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We consider inflation with a constant rate of rolling in which a complex scalar field plays the role
of inflaton during the inflationary epoch. We implement the inflationary analysis for an accred-
ited angular speed θ̇ which satisfies our dynamical equations. Scalar and tensorial perturbations
generated in the framework of constant roll inflation with a complex field are studied. In this re-
spect, we find analytically solutions to the gauge invariant fluctuations, with which an expression
for the scalar power spectrum together with its scalar index spectral in this scenario were found.
By comparing the obtained results with the observations coming from the cosmic microwave back-
ground anisotropies, the constraints on the parameters space of the model and also its predictions
are analyzed and discussed.

I. INTRODUCTION

Inflation theory as an unavoidable part of modern cosmology attempts to describe the phenomena at the early
time through the primordial perturbations coming from the quantum fluctuations. The scalar perturbations as the
seed of the universe form the large-scale structures of the universe. Moreover, they are the main ones responsible
for the temperature anisotropies of the cosmic microwave background (CMB) at the last scattering surface. On the
other hand, monitoring the B-mode polarized CMB photons discloses the existence of primordial gravitational waves
generated by the tensor perturbations of inflation [1–4]. In the standard cosmology, a single scalar field, so-that
called inflaton, is the dominant matter of the universe during cosmic inflation so that it decays to the particles
at the last step of inflation through the reheating process [5, 6]. Non-minimal coupling (NMC) model is another
broadly-used inflationary model considering a coupling between the Ricci scalar and the inflaton field coming from
the quantum corrections of scalar field [7–16]. Besides the mentioned models, modified theories of gravity introduce
different mechanisms in order to explain the early-time accelerating phase of the universe. For instance, in f(R)
gravity, modifying the Ricci scalar can describe the inflationary era instead of considering a scalar field [17–24].
Also, in the extended versions of teleparallel gravity, i.e. modified teleparallel gravity f(T ) and modified symmetric
teleparallel gravity f(Q), two other geometrical objects, tension and non-metricity, are responsible to demonstrate the
inflationary epoch [25–27]. Apart from the inflationary criteria, these models could be also tested in the context of
weak gravity conjecture (WGC), in particular, in the swampland region where the low-energy effective field theories
are incompatible with string theory [28–34].

A wide range of inflationary literature has been dedicated to compere the predictions of single field models with the
CMB observations. Consequently, some of them are excluded while some of them are still compatible with the Planck
datasets [17, 35, 36]. As a shortcoming of these models, they don’t predict any non-Gaussianity in their spectrum
[37] while the future CMB observations propose the existence of the non-Gaussianity in the detected spectrum of
the inflationary perturbations. In such a case, single field models will be put into question. To escape from this,
constant-roll inflation has been suggested in which inflaton rolls down with a constant rate from the maximum point
of the potential to the minimum point at the end of inflation as

φ̈ = −(3 + α)Hφ̇, (1)

where α is a non-zero parameter [38, 39]. Deviation from the slow-roll approximation is also traced in the ultra
slow-roll regime where we assume a non-negligible φ̈ = −3Hφ̇. This class of inflationary models shows a finite value
of the non-decaying mode in the spectrum of curvature perturbations [40]. Although the solutions of ultra models are
situated in the non-attractor phase of inflation, sometimes they present an attractor-like behaviour [41]. Moreover,
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the large η predicted by the ultra models can’t guarantee to solve the η problem introduced in supergravity [42].
Assuming a fast rate of rolling at the beginning of inflation is comprehended as another kind of deviation from the
slow-roll inflation [43–45].

Recently, the idea of constant-roll has been engaged broadly for different inflationary models [14, 15, 32, 46–60]. In
this work, we focus on a type of inflationary models in which a complex scalar field is assumed as inflaton to drive
inflation. Complex scalar fields in quantum and classical cosmology were first introduced in [61, 62] and then were
developed in [63–65]. Complex fields are comprehended as an alternative to the quintessence field in order to explain
the late-time accelerating phase of the universe, so-that called dark energy (DE) [66–68]. Besides this, a complex
scalar field can play the role inflaton in the early universe [69]. Consequently, complex inflation naturally presents a
graceful exit from the inflationary era with a very small number of e-folds [70]. Hence, a complex scalar field can be
considered as an assistant field of a real inflaton in the context of hybrid inflation in order to terminate inflation [71].

The main aim of the present manuscript is to study a constant-roll inflationary scenario by considering a complex
scalar field as the scalar field driven inflation. To achieve this, we arrange the paper as follows. In Section II, we
review the foundation of complex scalar field theory and its dynamical equations, briefly. We investigate the complex
inflation in the context of the constant-roll approach by using the accredited form of the angular speed θ̇ in Section
III. In Section IV, we present the cosmological perturbations of the complex constant-roll inflation. Also, we attempt
to find the constraints on the parameter space of the model using the observational values of the spectral parameters.
Conclusions and remarks are drawn in Section V. In the following, we chose units so that c = ℏ = κ2 = 8πG = 1.

II. COSMOLOGY WITH A COMPLEX SCALAR FIELD

Let us start with the action of complex scalar theory [61, 62]

S =

∫
d4x

√
−g
(
R

2
− 1

2
gµν∂µΨ

∗∂νΨ− V (|Ψ|) + Lm

)
, (2)

that considers a complex scalar field Ψ minimally coupled to the Ricci scalar R = gµνRµν in the presence of ordinary
matter described by a Lagrangian density Lm. Here, we assume that the self-interacting potential V just depends on
the absolute value or amplitude of the complex scalar field [68] and the quantity g corresponds to the determinant of
the metric gµν . We define the complex scalar field in terms of its amplitude φ(x) and phase θ(x) by

Ψ(x) = φ(x)eiθ(x). (3)

This configuration allows us to describe both early and late-time accelerating phases of the universe only by using a
complex field without any cosmological constant [66, 68–70]. Moreover, the usefulness of using the φ(x) and θ(x) will
advantage the obtaining of the motion equations (as well as the solutions) that relate the background variables, in
particular the effective potential V and the Hubble parameter H. In this form, we can rewrite the action (2) as

S =

∫
d4x

√
−g
(
R

2
− 1

2
gµν∂µφ∂νφ− 1

2
φ2gµν∂µθ∂νθ − V (φ) + Lm

)
. (4)

By variation of the action with respect to the metric and then considering a spatially flat universe described by the
Friedmann-Robertson-Walker (FRW) metric, the dynamical equations of the model are given as

H2 ≡
( ȧ
a

)2
=

1

3
ρ =

1

3

(
ρm +

1

2

(
φ̇2 + φ2θ̇2

)
+ V (φ)

)
, (5)

ä

a
= −1

6
(ρ+ 3p) = −1

3

(1
2
(ρm + 3pm) +

(
φ̇2 + φ2θ̇2

)
− V (φ)

)
, (6)

where the fluid filling the universe satisfies the continuity equation

ρ̇+ 3H(ρ+ p) = 0, (7)

where H is the Hubble parameter, ρ = ρm+ρΦ corresponds to the total energy density, p = pm+pΦ denotes the total
pressure and the dot depicts the derivative with respect to cosmic time t. Here we have considered that a spatially
homogeneous complex scalar field Φ(t), such that Φ(t) = φ(t)eiθ(t) and the tensor energy momentum T o.m.

µν associated
to the ordinary matter Lagrangian can be described by a perfect fluid of the form T o.m

µν =diag(−ρm, pm, pm, pm)
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in which ρm and pm denote the effective energy density and pressure associated to ordinary matter, respectively.
Analogously, we have assumed that the energy density and pressure of the complex scalar field are given by [68]

ρΦ =
1

2

(
φ̇2 + φ2θ̇2

)
+ V (φ), pΦ =

1

2

(
φ̇2 + φ2θ̇2

)
− V (φ). (8)

By varying the action (4) with respect to the scalar field φ, the equation of motion (EoM) for the scalar field φ
becomes

φ̈+ 3Hφ̇− θ̇2φ+ V ′(φ) = 0, (9)

and for phase we have the motion equation and its solution (for angular speed θ̇) given by

θ̈ + (2φ̇/φ+ 3H)θ̇ = 0, ⇒ θ̇ ∝ 1

φ2 a3
. (10)

In the following we will consider that the prime denotes the derivative with respect to the scalar field φ.
In the context of the scenario dominated by the dark sector (DE) and in order to explain late time accelerating

phase of the universe, the authors in Ref.[68] considered a non-relativistic matter with pressure pm = 0 together with
a complex quintessence theory in which the angular velocity θ̇ is proportional to a−3φ−2, see Eq.(10). For a review
of the complex field in the framework of DE, see Refs.[66–68].

On the other hand, during the early universe the classical and quantum description of the a inflationary epoch from
the complex scalar inflaton field was studied in different articles [63, 65, 72, 73] and during the reheating and the
primordial black hole production in [74], see also Ref.[75]. The importance of considering a complex scalar field during
this epoch lies in the fact that such fields, the non-Abelian multiplets of scalar fields and other fields arise naturally
in the new theories of particle physics, string etc. In particular in Ref.[70] was utilized the Barrow’s method to solve
the inflationary dynamics associated to the complex field as a natural exist of inflation but with a small quantity of
expansion under an angular velocity given by the expression θ̇ = M

φ2 , where the quantity M corresponds to a constant.
In particular, in the case in which the constant M = 0 the inflationary model reduces to, inflation with a real scalar
field. Despite the mentioned success, the complex inflaton field suffers from a problem that is the number of e-folds
related to the expansion of the universe is very small. Hence, using a single complex field as inflaton field will be put
into doubt [69, 70].

In the following we will assume that the ordinary matter Lagrangian Lm = 0 (ρ = ρΦ and p = pΦ), in order to
study the constant roll inflation in the framework of the complex field. Thus, we find that the dynamical equations
are given by

3H2 =
1

2

(
φ̇2 + φ2θ̇2

)
+ V (φ), 2Ḣ = −φ̇2 − φ2θ̇2, (11)

and

φ̈+ 3Hφ̇+ V ′(φ) = φθ̇2. (12)

From Eq.(11), we find that the effective potential can be written as

V (φ) = 3H2 + Ḣ. (13)

In this form, knowing the Hubble parameter in terms of the scalar field together with the speed of the scalar field φ̇,
we can reconstruct the effective potential V (φ) using Eq.(13).

III. COMPLEX CONSTANT-ROLL INFLATION

To study the complex constant-roll inflation, we start with the constant-roll condition (1) for the absolute value of
the complex scalar field as

¨|Ψ| = −(3 + α)H ˙|Ψ|, (14)

where as before the parameter α ̸= 0. By using the definition of the complex scalar field (3), the above constant-roll
condition is reduced to the familiar form (1). From Eq.(11) and considering the definition Ḣ = φ̇H ′, we find that the
speed of the scalar field φ̇ becomes

φ̇ = −H ′ ±
√
H ′2 − φ2θ̇2. (15)
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In order to find Eq.(15), we have considered that the Hubble parameter is only function the scalar field φ and not
of θ (or θ̇), since the solution given by Eq.(10) allows eliminating the dependency of the Hubble parameter of this
variable (see Eq.(11)). Thus, from Eq.(10), we can write Ḣ = φH ′ and then the relation given by Eq.(15) becomes
useful to determine φ̇.

As we see, in order to find a real solution for φ̇, we have that during the constant roll scenario it is necessary that
H ′2 > φ2θ̇2. Also, from Eq.(13), the potential and the speed of the scalar field can be driven as

V (φ) = 3H2 −H ′2 ±H ′
√
H ′2 − φ2θ̇2. (16)

Now, taking the derivative of Eq.(15) with respect to cosmic time t and using the constant-roll condition given by
(1), we obtain a differential equation for the Hubble parameter in terms of the scalar field given by

−(3 + α)H = −H ′′ ±

H ′H ′′ − (φ2θ̇2/2)′√
H ′2 − φ2θ̇2

 . (17)

From Eq.(10), the phase speed θ̇ can be written as θ̇ =
√
w/φ2a3, with w = constant > 0. Then, the speed of the

real scalar field (15) and the corresponding potential (16) are rewritten as

φ̇ = −H ′ ±
√
H ′2 − w/φ2a6, V (φ) = 3H2 −H ′2 ±H ′

√
H ′2 − w/φ2a6. (18)

Moreover, we find that the differential equation for the Hubble parameter H (17) becomes

−(3 + α)H = −H ′′ ±

[
H ′H ′′ − (w/2φ2a6)′√

H ′2 − w/φ2a6

]
. (19)

To obtain the analytical solutions for the background variables, we can consider that during inflation 1 ≫ w/φ2a6H ′2

with which

−(3 + α)HH ′ ≃ −H ′H ′′ ± [H ′H ′′ − (w/2φ2a6)′][1 +
w

2φ2a6H ′2 + ....], (20)

and for the speed of scalar field in this approximation results

φ̇ ≃ −H ′ ±H ′
[
1− w

2φ2a6H ′2 + ...

]
. (21)

By considering the positive sign and keeping the first term into the expansion given by Eq.(20), we have the reduced
differential equation

(3 + α)HH ′ ≃ (
w

2φ2a6
)′, (22)

with the solution

H2 + C ≃ w1

φ2a6
, (23)

where we have defined w1 = w/(3 + α) and C corresponds to an integration constant. Also, in this case the quantity
φ̇ (21) yields

φ̇ ≃ − w

2φ2a6H ′ = − w

2w1

(H2 + C)

H ′ = − (3 + α)

2

(H2 + C)

H ′ . (24)

In the particular case in which the integration constant C = 0 and in order to find the Hubble parameter in terms of
the scalar field, we take the derivative of Eq.(23) with respect to scalar field results

H ′ = −H
[
1

φ
+ 3

H

φ̇

]
, (25)
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where we have considered that H = H̃φ̇ where H̃ = a′/a. Then, using Eq.(24), the differential equation (25) reduces
to

H ′ ≃ −H
[
1

φ
− 6

(3 + α)

H ′

H

]
, (26)

and its solution is given by

H(φ) = C1 [(3− α)φ]−β , with β =

(
3 + α

α− 3

)
, (27)

where C1 corresponds to another integration constant. Note that Eqs.(22) and (25) are equivalent, since we have only
utilized the solution given by Eq.(23) (with C = 0).

For the case in which the integration constant C ̸= 0, we can introduce the variable change H2 = H2 + C into
Eq.(23) and using Eq.(24), we find the same differential equation (26) for the variable H. Thus, we obtain that the
solution for the Hubble parameter as a function of the scalar field in the case in which the integration constant C ̸= 0
yields

H(φ) =
√
C2

1 [(3− α)φ]−2β − C, (28)

where as before C1 denotes an integration constant and β is defined by Eq.(27). Clearly, when the integration constant
C = 0, the solution given by Eq.(28) is reduced to the Eq.(27).

For simplicity, in the following we will focus our analysis on the stage in which the integration constant C is set to
zero. In this form, plugging Eq.(27) into Eq.(24), the scalar field as a function of the cosmological time becomes

φ(t) =
1

(3− α)

[
C1(3 + α)

2
t+ C2

]1/β
, with α ̸= 3. (29)

The range of the validity for the scalar field during inflation can be determined from the condition 1 ≫ w/(φ2a6H ′2)
results

φ−2 ≫ (3 + α)

β2
, with which 0 > φ > − |β|√

(3 + α)
, or 0 < φ <

|β|√
(3 + α)

, (30)

where we have used Eqs.(23) and (27), respectively.
Besides, we find that the phase speed θ̇ in terms of the scalar field becomes

θ̇ =

√
w

φ2 a3
= θ̇0 φ

−(β+1), where θ̇0 = C1(3 + α)1/2 (3− α)−β . (31)

Thus, combining Eqs.(29) and (31) we obtain that the phase as a function of the time is given by

θ(t) = θ1

[
C1(3 + α)

2
t+ C2

]−1/β

+ C3, (32)

where the quantity θ1 is a constant and it is defined as

θ1 =
−2β θ̇0

C1 (3 + α) (3− α)−(β+1)
, (33)

and C3 corresponds to another integration constant. Also, we find that the effective potential (13) as a function of
the scalar field becomes

V (φ) =

(
3− α

2

)
C2

1 [(3− α)]−2β φ−2β = V0 φ
−2β , (34)

where we have defined V0 = (3−α)
2 C2

1 [(3 − α)]−2β . Here we observe that from the approximation w(φa3H ′)−2 ≪ 1,
as much as the solution for the Hubble parameter H(φ) and the reconstructed potential V (φ) do not depend on the
parameter w associated to the angular speed θ̇. This is due to the fact that we have considered the first term into the
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expansion (20) and then Eq.(24) does not depend on w. In the situation in which we keep the first and second term
of the expansion given by Eq.(20), the differential equation (22) is modified to[

2(3 + α)

w

]
HH ′ ≃

(
1

φ2a6

)′ [
1 +

w

2φ2a6H ′2

]
− H ′′

φ2a6H ′ , (35)

and together with the equation φ̇ ≃ −w/(2φ2a6H ′) obtained of (21) are part of the system to be solved (recall that
H = (a′/a)φ̇). Thus, in order to solve (numerically) this coupled system of differential equations we would need to
specify the value of the parameter w.

0.010 0.012 0.014 0.016 0.018 0.020φ

0.9990

0.9995

1.0000

H(φ)

Numerical

Analytic

Figure 1: The plot shows the comparison between the analytic expression given by Eq.(27) and the numerical solution for
the Hubble parameter H(φ) in terms of the scalar field φ. Here we have used the positive signs of Eqs.(18) and (19) together
with the values of α = −2.99, w = 0.01 and C1 = 0.99, respectively.

The Fig.1 shows the comparison between the analytic solution given by Eq.(27) where the approximation 1 ≫
w/φ2a6H ′2 is used and the numerical solution for the Hubble parameter as a function of the scalar field. Here we
have utilized the values α = −2.99, w = 0.01 and C1 = 0.99. We note that the comparison is suitable between the
numerical solution and the analytical solution inside of the validity range defined by Eq.(30) for the scalar field.

Besides, the number of e−folds in this case results

N = −
∫ tf

t∗

Hdt = −
∫ φf

φ∗

H

φ̇
dφ =

2w1

w

∫ φf

φ∗

H ′

H
dφ = − 2

(α− 3)
ln

[
φf

φ∗

]
. (36)

In the following, the subscripts f and ∗ are used to describe to the epoch the end of inflation and when the
cosmological scales exit the horizon, respectively.

By assuming that the end of inflation occurs when the slow roll parameter ϵ1 ≃ 1
2 (V

′/V )2 = 1, then we find that
the value of the scalar field at the end of inflation is given by

ϵ1(φ = φf ) ≃
2β2

φ2
f

= 1, ⇒ φf = ±
√
2β. (37)

In this way, we obtain that the value of the scalar field when the cosmological scales exit the horizon yields

φ∗ = −
√
2β e(α−3)N/2, (38)

where we have considered the negative sign of φf (see Eq.(37)), since as we will see later the parameter β is a negative
quantity.

IV. COSMOLOGICAL PERTURBATIONS

In this section, we will analyze the scalar and tensor perturbations, in which the former will be characterized by
considering the longitudinal gauge on the metric. Thus, by considering the longitudinal gauge in the perturbed FRW
metric we write

ds2 = (1 + 2Φ)dt2 − a2(t)(1− 2Φ)δijdx
idxj , (39)
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where the function Φ = Φ(t,x) corresponds to the Bardeen’s gauge invariant variable [76]. Assuming the spatial de-
pendence eikx, where the quantity k is the wavenumber, each Fourier mode satisfies the following perturbed equations
of motion given by

Φ̇ +HΦ =
1

2

[
φ̇δφ+ φ2θ̇δθ

]
, (40)

δφ̈+ 3Hδφ̇+

[
k2

a2
+ V ′′ − θ̇2

]
δφ− 2φθ̇δθ̇ = 4φ̇Φ̇− 2V ′Φ, (41)

and

δθ̈ +

[
3H +

2

φ
φ̇

]
δθ̇ +

k2

a2
δθ − 2φ̇

φ
δφ̇ = 4θ̇Φ̇. (42)

Here, the quantities δφ and δθ correspond to the gauge invariant fluctuation variables associated to the respective fields
φ and θ, respectively. In order to establish that the quantities δϕ and δθ are gauge invariant fluctuation variables, we
can consider an infinitesimal gauge transformation on the coordinates x̃ν = xν + δxν together with the most generic
perturbed metric; ds2 = a2[(1+2Φ)dτ2−2∂iBdτdx

i−[(1−2ψ)δij+(∂i∂j−(1/3)δij∇2)E]dxidxj ], with τ the conformal
time and a detailed explication see Refs. [77, 78]. Since φ and θ are scalar fields (amplitude and phase), these satisfy
the transformation laws for gauge invariant (GI); δφGI = δφ − φ′(E′/2 − B) and δθGI = δθ − θ′(E′/2 − B), where
a prime now indicates differentiation wrt to the conformal time [77, 78]. Thus, from the longitudinal gauge on the
metric given by Eq.(39), we have B = E = 0 and Φ = ψ and then the quantities δφ and δθ are gauge invariant
fluctuation variables.

By considering large scale perturbations in which k ≪ aH and neglecting the term Φ̇ and those terms which include
second order time derivative, then the above equations of motion reduce to

HΦ ≃ 1

2

[
φ̇δφ+ φ2θ̇δθ

]
, (43)

3Hδφ̇+ V ′′δφ ≃ −2V ′Φ, (44)

and

3Hδθ̇ ≃ 0, ⇒ δθ = C. (45)

Here we have considered that as we need the non-decreasing modes on large scale in our model, which are determined
to be weakly time-dependent [79, 80], then we can consistently ignore the term associated to Φ̇, including those
involving two time derivatives. In relation to the existence of growing and decaying modes is attributed to the the
observation outlined in Ref.[81], with a more detailed explication provided in Ref.[79].

Thus, we find that the Eq.(44) can be written as

δφ′ +
1

3Hφ̇

[
V ′′ +

V ′

H
φ̇

]
δφ+

(
V ′φ2θ̇

3Hφ̇

)
C = 0, (46)

where we have used δφ̇ = φ̇δφ′.
We note that the relation between the real variables δφ and δθ with the variation of the complex field δΨ from

Eq.(3) becomes δΨ = (Ψ/φ)[δφ + i δθ]. Under the large scale approximation, we find that the relation between the
Bardeen’s variable Φ and the variation of the complex field δΨ can be written as 2HΦ ≃ δΨ[(φ/Ψ)Ψ̇ − i θ̇](φ/Ψ) −
C[θ̇(1−φ2)+ i (φ/Ψ)Ψ̇], where we have utilized Eqs.(43) and (45), respectively. Thus, this relation indicates that the
metric perturbation is determined when the evolution of the fields are known.

In order to find an analytical solution to the gauge invariant variable δφ, we consider for the integration constant
as C = 0. In this way, we find that the solution of Eq.(46) can be written as

δφ = C0 exp

[
−
∫ φf

φ

1

3Hφ̇

(
V ′′ +

V ′

H
φ̇

)
dφ

]
, (47)

where C0 corresponds to an integration constant. Therefore, the variable Φ becomes

Φ ≃ 1

2

φ̇

H
C0 exp

[
−
∫ φf

φ

1

3Hφ̇

(
V ′′ +

V ′

H
φ̇

)
dφ

]
. (48)
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0 50 100 150 200 250 300 φ
1.×10-6

2.×10-6

3.×10-6

4.×10-6

5.×10-6

6.×10-6
δφ

C=0.005

C=0.003

C=0.0005

C=0

Figure 2: The plot shows the numerical solution for the gauge invariant fluctuation variable δφ versus the scalar field φ
given by Eq.(46), for different values of the constant C. In this plot we have utilized the values C1 = 0, C2 = 0 and α = −2.99.

Thus, from Eq.(24), we find that Eq.(47) can be rewritten as

δφ ≃ C0 exp
[∫ φf

φ

2w1H
′

3wH(H2 + C)

(
V ′′ − w(H2 + C)V ′

2w1HH ′

)
dφ

]
, (49)

and analogously for Φ, we get

Φ ≃ −C0
(
w(H2 + C)

4w1HH ′

)
exp

[∫ φf

φ

2w1H
′

3wH(H2 + C)

(
V ′′ − w(H2 + C)V ′

2w1HH ′

)
dφ

]
. (50)

The Fig.2 shows the numerical solution given by Eq.(46) for the fluctuation variable δφ in terms of the scalar field
φ, for different values of the constant C defined by Eq.(45). Here we have used the values C1 = 1, C2 = 0 and
α = −2.99. In order to write down values for the numerical solution of Eq.(46), we have utilized Eqs.(27), (29), (31)
and (34) for the background variables. From this plot, we observe that for values of integration constant C ≪ 1, the
numerical solutions of δφ(φ) exhibit behaviors closely resembling those observed when C = 0. Hence, given that the
gauge-invariant fluctuation variable δφ remains significantly smaller than unity (δφ ≪ 1), it is pertinent to consider
the scenario where C = 0 as a suitable approximation.

Following Refs.[82–84], we assume that gauge invariant density fluctuation δρc/ρ = δH is defined as δH =
−(2/3)(k/aH)2Φ and considering that the curvature perturbation due to primordially adiabatic fluctuation Φ =
[1 + 2/(3(1 + p/ρ))]−1C0, then from Eq.(49) we find that the density perturbation at the horizon crossing in which
k = aH, results

δH = f

(
δφ exp

[
−
∫ φf

φ

2w1H
′

3wH(H2 + C)

(
V ′′ − w(H2 + C)V ′

2w1HH ′

)
dφ

]) ∣∣∣
φ=φ∗

= f
(
δφ e−F(φ)

) ∣∣∣
φ=φ∗

, (51)

where the function F(φ) is defined as

F(φ) =

∫ φf

φ

2w1H
′

3wH(H2 + C)

(
V ′′ − w(H2 + C)V ′

2w1HH ′

)
dφ. (52)

Further, the quantity f is a constant and in the specific case associated to the radiation domination f takes value
f = 4/9 and for matter domination we have f = 2/5. Here the constant f = (2/3)[1+2/(3(1+ p/ρ))]−1 is introduced
by normalization at the second crossing after inflation during the radiation or matter domination Refs.[82–84]. Also
the minus sign can be omitted, since this sign may be absorbed into the stochastic variable δφ. Thus, the large-
angular-scale anisotropy of background due to the Sachs-Wolfe effect is well defined as δT/T = Φ/3 [85].

Besides, the fluctuations δφ are generated by small scale perturbations and then they can be assumed as free
massless scalar field in which are described by independent random variables such that at the horizon crossing we
have δφ = H/2π, see e.g. Refs.[4, 86]. By considering that the scalar power spectrum PS = (25/4)δ2H [87], then we
find that the spectrum at the horizon crossing can be written as

PS(φ = φ∗) =

(
25

4

) (
f

2π

)2 [
H2 e−2F(φ)

] ∣∣∣
φ=φ∗

. (53)
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Further the scalar spectral index ns is defined as

ns − 1 =
d lnPS

d ln k
, (54)

in which the wavenumber k is related to the number of e-folds N by the relationship d ln k ≃ dN . Thus, from Eq.(53)
we find that the index ns can be written as

ns ≃ 1 + 2
φ̇

H

[
H ′

H
−F ′(φ)

]
≃ 1−

(
w

w1

)
(H2 + C)

HH ′

[
H ′

H
−F ′(φ)

]
. (55)

Besides, it is well known that the production of tensor perturbations during the inflationary epoch would pro-
duce gravitational wave. In this context, the spectrum of the tensor perturbations PT after Hubble exist can be
approximated to [86, 87]

PT ≃ 4

(
H

π

)2 ∣∣∣
φ=φ∗

. (56)

Also, an important observational parameter corresponds to the tensor to scalar ratio which is defined as

r =
PT

PS
, (57)

and in our case this ratio can be written as

r ≃ 64

25

1

f2
e2F(φ). (58)

For our model, from Eq.(23), we find that the function F(φ) defined by Eq.(52) yields

F(φ) =
β(α− 3)

3

{
ln(φ) +

β(1 + 2β)

φ2

w1

w

(
1 + 2F1

[
1,− 1

β
,
−1 + β

β
,−C(φ(α− 3))2β

C2
1

])}∣∣∣∣∣
φ

φf

,

where the quantity 2F1 corresponds to the hypergeometric function. In the particular case in which the integration
constant C = 0, the above function reduces to

F(φ) =
β(3− α)

3

{
ln(φ) +

β(1 + 2β)

φ2

w1

w

}∣∣∣∣∣
φ

φf

. (59)

By considering Eqs.(55) and (59) we obtain the that scalar spectral index ns can be written as

ns(φ = φ∗) = ns∗ ≃ −(2 + α) +
(α2 − 9)

3

[
1− 2β(1 + 2β)

φ2

w1

w

] ∣∣∣∣∣
φ∗

. (60)

Also, the tensor-to-scalar ratio of the model is given by

r∗ ≃ 64

25

1

f2
exp

[
2β(3− α)

3

(
ln(

φ

2
√
β
) +

1 + 2β

3 + α

( β
φ2

− 1

4

))]∣∣∣∣∣
φ∗

. (61)

Thus, considering that the scalar spectral index at the horizon crossing takes the value ns∗ = 0.967 and using
Eqs.(37) and (38), we find numerically that the parameter α has a negative value given by

α ≃ −2.989. (62)

Here we have considered that at the crossing the number of e− folds N = 60.
Besides, from the scalar power spectrum defined by Eq.(53) and considering that at the crossing this quantity is

PS(φ = φ∗) ≃ 2.2 × 10−9 together with α = −2.989, we find that the integration constant C1 = ± 1.02 × 10−4.
However, as the Hubble parameter is a positive quantity we only have to consider C1 = 1.04 × 10−4. This value of
C1 suggests that the quantity V0 = (3−α)

2 C2
1 (3 − α)−2β (amplitude of the potential) associated to the reconstructed
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potential V (φ) = V0φ
−2β becomes V0 ≃ 3.1× 10−8, when α = −2.989 and C1 ≃ 10−4. In this form, we find that the

value of the effective potential at the end of inflation results V (φ = φf ) ≃ 3.03× 10−8 (in units of M4
p , where Mp the

Planck mass ) and at the crossing in which the number of e−folds N = 60 the potential V (φ = φ∗) ≃ 5.88 × 10−8

(in units of M4
p ). In this context, we obtain that the energy density of the universe during inflation in our model

becomes ρ ∼ V ∼ O(10−7) ∼ O(10−8) M4
p and this energy scale is similar to that obtained in different inflationary

models during the early universe, see e.g., [1–3, 87]. As before we have used that the number of e−folds N = 60 and
also we have considered the value f = 4/9.

Also, from Eq.(61) we find that the tensor to scalar ratio r∗ ∼ 10−78, when we consider the values of N = 60,
f = 4/9, together with the value given by Eq.(62) for the parameter α. In this sense, we find that our model predicts
that the tensor to scalar ratio ratio r ≃ 0, see right panel of Fig.3.

In Fig.3 we show the evolution of the observational parameters ns and r versus the parameter α associated to
Eq.(14). The left panel shows that the observational value for the scalar spectral index ns = 0.967 takes place for the
value α ≃ −2.989. In order to write down the scalar spectral index ns as a function of the parameter α, we consider
Eq.(60) together with the Eq.(38) in which the number of e−folds N = 60. The right panel shows the evolution
of the tensor to scalar ratio r (logarithmic scale) in terms of the parameter α. Also, in order to write down the
observational parameter r as a function of α, we consider Eqs.(37), (38) and (61), where we have assumed N = 60
and the parameter f = 4/9, respectively. From this panel, we note that the tensor to scalar ratio r ≃ 0, when the
observational parameter ns ∼ 0.97. On the other hand, in order to give an appropriate comparison and distinction

Figure 3: Observational parameters: The left panel shows the behavior of the scalar spectral index versus the parameter α
and the right panel shows the tensor to scalar ratio r (logarithmic scale) versus the parameter α. From the left panel we
observe that the value ns = 0.967 for the scalar spectral index corresponds to α = −2.989. Additionally, from the right panel
we note that the tensor to scalar ratio r ∼ 0 for values of α in which ns ≃ 0.97. Here we have used that at the crossing the
number of e−folds N = 60 and f = 4/9.

between the real inflaton field and the complex field, we have to consider the situation in which the parameter α > −3.
In this context, when we analyze the case in which α > −3 for a real field, see Ref.[38], the reconstructed potentials
in terms of the scalar field are an exponential potential associated to power-law inflation [88] and a hyperbolic cosine
potential which is similar to that found in Ref.[89] (inflationary solutions). For the complex field we have found that
the reconstructed potential corresponds to a power-law potential V (φ) ∝ φ−2β becoming different to the real field.
Here the evolution of the scalar field on the reconstructed potential in the framework of complex field becomes similar
to the hyperbolic cosine potential, since both potentials present a minimum at φ = 0, and the evolution of the field
takes place from large-φ towards the minimum. In relation to the observational parameters and in particular from
the scalar spectral index ns, it is found that the parameter α takes the value α = −3.02 when the index ns = 0.96
[38]. In our case using a complex field we have obtained the value α = −2.989 and it suggests that both constrains on
the parameter α are similar from observational parameter ns. However, the analysis realized assuming a real inflaton
field predicts α < −3 and from a complex inflaton field suggests α > −3 from the scalar spectral index.

V. CONCLUSIONS AND REMARKS

In the present manuscript, we have studied the complex inflation in which a complex field as inflaton is the main
responsible to drive inflation. We have worked with an expression for the angular velocity θ̇ ∝ φ−2 a−3 determined
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from the motion equation for the phase θ that leads to some interesting inflationary solution.
By applying the constant-roll condition on the absolute value of the complex scalar field, we have found a specific

form for the Hubble parameterH and of the effective potential as a function of the scalar field, by assuming that during
inflationary era the term w(φa3H ′)−2 ≪ 1. Here the solutions for the Hubble parameter and the effective potential
have a dependency power-law type with the scalar field φ. Also, we have found that the evolution of the phase as
a function of the cosmological time scale as θ(t) ∝ t−1/β . In this context, we have noted that in the approximation
w(φa3H ′)−2 ≪ 1 the parameter related to the angular speed w is not present in the solutions of H(φ) and V (φ),
then this parameter can not be constrained. Besides, from the condition w(φa3H ′)−2 ≪ 1 we have found different
ranges of validity for the scalar field, in which an upper bound is obtained for positive values of φ or a lower bound
for negative values of φ, see Eq.(30). In this form, we have utilized these ranges for the scalar field to constraint the
different results found on parameter-space from the observational parameters.

Additionally, we investigated the corresponding scalar perturbations where we have obtained the perturbed equa-
tions of motion using the longitudinal gauge. By considering large scale perturbations and neglecting some terms we
have reduced the equations system and then we have found solutions for the Bardeen’s variable and the perturbation
associated to the scalar field. A general relation for the scalar power spectrum and the scalar spectral index ns are
given by Eqs.(53) and (55), respectively. In particular from the background solutions for the Hubble parameter and
the effective potential in terms of the scalar field we have found analytical quantities for the observational parameters
such as; scalar spectral index and the tensor to scalar ratio.

By comparing the obtained results with the datasets coming from CMB anisotropies, we have attained the obser-
vational constraints on the parameters space of the model, in particular, the constant-roll parameter α see Eq.(62)
and the integration constant associated to the Hubble parameter C1 ∼ O(10−4).

Also, from Eq.(61) we have obtained that the tensor to scalar ratio r∗ ∼ O(10−78), when we consider the values of
N = 60 and α = −2.989. This value for the tensor to scalar ratio suggests that our analysis done in the framework of
constant roll with a complex inflaton, predicts a ratio r ∼ 0, see Fig.3. Additionally, from Fig.3 (left panel) we have
ratified that the observational parameter ns ∼ O(1) when the parameter α ∼ −3.

In relation to the condition give by Eq.(1), we see the difficult to understand how the scalar field could begin its
movement on the reconstructed potential given by (34) with the appropriate initial condition φ̈ = −(3 + α)Hφ, in
which the potential satisfies the relation V ′(φ) = αHφ̇ + φθ̇2. In this sense, the study of this issue concerning the
consequences of the constant roll initial condition from the dynamics of the inflaton and how would be the special
features that would be a consequence this initial conditions in our scenario would be a very interesting subject for
future research concerning our model.
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