Rj+1} \Wj+1 the following inequality holds:

1

C

(
Re z +

j+1∑
k=0

log

(
1

εk

))
≤ log|F (z)| ≤ C

(
Re z +

j+1∑
k=0

log

(
1

εk

))
.

Proof. The proof follows analogously to Theorem 5.1. □

6. Gate Selection: A Shooting Problem

Taking inspiration from the previous section, in order to find a function with a desired
order of growth, we will impose a recurrence relation between rj and Rj with a target
order of growth for the corresponding conformal isomorphism F . With some further
restrictions on the growth function and results regarding the conformal isomorphism in-
volved, using the growth estimate in Theorem 5.1, we will be able to derive the existence
of suitable data ξ ∈ ΞC such that log ReF (z) = O

(
(Re z)1+o(1)

)
.

6.1. Introducing our growth function. Let Φ: [t0,∞) → [0,∞) (where t0 > 0 de-
pends on the Φ chosen but is always finite) be a strictly decreasing continuous function
such that

(6.1) lim
t→∞

Φ(t) = 0 and lim
t→∞

Φ(t) · log t = ∞

and set

(6.2) ϕ(t) ..= t1+Φ(t).

We can deduce that

• There is an 1 < A <∞ such that ϕ(t) ≤ tA for all t ≥ t0,

• limt→∞
ϕ(t)
t

= ∞.

The requirement for limt→∞ Φ(t) · log t = ∞ is so that the order of growth of the re-
sulting F remains infinite as class B functions of finite order satisfy the strong Eremenko
conjecture, see [RRRS11, Theorem 1.2].
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Lemma 6.1. For every α > 0 and M > 1 there exists a t∗ > t0 such that, for all t > t∗,

ϕ(t+ α) ≤Mϕ(t).

Proof. Let

t∗ >
α

M1/(1+Φ(t0)) − 1
.

Which implies

M
1

1+Φ(t0) > 1 +
α

t∗
.

If we suppose t > t∗ we can write the following:

(1 + Φ(t+ α)) log(t+ α)− (1 + Φ(t)) log t < (1 + Φ(t0)) log(1 +
α

t
) < logM.

Which gives the answer after rearranging. □

Choosing rj and Rj.
Given ϕ in the form of , let r0 > max(6, exp(ϕ(t0))). We know that ϕ(r0) > r0 >

log(r0 + 3) > ϕ(t0). We deduce the existence of a w0 ∈ (t0, r0) such that ϕ(w0) =
log(r0 + 3). With this, let R0

..= (r0 + 3) · exp(9w0).
Given a ϕ in the form of (6.2), r0 and R0 in the manner just described, we will be

fixing (rj)
∞
j=0 and (Rj)

∞
j=0 via the following relations for all j ≥ 0:

(6.3) rj+1
..= exp(ϕ(Rj))− 3 and logRj+1

..= ϕ(Rj) + 9Rj.

It can be found from a short calculation that this implies the following relation:

(6.4) Rj = (rj + 3) · exp(9ϕ−1(log(rj + 3))).

Which has the equivalent form:

logRj =

(
1 +

9ϕ−1(log(rj + 3)

log(rj + 3)

)
log(rj + 3).

Note: r0 remains to be chosen. This will be apparent in the following results.
The goal is to now show that, with this ϕ and pair of sequences, (rj)

∞
j=0 and (Rj)

∞
j=0,

there also exists a corresponding sequence (εj)
∞
j=0 such that there is a collection of data

ξ ∈ ΞC where the related conformal isomorphism, F , X(F ) contains no curve to ∞.

Standing Assumption: Throughout the rest of the paper, we assume all occurences
of Φ, ϕ, Rj and rj will be of the forms given in (6.1), (6.2) and (6.3) above. Let us also
assume ρ0 > max(6, t0, exp(ϕ(t0))). In recognition of this assumption we will now denote
elements of Ξ by ξ = (Φ, r0, (εj)

∞
j=0).

The main purpose of this section is to prove that, under these assumptions and for a
suitable choice of r0, we can construct a set of data ξ with corresponding tract T ∈ T ΞC

and conformal isomorphism F ∈ HΞC . We need to show that as long as r0 is chosen to be
large enough, we can deduce the existence of a suitable set of parameters (εj)

∞
j=0, which

we do by first showing that for a certain range of values εj takes, whenever z ∈ Wj,
|F (z)| either ‘overshoots’ or ‘undershoots’ its intended target of exp(ϕ(Rj)) according
to this range of possible εj values. We make use of the fact that our vertical geodesics
have bounded diameter to ensure we can deduce the existence of some ζj ∈ Wj such
that F (ζj) = exp(ϕ(Rj)). We then invoke a corollary of the Poincaré–Miranda Theorem
which can be described as multi-dimensional version of the Intermediate Value Theorem
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to show that we can achieve this for all target values (exp(ϕ(Rj)))
∞
j=1 simultaneously.

Once this is achieved it is simply a matter of verifying that we satisfy the conditions
laid out in Definition 4.2.

Theorem 6.2. Given a function ϕ satisfying our standing assumption, there exists a
ρ0 > 0 such that if r0 > ρ0 then there exists a sequence (εj)

∞
j=0 such that, for resultant

set of data ξ = (Φ, r0, (εj)
∞
j=0) ∈ Ξ, the corresponding conformal isomorphism F satisfies

ReF−1(expϕ(Rj)) = Rj − 1 − 3ν0 and −π
3
< ImF−1(expϕ(Rj)) <

π
3
for all j ≥ 0.

Moreover ξ is an element of ΞC.

Before proving this we will first prove some smaller results and define the range of
values that εj can take for each j ≥ 0.

Define the following:

aj ..=
1

exp(2Cϕ(Rj))
and bj ..=

1

exp(ϕ(Rj)/2C))

where C is the constant from Theorem 5.1.

Lemma 6.3. If εj ∈ [aj, bj] for all j ≥ 0 then, for any M > 0, there is some ρ0 > 0
such that if r0 > ρ0 then

j−1∑
k=0

Mϕ(Rk) < Rj for all j ≥ 0.

Proof. From the deductions following (6.2) we know that for any A > 1 there is some
ρ1 > 0 such that t < ϕ(t) < tA for all t > ρ1.

From the way we defined (Rj)
∞
j=0 in (6.3) we know that if R0 > ρ1 then Rk < ϕ(Rk) <

logRj for all 0 ≤ k ≤ j − 1. Therefore there is some ρ2 > 0 such that; if Rj > ρ2 then
logRj >

M
90
Rj > jM . There is also a ρ3 > 0 such that if Rj > ρ3 then Rj > (logRj)

A+1.
So

j−1∑
k=0

Mϕ(Rk) <

j−1∑
k=0

MRA
k < jM(log(Rj))

A < (logRj)
A+1 < Rj.

If we set ρ4 = max{ρ1, ρ2, ρ3} then the previous inequalities hold whenever R0 > ρ4.
The result follows. □

Proposition 6.4. There exists ρ0 > 0 such that if r0 > ρ0 and if, for j ≥ 0,

• εj = aj then |F (z)| > Rj+1 for z ∈ Wj,
• εj = bj then |F (z)| < rj+1 for z ∈ Wj.

Proof. First let εj = aj. This means that for z ∈ Wj, according to our growth estimate
in Theorem 5.1,

log|F (z)| ≥ 1

C

(
Rj +

j∑
k=0

log

(
1

εk

))
=

1

C

(
Rj +

j−1∑
k=0

log

(
1

εk

)
+ 2Cϕ(Rj)

)
≥ 2ϕ(Rj) > ϕ(Rj) + 9Rj = Rj+1.

If r0 is taken large enough.
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Now let εj = bj, remembering that 1/εk ≤ 1/ak,

log|F (z)| ≤ C

(
Rj +

j∑
k=0

log

(
1

εk

))
= C

(
Rj +

j−1∑
k=0

log

(
1

εk

)
+
ϕ(Rj)

2C

)

≤ CRj +
ϕ(Rj)

2
+

j−1∑
k=0

2C2ϕ(Rk) ≤ (C + 1)Rj +
ϕ(Rj)

2

<
2

3
ϕ(Rj) < ϕ(Rj) < log rj+1 < rj+1.

Which follows once again for suitably large enough r0 to satisfy both Theorem 5.1 and
Lemma 6.3. □

6.2. Tracts with fixed wiggles. The previous result means that we can study a col-
lection of tracts where the positions of the ‘wiggles’ remain fixed, that is, after fixing
Φ, we also fix an initial value of r0 which then determines the subsequent values of rj
and Rj by the standing assumption. The fundamental mapping properties that we are
interested in now only depend on the choice of (εj)

∞
j=0 and if we ensure εj ∈ [aj, bj] for

all j ≥ 0 then we can reduce our problem to an intermediate value problem in countably
many variables. We will write Ξ(Φ, r0) ⊂ Ξ to denote the sets of data ξ = (Φ, r0, (εj)

∞
j=0)

defined by a fixed choice of Φ and r0 under the standing assumption. That is, the data
sets only differ in the choice of (εj)

∞
j=0. The corresponding classes of tracts and conformal

isomorphisms will naturally be denoted by TΞ(Φ,r0) and HΞ(Φ,r0) respectively.

6.3. Defining signed distance. For a tract T ∈ TΞ we define the following region for
each j ≥ 0

Yj
..= {z ∈ T : Rj − 1− 4ν0 ≤ Re z ≤ Rj − 1− 2ν0 and − π/3 < Im z < π/3}.

Observe that, for each j, T \ Yj comprises a bounded component, which we denote by
Xj, and an unbounded component denoted by Zj.
We now define a notion of ‘signed distance’ on T . For z ∈ T and j ≥ 0 let

δ(z, j) ..=


−1 if z ∈ Xj,
Rj−1−3ν0−Re z

ν0
if z ∈ Yj,

1 if z ∈ Zj.

Note that for all ξ ∈ Ξ(Φ, r0), these regions in the corresponding T ξ are fixed and
independent of the choice of (εj)

∞
j=0.

We further define δj(ξ) ..= δ(F−ξ(exp(ϕ(Rj))), j) where F
−ξ is understood to be the

inverse of F ξ.

Proposition 6.5. If a sequence of tracts Tn ∈ TΞ converges to T with respect to 5 in the
sense of Carathéodory kernel convergence then the corresponding sequence of conformal
isomorphisms F−1

n : H → Tn converge locally uniformly to F−1 : H → T .

Proof. This is given by [BR21, Proposition 9.2]. □

The following result is analogous to [Rem13, Lemma 7.3 & Theorem 7.4].
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Lemma 6.6. Suppose we are given a Φ satsifying the standing assumption; that ∆ ⊂ N
and that we are given (ε̃j)j∈N\∆ where ε̃j ∈ [aj, bj] for all j ≥ 0. Then there exists ρ0 > 0

such that if r0 > ρ0 there is a sequence of (εj)j∈N such that, for the resulting set of data

ξ = (Φ, r0, (εj)
∞
j=0) ∈ Ξ,

• εj = ε̃j for j /∈ ∆ and
• δj(ξ) = 0 for all j ∈ ∆.

Proof.

Claim. δj depends continuously on ξ.

Proof. We can write

εj(t) ..=
1

2
(aj(1− t) + bj(1 + t)),

which gives a bijection between [−1, 1] and [aj, bj]. This shows, for ξ ∈ Ξ(Φ, r0), that
we have a natural bijection between [−1, 1]N and TΞ(Φ,r0) and subsequently one with
HΞ(Φ,r0). Continuity follows if we take the product topology, Carathéodory topology and
topology of locally uniform convergence on the respective spaces. △

Assume that ρ0 is taken to be large enough to satisfy Proposition 6.4 and that r0 > ρ0
throughout. We will make use of the notation and results in Appendix C.

We first prove the case for finite ∆. If ∆ = {k0} then this becomes an application of
the intermediate value theorem. Since δk0(ak0) = −1 and δk0(bk0) = 1 there exists some
tk0 ∈ [−1, 1] such that for the corresponding εk0 ∈ [ak0 , bk0 ], δk0(εk0) = 0.

Now consider ∆ = {k0, k1, . . . , kN−1} such that |∆| = N > 1. Let pj(t) ..= δj(εj(t)),
t∆ ..= (tk0 , tk1 , . . . , tkN−1

) ∈ [−1, 1]N and define p∆ : ΛN → ΛN to be

p∆(t∆) ..= (pk0(tk0), pk1(tk1), . . . , pkN−1
(tkN−1

)).

For a given t∆ ∈ ΛN , it can be seen by Proposition 6.4 that p∆(Λ
+
ki
) ⊂ Λ+

ki
and p∆(Λ

−
ki
) ⊂

Λ−
ki
for all ki ∈ ∆. By Corollary C.3, p∆ is then surjective on ΛN . Therefore there exists

a t∗∆ ∈ ΛN such that p∆(t
∗
∆) = 0, which proves the result in the case of finite ∆.

If ∆ = {k0, k1, . . .} is infinite then we take an increasing sequence of finite subsets
∆n

..= {k0, . . . kn−1} that exhausts ∆. At each step we find a

t∗∆n
= (t∗∆n,k0

, t∗∆n,k1
, . . . , t∗∆n,n−1) ∈ Λn

as per the previous step which can be used to define

tn ..= (t∗∆n
, 0, 0, . . .) = (t∗∆n,k0

, t∗∆n,k1
, . . . , t∗∆n,n−1, 0, 0, . . .) ∈ ΛN.

[−1, 1]N is sequentially compact with the product topology so there exists a convergent
subsequence with the limit t = (t∗∆,k0

, t∗∆,k1
, . . .) ∈ ΛN such that δki(t

∗
∆,ki

) = 0 for all
ki ∈ ∆, thus proving the infinite case. □

Proof of Theorem 6.2. □

Let εk =
ak+bk

2
for all k ≥ 0, let ∆ = N and apply Lemma 6.6.

Lemma 6.7. The data set ξ in Theorem 6.2 belongs to ΞC.
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Proof. This requires us to show that the conditions of Definition 4.2 are satisfied. First
let us declare ζj ..= F−1(exp(ϕ(Rj))) and by the previous lemma, we know that Re ζj =

Rj−1−3ν0. In accordance with the notation of Definition 4.2, ζ̇j ..= Rj−1−3ν0−2πi/3.

Let ρj+1
..= |F (ζj)|, ρ̇j+1

..= |F (ζ̇j)|, Cj
..= Γρj+1

and Ċj
..= Γρ̇j+1

.

Claim. rj + 2 ≤ ρj < ρj + κ < ρ̇
2
< ρ̇j < Rj − 2− 4ν0.

Proof. The first inequality holds by(6.3) and the second holds immediately for any choice
of κ > 0. For this next inequality, we make use of the fact that

log ρ̇j+1 − log ρj+1 = log|F (ζ̇j)| − log|F (ζj)| = distT (Cj, Ċj).

The geodesic that connects Cj and Ċj remains in Wj and so the distance of any point
from ∂T is at most π/3 and the Euclidean length of such a curve is greater than 2(Rj −
rj − 4ν0 − 2). Using the standard estimate we find

log ρ̇j+1 − log ρj+1 ≥
3

π
(Rj − rj − 4ν0 − 2) > log 3

for suitably large enough r0. The third and fourth inequalities follow. Considering the
distance between Cj and Ċj once more, we provide an upper bound in the following
way. Consider the path α from the proof of Theorem 5.1 again, specifically the segment
travelling between Cj and Ċj. The distance from the boundary is at least 1/2 and the
Euclidean length can be bounded above by 2(Rj−rj)+2π/3. Making use of the standard
estimate once more we can write

log ρ̇j+1 − log ρj+1 < 8(Rj − rj) +
8π

3
< 8Rj

and

logRj+1 − log ρ̇j+1 = logRj+1 − log ρj+1 − (log ρ̇j+1 − log ρj+1)

= 9Rj − (log ρ̇j+1 − log ρj+1) > Rj.

Both of which follow immediately since r0 ≥ 6. This proves the final inquality. △

The remaining conditions are immediately satisfied by the results of Theorem 6.2 and
the application of Appendix A.1. □

We denote the subclass of ΞC satisfying Theorem 6.2 by ΞD and similarly define the
classes of corresponding tracts and conformal isomorphisms by HΞD and T ΞD respec-
tively.

7. Achieving desired orders of growth

We continue to assume the properties of ϕ and Φ as per 6.2 but now make the following
additional assumption.

(7.1) lim
t→∞

Φ(t2)

Φ(t)
= 1

An immediate corollary to this follows



18 ANDREW P. BROWN

Corollary 7.1. For any α > 1 and for any M > 1 there exists some t∗ > t0 such that
for all t > t∗, Φ(t/M) ≤ αΦ(t).

Proposition 7.2. Given ϕ and any M > 1 there exists w0 such that for all w > w0,
where ϕ(t) = w, then

w1−MΦ(w) ≤ t ≤ w1−Φ(w)
M .

Proof. Note that

t = w
1

1+Φ(t) = w1− Φ(t)
1+Φ(t)

and we can see that
Φ(t)

1 + Φ(t)
· 1

Φ(t)
→ 1 as t→ ∞.

ϕ(t) is strictly increasing so if ϕ(t) = w then w > t which means Φ(t) > Φ(w). For any
given ε > 0 there is some t0 > a such that for all t > t0, ϕ(t) = t1+Φ(t) = w < t1+ε which
then gives Φ(t1+ε) < Φ(w) for all t ≥ t0. Therefore, overall, for any ε > 0 there is some
t0 > a such that for all t > t0,

Φ(t1+ε) ≤Φ(w) ≤ Φ(t)

Φ(t1+ε)

Φ(t)
≤Φ(w)

Φ(t)
≤ 1.

Therefore
Φ(w)

Φ(t)
→ 1 as t→ ∞.

GivenM > 1 let 1+ δ̃ < M . There is some t0 > a such that for w > t > t0, 1+Φ(t) < M
and

M > 1 + δ̃ ≥ Φ(t)

Φ(w)
≥ Φ(t)

Φ(w)
· 1

1 + Φ(t)
≥ Φ(t)

Φ(w)
· 1

M
.

Therefore, for all t > t0,

−MΦ(w) ≤ − Φ(t)

1 + Φ(t)
≤ −Φ(w)

M
.

The result follows. □

Proposition 7.3. For a given M > 1, there exists µ > 1 such that for all t > t0,

ϕ(Mt) < µϕ(t).

Proof. By letting µ =M1+Φ(t0) we can see that

ϕ(Mt) =M1+Φ(Mt)t1+Φ(Mt) ≤M1+Φ(t0)t1+Φ(Mt) ≤M1+Φ(t0)t1+Φ(t) = µϕ(t).

□

Proposition 7.4. For every µ > 1 there exists t∗ > t0 such that

ϕ(t) + 9t ≤ µϕ(t)

for all t > t0.
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Proof. Given µ > 1, let t∗ > t0 be large enough so that log (9/(µ− 1)) ≤ Φ(t) log t for all
t > t∗. The result follows readily from the definitions and the standing assumption. □

Definition 7.5. Given a ϕ as per the standing assumption we define

Ψ(t) ..=
9ϕ−1(log t)

log t

and
ψ(t) ..= t1+Ψ(t).

We also define the following for the purposes of approximation, following from Proposi-
tion 7.2. Given 0 < α < 1 let

Ψα(t) ..= 20(log t)−αΦ(log t)

and
ψα(t) ..= t1+Ψα(t).

First we show the following results.

Lemma 7.6. For any 0 < α < 1 there exists r0 > 6 such that, for all j ≥ 0, Rj ≤ ψα(rj).

Proof. We achieve this result after proving some small claims.

Claim. For any 0 < α < 1 there exists r0 > 6 such that for all j ≥ 0

ϕ−1(log(rj + 3)) ≤ 2 (log(rj))
1−αΦ(log(rj)) .

Proof. Given α, take any β such that α < β < 1. Then, by our assumption there exists
some r0 > 6 such that for all j ≥ 0,

α <
Φ(log(rj + 3))

Φ(log(rj))
β, equivalently, 1− βΦ(log(rj + 3)) < 1− αΦ(log(rj)).

We also know from Proposition 7.2 that for a large enough r0, the following holds for all
j ≥ 0.

ϕ−1(log(rj + 3)) ≤ (log(rj + 3))1−βΦ(log(rj+3)).

The following deduction can be made:

ϕ−1(log(rj+3)) ≤ (log(rj+3))1−βΦ(log(rj+3)) ≤ 2 (log(rj))
1−βΦ(log(rj+3)) ≤ 2 (log(rj))

1−αΦ(log(rj)) .

△

Claim. There is some r0 > 6 such that for all j ≥ 0

logRj ≤
(
1 +

10ϕ−1(log(rj + 3))

log(rj)

)
log(rj).

Proof. We know that there exists some r0 > 6 such that(
1

ϕ−1(log(rj + 3))
+

9

log(rj)

)
log 2 ≤ 1

which implies(
1 +

9ϕ−1(log(rj + 3))

log(rj)

)
log(2rj) ≤

(
1 +

10ϕ−1(log(rj + 3))

log(rj)

)
log(rj).
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The result follows after comparing the left-hand side of the final inequality with the
logarithmic formulation of (6.4). △

Putting these results together we find:

logRj =

(
1 +

9ϕ−1(log(rj + 3)

log(rj + 3)

)
log(rj + 3) ≤

(
1 +

9ϕ−1(log(rj + 3)

log(rj)

)
log(2rj)

≤
(
1 +

10ϕ−1(log(rj + 3))

log(rj)

)
log(rj) ≤

(
1 + 20 (log(rj))

−αΦ(log(rj))
)
log(rj)

= log (ψα(rj)) .

□

Proposition 7.7. If
Ψ(t)

Φ(t)
→ 0 as t→ ∞

then for any γ > 1 there is some r0 > 6 such that for all j ≥ 0, logRj+1 = O
(
(rj)

1+γΦ(rj)
)
.

Proof. We prove an initial claim first.

Claim. For any 0 < α < 1 there exists an r0 > 6 such that for all j ≥ 0,

ϕ(rj)
Ψα(rj) ≤ 2ϕ(rj).

Proof. Given that Ψα → 0 as t → ∞, we can declare the existence of an r0 > 6 such
that

(Ψα(rj)− 1) log ϕ(rj) ≤ log 2.

The result follows after rearranging. △

Now suppose we are given a γ > 1. We know that for any 0 < α < 1 there is an
r0 > 6 such that the following holds

log logRj+1 ≤ log µϕ(Rj) ≤ log µϕ(ψα(rj))

≤ log µ+ (1 + Ψα(rj))(1 + Φ(rj)) log rj

≤ log µ+ (1 + Ψα(rj))(1 + Φ(rj)) log rj

≤ log µ+ (1 + γΦ(rj)) log rj ≤ log µ(rj)
1+γΦ(rj).

Where the µ comes from Proposition 7.4. The result follows directly. □

Theorem 7.8. For every Φ satisfying our standing assumption that also satisfies limt→∞
Ψ(t)
Φ(t)

=

0; there then exists a ρ0 > 0 such that if r0 > ρ0 then there is a set of data ξ ∈ ΞD such
that the corresponding conformal isomorphism F satisfies

log ReF (z) = O(ϕ(Re z)).

Proof. If Φ satisfies the standing assumption then so does Φ/2. With this we can find
a ρ0 > 0 such that if r0 > ρ0 there also exists a set of data ξ = (Φ/2, r0, (εj)

∞
j=0) that

satisfies both the conditions of Theorem 6.2 and Proposition 7.7, which we will apply
taking γ = 2. Taking z ∈ Wj we see

log ReF (z) ≤ log|F (z)| ≤ logRj+1 ≤ µθ̂2(rj) = µϕ(rj).
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We conclude by showing that this order of growth is not exceeded in any other part
of the tract derived from ϕ̂. Recalling Corollary 5.2 we can see for z ∈ Uj+1 where
Re z < Rj+1 − 3− 2ν0, that

log|F (z)| ≤ C

(
Re z +

j∑
k=0

log

(
1

εk

))
≤ C

(
Re z + ϕ̂(Rj)

)
≤ C ′ϕ̂(Re z) ≤ C ′ϕ(Re z).

Where C ′ > 1 is chosen suitably. For z ∈ Uj+1 where Rj+1 − 3− 2ν0 < Re z < Rj+1 we
note

log|F (z)| ≤ C

(
Rj+1 +

j+1∑
k=0

log

(
1

εk

))
≤ C

(
Rj+1 +

j∑
k=0

2Cϕ̂(Rk) + 2Cϕ̂(Rj+1)

)
≤ C

(
Rj+1 + (2C + 1)ϕ̂(Rj+1)

)
≤ C ′ϕ̂(Rj − 3− 2ν0) ≤ C ′ϕ(Rj − 3− 2ν0).

Once again for a suitable choice of C ′, noting the use of Lemma 6.1 in the penultimate
inequality. The result follows since log ReF (z) is defined for all z ∈ T and never exceeds
log|F (z)|. □

To provide a concrete example we can let

Φ(t) =
1

(log log t)α

for any α ≥ 1.

Definition 7.9. Denote the subclass of ΞD satisfying Theorem 7.8 by ΞE .

8. Realising our models with Class B functions

In this section we will use methods of [Bis15], using a similar approach to [BR21,
Proposition 11.1], to show that our tracts in the previous section correspond to a tran-
scendental entire function g in class B that is a counterexample to the strong Eremenko
Conjecture and has the same order of growth as our constructed F .

8.1. Bishop Models. In order to use the results of [Bis15], we will introduce the rele-
vant terminology first.

Suppose Ω =
⋃∞

j=0Ωj ⊂ C is a disjoint union of unbounded simply connected domains
satisfying the following conditions.

(1) Sequences of components of Ω accumulate only at infinity.
(2) The set ∂Ωj is connected for each j (as a subset of C).
Such an Ω is called a model domain. If Ω∩D = ∅ then we say that the model domain

is of disjoint type.
Given a model domain, suppose that σ : Ω → H is holomorphic and that the following

conditions hold.

(1) The restriction of σ to each Ωj is a conformal map σj : Ωj → H.
(2) If (zn)

∞
n=0 is a sequence in Ω and σ(zn) → ∞, then zn → ∞.
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Given such a σ : Ω → H we call G(z) ..= exp(σ(z)) a model function.
A choice of both a model domain Ω and a model function G on Ω will be called a

model. If Ω is of disjoint type then we call the overall model (Ω, G) a disjoint-type model
with disjoint-type function G.

Given a model (Ω, G) and ρ > 0, we let

Ω(ρ) ..= {z ∈ Ω: |G(z)| > eρ} = σ−1({x+ iy : x > ρ})
and

Ω(δ, ρ) ..= {z ∈ Ω: eδ < |G(z)| < eρ} = σ−1({x+ iy : δ < x < ρ}).
We also letX(G) ..= {z ∈ Ω: Gn(z) ∈ Ω for all n ≥ 0} and I(G) ..= {z ∈ X(G) : ReGn(z) →
∞ as n → ∞}. The following result follows from [Bis15, Theorem 1.1] and [LV73, II
§4.2].

Theorem 8.1. Suppose that (Ω, G) is a model. Then there is an f ∈ B and a homeo-
morphism q : C → C so that G = f ◦ q on Ω(2). In addition, the following conditions
hold.

(1) S(f) ⊂ D(0, e).
(2) We have |f ◦ q| ≤ e2 off Ω(2) and |f ◦ q| ≤ e off Ω(1). Thus the components of

{z : |f(z)| > e} are in a 1-to-1 correspondence with the components of Ω via q.
(3) q is Hölder continuous with exponent 1/K, for some K > 1 independent of G

and Ω, in every compact susbset of Ω.
(4) The map q−1 is conformal except on the set Ω(1/2, 2).

This implies the following result, as pointed out by Rempe [Bis15, Page 205]. Pre-
sented in this form by use of [Ere89, Corollary to Theorem 4].

Theorem 8.2. If G is any disjoint-type model, then there is a disjoint-type function
g ∈ B and a homeomorphism p : C → C so that

g ◦ p = p ◦G,

on an open set that contains both I(G) and I(g).

8.2. Models from tracts.

Proof of Theorem 1.1. Suppose we are given ϕ satisfying our standing assumptions. The
corresponding θ4 also satisfies the standing assumption and so we can let ξ ∈ ΞE be the
data derived from θ4 according to Theorem 7.8; where the corresponding conformal
isomorphism F satisfies

log ReF (z) = O((Re z)1+Φ(Re z)/2.

Ω = exp(T ) and G : w 7→ exp(F (log(w))).

We let (Ω, G) be our disjoint-type model and by Theorem (8.1) we deduce the existence of
corresponding homeomorphism q and f ∈ B where the Hölder exponent of q is supported
on Ω(1, 2) and f is bounded on C \ Ω(2).

Claim. I(f) contains no curve to ∞.
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Proof. Take the p and g from Theorem 8.2. We can say that I(G) = exp(I(F )) ⊂
exp(X(F )) which we know does not contain any curve to ∞, implying that I(g) also
does not contain any curve to ∞. We also know that p−1g(u) = f(q(p−1(u))) and from
this we can deduce the claim. △

Claim. f satisfies the desired growth condition.

Proof.

log log|f(ζ)| = log log|(exp(F (z)))|
≤ log ReF (z)

= O((Re z)1+Φ(Re z)/2)

= O((log|q−1(ζ)|)1+Φ(log|q−1(ζ)|)/2)

≤ O((K log|ζ|)1+Φ( 1
K

log|ζ|)/2))

≤ O(K1+Φ(t0)(log|ζ|)1+Φ(log|ζ|))

= O((log|ζ|)1+Φ(log|ζ|)).

△

Thereby proving the theorem. □

Appendix A. Geometry of geodesics

This section reproduces results of Appendix A in [RRRS11].

Lemma A.1. (Geometry of geodesics) Consider the rectangle

Q = {z ∈ C : |Re z| < 4, |Im z| < 1}

and let Y ⊂ Ĉ be a simply connected Jordan domain with Q ⊊ Y such that ∂Q ∩ ∂Y
consists exactly of the two horizontal boundary sides of Q. Let P , R, P ′, R′ ∈ ∂Y be
four distinct boundary points in this cyclic order, subject to the condition that P and P ′

are in the boundary of different components of Y \ Q and so that the quadrilateral Y
with the marked points P , R, P ′, R′ has modulus 1.

Let γ be the hyperbolic geodesic in Y connecting R with R′. If 0 ∈ γ, then the two
endpoints of γ are on the horizontal boundaries of Q, one endpoint each on the upper
and lower boundary.

Corollary A.2. For a marked quadrilateral Y ⊂ Ĉ of modulus 1 and a rectangle Q ⊊ Y
where the vertical sides and the horizontal sides are in a ratio of 1: 4, suppose ∂Q∩ ∂Y
consists exactly of the two horizontal boundary sides of Q. The hyperbolic geodesic γ
that passes through the midpoint of Q has endpoints on the horizontal sides of Q and is
completely contained within Q.

Appendix B. Topology of Locally Uniform Convergence and
Carathéodory Kernel Convergence

Here we recall some topological notions that are used throughout the paper. Much of
the exposition follows that of [RL20], [McM94, 5.1] and [Car52, 119-123].
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Definition B.1. Let Ω be a simpy-connected domain in Ĉ. We say that a sequence of
functions fn : Ω → C converges locally uniformly to f : Ω → C on Ω if, for each z0 ∈ Ω
there exists a neighbourhood of z0 Ω0 ⊂ Ω such that fn → f uniformly on Ω0.

An easy exercise is the following:

Theorem B.2. fn → f locally uniformly on Ω if and only if fn → f uniformly on every
compact subset of Ω.

The following definition is adapted from [Mil06, §3].

Definition B.3. Given a domain Ω ⊂ C let Map(Ω,C) denote the set of continuous
maps f : Ω → C. Given a compact K ⊂ Ω and ε > 0 we define NK,ε(f) ..= {g ∈
Map(Ω,C) : |f(z) − g(z)| < ε for all z ∈ K}. We say that U ⊂ Map(Ω,C) is open
if, and only if, for every f ∈ U there exists compact K ⊂ Ω and ε > 0 such that
NK,ε(f) ⊂ U . This characterisation of open sets is how we define the topology of locally
uniform convergence on Map(Ω,C).
Definition B.4. A disk is any simpy-connected region in C, possibly C itself. D is the
set of pointed disks, (U,u), where U is a disk and u ∈ U . Let E be the subspace of
pointed disks (U, u) where U ̸= C.
Definition B.5. The Carathéodory topology on D is defined in the following way. The
sequence of pointed disks (Un, un) → (U, u) if, and only if,

(1) un → u in the usual sense.
(2) For any compact K ⊂ U, there exists some m ≥ 0 such that K ⊂ Un for all

n ≥ m.
(3) For any open connected N containing u, if N ⊂ Un for infinitely many n then

N ⊂ U .

Equivalently, convergence means un → u and for any subsequence such that Ĉ\Un → K
in the Haudorff topology on compact subsets of the sphere, U is equal to the component

of Ĉ \K that contains u.

The version of this taken from [Pom92, 1.4] is

Definition B.6. Let u ∈ C be given and let Un be domains with u ∈ Un ⊂ C. We say
that Un → U as n→ ∞ with respect to u in the sense of kernel convergence if

(1) either U = {u}, or U is a domainn not equal to C with u ∈ U such thhat some
neighbourhood of every u ∈ U lies in Un for large n;

(2) for v ∈ ∂U there exist vn ∈ ∂Un such that vn → v as n→ ∞.

We recall the following, taken from [Fal14, II.9]

Definition B.7. If C(Ĉ) ..= {V ⊂ Ĉ : V is compact} and if Vδ ..= {z ∈ Ĉ : |z − v| ≤
δ for some v ∈ V } then dH(A,B) ..= inf{δ ≥ 0: A ⊂ Bδ and B ⊂ Aδ} is a metric on

C(Ĉ).
With this we can define the following

Definition B.8. Let (U, u) and (V, v) ∈ E. Define D((U, u), (V, v)) ..= max{dH(Ĉ \
U, Ĉ \ V ), |u− v|}. This defines a metric on E with which we retrieve the Carathéodory
topology.
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If we let L be the space of conformal maps f : D → C such that f ′(0) > 0 and equip it
with the topology of locally uniform convergence. There is a natural bijection π : E → L
whereby each (U, u) is associated to the unique Riemann map f : (D, 0) → (U, u) such
that f(0) = u and f ′(0) > 0, the existence of which comes from [Ahl78, Theorem 6.1].

Theorem B.9. π : E → L is a homeomorphism.

Proof. See [RL20] and [Car52]. □

The following result is quoted from [Pom92, Theorem 1.8] and [Sch93, 2.11], which
themselves follow [Car52].

Theorem B.10. Given the pointed disk (U, u) and a sequence of pointed disks (Un, u) ,
let fn map D conformally onto Un with fn(0) = u and f ′

n(0) > 0. If U = {u} then let
f(z) ≡ u. Otherwise, let f map D conformally onto U with f(0) = u and f ′(0) > 0.
Then, as n→ ∞

fn → f locally uniformally in D if, and only if Un → U with respect to u.

Appendix C. The Poincaré–Miranda Theorem

This appendix draws heavily upon [Maw19] and [Kul97] where interesting historical
context and background to the theorem are provided. The Poincaré–Miranda theorem,
conjectured by Poincaré and then shown to be equivalent to the Brouwer Fixed Point
Theorem by Miranda. The proof of Poincaré–Miranda theorem is reproduced from
[Maw19] and the corollary, which is crucial in the proof of ?? comes from [Kul97].

The theorem itself can be thought of as a generalisation of the intermediate value
theorem and we introduce the following notation.

We will be studying the n-dimensional cube Λn ..= [−1, 1]n and will be referring to its
‘faces’ so let

Λ+
k

..= {x ∈ Λn : xk = 1}
Λ−

k
..= {x ∈ Λn : xk = −1}

denote the k-th pair of opposite faces.

Theorem C.1. The Poincaré–Miranda Theorem Let p : Λn → Rn, p = (p1, p2, ..., pn) be
a continuous map such that for each j ≤ n, pk(Λ

−
k ) ⊂ (−∞, 0] and pk(Λ

+
k ) ⊂ [0,∞).

Then there exists a point c ∈ Λn such that p(c) = 0.

Theorem C.2. Coincidence Theorem If maps p, q : Λn → Λn are continuous and if
p(Λ−

k ) ⊂ Λ−
k and p(Λ+

k ) ⊂ Λ+
k for each k = 1, ..., n then there exists a point c ∈ Λn such

that q(c) = p(c).

Proof. Let r(x) ..= p(x)−q(x), this map satisfies the conditions of the Poincaré–Miranda
theorem so there exists a point c ∈ Λn such that r(c) = 0, that is, p(c) = q(c). □

Corollary C.3. A continuous map p : Λn → Λn is surjective if p(Λ−
k ) ⊂ Λ−

k and p(Λ+
k ) ⊂

Λ+
k for each k = 1, ..., n.

Proof. Given a ∈ Λn, let qa(x) ..= a. We can apply the Coincidence Theorem to deduce
the existence of ca ∈ Λn such that p(ca) = qa(ca) = a. This can be achieved for all
a ∈ Λn thus giving surjectivity. □
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