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Abstract
A correlation is a binary vector that encodes all possible positions of overlaps of two words, where an
overlap for an ordered pair of words (u, v) occurs if a suffix of u matches a prefix of v. As multiple
pairs can have the same correlation, it is relevant to count how many pairs of words share the same
correlation depending on the alphabet size and word length n. We exhibit recurrences to compute
the number of such pairs – which is termed population size – for any correlation; for this, we exploit
a relationship between overlaps of two words and self-overlap of one word. This theorem allows us to
compute the number of pairs with a longest overlap of a given length and to show that the expected
length of the longest border of two words asymptotically diverges, which solves two open questions
raised by Gabric in 2022. Finally, we also provide bounds for the asymptotic of the population
ratio of any correlation. Given the importance of word overlaps in areas like word combinatorics,
bioinformatics, and digital communication, our results may ease analyses of algorithms for string
processing, code design, or genome assembly.
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1 Introduction

A word u overlaps a word v if a suffix of u equals a prefix of v. The shared suffix-prefix is
called a border for the ordered pair of words (u, v) (note that other authors call this a right
border, see [5]). If (u, v) has no border it is said unbordered. The pair (u, v) is said mutually
unbordered if both (u, v) and (v, u) lack a border. These notions generalize to pairs of words,
the well studied notions of border, bordered and unbordered words, that were originally
defined for single words.

Overlapping and unbordered words are central in many applications: bioinformatics,
pattern matching, or code design. Computing overlaps between all pairs of sequencing reads
is one step of the genome assembly task [8, 15]; several algorithms solve it in optimal time
[9, 28, 12, 27]. The notion of borders is core in word combinatorics [14, 13], the design of
pattern matching algorithms [11, 26], and in the statistical analysis of pattern finding and
discovery [17, 4]. For instance, questions in vocabulary statistics deal with the distributions
of the number of missing words or of common words in random texts [19, 20], which depend
on the overlap structure of words, and find applications in bioinformatics [25] or in the
test of random number generators [18]. Set of mutually unbordered words serve as code
for synchronization purposes in network communication. A seminal construction algorithm
appeared in 1973 [16], and others brought recent improvements in the design of cross bifix-free
codes [2, 1], a topic of combinatorial interest [3].
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2 Counting overlapping pairs of strings

Recently, Gabric gave recurrence to count bordered, mutually bordered, mutually un-
bordered pairs of words of length n over a k-ary alphabet [5]. In his conclusion, he raised
challenging open questions: 1/ count the number of pairs having a longest border of length i
(with i satisfying 0 < i < n), and 2/ what is the expected length of the longest border of a
pair of words? We address both questions in our work.

Example: Consider the binary alphabet {a, b} and the following three words denoted by
u, v, w: abaaa, aaabb, and abbbb. The pairs (u, v) and (v, w) both have a longest border of
length 3, but (u, v) has 3 distinct non empty borders aaa, aa, and a, while (v, w) has only
one abb.

First, this example illustrates that the possibilities of overlap of a pair (u, v) depends on
the self-overlapping structure of their longest border (compare aaa with abb). Second, it
shows that the self overlap structure of the border limits the number of words having such a
shared suffix-prefix, and thus the number of pairs of words to count. Indeed, only words of
length 5 having a suffix (resp. prefix) such as aaa or bbb, can participate in a pair having
as much and as long borders as (u, v). These observations suggest that to answer the open
question raised by Gabric, one may have to account for the complete overlap structure of a
pair of words.

Other authors have proposed to encode the starting position of such overlaps in a binary
vector called a correlation [6]. In our example, the correlation of the pair (u, v) is 00111, while
that of (v, w) is 00100. For any word z, the correlation of (z, z) is called the autocorrelation of
z. Clearly, multiple pairs can have the same correlation, and hence there are less correlations
of length n than pairs of words of length n.

Fortunately, one can build on earlier studies of set of autocorrelations, denoted Γn, and
the set of correlations, denoted ∆n, for strings of length n [6, 7, 22, 23]. It is known the
self overlap structure of a word [6], as well as the overlap structure of a pair of words [24],
does not depend on the alphabet size (provided the alphabet has at least two letters – a
unary alphabet makes the question trivial). Combining a characterization of ∆n provided
in [24] and algorithm for enumerating Γn [21], we can enumerate ∆n to get the list of all
correlations of length n.

With the terminology used in [6, 23, 20], we exhibit a solution to compute the population
size of any correlation, that is the number of pairs of words having the same correlation (in
Section 3). For this, we exploit a recurrence to compute the population size of autocorrelations
[6]. With this in hand, we derive a formula for the abovementioned open question 1/
(Theorem 20), and show that expected length of longest border asymptotically diverges
(open question 2/ - Theorem 21). Besides this, we provide bounds for the asymptotic of the
population ratio of any correlation (Theorem 19 Section 4), which extends the result known
on autocorrelations [6].

2 Preliminaries

Let Σ be a finite alphabet, that is a set of letters of cardinality σ. We call a sequence of
elements of Σ a string or a word. The empty word is denoted by ε. We denote by Σ∗ the set
of all finite strings over Σ, and by Σn the set of all strings of length n over Σ, with n ∈ N.
For a string x, |x| denotes the length of x. For two strings x, y, we denote their concatenation
by xy, and the k-fold concatenation of x with itself by xk for any k > 0. For any L ⊂ Σ∗,
we define x.L as {xy : y ∈ L}.

Let u be a string of Σn. We index the letters of u from 0 to n− 1: u = u[0] . . . u[n− 1].
The ith letter of u is denoted by u[i]. We also denote by u[i..j] for any 0 ≤ i ≤ j < n the
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substring of u starting at position i and ending at position j. A substring is said to be proper
iff j − i+ 1 < n. Moreover, u[0..j] is a prefix, u[i..n− 1] is a suffix of u.

2.1 Definitions of borders and correlation for pairs of strings

To study overlaps between two words, we consider ordered pairs of strings: a pair of strings
(u, v) ∈ Σn × Σm differs from (v, u), since overlaps are not symmetrical.

▶ Definition 1 (Border of pair of strings). A border of a pair of strings (u, v) ∈ Σn × Σm is
any string that is a non-empty suffix of u, and a non-empty prefix of v. If a border exists,
(u, v) is said bordered, otherwise it is unbordered.

A pair may have multiple borders, and in general the set of borders for (u, v) differs from
that of (v, u). In his article, Gabric refers to a border of (u, v) as a right border and to a
border of (v, u) as a left border; we use a different terminology.

Guibas & Odlyzko [7] proposed to encode in a binary vector the positions in u at which
a border is starting, and they named this notion: a correlation of a pair of strings.

▶ Definition 2 (Correlation). Let (u, v) ∈ Σn × Σm. The correlation of (u, v), denoted c(u, v),
is a binary vector of length n (i.e., c(u, v) ∈ {0, 1}n) satisfying ∀i ∈ [0, . . . , n− 1]

c(u, v)[i] =
{

1 if u[i..n− 1] = v[0..i− 1]
0 otherwise.

Generally c(u, v) ̸= c(v, u). A special case arises when u equals v. Then c(u, u) is called
the autocorrelation of u (which encodes the set of periods of u) [7], which for clarity, we will
denote by a(u). To each border z of a word u is associated a period, which is an integer
equal to |u| − |z|. For the sake of simplicity, in this work, we focus on pairs of strings of
equal length, that is, when m = n.

▶ Example 3. Consider the pair of strings (u, v) = (aabbaa, baabaa) of length 6 over the
binary alphabet {a, b}. The pair (u, v) has a border starting at position 3 in u, and a shorter
border starting at position 5. Its correlation is c(u, v) = 000101. See Table 1. Of course, a
permutation of the alphabet (that is exchanging a with b and vice versa) yields a different
pair of strings, which has the same correlation as (u, v). Thus, several pairs can share the
same correlation.

We recall some known properties of autocorrelations that we use later on. Their proofs
can be found in [24, 6, 10].

▶ Lemma 4. Let t ∈ Γn and u ∈ Σn such that a(u) = t. Let 0 ≤ p ≤ q < n such that
t[p] = 1. Then, t[q] = 1 iff u[p..n − 1] has period (q − p) (equivalently the (q − p) bit in
a(u[p..n− 1]) equals 1).

▶ Lemma 5. Let t ∈ Γn. For all p satisfying 0 ≤ p < n, and t[p] = 1, it follows that t[kp] = 1
for all k ∈ [2, . . . , ⌊ n

p ⌋].

▶ Lemma 6. Let π(u) be the basic period (the minimum non-trivial period) of u ∈ Σn, and
p be a non-trivial period. Then either p = k · π(u), k ∈ [1, . . . , ⌊ n

π(u) ⌋] or p > n− π(u).
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pos. 0 1 2 3 4 5 6 7 8 9 10
u a a b b a b - - - - - t

v b a b b a a - - - - 0
- b a b b a a - - - - 0
- - b a b b a a - - - 0
- - - b a b b a a - - 1
- - - - b a a b a b - 0
- - - - - b a b b a a 1

Table 1 Example of correlation for the pair (u, v) := (aabbab, babbaa) of length 6. All possible
shifts of v to the right of u are displayed on distinct lines: those at which an overlap exists are
colored in blue. The last column shows c(u, v) written top-down, with 1 bits corresponding to
borders also colored in blue.

2.2 Set of all correlations of length n and its characterization
As in [23], for any length n ∈ N, we denote the set of all correlations for words of length n by
∆n and its cardinality by δn. The set of all autocorrelations of strings of length n is denoted
by Γn and its cardinality by κn. When n = 0 we consider that δn = Γn = {ε}. So ∆n :=
{t ∈ {0, 1}n : ∃(u, v) ∈ Σn × Σn : c(u, v) = t} and Γn := {s ∈ {0, 1}n : ∃u ∈ Σn : a(u) = s}.

The first characterization of autocorrelation was given by Guibas and Odlyzko in their
seminal paper [6]. They studied the cardinality of Γn and provided a lower and an upper
bound for log(κn)/ log2(n), and conjectured that their lower bound was also an upper bound.
They also proposed an algorithm to compute the number of strings in Σn that share the
same period set, which they termed the population of an autocorrelation. A key result of
their work is the alphabet independence of Γn: Any alphabet with σ > 1 gives rise to the
same set of autocorrelations, i.e., to Γn.

Rivals et al. [24] have characterized ∆n and exhibited its relation to the sets Γj for
0 ≤ j ≤ n, which is stated below.

▶ Lemma 7 (Lemma 21 [24] ). The set of correlations of length n is of the form

∆n =
{

0(n−j)s, with s ∈ Γj and j ∈ [0, . . . , n]
}
.

Lemma 7 gives us the structure of any correlation for any pair of strings (u, v) of
length n: it starts with a series of 0, until the leftmost 1, which marks the position in u of
the longest border of pair (u, v). Let z denote this border and j denote its length. The above
characterization is based on the fact that the suffix of length j of c(u, v) (the one starting
with the leftmost 1) must be the autocorrelation of z. Indeed, each border of z is also a
border of (u, v). If j = 0, then z is empty string and c(u, v) = 0n. Of course, if u = v, then
the correlation of (u, v) is the autocorrelation of u.

A reformulation of this explanation is stated in the following corollary. We will often use
this statement later on in this article.

▶ Corollary 8. Let n > 0 and t ∈ ∆n. Then there exist j ∈ [0, n] and s ∈ Γj such that
t = 0(n−j)s.

This characterization implies the following partition of ∆n:

▶ Corollary 9. ∆n =
⋃n

j=0{0n−js | s ∈ Γj} =
⋃n

j=0
(
0n−j .Γj

)
.
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Since correlations (and autocorrelations) are binary encoding of a set of positions, we can
get the intersection (or union) of two correlations by taking their logical AND (or OR). For
legibility, for t, t′ ∈ ∆n we denote their intersection by t ∩ t′ and their union by t ∪ t′ . We
use such notation to investigate the algebraic structure of ∆n in Appendix A.

Rivals et al. [24] studied the cardinalities of Γn and ∆n, and proved the asymptotic
convergence of ratios involving κn and δn towards the same limit when n tends to infinity.
Precisely, ln δn

ln2(n) → 1
2 ln(2) when n → ∞.

It is interesting to study the algebraic structure of ∆n. In Appendix A, we show that ∆n

is a lattice under set inclusion, and that it does not satisfy the Jordan-Dedekind condition.
The example 10 and Figure 1 illustrate the lattice structure of ∆n for n = 4.

▶ Example 10. Figure 1 illustrates the lattice structure with ∆4, for strings of length n = 4.
From Corollary 9, one has ∆4 = Γ4 ∪ (0.Γ3) ∪ (00.Γ2) ∪ (000.Γ1) ∪ {0000}.

Figure 1 The lattice of ∆4: each node
contains a correlation as a binary vector. The
elements of Γ4 are colored in green. Since
between 0000 and 1111 there are chains of
different lengths (3 and 4), ∆4 does not satisfy
the Jordan-Dedekind condition.

Table 2 Pair population sizes on a binary
alphabet for correlations of ∆4; σ = 2 and
n = 4.

correlation pair
population

size
0000 74
0001 82
0010 30
0011 24
0100 16
0101 8
0111 6
1000 6
1001 6
1010 2
1111 2

3 Population size of a correlation

The population of a correlation t ∈ ∆n is defined as: POP (t) := {(u, v) ∈ Σn ×Σn such that
c(u, v) = t}. We want to compute its cardinality, i.e. the population size, which we denote
by pop(t). For example, consider the correlation t := 01010 from ∆5: over the alphabet
Σ = {a, b}, we have POP (t) = {(ababa, babaa), (ababa, babab), (bbaba, babab), (bbaba, babaa),
(aabab, ababa), (aabab, ababb), (babab, ababa), (babab, ababb)} and pop(t) = 8.

Let us give an overview of our results and detail how they generalize or improve existing
ones. First, for a given autocorrelation t ∈ Γn there exists a linear time realization algorithm
to build a binary string u such that a(u) = t [21]. We will exhibit such a realization algorithm
for any correlation t ∈ ∆n in Section 3.1. In fact, this is related to counting not the pairs
of POP (t), but single strings either u or v, for which such pair exist. We show a formula
to determine the cardinality of POPl(t) := {u ∈ Σn : ∃v ∈ Σn such that c(u, v) = t} or
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of POPr(t) := {v ∈ Σn : ∃u ∈ Σn such that c(u, v) = t}. Note that as u and v play a
symmetrical role in POPl(t) and POPr(t), it implies that their cardinalities, denoted popr(t)
and popl(t), must be equal. Clearly, pop2

r(t) is an upper bound for pop(t).
Second, there exist, two algorithms for computing the population size of an autocorrelation

(i.e., when t = a(u)). A recurrence formula for the population size of an autocorrelation
was proposed in [6][Theorem 7.1] and with it the authors investigated the asymptotics of
the population size (Theorem 7.2)1. Another algorithm takes advantage of the fact that
Γn, the set of autocorrelations of length n, forms a lattice with set inclusion [23]. We will
review the recurrence formula from [6] (see page 8) and use it to propose one for correlations
(Theorem 17 in Section 3.2). Another recurrence is proven in Theorem 25 in Appendix C.

3.1 Computing the single population size

First, we need a simple Lemma about occurrences of a suffix of a word.

▶ Lemma 11. Let i > 0 and j > 0 be two integers. Let u ∈ Γi and v ∈ Γj. If the first letter
of v does not occur in u, then v occurs in uv only at position i.

Let now us state the realization problem and describe our binary realization algorithm.
Problem: Consider the binary alphabet Σ = {a, b}. Let n > 0 and let t ∈ ∆n. Find a pair
(u, v) of strings over Σ, such that c(u, v) = t.
Algorithm: If t[0] = 1, then t is an autocorrelation. Then, call the binary realization
algorithm for autocorrelation with input t and return the obtained binary word [21]. If
t = 0n, the pair of strings shall not overlap at all. Thus u := an and v := bn satisfy the
correlation vector t. Otherwise, we know there exists 0 < j < n and s ∈ Γj such that
t = 0n−js. This is the main case.
Call the binary realization algorithm for autocorrelation with s as input, and denote by
w the returned binary word. w has length j and must be the suffix of u and prefix of v.
Without loss of generality, assume w[0] = a. Then, setting u := bn−jw, and taking any v in
the set w.Σ(n−j), we get

w is border of (u, v), and thus s is a suffix of c(u, v);
w has only one occurrence in u by Lemma 11, and is thus the longest border of (u, v).

Hence, we get c(u, v) = 0n−js as required. Finally, return (u, v) with v := w.an−j .

From this realization algorithm, in the main case, we see that for a fixed t ∈ ∆n, once
w and u are chosen as above, there exist σ(n−j) pairs since v can be any word in w.Σ(n−j).
This is a maximum for popr(t) once w is fixed. Hence, we obtain the following Lemma to
compute the single population size. A formal proof appears in Appendix B.

▶ Lemma 12. Let t := 0n−js be in ∆n with j ∈ [1, . . . , n]. Then the single population size
of t satisfies: popr(t) = pop(s) · σ(n−j).

Remark: if j = 0, then the pair of strings (u, v) is unbordered. Note that if vu ∈ Γ2n with
|u| = |v| = n and is unbordered, then (u, v) is also unbordered. Therefore, all such pairs of
strings (aka "bifix-free sequences") can be constructed by the algorithm of Nielsen [16].

1 In their article, the authors mostly use the term "correlation" instead of autocorrelation.
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3.2 Computing the pair population size
Before, finding a formula to compute pop(t), i.e. the pair population size, of a correlation
t in ∆n, we show that pop(t) is related to the population size of some autocorrelations of
strings of length 2n in Theorem 15. To achieve this, we demonstrate two lemmas linking the
borders of a pair (u, v) with the borders of the string vu.

▶ Lemma 13. Let t ∈ ∆n and let (u, v) ∈ Σn × Σn such that c(u, v) = t. Then, t is the
suffix of length n of the autocorrelation of the word vu.

Proof. Let t ∈ ∆n and (u, v) be a pair of words as in the lemma. By Lemma 7, we know
there exists j ∈ [0, . . . , n] and s ∈ Γj such that t = 0(n−j)s. If we denote by z the longest
border of (u, v), then |z| = j. We distinguish two cases depending on j.

Case 1. If j = n then u = v = z, t = s = a(u) and vu = uu. As the word uu has period
|u|, then by Lemma 4, then t is the suffix of length n of a(vu).

Case 2. Otherwise j < n. By hypothesis, there exist two words x and y of length n− j

such that u = xz and v = zy. Hence, vu = zyxz and z is a border of vu. As |zyx| = 2n− j,
it implies that vu has period 2n− j, and by Lemma 4 s is the suffix of length j of a(vu).
Let us show by contraposition that for any position n ≤ i < 2n− j the i-th bit of a(vu) is
0. Let i be a integer such that n ≤ i < 2n− j and assume the the i-th bit of a(vu) equals
1. Then, vu would have a border of length 2n − i with n ≥ 2n − i > j, and this border
would also be a border of (u, v), which contradicts the maximality of z. Hence, t is a suffix
of a(vu). ◀

▶ Lemma 14. Let w ∈ Σ2n; let u and v be words in Σn such that w = vu. If w has a border,
then the pair of strings (u, v) is bordered.

Proof. Let w, u, and v be as in the lemma. If u = v, then u is a border of the pair (u, u).
Otherwise, we have u ̸= v. Let z be a border of w. We distinguish two cases based on |z|.
1. Case 1: |z| ∈ [1, . . . , n− 1]. Then, there exist two words x, y of length n− |z| such that

v = zy and u = xz. Thus, z is a border of (u, v).
2. Case 2: |z| ∈ [n+ 1, . . . , 2n− 1]. Then, w has a period p := 2n− |z| and p < n (the half

|w|). According to properties of periods (Lemma 5), the integer ⌊ 2n
p ⌋p is also period of w.

Then, if we denote its corresponding border by z′, we have |z′| < n, and we are back to
case 1, with z′ being a border of (u, v).

◀

Before stating the theorem on the population size of a correlation, we need a notation. Let
t ∈ ∆n. We denote by G(t) the set of all strings of length 2n whose autocorrelation has t as
suffix, and by g(t) the cardinality of G(t). Formally, G(t) := {w ∈ Σ2n : t is a suffix of a(w)}.

The following theorem shows the relation between the number of pairs of strings of
length n and the number of specific strings of length 2n. For t ∈ Γn, pop(t) can be directly
calculated using Theorem 16. Therefore we consider t ∈ ∆n but exclude those in Γn.

▶ Theorem 15. Let t ∈ ∆n \ Γn. Then, pop(t) = g(t).

Proof. i/ Let us first prove that pop(t) ≤ g(t). Let (u, v) ∈ POP (t). According to Lemma
13, the string vu belongs to G(t). This implies that pop(t) ≤ g(t).
ii/ Let us prove that pop(t) ≥ g(t). Let w ∈ G(t), and let u and v be strings of length n such
that w = vu. As t ∈ ∆n, by Lemma 7, we know there exists j ∈ [0, . . . , n] and s ∈ Γj such
that t = 0(n−j)s.
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If j = 0, then t = 0n. We show that a(w) = 102n−1. Indeed, assume w has a period
smaller than n, then by Lemma 5 it would also have periods > n, which contradicts t = 0n.
Thus, c(u, v) = t and (u, v) belongs to POP (t).

If 0 < j < n. Then w[0..j − 1] is the longest border of w with length j < n. From
Lemma 14 (specifically, case 1), we get that (u, v) belongs to POP (t). In both cases, this
implies that g(t) ≤ pop(t).

Combining both inequalities, we get pop(t) = g(t), which concludes the proof. ◀

Now we will calculate the number of pairs of strings of length n with the correlation
t = 0n−js ∈ ∆n where s ∈ Γj , i.e., the population size of t. Our result is based on the
recurrence for the population size of autocorrelation by Guibas & Odlyzko [6], as well as our
Theorem 15.

We review the recurrence formula given by Guibas & Odlyzko. Let s ∈ Γj . They define
the autocorrelation of length n denoted as sn := 10n−j−1s, and the sequence ψ for k ∈ N
depending on sk and s as

ψ[k] :=


0 for k > j

s[j − k] for 1 ≤ k ≤ j

σ−k for k < 1.

The sequence ψ partitions N into three distinct ranges. For k < 1, ψ[k] equals σ−k. In the
interval 1 ≤ k ≤ j, ψ[k] equals 1 if (j − k) is a period of s, and 0 otherwise. For any k > j,
ψ[k] is consistently equal to 0. Theorem 16 states their recurrence for pop(sn).

▶ Theorem 16 (Population size of an autocorrelation (Theorem 7.1 [6]) ). The number of
strings of length n which have autocorrelation sn satisfies the recurrence

pop(sn) +
∑

k

pop(sk)ψ[2k − n] = 2ψ[2j − n]pop(s),

where pop(sk) = 0 for k < j.

We state our result regarding the population size of a correlation t = 0n−js with s being
fixed. See Table 2 for pair population sizes on a binary alphabet for all correlations in ∆4.
Note that if j = n, then the population size of t is the known population size of s.

▶ Theorem 17 (Population size of a correlation (I)). Let λ, j, n ∈ N satisfying 0 ≤ λ, j < n.
Let t := 0n−js be an element of ∆n with s ∈ Γj. Then the population size of t satisfies the
recurrence

pop(t) =
n−1∑

λ=⌈ 2n−j
2 ⌉

pop(s(2n−λ)) · s[j + 2λ− 2n] + pop(s2n).

Proof. Let w ∈ G(t) and define the integer λ as λ := max{0 ≤ i < n : a(w)[i] = 1}.
According to Theorem 15, we know that pop(t) = g(t). Thus we are left to show

g(t) =
n−1∑

λ=⌈ 2n−j
2 ⌉

pop(s(2n−λ)) · s[j + 2λ− 2n] + pop(s2n).

Define s(2n,λ) := ∗λ102n−λ−j−1s ∈ {0, 1}2n, where ∗ is a doesn’t care symbol in {0,1}.
Note that this defines a binary vector of length 2n, which may belong to Γ2n depending on the
value of λ. Let us partition the set G(t) into its subsets POP (s(2n,λ)), where s(2n,λ) ∈ Γ2n

G(t) =
⊔

λ∈[0,...,n−1]:s(2n,λ)∈Γ2n

POP (s(2n,λ)).
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Taking the cardinalities, for s(2n,λ) ∈ Γ2n we get

g(t) =
n−1∑
λ=0

pop(s(2n,λ)) =
n−1∑
λ=1

pop(s(2n,λ)) + pop(s(2n,0)).

We distinguish different cases depending on λ.
1. When λ = 0. The autocorrelation of w satisfies a(w) = s(2n,0) = s2n = 102n−j−1s ∈ Γ2n.

Thus the number of strings w having the autocorrelation s(2n,0) equals the population
size of s2n, i.e., pop(s(2n,0)) = pop(s2n).

2. When λ ∈ [1, . . . , n − 1]. Recall s(2n−λ) = 102n−λ−j−1s, then we have s(2n,λ) =
∗λs(2n−λ) ∈ {0, 1}2n. Note that not all s(2n,λ) belongs to Γ2n, but all a(w) must have the
form s(2n,λ). We will identify all elements a(w) in Γ2n that take the form s(2n,λ). By the
definition of λ, we know λ < |w|/2 which indicates at most one a(w) can possibly exist
by given s(2n−λ). Note that a(w)[2λ] = 1 where 2λ ∈ [2n − j, . . . , 2n − 2], this implies
λ ≥ ⌈(2n− j)/2⌉. Denote by π(w) the basic period of w, then a(w) could be decomposed
as a(w) = (10π(w)−1)αs(2n−λ) where α = λ/π(w) by Lemma 6. By Lemma 4, such an
a(w) exists precisely if s[2λ− (2n− j)] = s[j + 2λ− 2n] = 1 since a(w)[2n− j] = 1 and
j + 2λ− 2n ∈ [0, . . . , j − 1]. Thus we have

n−1∑
λ=1

pop(s(2n,λ)) =
n−1∑

λ=⌈ 2n−j
2 ⌉

pop(s(2n−λ))s[j + 2λ− 2n].

Combine the two cases, we get pop(t) =
∑n−1

λ=⌈ 2n−j
2 ⌉ pop(s(2n−λ))·s[j+2λ−2n]+pop(s2n). ◀

Observe that in Theorem 17, calculating the population size of t = 0n−js requires to
compute pop(s(2n−λ)) for all λ ∈ [⌈ 2n−j

2 ⌉, . . . , n − 1] ∪ {0} by Theorem 16. Therefore, we
provide another recurrence on t which calculates pop(t) relying only on s. See details in
Appendix 25.

4 Asymptotics on the population ratios

The population ratio of a correlation t ∈ ∆n is pop(t)/σ2n. Here, we study the asymptotic
lower and upper bounds for this ratio. Before stating our result, we give several definitions
introduced by Guibas & Odlyzko [6]. Recall that Theorem 16 on the population size of an
autocorrelation sn relies on a sequence ψ[k]. They define three generating functions (with
dummy variable z) two for pop(sn) and ψ[k], and introduce p̃op(z), which is the normalization
of pop(z) by pop(s). Their definitions are as follows:

pop(z) =
∞∑

n=0
pop(sn)z−n; ψ(z) =

∞∑
n=0

ψ[k]z−n; p̃op(z) = pop(z)
pop(s) .

Thus Theorem 16 can be rewritten as:

p̃op(z) + ψ(z)p̃op(z2) = 2ψ(z)z−2j . (1)

Hence, the asymptotics of pop(sn) as n → ∞ with s being fixed follows.

▶ Theorem 18 (Asymptotics on the population sizes (Theorem 7.2 [6])). Let µ be any small
positive complex number. The population size of sn divided by the population size of s over
an alphabet of cardinality σ ≥ 2 satisfies

pop(sn)
pop(s) =

(
2
σ2j

− p̃op(σ2)
)
σn +O((σ + µ) n

2 ),
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where p̃op(σ2) satisfies the Functional Equation (1).

Denote c = 2
σ2j − p̃op(σ2). Note that c is the asymptotic limit of pop(sn)/(pop(s)σn);

thus c · pop(s) provides the limiting value of pop(sn)/σn. Here we state our result on the
population size of t with s being assumed fixed. See Table 3 for some interesting cases on
the limiting values of pop(sn)/σn and asymptotic bounds on pop(t)/σ2n.

▶ Theorem 19 (Asymptotics on the population ratios). Let µ be any small positive complex
number. Let t := 0n−js ∈ ∆n with j ∈ [0, . . . , n− 1]. Over an alphabet of cardinality σ ≥ 2,
the ratio pop(t)/pop(s) satisfies the asymptotic inequality:

c · σ2n +O((σ + µ)n) ≤ pop(t)
pop(s) <

c · σ
σ − 1 · σ2n +O(n(σ + µ)n). (2)

In particular, we have the asymptotic bounds on the population ratio pop(t)/σ2n

c · pop(s) ≤ lim
n→∞

pop(t)
σ2n

<
c · σ
σ − 1 · pop(s). (3)

Proof. By Theorem 17 on the population size of t, for λ ∈ [⌈ 2n−j
2 ⌉, . . . , n− 1] ∪ {0}, we have.

pop(t)
pop(s) =

∑
λ pop(s(2n−λ)) · s[j + 2λ− 2n] + pop(s2n)

pop(s) . (4)

Then (4) could be bounded above and below by:

pop(s2n)
pop(s) ≤

∑
λ pop(s(2n−λ)) · s[j + 2λ− 2n] + pop(s2n)

pop(s) <

∑n
λ=0 pop(s(2n−λ))

pop(s) . (5)

From Theorem 18, for any λ ∈ [0, . . . , n] we have:

pop(s(2n−λ))
pop(s) = c · σ2n−λ +O((σ + µ)

2n−λ
2 ). (6)

Plugging in (6) in the left hand side of (5) we get

pop(s2n)
pop(s) = c · σ2n +O((σ + µ)n)

and in the right hand side of (5) we obtain:

n∑
λ=0

pop(s(2n−λ))
pop(s) = c ·

2n∑
i=n

σi +
(
O((σ + µ)n) +O((σ + µ)

2n−1
2 ) + · · · +O((σ + µ) n

2 )
)

= cσ

σ − 1 · σ2n +O(n(σ + µ)n)

Combining both equations, we obtain (2):

c · σ2n +O((σ + µ)n) ≤ pop(t)
pop(s) <

c · σ
σ − 1 · σ2n +O(n(σ + µ)n).

Multiplying (2) by pop(s)/σ2n, we get the desired bounds (3) on the asymptotic behavior of
the population ratio pop(t)/σ2n. ◀
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Table 3 For σ = 2, 3 and 24, we give the limiting values of pop(sn)/σn (column 3) and asymptotic
bounds on pop(t)/σ2n (column 4) for some autocorrelations s. The limiting values of pop(sn)/σn in
column 3 are taken from [6]. Note that the lower bound in column 4 coincides with the value in
column 3 (for a given s and σ). The correlations ε and 0n−11 are the most "popular" for σ = 2, but
it is not possible to distinguish which one is the most popular. It differs from the autocorrelation
case, where 10n−21 is the most popular. For σ ≥ 3, the trivial correlation is the most popular, as in
the autocorrelation case.

Alphabet Size σ Autocorrelation s pop(sn)/σn pop(t)/σ2n

2 ε 0.268 [0.268, 0.536)
1 0.300 [0.300, 0.600)
10 0.110 [0.110, 0.220)
11 0.089 [0.089, 0.178)

3 ε 0.557 [0.557, 0.836)
1 0.283 [0.283, 0.424)
10 0.072 [0.072, 0.108)
11 0.032 [0.032, 0.048)

24 ε 0.957 [0.957, 0.999)
1 0.042 [0.042, 0.044)

5 Solutions to Gabric’s open questions

In the article about bordered and unbordered pairs of words [5], the author raises two
challenging open questions: 1/ How many pairs of length-n words have a longest border of
fixed length j? and 2/ what is the expected length of the longest border of a pair of words?.
Note that with his terminology, a border is either a right-border or a left-border depending
on the order of words in the pair. As the words play symmetrical roles in the definition of
border, the counts for question 1/ are equal.

From the characterization of the set of correlations (Lemma 7), we know that correlations
are partitioned by their longest border (Corollary 9). To consider pairs with longest border
of length say j, we must count pairs having a correlation t in the subset (0n−j .Γj) of ∆n.
With the recurrence that computes the population size for any correlation t (Theorem 17),
it suffices to sum up pop(t) over all t in this subset to answer question 1/, which yields
Corollary 20.

For question 2/, we take the average over this same subset as shown below in the equation
of E(X) on page 12. This provides a general formula and allows us to investigate the limit
of this expectation, and to show in Theorem 21 that it diverges when the string length n

tends to infinity.

5.1 Counting pairs of strings with a longest border of fixed length

▶ Corollary 20. Let Lj be the number of pairs of strings of length n that have a longest
border of length j. Let s be any autocorrelation of Γj. Let t := 0n−js ∈ (0n−j.Γj). Let
s(2n−λ) = 102n−λ−j−1s ∈ Γ(2n−λ) where λ ∈ [⌈ 2n−j

2 ⌉, . . . , n− 1] ∪ {0}. Then

Lj =
∑

t∈(0n−j .Γj)

pop(t) =
n−1∑

λ=⌈ 2n−j
2 ⌉

∑
s∈Γj

pop(s(2n−λ)) · s[j + 2λ− 2n] +
∑
s∈Γj

pop(s2n).
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5.2 Expected value of the longest border of a pair of words

In [5], Gabric considers a fixed alphabet size σ and a Bernoulli i.i.d model for random words.
In this model, the probability that a character occurs at any position is independent of other
positions and equals 1/σ. For a fixed word length n, the probability of any pair of words
(u, v) both of length n is 1/σ2n. Gabric shows that, for the expected length of the shortest
border of a pair of words converges to a constant. In contrast, we show that the asymptotic
expected length of the longest border actually diverges.

Define X to be the length of the longest border of a pair of strings (u, v). Then, the
expectation of X is

E(X) =
n−1∑
j=0

j · Pr(X = j) =
n−1∑
j=1

j · Lj

σ2n
=

n−1∑
j=1

j ·
∑

t∈(0n−j.Γj) pop(t)
σ2n

.

▶ Theorem 21. The asymptotic expected length of the longest border of a pair of strings
(u, v) diverges.

Proof. The asymptotic expected length of the longest border of (u, v) is:

E∞(X) = lim
n→∞

n−1∑
j=1

j ·
∑

t∈(0n−j.Γj) pop(t)
σ2n

.

We claim that
∑

t∈(0n−j.Γj) pop(t)/σ2n ≥ c when n → ∞, where c is a positive constant as
defined in Section 4. To see this, note that

∑
t∈(0n−j.Γj) pop(t)/σ2n satisfies the following

equation by Corollary 20.

∑
t∈(0n−j.Γj) pop(t)

σ2n
=

∑n−1
λ=⌈ 2n−j

2 ⌉
∑

s∈Γj
pop(s(2n−λ)) · s[j + 2λ− 2n] +

∑
s∈Γj

pop(s2n)

σ2n

≥
∑

s∈Γj
pop(s2n)
σ2n

. (7)

By Theorem 16 and since
∑

s∈Γj
pop(s2n) ≥ 1, the right side of (7) asymptotically

satisfies:∑
s∈Γj

pop(s2n)
σ2n

=
(
c · σ2n +O((σ + µ)n)

)
·
∑

s∈Γj
pop(s2n)

σ2n
≥ c+O(σ−n).

Therefore, we obtain:∑
t∈(0n−j.Γj) pop(t)

σ2n
≥ c when n → ∞. (8)

Which means that there exists a very large N such that when n > N , (8) is true. After
substituting (8) to the asymptotic expectation formula, we conclude

E∞(X) = lim
n→∞

n−1∑
j=1

j ·
∑

t∈(0n−j.Γj) pop(t)
σ2n

≥ lim
n→∞

n−1∑
j=N

c · j → ∞.

◀
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6 Conclusion

In this work, we report new insights regarding ∆n, the set of correlations for words of length
n, and provide solutions for computing the population size of any correlation of ∆n. This
allows us to solve two interesting open questions raised by Gabric [5], notably that regarding
the expected length of the longest border of a pair of words.

We conclude our work by proposing one conjecture and one open question:
1. We conjecture that population ratio pop(t)/σ2n converges, and its asymptotic behavior

equals the limiting value of pop(sn)/σ2n: limn→∞ pop(t)/σ2n = limn→∞ pop(sn)/σn.

2. What are the variance or distribution of the length of the longest border of a pair of
strings?
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A Structure of ∆n

In this section, we show that ∆n is a lattice under set inclusion, and that it does not satisfy
the Jordan-Dedekind condition. The Jordan-Dedekind condition requires that all maximal
chains between the same two elements have the same length. This extends to ∆n the findings
of Rivals & Rahmann [23] who proved similar results for Γn.

First let us now show that ∆n is closed by intersection, for any n > 0.

▶ Lemma 22. Let t and t′ ∈ ∆n. Then (t ∩ t′) ∈ ∆n.

Proof. Let t, t′ ∈ ∆n. By Lemma 7, we can write t = 0n−isi, t
′ = 0n−jsj , si ∈ Γi, sj ∈

Γj , i, j ∈ [0, . . . , n−1]. We claim that if (si ∩sj) ∈ Γmin(i.j), then (t∩t′) ∈ ∆n. We distinguish
two cases: If i = j, then (si ∩ sj) ∈ Γj by Lemma 3.3 from [23]. Thus 0n−i(si ∩ sj) ∈(
0n−j .Γj

)
⊂ ∆n.

Otherwise, i ̸= j, and without loss of generality, we suppose i < j. Let string U ∈ Σi, and
string V ∈ Σj such that a(U) = si, a(V ) = sj . Denote V = V1V2 where |V1| = i, |V2| = j − i.
Let W = (Σ × Σ)i such that W [k] = (U [k], V [k]), k ∈ [0, i− 1]. It follows that a(W ) ∈ Γi (by
Lemma 3.3 [23]). Note that a(V ) = a(V1) ∪ 0ia(V2). Then we have (si ∩ sj) = a(U) ∩ a(V ) =
a(U) ∩

(
a(V1) ∪ 0ia(V2)

)
= (a(U) ∩ a(V1) ∪ (a(U) ∩ 0ia(V2)) = a(W ) ∪ ∅ = a(W ) ∈ Γi.

Therefore 0n−i(si ∩ sj) ∈
(
0n−i.Γi

)
⊂ ∆n. ◀

▶ Theorem 23. (∆n,⊂) is a lattice.

Proof. Note that (∆n,⊂) has null element 0n, and universal element 1n. By Lemma 22, ∆n

is closed under intersection. The meet x ∧ y of x, y is their intersection, the join x ∨ y of
x, y is the intersection of all elements containing x, y. The universal element ensures this
intersection is not empty. ◀

By Lemma 7, we have Γn is strictly included in ∆n. As any autocorrelation has its
leftmost bit equal to 1, and only the autocorrelations have this property in ∆n, it follows
that only an autocorrelation can be a successor of an autocorrelation. Moreover, 1On−1 is
a successor of the null element On. It follows that, between the null and universal element
of ∆n, there is a chain of length strictly smaller than n that goes through a chain between
1On−1 and the universal element 1n and traverses only nodes that are autocorrelations, by
Lemma 3.5 from [23] when n > 6. More exactly this chain has length ⌊n/2⌋ + 1.

For any n > 2, the following chain On ≺ On−11 ≺ . . . ≺ On−i1i (with i in 2, . . . , n− 2)
to O1n−1, and finally to the universal element 1n exists in ∆n. This chain is maximal has
length n – which is the maximal length of a chain in ∆n. Since there exist two maximal
chains of different length between the null and universal elements of ∆n, when n > 6, and
visual inspection of ∆4 and ∆5 confirms the same property, we obtain this Theorem.

▶ Theorem 24. For n > 3, the lattice ∆n does not satisfy the Jordan-Dedekind condition.

B Proof of Lemma 12

Proof. We prove by construction. POPr(t) is the set of strings v who have length n, and a
prefix whose autocorrelation is s.

Denote v = v1v2, where |v1| = j, |v2| = n− j. Clearly, s is the autocorrelation of v1. The
population size popr(t) equals all possible choices of v1 times all possible choices of v2. Note
that all possible choices of v1 is the population size of s, pop(s), whereas v2 can be arbitrary
which implies all possible choices of v2 is σn−j . Indeed, once a string v is given, we can
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construct a corresponding string u as following: Denote u = u1v1 where |u1| = n− j. We
construct u1 = u[0, n− j − 1] by choosing u[i] ∈ Σ\{v[0]}, i ∈ [0, n− j − 1] meaning each
letter in u[0, n− j − 1] differs from the first letter of v. It ensures that there is no overlap for
(u, v) before the position n− j. ◀

C Population size of a correlation: recurrence II

▶ Theorem 25. Let k, λ, j, n ∈ N satisfying 0 ≤ λ, j < n. Let s ∈ Γj be a fixed element.
Define t := 0n−js to be an element of ∆n. Then, pop(t), the population size of t satisfies the
recurrence

pop(t) =
n−1∑

λ=⌈ 2n−j
2 ⌉

2pop(s)ψ[2j + λ− 2n] s[j + 2λ− 2n]

−
n−1∑

λ=⌈ 2n−j
2 ⌉

∑
k

pop(sk)ψ[2k − 2n+ λ]) s[j + 2λ− 2n] + pop(s2n),

where pop(sk) = 0 for k < j, and ψ is defined as above.

Proof. We just substitute the recurrence on s(2n−λ) by Theorem 16 to Theorem 17

pop(s(2n−λ)) = 2pop(s)ψ[2j + λ− 2n] −
∑

k

pop(sk)ψ[2k − 2n+ λ].

◀
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