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Abstract

We implement Genetic Algorithms for triangulations of four-dimensional reflexive

polytopes which induce Calabi-Yau threefold hypersurfaces via Batryev’s construc-

tion. We demonstrate that such algorithms efficiently optimize physical observables

such as axion decay constants or axion-photon couplings in string theory compact-

ifications. For our implementation, we choose a parameterization of triangulations

that yields homotopy inequivalent Calabi-Yau threefolds by extending fine, regular

triangulations of two-faces, thereby eliminating exponentially large redundancy fac-

tors in the map from polytope triangulations to Calabi-Yau hypersurfaces. In partic-

ular, we discuss how this encoding renders the entire Kreuzer-Skarke list amenable

to a variety of optimization strategies, including but not limited to Genetic Al-

gorithms. To achieve optimal performance, we tune the hyperparameters of our

Genetic Algorithm using Bayesian optimization. We find that our implementation

vastly outperforms other sampling and optimization strategies like Markov Chain

Monte Carlo or Simulated Annealing. Finally, we showcase that our Genetic Algo-

rithm efficiently performs optimization even for the maximal polytope with Hodge

numbers h1,1 = 491, where we use it to maximize axion-photon couplings.
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1 Introduction

The string landscape of Effective Field Theories (EFTs) obtained from dimensional reduc-

tions of string theory is the perfect arena to study general properties of quantum gravity.

Its computational complexity is only exacerbated by its vastness with estimates ranging

up to 10272,000 [1]. Even though such numbers are expected to be vast overcountings, it is

still believed that the actual number of viable EFTs in the string landscape is far too big

to allow for a systematic enumeration.

A large fraction of this landscape can be attributed to the choice of compact geometries.

Prominent examples are Calabi-Yau threefold hypersurfaces obtained from fine, regular,

star triangulations (FRSTs) of four-dimensional reflexive polytopes as enumerated in the

Kreuzer-Skarke (KS) database [2].1 These can be efficiently constructed via toric methods

[5] using software packages like CYTools [6]. Compactifications of Type II superstring

1The relevant measure of the size of this ‘toric landscape’ is the count of topological equivalence classes,
as was recently studied for small h1,1 in [3, 4]. Currently and foreseeably, however, such methods appear
limited to small h1,1.
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theory on such manifolds lead to N = 2 supergravity in four dimensions which is a common

starting point for studying phenomenology in string theory, see [7–9] for recent reviews.

In the absence of systematic guiding principles, explicit string theory constructions

like KKLT [10] are typically obtained via brute-force methods by choosing Calabi-Yau

threefolds mostly at random, generating vast amounts of EFTs only to keep a small fraction

adhering to the often stringent constraints of the construction. Clearly, this constitutes a

rather inefficient use of computational resources which motivates exploring more targeted

approaches via algorithmic strategies.

In this work, we use Genetic Algorithms (GAs) to address such optimization problems

over the space of FRSTs of a given 4D reflexive polytope ∆◦. Inspired by natural selec-

tion processes, GAs explore pseudo-continuous fitness landscapes for optimal solutions to

problems with vast input spaces. Since such energy landscapes are ubiquitous in science,

GAs have been shown to be extremely successful in many areas in physics ranging from

particle phenomenology [11–13] over astrophysics [14–16] to cosmology [17–19]. They are

also powerful tools to understand the string landscape [20–31]. In particular, they are ca-

pable of outperforming deterministic algorithms due to the large size of and computational

complexity in the landscape. This is already the case for simple toy models [32–35].

In the context of the KS database, GAs have been applied to construct reflexive poly-

topes in various dimensions [36]. In contrast, applications of GAs or other optimization

techniques to polytope triangulations have been rather scarce, see however [37–40] for ap-

plications of random walks and Machine Learning. Schematically, the types of constraints

that we would like to address with GAs often take the form g(x) > y or g(x) ≈ y for

some target value y. Here, g are functions defined on the space of triangulations of a

given polytope. They map UV parameters x like intersection numbers, moduli values or

instanton charges to properties of the low energy physics in four dimensions. Consequently,

we will focus on maximization problems x = argmax(g) and inverse problems x = g−1(y),

respectively: that is, can we use GAs to find string compactifications that either maximize

low energy parameters or match particular desired values? This is the goal of this work.

As explained in many standard textbooks like [41], regular triangulations, including

FRSTs, are typically represented either by their simplices or as vectors of heights. It turns

out, however, that there is a more suitable representation for our purposes. As a result

of Wall’s theorem [42], all FRSTs of a single four-dimensional reflexive polytope with the

same induced two-face triangulations give rise to the same Calabi-Yau hypersurface [37].

For this reason, it is beneficial to use an encoding which avoids such trivial redundancies,
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see Fig. 1 for the count of such redundancies at h1,1 ≤ 7. In doing so, we will work

on the level of two-face inequivalent FRSTs which we refer to as NTFE (“non-two-face

equivalent”) FRSTs.

In this paper, we achieve such a representation by enumerating the fine, regular trian-

gulations of each two-face of the polytope that is being optimized. An FRST can then be

encoded by (the indices in the previous enumeration of) its collection of two-face triangula-

tions, which we refer to as its “DNA”. This circumvents the redundancy of FRSTs with the

same two-face restrictions, while still enabling quick conversion to a Calabi-Yau geometry

via an extending prescription introduced in [43], also discussed in §2.1. Importantly, as

we explain further below, not any collection of two-face triangulations can be extended

to a full FRST of the polytope because ensuring global regularity can be somewhat nu-

anced. Said differently, even when starting from regular triangulations of each two-face,

there may not always be a regular triangulation of the entire polytope with said induced

two-face triangulations.

We present three applications in the bulk of this paper. We begin by studying a polytope

with Hodge numbers (h1,1, h2,1) = (23, 7) for which we can easily enumerate all NTFE

FRSTs. In this example, we introduce and compare two different notions of distance on

the space of NTFE FRSTs, namely Hamming and flip distance, and study the continuity of

target functions with respect to these distances. Further, we demonstrate that our GA with

optimized hyperparameters easily outperforms standard sampling (like random sampling)

and optimization techniques (like Simulated Annealing). As a second application, we

investigate axion decay constants for C4-axions in Type IIB compactifications. Specifically,

we use our GA to find axions with a specified value f∗ for their axion decay constant for

a polytope with (h1,1, h2,1) = (60, 4). As the third example, we maximize axion-photon

couplings for the largest polytope (h1,1, h2,1) = (491, 11) in the KS database.

The outline of this paper is as follows. In §2, we review the construction of Calabi-Yau

threefolds from triangulations of four-dimensional reflexive polytopes. Subsequently, in

§3, we present our implementation for the GA. Next, we apply our GA to three different

polytopes in §4. We conclude with discussion and outlook in §5.
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2 Calabi-Yau Hypersurfaces from Reflexive Polytopes

Let us start by briefly reviewing the construction of Calabi-Yau threefold hypersurfaces

in toric varieties.2 The complete classification of Kreuzer and Skarke leads to 473,800,776

reflexive polytopes in four dimensions [2]. For each such four-dimensional reflexive polytope

∆◦, a fine, regular, star triangulation (FRST) T describes a fan for a toric variety V ◦ in

which the generic anti-canonical hypersurface defines a smooth Calabi-Yau threefoldX◦ [5].

Regular triangulations of polytopes can be represented by a vector of heights which

lifts the point collection of ∆◦ to one higher dimension, see e.g. [37]. The lower faces of

the convex hull for such a configuration correspond to simplices forming a triangulation

of ∆◦ upon projection. The space of all height vectors defining a given triangulation of

∆◦ defines (the interior of) a polyhedral cone called the secondary cone. The collection of

secondary cones for all triangulations of ∆◦ defines a polyhedral fan called the secondary

fan. One can similarly define subfans, such as the collection of cones giving rise to FRSTs.

The support of the subfan of secondary cones defining all FRSTs is itself a polyhedral cone.

However, as is well known, there is a massive redundancy when going from polytope

triangulations to Calabi-Yau hypersurfaces. For this, we recall Wall’s theorem [42] which

asserts that Hodge numbers, triple intersection numbers, and second Chern classes com-

pletely determine the homotopy type of a compact, simply connected Calabi-Yau threefold

with torsion-free homology. For Calabi-Yau hypersurfaces, Hodge numbers are fixed by

polytope data, while triple intersection numbers and second Chern classes are determined

purely by the induced triangulations of two-faces. Therefore, FRSTs of ∆◦ with identical

restrictions to two-faces give rise to topologically equivalent Calabi-Yau threefolds. When

performing optimization on the space of FRSTs, it will be beneficial to find an encoding

for FRSTs which avoids such trivial redundancies.

2.1 Generating two-face inequivalent triangulations

To reiterate, the two-face triangulations of ∆◦ define its associated Calabi-Yau threefold

(if one exists). We arbitrarily choose an ordering of two-faces, Θ◦
0, . . . ,Θ

◦
n−1. For each two-

face, we define an arbitrary ordering of its fine, regular triangulations (FRTs) and assign

integer labels to each of them. Under these choices, a collection of two-face triangulations

2More details on this procedure can be found e.g. in [37,44].

4



can be encoded in a length-n tuple

C = (c0, . . . , cn−1) ∈ Nn , 0 ≤ ci < NFRT(Θ
◦
i ) (2.1)

for which the i-th entry, ci, is an integer (the label) defining the chosen triangulation of

the i-th two-face Θ◦
i . Further, NFRT(Θ

◦
i ) denotes the number of FRTs of the two-face Θ◦

i .

Assuming one finds a map from C to an FRST T of ∆◦, the advantage of this encoding

is that different integer vectors C define two-face inequivalent FRSTs which we refer to as

NTFE FRSTs. In the GA-context below, we call choices C of two-face triangulations as

the DNA or chromosome of the associated Calabi-Yau hypersurface.

For such an encoding to be most useful, one needs an efficient method to map DNA

C to the associated FRSTs T of ∆◦. In practice, the algorithm developed by one of

the authors [43] achieves precisely that. Specifically, instead of constructing the full set of

FRSTs first and then modding out by two-face inequivalence,3 one can efficiently construct

a polyhedral cone for which any vector in its strict interior generates the desired two-face

restrictions C. To be more precise, this cone is the intersection of the secondary cone of

each two-face triangulation, embedded in the height space of the entire polytope. Any

vector in the strict interior of this intersection is also in the strict interior of each two-face

cone. Thus, it defines a triangulation T with the imposed two-face restrictions, C. In

this way, two-face inequivalent triangulations are generated much more time and memory

efficiently by requiring orders of magnitude fewer operations.

For our purposes, we need to understand which choices of two-face triangulations C
are realizable as a regular triangulation T of the ambient polytope. This is equivalent to

asking whether the intersection of the secondary cones is full-dimensional. This is achieved

by constructing the constraint programming problem of finding any point, x, satisfying

Hx > 0, where H are the inwards-facing hyperplane normals of the intersected cone. If no

such x exists, then no triangulation of the polytope has said two-face restrictions C.4

In this way, one can directly generate an FRST5 from given two-face triangulations, or

3For h1,1 ≥ 10, this is usually computationally infeasible and even at lower values of h1,1 requires huge
memory resources. For instance, computing all FRSTs for the unique polytope with (h1,1, h1,2) = (9, 19)
required more than several hundreds of GBs of memory leading to #FRSTs = 162917, while directly
generating the only 14 NTFE FRSTs using the methods described here required 4MB.

4We recall that only height vectors in the strict interior of the secondary cone give rise to the desired
triangulation.

5Strictly, the produced triangulation is only guaranteed to be fine with respect to two-faces. This is
acceptable because the anti-canonical divisor defining the Calabi-Yau hypersurface does not intersect the
divisors associated with points interior to facets. Additionally, while the produced triangulation may not
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prove that no such FRST exists. The process C → T of mapping two-face triangulations C
to this cone, finding an interior point, and generating the corresponding FRST T is called

extension. This extension can fail whenever the cones have a non-solid intersection. Thus,

there will be no FRST with said two-face restrictions. We will see this explicitly in our

examples below, see in particular Fig. 8.6

In the above encoding, the relevant enumeration, then, is of fine, regular triangulations

(FRTs) of the two-faces Θ◦ of ∆◦. The number of such FRTs NFRT(Θ
◦) of a two-face Θ◦

is usually modest since the two-faces live in a lower dimension (i.e., 2D), have typically

fewer points, etc. than ∆◦. For example, the first 1000 polytopes with h1,1 = 20 in the

ordering of KS each have less than 53 two-faces with each two-face having less than 169

FRTs. Further, even at high h1,1, it is not rare for two-faces to be trivial, having only one

FRT. Typically, a good measure for the complexity of a given two-face Θ◦ is the number

of points which we denote by ℓ(Θ◦).

To summarize, all that is needed to encode the FRST is a modest-length vector (length

∼ O(10 − 100)) of typically modest-sized entries, indicating the two-face triangulations

defining the FRST. The extending procedure then efficiently maps these indices into a

Calabi-Yau manifold.

2.2 Equivalences beyond two-face triangulations

Before we continue, let us briefly comment on the role of NTFE FRSTs within the context of

diffeomorphic Calabi-Yau threefolds. In addition to two-face equivalence, automorphisms

leaving ∆◦ invariant produce additional redundancies on the level of triangulations since

these lead to trivial identifications of the associated Calabi-Yau threefolds. In [4], FRST

classes were introduced as those sets of FRSTs having identical restrictions to two-faces,

up to the action of an automorphism of the polytope.

Beyond that, the question of topological inequivalence is highly non-trivial since it

requires finding an integral change of basis Λ ∈ GL(h1,1,Z) between the triple intersec-

tion forms and second Chern classes (κijk, c2,i) and (κ′
ijk, c

′
2,i) of two compact Calabi-Yau

threefolds X and X ′, respectively. Recently, [4] proved the exact number of distinct sim-

ply connected Calabi-Yau threefold hypersurfaces at h1,1 ≤ 5 obtained from triangulations

be star, it can trivially be made star (without affecting the two-face triangulations) by lowering the height
of the origin.

6Without giving away too much (see §3.2 for details), we discard such non-extendable DNA when
running the GA.
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Figure 1: Left : Total number of NTFE FRSTs, FRST classes, Calabi-Yau (CY) classes
and FRSTs for all polytopes at h1,1 ≤ 7. Right : Ratio of different equivalence classes of
FRSTs over the number of FRSTs.

of four-dimensional reflexive polytopes, while obtaining stringent bounds for h1,1 = 6, 7.7

Incorporating such equivalences in an optimization framework would be highly desirable,

but in the absence of a systematic approach at higher values of h1,1, this is beyond the

scope of this work.

However, let us argue that, with the encoding defined above, we are able to account for

a large fraction of redundancies already. In Fig. 1, we show the ratio of NTFE FRSTs and

total number of FRSTs for all polytopes at h1,1 ≤ 7. We observe an exponential falloff of

the number of NTFE FRSTs relative to that of FRSTs. We also included the equivalent

ratios for FRST classes and Calabi-Yau classes, respectively, for all polytopes at h1,1 ≤ 7

in Fig. 1.8 Out of all FRSTs at h1,1 ≤ 7, only 9.55% define NTFE FRSTs, 8.37% FRST

classes and 6.04% Calabi-Yau classes [4]. Extrapolating to higher h1,1, while the trend

for CY classes remains unknown, [37] derived bounds on the number of FRSTs as well as

NTFE FRSTs9 across the entire KS database

#FRSTs ≲ 1.53× 10928 , #NTFE FRSTs ≲ 1.65× 10428 . (2.2)

The main takeaway is that there is an exponential reduction from #FRSTs to #NTFE

FRSTs, thus supporting our choice of encoding.

7Independently, the authors of [3] obtained bounds consistent with this analysis at h1,1 ≤ 6.
8We use the lower bounds for the number of Calabi-Yau classes at h1,1 = 6, 7 obtained in [4].
9It is expected that automorphism equivalence only amounts to an O(1) fraction [37]. We checked

that this is indeed the case in all of our examples discussed below.

7



Genetic Algorithms Kreuzer-Skarke database

individuals Calabi-Yau hypersurfaces

chromosome two-face FRT IDs C, cf. Eq. (2.1)
alleles two-face FRT ID ci

phenotype volume, axion decay constants etc.

boundary conditions extending of two-face FRTs to FRST

Table 1: Dictionary relating GA terms to polytope NTFE FRSTs.

We deduce that a significant redundancy when mapping FRSTs to Calabi-Yau geome-

tries can be attributed to trivial equivalences defining NTFE FRSTs. With our encoding,

these redundancies are automatically removed, thereby ensuring that our optimization

strategies are less prone to encountering equivalent Calabi-Yau threefolds.

3 Genetic Algorithms for Polytope Triangulations

In this section, we describe our implementation for a GA for FRSTs of four-dimensional

polytopes. While there are many publicly available packages for GAs such as [45–48],10 we

implemented our own GA which is specialized to polytope triangulations.

3.1 Genetic Algorithms

With CYTools [6], it is straightforward to construct FRSTs for any given polytope in

the KS database within seconds. However, the far more interesting task is obtaining such

FRSTs with special properties such as large Kähler metric eigenvalues. Genetic Algorithms

(GAs) [49–53] are perfectly suited to address this problem and to scan the landscape of

Calabi-Yau hypersurfaces for desired features. They are based on processes inspired by

natural evolution and designed to search huge parameter spaces for optimal solutions.

We use the dictionary shown in Tab. 1 to relate the GA terminology to polytope tri-

angulations. As usual, we start from a random population of individuals which in our

case correspond to Calabi-Yau manifolds associated with FRSTs T of a polytope ∆◦.

More specifically, the members of a population are NTFE FRSTs describing homotopy

inequivalent Calabi-Yau geometries. Each individual is characterized by its genotype and

10We refer to http://geneticprogramming.com/software/ for a maintained list of packages for genetic
programming in general.
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phenotype. The former is a genetic code or chromosome C, i.e., the list of two-face tri-

angulation IDs in (2.1), built from parameters in the input space. The latter defines its

properties in the output space such as the Calabi-Yau volume V or axion decay constants

f , collectively denoted by O in the following. For many applications, we want to find con-

figurations in which such observables take particular value, namely O ≈ O∗ for some target

value O∗. To achieve this, the population evolves over several generations as dictated by

a fitness function F (O,O∗) defined on the phenotype space. The fitness function F peaks

around the desired value O∗ and is typically chosen as a Gaussian or rational function.11

Based on Darwin’s principle of survival of the fittest with each generation, the population

maximizes the fitness, thereby more and more approximating the desired properties in its

phenotype.

Crucially, such a GA would be able to explore the secondary subfan of all NTFE FRSTs

non-locally. In our implementation, a single crossover or mutation operation can affect

multiple triangulations of two-faces at once, thereby jumping across many chambers of the

secondary subfan irrespective of their relative distance. This needs to be distinguished

e.g. from flop transitions which take us in neighbouring phases by traversing walls of the

extended Kähler cone.

As argued e.g. in [27] in the context of Type IIB flux vacua, GAs are more powerful in

finding new physical solutions to the F -term equations than e.g. random sampling of flux

vectors. Indeed, they detect underlying structures in the flux landscape that are typically

unknown at the outset of the search. In the present setting, one would expect the GA to be

more efficient in locating configurations C of two-face triangulations (recall Eq. (2.1)) which

extend consistently to FRSTs T of the four-dimensional polytope ∆◦ than just random

samples of two-face triangulations. Indeed, we observe such a behaviour in our results

below, cf. Fig. 8.

Despite these successes, there are also limitations to GAs or stochastic search algorithms

in general. They perform just as poor as random scans when trying to solve “needle-in-

a-haystack” type problems. This happens frequently in highly tuned regimes where the

phenotype space becomes too sparse or, said differently, the associated distributions develop

tails. Vice versa, an excellent performance is expected whenever there exists a pseudo-

continuous neighbourhood around the optimal solution which might be characterized by a

funnel-like topography (see e.g. [54,55]). Below, by exploring different notions of distance

between NTFE FRSTs, we argue that such structures are indeed present in the energy

11We will comment on these choices for the individual examples in §4. Let us also note that generally
the performance of the GA is sensitive to the choice of fitness function.
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landscapes of polytope FRSTs.

3.2 Implementation for polytope triangulations

Let us now describe the implementation of our GA in more detail.12 Concretely, we begin

with a set of NTFE FRSTs defined by their DNA {C1, . . . , CP}, called a population of

size P , with Ci ∈ Nn as defined in (2.1) where n denotes the number of two-faces of the

polytope ∆◦. We reiterate that, in our encoding, the DNA C = (c0, . . . , cn−1) associated

with a Calabi-Yau manifold is represented by the triangulation labels ci for each two-face

Θ◦
i . In particular, this means that each position ci in C has a fixed range determined by

the maximal number of available FRTs of Θ◦
i . Then, the algorithm involves the following

four steps:

(A) The GA selects individuals based on some probability distribution obtained from the

fitness through suitable selection principles to be defined below.

(B) The selected representatives are subsequently used to construct new FRSTs C̃l by
performing crossover operations acting on pairs of DNA (Ci, Cj).

(C) The third (and arguably most important) step concerns mutation, which alters the

resulting vectors C̃l by some randomized procedure.

(D) Lastly, one defines a novel population through a survival description and repeats the

above process. Each iteration is referred to as generation and the maximal number

of generations will henceforth be denoted G.

Each individual step described above involves a choice of operations of how Calabi-Yau

manifolds are selected, their genetic information is exchanged and randomly altered, see

e.g. [57, 58] for a comprehensive list.

Specifically, our implementation utilizes the following operators:

(a) Selection: The fittest individuals should be more likely to procreate. There are

several ways to select Calabi-Yau manifolds based on the predefined fitness:

• roulette wheel selection (RWS): we take the normalized fitness as a probability

distribution to draw a given number of samples from the population.

12Our implementation is based on a version of the GA described in [56] for Type IIB flux vacua.
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• tournament selection (TS): we choose k random individuals which compete

against each other in a tournament. The fittest individual wins and is selected.

• rank selection (RS): we assign ranks r to each individual based on their fit-

ness from which define again a linear probability distribution 1− r/P to select

individuals for. In this way, a more balanced selection process can be ensured.

• truncated rank selection (TRS): this is similar to RS, but only a certain per-

centage of fittest individuals takes part in the selection process.

• exponential rank selection (ERS): this is also similar to RS, but the probability

distribution is an exponential function of the ranks (e.g. 1− er−P ) instead of a

linear one.

It will turn out to be helpful to work with several selection principles to avoid getting

struck in local minima. In particular, RWS leads typically to hierarchical probabili-

ties, while TS or RS have more evenly spaced distributions.

(b) Crossover: From the selected set of Calabi-Yau manifolds, we build pairs of chro-

mosomes (Ci, Cj) on which we perform crossover operations, thereby constructing a

new chromosome C̃. Again, we distinguish several different options summarized

• single point crossover (SPX): we cut both DNA of Ci, Cj at the same random

locus λ. Then C̃ receives the alleles 1 to λ from Ci and λ+ 1 to n from Cj.

• k-point crossover (kPX): we cut the chromosomes of Ci, Cj at k random loci λl,

l = 1, . . . , k. Then C̃ is constructed by splicing the different pieces from Ci and
Cj together in an alternating way.

• uniform crossover (UX): for each allele, we make a random choice whether C̃
inherits the allele from Ci or Cj.

(c) Mutation: Random modifications of the new chromosomes are essential to avoid

stagnation. Mutation is however not simply a tool to improve convergence, but rather

an integral feature of GAs allowing them to explore previously unknown areas of the

solutions space. There are various ways in which this can be implemented:

• random mutation (RM): we select k random loci and replace the two-face tri-

angulation IDs by a uniformly random integer in the required range. Here, the

range is determined by the input of two-face triangulations. We are mostly

using k = 1, 2 in our applications below.
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In addition to these operators, we include a global mutation rate rM which sets the

total amount of mutations performed on the complete dataset. This is necessary be-

cause too much stochasticity undermines the GA’s ability to find patterns associated

with the optimal solution, see e.g. [27]. Typically, we set 0.01 ≲ rM ≲ 0.1 so that

1− 10% of individuals are being mutated.

(d) Population generation: After constructing the new two-face triangulations, we

check whether they extend to a full FRST of the polytope ∆◦ as outlined above

(recall §2.1). We discard those DNA which fail to extend to an FRST, while the

remaining ones are used to construct a new population. We additionally enforce that

DNA are pairwise distinct in the new population.

(e) Survival: To ensure the stability of the algorithm, it is helpful to employ fitness-based

survival methods. That is, after we constructed a population of P new solutions in

the previous step, we replace the least fit individuals by fitter ones from the previous

generation/population referred to as survival of the fittest (see e.g. [58]). This ensures

that a fixed number of best solutions is always carried over to the next generation

such that the overall fitness can only increase.

A few comments are in order. First, in many applications, only a small number of

operators are necessary for a successful search. These are controlled by so-called hyperpa-

rameters specifying the rate with which a certain operator is being applied. In total, we

have ∼ 14 hyperparameters, namely

(i) 6 for selection (4 to parameterize relative frequency of 5 selection types, the tourna-

ment size, and the TRS percentage)

(ii) 2 for crossover (to parameterize relative frequency of 3 crossover types: SPX, kPX

for k = 2, and UX)

(iii) 2 for mutation (1 to parameterize relative frequency of 2 mutation types — RM for

k = 1, 2 — and the mutation rate rM)

(iv) 1 for survival (number of survivors)

along with the total population size and fitness function hyperparameters: as we will

discuss, we typically adopt a inverse square or Gaussian fitness, which have 1 and 2 hyper-

parameters, respectively. Crucially, we do not pick the hyperparameters by hand, but we

use additional optimization techniques to tune them for a given task, see §3.3 blow.
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Second, let us comment on the enumeration of two-face triangulations. Depending on

the scope, our GA runs with different modes for generating said two-face triangulations:

• mode = all uses all FRTs of all two-faces which is generically feasible if ℓ(Θ◦
i ) ≤ 17

for all two-faces Θ◦
i . This mode is not really limited by h1,1, but the configurations

of two-faces.

• mode = random samples FRTs randomly for some two-faces which becomes necessary

if ℓ(Θ◦
i ) > 17. For the random sampling, we use methods described in §5 of [37].

• mode = file picks FRTs of two-faces from data files. This allows us to run the GA

on the same sets of two-face triangulations.

3.3 Hyperparameter tuning from Bayesian optimization

As mentioned above, our GA implementation requires a choice for ∼ 14 hyperparameters.

Instead of fixing those parameters by hand, we optimize them using Bayesian optimization

(BO) [59].13 This optimization algorithm is computationally expensive but requires no

gradient data, is resistant to local minima, and is designed to make the most of every point

sampled: thus, it is ideal for global optimization problems on expensive functions [65,66].

We want to maximize the performance of a GA, averaged over many runs, as a function of

its hyperparameters, a generically expensive function.

Bayesian optimization extremizes a function f by modeling its functional values as

random variables and using Bayesian inference to both predict its values away from sampled

points and choose the best points to sample next14. In particular, f is modeled as a

stochastic process, or a sequence of random variables g(x), one for each point x in the

domain. Often — and in our case — f is modeled as a Gaussian process in particular:

this means for any finite set of points x1, . . . , xn, the random variables g(x1), . . . , g(xn)

are distributed according to a multivariate Gaussian. That is, our random variables g(x)

are parameterized by functions µ(x) and Σ(x, x′) which tell us the mean of g(x) and the

covariance between g(x) and g(x′), respectively.

As with all Bayesian inference problems, we must begin by selecting a prior on our

theory parameters µ(x) and Σ(x, x′): typically, we set µ0(x) = 0 and Σ0(x, x
′) to be some

13The use of BO to optimize hyperparameters for evolutionary algorithms has been explored previously
in e.g. [60–62]. For a broader overview over hyperparameter tuning, we refer to the reviews [63,64].

14This paragraph assumes some basic familiarity with Bayesian inference and (Gaussian) processes: for
reviews, see [67].
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monotonically increasing function of ∥x − x′∥, ensuring nearby points in the domain are

correlated (this captures the continuity of f). From here, we assume that we have sampled

f at x1, . . . , xn, and we endeavor to use this information to compute a posterior on g(x).

This can be thought of in a few ways. First, we can think about conditioning g(x) on

the requirement that g(xi) = f(xi), 1 ≤ i ≤ n (recalling that conditioning a multivariate

Gaussian on certain values yields another, lower dimensional Gaussian). Equivalently,

we can think about using Bayes’ theorem to compute the posterior on the process g(x)

by multiplying the aforementioned prior with the likelihood L =
∏

i δ(g(xi) − f(xi)) ·
δ(Σ(xi, xi)). Either way, this provides us with a new, updated distribution for the process

g, informed by existing samples, with the means µ(x) being the expected values for f(x)

and the standard deviations Σ(x, x) capturing the model’s uncertainty in that expected

value. More specifically, as more points are sampled, the means µ(x) will approach f(x)

and the standard deviations Σ(x, x) will shrink.

Beyond modeling f(x) as the means of the posterior distribution of g(x), this statistical

approach sheds light on the optimal points to sample next: in general, we want to bal-

ance exploitation (sampling near previously observed) and exploration (sampling points far

from previously sampled points), and the means of our process reveal where the function

is largest (where we ought to exploit) while the standard deviations establish where we

understand f the least (where we ought to explore). In practice, a user intructs a Bayesian

Optimization algorithm to sample N points in the domain: the first M are sampled ran-

domly and then the subsequent N −M are chosen by maximizing15 so-called acquisition

functions, such as the expected improvement of the largest functional value sampled thus

far. For further discussion on acquisition functions, see e.g. figures 1.2− 1.4 and the sur-

rounding text in [66]. Upon evaluating f at these x1, . . . , xN , the algorithm then returns

argmaxxi
f , the xi corresponding to the largest seen value of f .

In our case, the expensive function f maps the space of hyperparameters (the domain)

to the average best target across m runs of the GA, where a run terminates once it has

seen k unique DNA: i.e., it has had to evaluate the expensive target function k times. This

computational cost varies between our use-cases and motivated the choice of different m, k

values in each case. For example, for our h1,1 = 23 application of §4.1, we chosem ∼ 50 and

k ∼ 200, as we found model performance to be characterized largely by performance within

the first 200 DNA. In our implementation, we used the BayesianOptimization python

package [68], and found success when using its Sequential Domain Reduction functionality.

15Let us stress that acquisition functions are nicer and quicker to evaluate than the expensive f , and
are thus much more amenable to simpler optimization methods.

14



4 Applications to String Compactifications

In this section, we present three applications of the GA described in the previous section.

We begin by maximizing the Calabi-Yau volume for a polytope with modest h1,1 = 23 for

which all NTFE FRSTs can be easily obtained. This allows us to demonstrate the GA’s

ability to locate the fitness maximum and to quantify its performance. Subsequently, we

pick a polytope at h1,1 = 60 for which all two-face FRTs can be easily computed. Here,

we utilize the GA to find solutions with a specific value for the decay constant f of the

lightest C4 axion in compactifications of Type IIB string theory. Lastly, we run our GA to

maximize axion-photon couplings as computed in [69] for the largest polytope in the KS

database with h1,1 = 491.

4.1 Maximizing the volume — h1,1 = 23

We begin by applying the GA to a maximization problem for a polytope ∆◦ with h1,1 = 23.

In particular, this polytope is sufficiently simple that we can compute the full set of NTFE

triangulations and their associated features: that is, we can map out the entire search

space, making this a nice testing ground for the GA, even if the brute force approach is

technically feasible. In particular, we can theoretically examine whether the distribution

of features near that maximum has the “funnel-like topography” which GAs are equipped

to exploit and then empirically assess how effective the GA is in finding the true global

maximum (especially in comparison to other methods).

The vertices of ∆◦ read
1 0 0 0 0 2 −2 −1 0 1

0 1 0 0 0 2 −1 −2 1 0

0 0 1 −1 1 −1 0 2 0 −2

0 0 0 0 2 −2 2 2 −2 −2

 . (4.1)

This polytope has 8 two-faces with more than one FRT, specifically 4 two-faces with either

4 or 6 FRTs respectively. Therefore, a choice of DNA C of a Calabi-Yau threefold in this

example corresponds to an integer vector of length 8, i.e.,16

C = (c0, c1, . . . , c7) ∈ [0, . . . , 3]4 × [0, . . . , 5]4 . (4.2)

16The polytope ∆◦ has in total 26 two-faces of which 18 have exactly one FRT making them trivial
from our point of view. For this reason, we typically omit them in the definition (4.2) of the DNA.
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This amounts to 44 × 64 = 331776 sets of two-face FRTs, i.e., choices of DNA. By direct

computation, we verified that the number of NTFE FRSTs is

#NTFE FRSTs = 331192 ≤ 331776 . (4.3)

Hence, only 584 combinations of two-face FRTs fail to extend to FRSTs of ∆◦.17

Let us start with a simple task to showcase the performance of our GA. We pick the

volume V of the Calabi-Yau threefold X◦ as our optimization target: the task will be to

maximize it. To compute it, we choose a basis {ωi}h
1,1(X◦)

i=1 of H2(X◦,Z) and define the

Kähler class J =
∑

i t
i ωi of X

◦ in terms of Kähler parameters {ti}h
1,1(X◦)

i=1 . The volume of

X◦ is then given by

V =

∫
X◦

J ∧ J ∧ J =
1

6
κijkt

itjtk , κijk :=

∫
X◦

ωi ∧ ωj ∧ ωk (4.4)

in terms of the Kähler parameters ti and the triple intersection numbers κijk on X◦. For

convenience, we compute V at the tip of the stretched Kähler cone which is the point

closest to the origin in the region of moduli space where the curvature expansion of string

theory is well-controlled.

First, before we use the GA to explore the space of NTFE FRSTs, it is insightful to

scrutinize the structure of features in this space by introducing different notions of distance.

One candidate is the Hamming distance, defined here as the number of differing two-face

triangulations between two FRSTs. This distance is natural in the context of GAs, but

adopting the perspective of the secondary fan gives rise to an alternative notion of distance:

namely, the flip distance, or the minimum number of bistellar flips one must perform to

turn one FRST into the other. Equivalently, this is the minimum of walls between distinct

secondary cones one must pass through to connect the secondary cones of two FRSTs.

A priori, it is unclear whether features — V or otherwise — will be in any sense

“continuous” with respect to either of these distances: that is, whether the difference in

feature between FRSTs will correlate with either of the two notions of distance. We test

this in Fig. 2, plotting our feature V against both notions of distance with respect to the

FRST associated with the global maximum. On the left, we examine each distance type

separately, and see that FRSTs further away from the global maximum have, on average,

smaller feature values. However, features near the value of the global maximum are still

17The rate of failed extensions varies significantly across polytopes, see in particular Fig. 8 below. The
observed rate for this polytope, 584/331776 ≈ 1.76× 10−3, is relatively small.

16



Figure 2: Distance Comparison. Left: Mean and maximum Calabi-Yau volume as a func-
tion of flip (top) and Hamming (bottom) distance. The fact that the mean target function
value correlates with distance supports the idea that the search space of DNA exhibits
a funnel-like topography near the global maximum, motivating the use of a GA. Right:
Calabi-Yau volume as a function of flip distance for fixed Hamming distance. We see that
both forms of distance experience correlation with the average behavior of target function
when the other is held fixed, suggesting that the target function experience ensemble-level
continuity with both Hamming and flip distance independently.

achieved at large distances because the decrease in feature mean is overcome by an increase

in statistics: there are simply more points at further distances. On the right, we look at

the two distance types concurrently, keeping flip distance on the x-axis and separating

out Hamming distance by color. We can see that for fixed, small Hamming distance, the

feature correlates strongly with flip distance, whereas for intermediate (≈ 10) flip distance,

the feature correlates with Hamming distance.18 To summarize, we find that the global

18We comment that while it could certainly be a fluke that V behaves roughly continuously with
Hamming/flip distance, we found similar behavior with two additional independent features: the number
of non-zero intersection numbers and the second-largest GKZ vector component. This suggests that generic
features are roughly continuous with respect to these distance measures.
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Figure 3: Distribution of values for each generation averaged over 25 runs for a population
size of 100 for the same choice of optimized hyperparameters, but random initial popula-
tions. The dashed line shows the full distribution of V for all NTFE FRSTs of ∆◦.

fitness maximum is indeed surrounded by a funnel-like region. As we will see below, this

is a prerequisite for the effectiveness of the GA.

With that in mind, we first run our GA with a population size P = 10 until each has

evaluated 1000 unique DNA a total of 150 times.19 We note that the global maximum of

V is log10(Vmax) ≈ 6.73. For the fitness, we use

F (V ,V∗) =
1

(log10(V)− log10(V∗))2
, (4.5)

where V∗ is a hyperparameter to be fixed momentarily. We run the Bayesian optimization

procedure to tune the hyperparameters as described in §3.3. Specifically, we performed

BO on the GA hyperparameters by evaluating the performance at ∼ 104 different hyper-

parameter configurations. Noteworthy features of this process include the distinction of

a relatively low mutation rate (∼ 0.05), strong preferences for tournament selection and

one-point random mutation by a factor of five versus other selection/mutation methods,

and a tournament size of 4 (relatively large compared to the total population size P = 10).

19A disadvantage of selecting a population size as small as P = 10 is that many generations are necessary
to explore the search space, as each individual generation introduces few novel DNA (though clock time
remains low because previously seen DNA are cached and are thus easily evaluated). We have found some
preliminary evidence that dynamic population sizes — i.e., setting P > 10 later in the optimization process
— can ameliorate this problem and improve performance, but we defer a systematic study of this approach
to later work.

18



Figure 4: Performance comparison between different sampling and optimization algorithms
when maximizing the Calabi-Yau volume. In particular, we plot the average best encoun-
tered target log10(V) value as a function of unique encountered DNA. We see the DNA
encoding of CYs enables many canonical optimization methods to noticeably outperform
brute force search, with the GA and Best-First Search performing best. Moreover, we
witness the non-trivial effect of Bayesian Optimization of hyperparameters.

Further, the fitness function (4.5) is determined by log10(V∗) ≈ 7.87.

Initially, we show the evolution of the GA’s population in Fig. 3 colored by generation

where we averaged over 25 individual GA runs with randomly initialized populations. To

increase statistics for the purpose of visualization, we choose a population size of P = 100,

but the GA can learn quicker with fewer unique target function evaluations when we adopt

the P = 10 population size. In addition, we also show the full distribution for log10(V)
for the entire dataset of 331192 NTFE FRSTs. This provides a visualization of the GA’s

“learning” process. In particular, after a random population initialization, the GA explores

the landscape, quickly finding DNA in the tails of the log10(V) distribution in the first few

generations. Within the first 20 generations, then, the GA is able to effectively construct

entire populations with anomalously large CY volume, with the spread of target values

shrinking with each generation as the GA hones in on the best DNA.

Next, let us quantify the effectiveness of the GA and the hyperparameter tuning de-

scribed in §3.3. In Fig. 4, we compare the optimized GA with the default GA with generic
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hyperparameters (e.g., uniform preference between selection/crossover/mutation units)20.

In addition, we also apply other random sampling and optimization algorithms, namely:

• Random Sample is a brute force method to randomly sample DNA C specifying

the triangulations of two-faces from a uniform distribution.

• Markov Chain Monte Carlo (MCMC) is a method used for sampling from com-

plex probability distributions. It involves constructing a Markov chain that has

the desired distribution as its equilibrium distribution. By iteratively transitioning

between states of the chain according to a specified transition probability, MCMC

generates samples that approximate the desired distribution. The samples produced

by MCMC can be used for estimating expectations and probabilities in statistical

inference and Bayesian analysis.

• Simulated Annealing (SA) is a probabilistic optimization technique inspired by the

annealing process in metallurgy employed to discover global optima within expansive

solution spaces. It starts with an initial solution and iteratively explores neighboring

solutions, gradually decreasing the exploration range akin to cooling molten metal.

By accepting worse solutions with a decreasing probability, it can escape local optima

and converge towards a global optimum in the search space.

• Best-First Search (BeFS) is an ad hoc graph search algorithm modelled on depth-

first search such that adjacent nodes are ordered randomly and greedily explored

when their target value exceeds that of the current node. For graphs with few edges

per node (such as this search space, where each node has only 4 × 4 + 6 × 4 = 40

Hamming neighbors) this algorithm avoids local minima traps by simply retracing

its steps backward and explores broadly by remembering where it has been, unlike

MCMC and SA which have no memory and await a low-probability event to move

to less preferred nodes.

As for the GA, individual moves in the other algorithms will be given by changing one of

the two-face triangulation labels ci. In this way, we are doing optimization on the graph

whose nodes are DNA and whose edges connect DNA a Hamming distance of one away.

20We implement simulated annealing using the Python package simanneal [70] which only readily
allows the user to specify the number of DNA encountered in a run, rather than the number of unique
DNA. It is this limitation which leads to the curve endpoints for the simulated annealing in Fig. 4 not
lining up perfectly with the remaining models’ curves, where unique encountered DNA specification was
readily accessible.
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Figure 5: Comparison between number of unique DNA encountered before one of the two
maximal values of log10(V) is achieved for the two best optimization methods — genetic
algorithms and best-first search — along with random sampling of DNA, for comparison
purposes.

We stress that the rough continuity we commented on earlier in this section entails that

optimization methods beyond GAs and those enumerated here might prove effective on

this graph of FRSTs.

In Fig. 4, we plot the performance of the individual algorithms as a function of the

number of sampled DNA which includes in particular those failing to extend to full FRSTs.

Said differently, the x-axis counts the number of states visited by the various algorithms.

On the y-axis, we plot the best feature found by the model, averaged over 150 different

runs.21 We observe that, rather unsurprisingly, the random sampling strategies shows

the worst overall performance. The MCMC as well as SA show slightly better success in

maximizing the volume. Interestingly, the maximization problem is most efficiently tackled

by both the GA with or without optimized hyperparameters and Best-First Search.22

As discussed, a motivation for GAs are their ability to perform global optimization (i.e.,

not remain stuck within shallow local extrema). We exemplify this now, complementing our

earlier discussion of the best DNA a model can find as a function of runtime (as measured

by unique evaluations of log10(V)) with a brief analysis of the least runtime (i.e., fewest

21We choose to plot the best value against unique evaluations of target function as a proxy for wall
time instead of e.g. performance vs. generation. This is because these evaluations are the rate-limiting
step, more so than, say, the selection/crossover/mutation process occurring each generation.

22We comment that while BeFS is a nice hyperparameter-less model for simple graphs such as this one,
it is likely to scale poorly with h1,1 and associated exponential increases in graph size/connectivity.
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unique evaluated DNA) required to find the global maxima of our search space. Indeed,

because our polytope permits enumeration of its DNA, we know the global structure of

log10(V) exactly.
In particular, we identify that the two largest values of log10(V) (6.737 and 6.713)

have associated DNA separated by a Hamming distance of 5 (with the maximal Hamming

distance being 8 because the polytope has 8 non-trivial two-faces). If we normalize the

feature distance and Hamming distances by the ranges of their respective distributions,

the feature distance is ∼ 100× smaller, so we decide to treat these two DNA as degenerate

global maxima and probe the number of unique encountered DNA D required to find either

one of them. In Fig. 5 we present a violin plot comparing the distribution of D for our two

best models from the previous plot: the genetic algorithm and best-first search.23 We see

that the two methods perform comparably, with the GA having heavier tails on both ends

than BeFS. Importantly, for both models one of the two best DNA are encountered with

≤ 16000 unique DNA evaluated, meaning global extrema are reliably found with exposure

to less than 5% of the full search space.

To summarize, we established for the first time that GAs can tackle optimization prob-

lems defined on the space of NTFE FRSTs or, equivalently, on the space of homotopy

inequivalent Calabi-Yau hypersurfaces. What is more, we provided evidence that the no-

tion of DNA for such manifolds as introduced in §2.1 is a useful encoding not just for GAs,

but more generally also for other optimization algorithms.24

4.2 Optimizing axion decay constants — h1,1 = 60

As our second application, we study optimization problems for decay constants of ax-

ions [72] which appear quite naturally in string compactifications [73, 74]. Typical EFTs

obtained from Kaluza-Klein reductions of string theory contain hundreds of axions arising

from the zero modes of higher-dimensional p-form potentials. Due to their prevalence, they

have been argued to provide a rich testing ground for phenomenology in string theory [75]

23We stress that the GA used for Fig. 4 were designed to quickly locate the tail of the log10(V) distribu-
tion but that their low genetic diversity (having a population size of 10) and low mutation rate obstructs
them from exploring the entire search space, as is necessary to find global extrema. To combat this, to
produce Fig. 5 we employ an ad hoc prescription where we increase the population size and mutation rate
at two points in the training process to facilitate exploration. In particular, after 1000 unique evaluated
DNA we increase the mutation rate and population size to 0.1 and 100, respectively, then after 4000 unique
evaluated DNA we increase to 0.2 and 200, respectively.

24For example, the utility of the two-face parameterization of triangulations in the context of Reinforce-
ment Learning will be featured in the upcoming article [71].
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which is known as the string axiverse.

In the present context, compactifications of Type IIB superstring theory on Calabi-

Yau threefold hypersurfaces lead to the so-called Kreuzer-Skarke (KS) axiverse [76], see

e.g. [69, 77–79] for recent studies. We focus on axions ϕa descending from the Ramond-

Ramond four-form C4 whose action is of the form

L = −
M2

pl

2
Kab(∂µϕ

a)(∂µϕb)− V (ϕ) (4.6)

where Kab is the Kähler metric determined by classical geometric data. The leading-order

scalar potential can be written as

V (ϕ) =
∑
I

Λ4
I

(
1− cos (2πQIaϕ

a)

)
(4.7)

and is induced by Euclidean D3-branes wrapping holomorphic four-cycles in the Calabi-

Yau threefold. Here, we introduced the instanton charge matrix QIa, and the instanton

mass scales ΛI .

The mass spectrum of axions obtained from (4.6) typically spans several orders of

magnitude due to hierarchies among the ΛI [75–77]. For convenience, we focus on the

lightest axion whose decay constant can be computed as

f = Mpl

√
ωaKabωb

√
2πQbωb

. (4.8)

Here, ωa is the generator of the complement orthogonal to the span of charge vectors for

the h1,1 − 1 smallest divisors (inducing the potential contributions for the heavier axions).

Further, Qb is the charge vector of the divisor setting the potential for the lightest axion.

The value of f depends again on the position in moduli space parametrized by the Kähler

parameters ta. As before, we evaluate the decay constants at the tip ta⋆ of the stretched

Kähler cone associated with a given FRST T .

In model building in string cosmology, one would like the value of f to take values in

a particular range. For instance, fuzzy dark matter usually requires f ≈ 1016 GeV (see

e.g [80]) plus additional constraints on the mass of the axion. In the optimization language,

this corresponds to solving the inverse problem: for a given target value f∗, which NTFE

FRSTs T give rise to decay constants f(T , ta⋆) ≈ f∗? Below, we demonstrate that such

problems can be addressed with our GA. For our search, we use f∗ = 1014GeV as the
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Figure 6: Distributions of decay constants for the lightest axion in each Calabi-Yau geom-
etry colored by the generation.

target.

To begin with, we choose a polytope ∆◦ at (h1,1, h1,2) = (60, 4) whose vertices are given

by 
1 1 1 1 −1 −1 2 −1 −1 −1 −1 −1 −1

0 2 0 0 0 0 1 2 −2 −2 0 −2 −2

0 0 2 0 0 −2 1 0 −2 −2 2 2 0

0 0 0 2 −2 0 1 −2 0 2 −2 0 2

 . (4.9)

This polytope has 23 two-faces out of which 3, 6, 5, 3 and 6 have 1, 4, 64, 168, and 734

FRTs, respectively. Thus, the GA is again capable of exploring the entire space of NTFE

FRSTs which is bounded by

#NTFE FRSTs ≤ 46 × 645 × 1683 × 7346 ≈ 3.3× 1036 . (4.10)

Obviously, this is far too large to allow for a systematic enumeration. Again, we stress

that the actual number of NTFE FRSTs is smaller since, as we demonstrate below, some

configurations of two-face triangulations fail to extend to an FRST of ∆◦, see Fig. 8.

We run the GA for G = 40 generations with a constant population size of P = 100.
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Figure 7: Occupation numbers of the two-face FRTs of eight selected two-faces where in
the top row Θ◦

0,Θ
◦
3,Θ

◦
5,Θ

◦
7 have each 64 FRTs and in the bottom row Θ◦

8,Θ
◦
9,Θ

◦
13,Θ

◦
18 have

734 FRTs.

For the fitness, we take a simple Gaussian

F (f, f∗, σ) = exp

(
− log10(f/f∗)

2

σ

)
. (4.11)

Fig. 6 shows the distributions of decay constants for the lightest axion in the corresponding

Calabi-Yau geometry for each generation. The distributions quickly converge towards f∗

within the first few generations, though only after 30 generations the full distribution peaks

around f∗. This trend is certainly expected since the GA initially learns general traits of

the fittest FRSTs, while the convergence towards a global maximum of the fitness is only

achieved at later stages.

To make this point clear, it is helpful to study the emergence of structures in the space

of two-face triangulations associated with the specific task at hand similar to e.g. [27,28,81]

in the context of flux vacua. In Fig. 7, we show the occupation number of the two-face FRTs

of eight selected two-faces. While the initial population consisted of a random sample of

FRTs, we observe interesting patterns during the GA’s evolution. For instance, for the two-

face Θ◦
0, there is a single FRT that dominates the entire distribution after only around ten

generations. This behaviour, where certain alleles are frozen at early times, is occasionally
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Figure 8: Number of failed extensions of two-face FRTs to FRSTs as a function of the
generation.

formalized in the context of schemata [49], see also [25] for a detailed discussion.25 The basic

idea is that the GA detects certain genetic sequences as being beneficial in its strategy to

maximize the fitness. This leads to certain parts of the chromosomes being predominantly

fixed to a single value after only a handful of generations. In contrast, the spectrum of

FRTs of Θ◦
5 shows considerably more structure. Over the course of the GA’s evolution,

various different FRTs were populated and even dominated at intermediate stages, before

the GA eventually settled at rather late times on roughly four triangulations dominating

the final distribution.

Lastly, let us highlight the GA’s effectiveness in finding novel NTFE FRSTs compared

to random sampling of two-face FRTs. In Fig. 8, we plot the number of “failed” extensions

of configurations of two-face FRTs as a function of the generation. Let us reiterate that

extensions “fail” whenever the FRTs of two-faces cannot be consistently extended to a

regular triangulation of ∆◦. At generation 0, we randomly sample FRTs of two-faces and

need 4999 choices C of two-face triangulations to obtain the desired P = 100 NTFE FRSTs.

As becomes evident from Fig. 8, the number of such unextandable choices of two-face

triangulations decreases rapidly across the entire duration of the search. Said differently,

the GA develops a strategy to find new configurations of two-face triangulations that give

25Let us note that there is no clear consensus on the role of schemata in the GA literature, see in
particular §3.3 of [52] for a discussion.
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rise to novel FRSTs. In fact, over the entire space of states visited by the GA, only 8.4%

of FRSTs are redundant, i.e., appear more than once.

4.3 Maximizing axion-photon couplings — h1,1 = 491

As a final application of our GA, we study the largest polytope in the KS database with

(h1,1, h1,2) = (491, 11), whose associated Calabi-Yau geometries are expected to dominate

the entire KS set. Indeed, according to [37], the search space of NTFE FRSTs of this

polytope is bounded by26 #CYs ≲ 1.65 × 10428. Because this polytope has both the

largest search space in KS and features the most complex and computationally intensive

geometries in this database, it represents an important and exciting target for optimization.

Thanks to recent advances in computational geometry [6] rendering quantities such as triple

intersection numbers tractable even at h1,1 = 491, targeting this polytope with optimization

techniques is now within reach.

The number of points in each of the ten two-faces of ∆◦ is

(ℓ(Θ◦
0), . . . , ℓ(Θ

◦
9)) = (3, 7, 7, 13, 13, 17, 17, 129, 172, 344) . (4.12)

For the two-faces with 17, 13, 7 and 3 points, we find respectively 19594, 204, 5 and 1 FRTs.

There are three two-faces with more than 100 points for which it is currently infeasible to

compute the full set of FRTs. We explored two approaches to these two-faces: the simplest

was merely to choose a Delaunay triangulation for each one, and allow the GA to explore

the two-face triangulations for all other two-faces. We additionally investigated the use of

random subsamples of the triangulations for these two-faces (using methods such as the

‘fast’ algorithm of [37]), but found that this decreased extendability substantially, so we

decided to use the former approach and defer a more comprehensive study of the DNA at

h1,1 = 491 for future work. In summary, then, the GA’s search space had size

#NTFE FRSTs accessible to GA ≤ 52 × 2042 × 195942 ≈ 3.99× 1014 . (4.13)

We note that this implies in particular that this search space is presumably smaller than

the one for the polytope in §4.2: by restricting to the Delaunay triangulations of the three

largest two-faces, we are significantly limiting the choices of DNA.

26The original bound of #CYs ≲ 1.65 × 10428 obtained in [37] by estimating the number of two-face
FRTs can be further improved to #CYs < 10296.1 [82] by exactly counting and using more stringent
bounds on the number of two-face FRTs of the polytope with h1,1 = 491.
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For this polytope, we selected axion-photon couplings gaγγ as our target, motivated

by the result that these are most vulnerable to phenomenological constraints at large

h1,1 [69, 83].27 Let us briefly review axion-photon couplings in string theory, following

the notation and summarizing the findings of [69], see e.g. [83–87] for related work. The

Lagrangian (4.6) is supplemented by

Laγγ = −QEM
a ϕa αEM

4
FµνF̃

µν , F̃ µν =
1

2
ϵµνρσFρσ (4.14)

in terms of the fine structure constant αEM, the field strength of electromagnetism Fµν ,

and the charge QEM
a of the divisor hosting QED, see below. The axion-photon couplings

gaγγ naturally emerge upon a change of basis achieving a canonical kinetic term and lower-

diagonal mass matrix and thus receive contributions from the charge matrix QIa, the mass

scales ΛI , and the Kähler metric Kab.

Conventionally, the decay constants f are related to photon couplings by gaγγ ↔ α
2πf

,

but this does not hold generically for the C4 string axiverse. In particular, if one defines

Cγ = gaγγ
2πf
α

(4.15)

to measure the deviation away from this pattern, one finds that Cγ ≪ 1 and that it

decreases with h1,1, generically satisfying Cγ ≲ 10−20 at h1,1 = 491 [69]. This arises

due to two compounding suppression effects, roughly given as follows. First, the typical

hierarchies of instanton actions imply that photons have suppressed couplings to axions

with larger instanton actions than that of the QED divisor (i.e., axions with mass below a

light threshold). Second, coupling suppression also results from the sparsity of off-diagonal

elements of the Kähler metric (kinetic isolation), a consequence of the infrequency of non-

trivial prime toric divisor intersections (especially at large h1,1). In conclusion, then, gaγγ

is a highly non-trivial function to optimize, even beyond the complexity of the axion decay

constants studied in the previous section.

Our optimization task is to maximize an effective overall axion photon coupling, given

by the Euclidean norm of the vector of axion-photon couplings for each of the h1,1 = 491

axions in our theory. We denote this ∥gaγγ∥. For this to be well-defined, we must choose a

divisor to host QED and a point in the Kähler cone: to pick these, we take some moderate

27By contrast, many other axionic observables are much further from constraints at large h1,1: e.g.,
the misalignment production of dark matter and the QCD θ angle [69, 78]. This is because many such
observables scale with the decay constant f : see the ensuing discussion in the text for commentary on the
loosely inverse relationship between gaγγ and f .
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Figure 9: Best ∥gaγγ∥ found as a function of number of unique DNA encountered while
optimizing, averaged over 17 GA runs and compared with average performance of random
DNA sampling. The average maximum value of log10(∥gaγγ∥/GeV−1) after 1500 unique
evaluated DNA is −9.73 ± 0.25 for the GA, and −10.74 ± 0.11 for random sampling for
95% confidence.

inspiration from phenomenology. In particular, if we assume QCD and QED are hosted on

separate divisors, the correct IR couplings are realized for divisor volumes of 40 and 127.5,

respectively. We decide to compute the tip of the stretched Kahler cone and a basis of

the smallest prime toric divisors, dilate until the smallest basis prime toric divisor D has

volume 40 (thinking of this as our QCD divisor), and then place QED on the next smallest

basis divisor D′ which intersects D, requiring that this divisor have volume less than 127.5.

This determines our point in moduli space and the QED divisor: if such a dilation cannot

be performed, or such a QED candidate divisor does not exist, we set the target to be −∞.

In this way, our gaγγ computation is mildly phenomenologically informed, but we stress

that our optimized values should taken with a grain of salt: we omit many crucial checks

of the legitimacy of the associated low-energy EFT.

We train GAs with target log10 ∥gaγγ∥ with population size P = 50 until each has

evaluated 1500 unique DNA. It takes O(hours) on standard hardware for a single run,

rendering our hyperparameter optimization methods — for which we were performing

hundreds of runs — impractical. We compare the outcome of the GA with random sampling

with error bars from averaging over 17 runs in Fig. 9. The GA distinguishes itself from
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a brute force search approach after exposure to only ∼ 200 unique DNA from the search

space and continues to improve at a much faster rate than random sampling. In particular,

within 1500 unique seen DNA the GA has found effective axion-photon couplings over an

order of magnitude larger than encountered by random sampling. To make this more

quantitative, the average maximum value of ∥gaγγ∥ found by the two methods after 1500

unique evaluated DNA is

log10(∥gaγγ∥/GeV−1)max =

−9.73± 0.25 Genetic Algorithm ,

−10.74± 0.11 Random Sampling
(4.16)

for 95% confidence. Thus, we find the encouraging result that, even without any kind of

tuning or hyperparameter optimization, a GA can substantially improve upon brute-force

searching even for the polytope with the largest and most computationally intricate search

space.

5 Conclusions

In this paper, we demonstrated that Genetic Algorithms are a powerful tool to study the

vast landscape of Calabi-Yau geometries in the KS database. Specifically, we implemented

an algorithm acting on two-face triangulations for a fixed polytope to optimize objective

functions defined on the space of Calabi-Yau threefold hypersurfaces. In fact, our encoding

ensured that we were working only with FRSTs whose induced two-face triangulations are

distinct. In this way, we removed a large fraction of the trivial redundancies arising when

mapping polytope triangulations to Calabi-Yau geometries, recall Fig. 1.

We presented three applications in the bulk of the paper. First, we studied a polytope

at h1,1 = 23 for which we were able to compute the full list of 331192 NTFE FRSTs and

the associated Calabi-Yau volumes at the tip of the stretched Kähler cone. We argued that

the Calabi-Yau volume varies loosely continuously with the natural notions of distance —

Hamming and flip — and features a funnel-like topography near maxima, suggesting the

amenability of our DNA encoding to optimization methods like GAs. We demonstrated

that our GA is outperforming other well-known sampling and optimization strategies like

MCMC and Simulated Annealing. Crucially, we established that our encoding for Calabi-

Yau threefold hypersurfaces in terms of DNA (the associated two-face triangulations) is

extremely useful not just for GAs, but also for other optimization and sampling methods.
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Afterwards, we studied a polytope at h1,1 = 60 for which we computed all fine, regular

two-face triangulations. Here, the search space of DNA for NTFE FRSTs was upper

bounded by ≈ 3.3× 1036 for which a systematic scan would be simply infeasible. For this

polytope, we studied the distributions of decay constants f associated with the lightest C4-

axion in compactifications of Type IIB string theory. We showed that the GA is efficient in

locating FRSTs with axions having decay constants f ≈ f∗ = 14 GeV. This exercise serves

as a proof of concept that GAs are indeed capable of solving inverse problems defined on

the space of (NTFE) FRSTs. We highlighted that there are non-trivial structures arising

in the space of two-face triangulations (see Fig. 7) that deserve further scrutiny.

As a final application, we studied the polytope with h1,1 = 491 which is believed to

provide the majority of Calabi-Yau geometries in the KS database [37] which are also

computationally the most challenging. Because three of the two-faces are too large to

enumerate all of their FRTs, we chose to fix a Delaunay triangulation for these two-faces

and allow the GA to explore all triangulations for all other two-faces. This effectively

limited the search space accessible to the GA in our applications to ≲ 3.99 × 1014 states

corresponding to NTFE FRSTs. For this polytope, we maximized axion-photon couplings

at points in Kähler moduli space motivated by phenomenological considerations following

[69]. Even in the absence of hyperparameter optimization — which is obstructed by the

steep ∥gaγγ∥ evaluation time for this complex polytope — we find that generic GAs lacking

hyperparameter tuning significantly outperform random sampling after exposure to very

few unique DNA, finding effective axion-photon couplings ten times as large, cf. Fig. 9.

Having found success in the maximal case, it follows that the entire KS database is within

the reach of our optimization methods. We emphasize again however that we did not

explore the space of two-face triangulations for the three largest two-faces of the polytope

with h1,1 = 491: this is an important target for future work.

There are multiple clear directions to extend the work done here and keep pushing

the frontiers of optimization on toric Calabi-Yau hypersurfaces. First, one can apply

methods studied in this paper toward more diverse and phenomenologically rich targets:

for example, the engineering of stringy models for fuzzy dark matter — necessitating the

tuning of both masses and decay constants — is potentially within reach (see e.g. [80]).

Second, this paper considers only small subsets of the full theory space of Calabi-Yau string

compactifications: we optimize over the Calabi-Yau geometries for fixed polytopes and

standardized locations in moduli space. Thus, we would benefit greatly from the ability

to additionally optimize over Kreuzer-Skarke polytopes and Calabi-Yau moduli spaces.
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In particular, the development of parametrizations for polytopes and for moduli spaces

which are amenable to standard optimization methods (analogous to the DNA we have

introduced here) would be extremely useful. Progress on the polytope front could be made

by combining our methods with the tools of [36] for obtaining and optimizing reflexive

polytopes with GAs. Improving the situation on the moduli space front is the topic of

upcoming work by the authors [88]. As progress is made in these directions, the objective

driving string phenomenology — discovering instances of phenomenological viability in the

vast string landscape — becomes increasingly tractable.
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[20] J. Bl̊abäck, U. Danielsson, and G. Dibitetto, “Fully stable dS vacua from generalised

fluxes,” JHEP 08 (2013) 054, arXiv:1301.7073 [hep-th].

[21] C. Damian, L. R. Diaz-Barron, O. Loaiza-Brito, and M. Sabido, “Slow-Roll Inflation

in Non-geometric Flux Compactification,” JHEP 06 (2013) 109, arXiv:1302.0529

[hep-th].

[22] C. Damian and O. Loaiza-Brito, “More stable de Sitter vacua from S-dual

nongeometric fluxes,” Phys. Rev. D 88 no. 4, (2013) 046008, arXiv:1304.0792

[hep-th].
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