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We study thermoelectric and viscous contributions to the ratchet effect, i.e. radiation-induced
generation of the direct electric current, Jrat, in asymmetric dual-grating gate structure without
inversion center. Previously [E.Mönch et al, Phys. Rev. B 105, 045404 (2022)], it was demonstrated
that frequency dependence of the Jrat is essentially different within hydrodynamic (HD) and drift-
diffusion (DD) regimes of the electron transport: JHD

rat ∝ 1/ω6 and JDD
rat ∝ 1/ω2 for ω → ∞. Here

we analyze previously neglected thermoelectric contribution and find that it yields high-frequency
asymptotic 1/ω2 even in the HD regime and can change sign of the response. Account of the finite
viscosity of the electron liquid yields contribution which scales at high frequency as 1/ω4. We also
find plasmonic resonances in the Jrat, and demonstrate that asymmetry of the structure allows for
excitation of the so-called directional travelling plasmons.

I. INTRODUCTION

One of the most general and fascinating phenomena in
optoelectronics is the ratchet effect—the generation of a
dc electric current in response to an ac electric field in
systems with broken inversion symmetry (for reviews see,
e.g., Refs. [1–9]). In particular, this general definition
can be used for artificial structures aimed to modulate
periodically the electron density in the 2D channel: long
periodic grating gate structures with an asymmetric con-
figuration of gate electrodes, e.g., dual-grating top gate
(DGG) structures [10–14]. The ratchet effect was treated
theoretically and observed experimentally in various low
dimensional structures [10–32], so that the ratchet cur-
rent measurements can already be considered as a stan-
dard measurement tool. It has recently been shown that
the ratchet effect can also be used to observe the tran-
sition of an electron system into hydrodynamic (HD)
regime. Specifically, it was demonstrated in Ref. [33],
both theoretically and experimentally, that the dc re-
sponse of a DGG, based on bilayer graphene, has very
strikingly different frequency dependencies: 1/ω6 in the
HD regime and 1/ω2 within the so-called drift-diffusion
(DD) approximation. An analytical formula which de-
scribes the transition between both regimes was derived
which was in a good agreement with obtained experi-
mental data. The key statement of this work, namely,
HD-like behavior for liquid helium temperature was also
confirmed by publication [34] focused on measurement of
ratchet current in the Shubnikov de Haas regime. As was
argued in Ref. [34], the experimentally observed strong
suppression of the second harmonic of the cyclotron res-
onance indicates presence of fast electron-electron colli-
sions that drive the electron system into HD regime.

The results obtained in Refs. [33, 34] open a wide
avenue for search of the HD regime in the optical ex-
periments. This problem has a long history and now
the electronic fluid dynamics is one of the extremely ac-
tively developing areas of condensed matter physics (for
review, see, e.g., Refs. [35–38]). Although the pioneer-

ing works [39–42] on hydrodynamic electron and phonon
transport have been done a very long time ago, the topic
did not generate much interest until recently. The in-
terest on hydrodynamic transport was triggered by the
fabrication of ultraclean ballistic structures, primarily
based on one-dimensional and two-dimensional carbon
materials. Convincing manifestations of hydrodynamic
behavior in the different transport regimes have been
demonstrated in a number of recent experiments [43–
65]. Moreover, literally in recent years, it has been possi-
ble to experimentally visualize the hydrodynamic flow in
ballistic 2D systems by using various nanoimaging tech-
niques [49, 54–56, 61].

All previous publications searching the HD regime were
focused on measurements of dc viscous transport. How-
ever, the approach based on optical experiments has a
number of advantages. Indeed, one of the hallmarks
of the viscous dc flow is the Gurzhi effect predicted in
Refs. [39–41]. Starting from its first experimental ob-
servation in Ref. [42], this effect is considered as one of
the most convincing arguments in favor of viscous trans-
port. The Gurzhi effect is observed in a system of finite
transverse (with respect to electron flow) width d un-
der the assumptions lee ≪ d ≪ LG, where lee is the
electron-electron collision length, LG =

√
llee is the so

called Gurzhi length, and l is the momentum relaxation
length limited by impurity and phonon scattering. The
inequality d ≪ LG is not easy to satisfy in a sufficiently
wide sample. That is why for the observation of viscous
transport it is necessary to use narrow-channel samples
with ultrahigh mobility. Also, for the observation of neg-
ative non-local resistance, see Ref. [43], the size of the
viscosity-induced whirlpools responsible for viscous back
flow (this size is in the order of LG) was in the order of the
size between contacts probing a negative voltage drop. If
one uses thin wires or narrow strips for the observation
of the Gurzhi effect, the second inequality, lee ≪ d can
be satisfied only at sufficiently high temperatures. By
contrast, in the optical experiments one can study a bulk
effects which do not disappear with increasing system
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size and distance between contacts. For the observation
of the HD transport, one only need the condition lee ≪ l,
which is independent of the system size.

Moreover, the HD regime is not necessarily viscous.
The key property of the HD regime (as compared to
the DD one) is the presence of only three collective vari-
ables (local temperature, concentration and drift veloc-
ity), which completely characterize the system, in con-
trast to the DD regime, where the distribution function is
not reduced to a hydrodynamic ansatz depending, in the
general case, on an infinite number of variables. Hence,
HD regime can be realized for the case when the viscous
contribution to the resistivity is small:

ηq2 ≪ γ, (1)

where η = v2Fτee/4 is the electron viscosity, γ = vF/l =
1/τ, τ is the momentum relaxation time, and q is the
characteristic inverse scale of the inhomogeneity of the
problem (inequality (1) is equivalent to condition qLG ≪
1). It is worth also noting, that the latter condition is
always satisfied in the limit of the ideal liquid, τee = 0.

On the other hand, an additional possibility to ob-
serve the HD regime appears in the non-linear excitation
regime discussed in Refs. [33, 34]. In such a regime, in
contrast to the linear one, the difference between the dis-
tribution functions in the DD and the HD regimes is very
strong and causes currents, which are strongly different
even if one neglects viscosity. This allows one to distin-
guish between the DD and the HD regimes even when
the condition Eq. (1) is satisfied. In particular, this con-
dition was assumed to be satisfied in Ref. [33, 34], where
the viscosity contribution was neglected.

In this paper, we focus on the thermoelectric contri-
bution to Jrat and also take into account effect of finite
viscosity still assuming that condition Eq. (1) is satisfied.
Thermoelectric contribution was neglected in Ref. [33] by
assuming that (see discussion in Ref. [19])

Γ =
τ

τT
=

3τ

π2τph

µ

T
≫ 1, (2)

where T is the temperature, τT = τphC/N =
π2Tτph/(3µ) is the temperature relaxation time, C =
νTπ2/3 and ν are, respectively, the heat capacitance and
density of states of the 2D Fermi gas, µ is the Fermi en-
ergy, and τph is the phonon scattering rate. We demon-
strate that previously neglected thermoelectric contribu-
tion yields high-frequency asymptotic 1/ω2 even in the
deep HD regime (τee = 0) and can change sign of the
response with decreasing Γ. Account of the finite vis-
cosity of the electrton liquid yields contribution scaling
at large frequency as 1/ω4. We also find plasmonic reso-
nances in Jrat, and demonstrate that asymmetry of the
structure allows for excitation of the so-called directional
plasmons. The obtained results are used to analyze con-
ditions needed for realization of the HD regime in the
optical experiments.

II. MODEL AND BASIC EQUATIONS

The purpose of the current work is to calculate a con-
tribution of thermoelectric effects into the ratchet cur-
rent and also to take into account effects related to finite
viscosity.
We will focus on the ratchet effect in 2D electron gas

with a parabolic energy spectrum which is covered by
a long periodic (with a period L) grating gate with an
asymmetric configuration of gate electrodes, e.g., dual-
grating top gate (DGG) structures [10–14]. Application
of the voltages to the grating electrodes leads to the static
periodic potential in the 2D gas,

U(x) = U0 cos(qx+ ϕ), (3)

which modulates the electron density in the channel.
Here q = 2π/L is the modulation wave-vector.
The system is illuminated by an external radiation

with a large wavelength, λ ≫ L, which is linearly po-
larized in x direction. The grating leads to modulation
of this field with the depth h. In particular, for linear
polarization of the incoming radiation along the x axis,
the field, E(x, t) = E(x, t)ex (ex is the unit vector in
the x direction), acting in the 2D channel, has spatially
modulated amplitude:

E(x, t) = [1 + h cos(qx)]E0 cosωt. (4)

We assume below that h ≪ 1. Following Ref. [4], we take
into account the asymmetry of the structure phenomeno-
logically, by introducing the phase shift ϕ between the
static potential and radiation modulations.
The response of the 2D electron system to the above

described perturbation can be found by using two ap-
proaches – hydrodynamic and drift-diffusion. In both
approaches, the direction of the radiation-induced dc cur-
rent is controlled by the lateral asymmetry parameter [4]

Ξ =

〈
|E(x, t)|2 dU(x)

dx

〉
t,x

=
E2

0hU0q sinϕ

2
, (5)

where averaging is taken over the period 2π/ω and dis-
tance L.
Actually, the effect of the ee-interaction is twofold and

can be quite strong. First of all, as we mentioned, su-
ciently fast ee-collisions can drive the system into the
hydrodynamic regime. Secondly, ee-interaction leads to
plasmonic oscillations, so that a new frequency scale, the
plasma frequency, ωp(q) appears in the problem. The
ratchet effect is dramatically enhanced in the vicinity of
plasmonic resonances. We start with a system of hydro-
dynamic equations,

∂N

∂t
+

∂

∂x
(Nv) = 0, (6)

∂v

∂t
+ v

∂v

∂x
+

v

τ
− η

∂2v

∂2x
= a− s20

∂n

∂x
− 1

mN

∂W

∂x
, (7)

C
[
∂T

∂t
+

(Tv)

∂x

]
= N

(
T0 − T

τph
+

mv2

τ

)
, (8)
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describing evolution of three local variables: concentra-
tion, N = N(x, t), electron fluid velocity v = v(x, t), and
temperature T = T (x, t). Here T0 is the lattice tempera-
ture,

a =
e

m

(
E − ∂U

∂x

)
is the total force acting on electron from both the static
potential and radiation field, s0 =

√
eUg/m is the plasma

wave velocity, which is controlled by the backgate voltage
Ug, n = (N−N0)/N0 is the dimensionless concentration,
N0 is the equilibrium electron concentration in 2D chan-
nel, η is the electron viscosity, and W is the local energy
of the Fermi gas in the moving frame,

W = ν

∫
ε
[
e(ε−µ)/T+1

]−1

dε ≈ N2

2ν
+

νT 2π2

6
, (9)

where we took into account that for 2D gas the local con-
centration is connected with local chemical potential, µ,
as follows: N = νµ. Equation (7) contains also viscous
friction η∂2v/∂2x (we neglected here a concentration de-
pendence of this term), where η is viscosity.
Calculating the spatial derivative of the first term in

W, substituting it into Eq. (7) and combining with the
term s20∂n/∂x, we find correction to the plasma wave
velocity due to pressure of the electron liquid:

s0 → s =
√
s20 + v2F/2, (10)

where vF is the Fermi velocity. Next, calculating spatial
derivative of the second term in W and substituting it
into Eq. (7) we find the thermoelectric correction to the
r.h.s. of Eq. (7)

ath = − π2

3m

T

µ

∂T

∂x
= − C

mN0(1 + n)

∂T

∂x
. (11)

Due to the term (11), Eq. (8) couples with Eqs. (6) and
(7). This coupling was neglected in Refs. [22, 33].

Following Refs. [22, 33], one can solve Eqs. (6), (7), and
(8) perturbatively with respect to E0 and U0. Non-zero
radiation-induced dc current appears in the third order
(second order with respect to the radiation field and the
first order with respect to static potential): jdc ∝ Ξ,
where Ξ is given by Eq. (5).

III. CALCULATION

Below, we calculate separately the thermoelectric and
viscous contributions.

A. Thermoelectric contribution

1. Linear polarization

In this section, we put η = 0 and discuss a simplified
approach to solution of Eqs. (6)–(8). We will start with a

discussion of the linear polarization and then generalize
the result for the case of arbitrary polarization. First, we
notice that l.h.s. and r.h.s. of Eq. (8) are proportional to
C ∝ T, and N ∝ µ, respectively. Hence, one can expect
that for strongly degenerated Fermi gas, T/µ ≪ 1, l.h.s.
of Eq. (8) can be neglected, so that temperature is fully
determined by the balance between local Joule heat and
phonon cooling

T − T0

τph
=

mv2

τ
. (12)

Expressing temperature from this equation and substi-
tuting into Eq. (7), we get a system of closed equations
for n and v:

∂n

∂t
+

∂[(1 + n)v]

∂x
= 0, (13)

∂v

∂t
+ v

∂v

∂x

[
1 +

2

Γ(1 + n)

]
+

v

τ
= a− s2

∂n

∂x
. (14)

Here and in what follows we approximate Γ by its value
at ε = µ. We will search for perturbative solution of
Eqs. (13) and (14) up to the third order with respect to
a:

n = n(0,1) + n(1,0) + · · · , v = v(0,1) + v(1,0) + · · · ,

where the first and second indices denote an order
of expansion with respect to E0 and U0. This expan-
sion aims to calculate the averaged dc current Jrat =
(eτN0/m) ⟨(1 + n)a⟩t,x . A non-zero response appears in

the order (2, 1). The calculation can be simplified to the
purturbative expansion of the second order by using a
simple identity, which can be obtained by multiplying
Eq. (13) with v, (14) with (1 + n), summing thus ob-
tained equations and averaging over x and t. Doing so,
we get

Jrat =
eτ

m
N0

〈
n(1,1)E − n(2,0) ∂U

∂x

〉
t,x

, (15)

where U and E are given by Eqs. (3) and (4), respectively.
Hence, we only need to calculate the concentration up to
the second order with respect to a.
The calculations are fully analogous to the ones per-

formed in Refs [22] and [33], so that we delegate them
into Appendix A. The result reads

Jrat,x
J0

=
Ω2(1 + Ω2) + Ω2

q(Γ− Ω2)

Γ(1 + Ω2)(Ω2 + (Ω2 − Ω2
q)

2)
, (16)

where

J0 =
e3τ3N0qh|E0|2U0 sinϕ

4m3s2
(17)

and we used dimensionless variables

Ω = ωτ, Ωq = ωqτ.

3



For Γ → ∞ we reproduce result of Ref. [22]. One can eas-
ily combine this equation with formula (33) of Ref. [33],
where thermoelectric effects were neglected (by assuming
Γ ≫ 1), while the ratchet current was calculated for an
arbitrary relation between τee and τ. This yields:

Jrat,x
J0

=
Ω2

q +Ω2
(
1 + Ω2 − Ω2

q

) [
1
Γ + τee

2(τ+τee)

]
(1 + Ω2)(Ω2 + (Ω2 − Ω2

q)
2)

. (18)

Expression in the square brackets can be written as

1

Γ
+

τee
2(τ + τee)

=
τT + τ∗

τ
, (19)

where 1/(2τ∗) = 1/τ+1/τee. As seen, there are two terms
in Eq. (18) with different asymptotic behavior at Ω → ∞:
first, containing Ω2

q in the numerator, scales as 1/Ω6, and
the second, proportional to the square bracket in the nu-
merator with 1/Ω2 high-frequency scaling. Physically,
the second term is related with the energy relaxation
processes—temperature relaxation and collision-induced
thermalization.

2. Arbitrary polarization

The above result can be easily generalized for the case
of an arbitrary polarization of the external field described
by phases α and θ:

Ex(x, t) = [1 + h cos(qx+ ϕ)]E0 cosα cosωt, (20)

Ey(x, t) = [1 + h cos(qx+ ϕ)]E0 sinα cos(ωt+ θ). (21)

These phases are related to the standard Stokes pa-
rameters as follows: PL1 = cos 2α, PL2 = sin 2α cos θ,
PC = sin 2α sin θ. Calculations of the current for this
case are presented in Applendix A2. The result for the
x component of the current modifies as follows

Jrat,x
J0

=
1

Γ (Ω2 + 1)

+
Ω2

q

[
1 + (Ω2 − Ω2

q)/Γ
]
cos2 α

(Ω2 + 1)
[(
Ω2 − Ω2

q

)2
+Ω2

] . (22)

For α = 0, we restore Eq. (16).
There is also y component of the current

Jrat,y
J0

=
(Ω2

q − Ω2)PL2 − ΩPC

2(Ω2 + (Ω2 − Ω2
q)

2)
(23)

which is insensitive to the temperature relaxation and
thermalization, and coincides with previously obtained
result [22].

We notice that for Γ = ∞ we reproduce results of
Ref. [22]. We also see that in the absence of plasmonic
effects, i.e. for Ωq → 0, we get for the x component of the

current the polarization-independent (Seebeck) contribu-
tion to the ratchet effect in the non-interaction system
[4, 7, 19]:

Jrat,x
J0

∣∣∣∣
non−int

=
1

Γ(1 + Ω2)
. (24)

It is worth noting that in the DD approximation when
τee = ∞, and for Ωq = 0 there is also a polarization-
dependent contribution to the ratchet current, so that
the x component of the total current within DD approach
reads [34]

JDD
rat,x

J0
=

1

1 + Ω2

(
1

Γ
+

cos2 α

2

)
. (25)

At α = 0 this equation agrees with Eq. (18) taken for
τee → ∞, Ωq = 0. Two important comments are needed
here: (i) Since we compare our results with the DD ap-
proach, we need to “switch off” the interaction. This
means that we have to replace s2 with v2F/2 [see Eq. (10)]
in the definition of J0 [see Eq. (17)]; (ii) the frequency
Ωq is neglected both in the polarization-dependent and
polarization-independent response. Having these com-
ments in mind, we conclude that our theory includes DD
approximation as a limiting case.
Analyzing the above derived equations we conclude

that the thermoelectric contribution calculated with ac-
count for the plasmonic effects dramatically changes the
frequency dependence of the response. In the next sub-
section we analyze this dependence in more detail.

3. Illustration of different regimes

Thermoelectric effects do not change Jrat,y, so that its
dependence on Ω is the same as was discussed in Ref. [22].
However, the frequency behavior of the x component of
the current dramatically changes with decreasing Γ and
can change sign in some interval of Ω. In particular, this
can be seen in the resonant approximation. By replacing
in Eq. (18), Ω = Ωq + δΩ, and assuming Ωq very large
for fixed δΩ = (ω − ωq)τ, we get

Jrat,x ≈ J0
Ω2

q

1 + 2δΩ ωq(τT + τ∗)

1 + 4δΩ2
. (26)

As seen, a new parameter, ωq(τT + τ∗), appears in the
problem. For not too large Γ this parameter becomes
large, so that current becomes odd function of δω, which
is negative approximately in all region δΩ < 0.
Dependence of the ratchet current on the dimension-

less frequency for various values of Γ and Ωq is shown in
Figs. 1, 2, 3 for the case of linear polarization along the
x axis.
In Fig. 1 we plot the ratchet current as a function of

the dimensionless frequency Ω for two values of Γ. For
large value Γ = 20 the results of Ref. [22] are repro-
duced. Specifically, dc response shows the Drude peak

4



FIG. 1. Dependence of the ratchet current on dimensionless
frequency, Ω = ωτ, at two values of Γ. For Γ = 20 (red curve)
there are two peaks: the Drude peak at Ω = 0 and the plas-
monic resonance at Ω = Ωq in agreement with Ref. [22]. With
decreasing Γ up to lower value Γ = 5 (blue curve), the plas-
monic resonance modifies and becomes strongly asymmetric
[see Eq. (26)].

FIG. 2. Dependence of the ratchet current on the dimension-
less frequency for fixed small Γ and different values of the
quality factor of the plasmonic resonance, Ωq. For Ωq = 0,
plasmonic resonance is absent and response shows the Drude
resonance at Ω = 0. With increasing the quality factor, the
asymmetric plasmonic peak appears.

at Ω = 0 and the plasmonic resonance at Ω = Ωq in
agreement with Ref. [22]. With decreasing Γ the plas-
monic resonance becomes asymmetric and changes sign
in some interval of the frequencies. The evolution of the
resonance from symmetric to asymmetric shape is well
described by Eq. (26).

Figures 2 and 3 illustrate the plasmonic effect in the
regime of small Γ, when thermoelectric correction dom-
inates. At zero plasmonic frequency, Ωq = 0, the dc
response is given by the polarization-independent See-
beck peak having the Drude shape [see, Eq. (24)]. For
sufficiently large quality factor, Ωq ≥ 1, there appear an
asymmetric plasmonic resonance at Ω = Ωq.
Most interesting behavior is obtained at small Γ, when

thermoelectric contribution is large, in the non-resonant
regime, for Ωq ≪ 1. This case is illustrated in Fig. 4. As

FIG. 3. The same as in Fig. 2 but at lrger value of Γ.

FIG. 4. Non-resonant response for low quality factor Ωq = 0.1
and small values of Γ. Narrow peak at Ω = 0 arises on the
top of the smooth Drude peak due to the Maxwell relaxation

one can see a very narrow peak appears on the top of the
smooth Drude dependence. Physics behind this peak is
the Maxwell charge relaxation, which has a characteristic
frequency scale Ω ∼ Ω2

q ≪ 1, i.e. for ω ∼ ω2
q/γ ≪ γ in

dimensional units. For

Ωq ≪
√
Γ ≪ 1,

analytical expression describing Fig. 4 can be found from
Eq. (18) (where we put for simplicity τee = 0 ):

Jrat,x
J0

≈
Ω2

q

Ω2 +Ω4
q

+
1

Γ

1

1 + Ω2
. (27)

Two terms here represent the Maxwell relaxation peak
[22] and the Seebeck polarization-independent contribu-
tion

IV. VISCOUS CONTRIBUTION

In this section we will discuss effect of finite viscosity
of the electron liquid. We limit ourselves with the case
of the linear polarization along x direction and assume

5



τee ≪ τ. Then, the electron liquid velocity is described
by the Navier-Stokes equation:

∂v

∂t
+

v

τ
+ s2

∂n

∂x
− η

∂2v

∂2x
= a− v

∂v

∂x

(
1 +

2

Γ

)
, (28)

We demonstrate below that effect of viscosity on the elec-
tronic ratchet effect is small and give only small correc-
tion to the Jdc,x. However, the viscosity gives the key
contribution to the excitation of the so-called travelling
directional plasmons, which can be excited along with the
ratchet dc current provided grating gate structure does
not have inversion center [66–69].

A. Small correction to the electronic ratchet
current

Next, we discuss viscosity-induced correction to the
electronic ratchet. We take into account that viscosity
has dispersion described by the following equation [70]:

η → η(ω) =
η(0)

1− iωτee
. (29)

The calculations are fully analogous to the ones pre-
sented in Appendix A 1. The details of calculations of the
viscosity-induced correction as well as the most general
formula for the dc ratchet current with account of the vis-
cosity, Eq. (B6), are presented in Appendix B. Analyzing
Eq. (B6) one can see that viscosity gives a small contribu-
tion to the ratchet current in the whole frequency inter-
val. Here, we illustrate it for the case of high-frequency
asymptotic. To this end we expand Eq. (B6) up to linear
order with respect to η and assume that Ω ≫ Ωq. The
linear in η term contains factor Q2 ≪ 1. We neglect Q in
this term everywhere except this factor. Then, we obtain

Jrat,x
J0

≈
Ω2

q

Ω6
+

1

Ω2

(
1

Γ
+

τee
2

)
+

ηQ2

1 + Ω2τ2ee

(
1− τeeΩ

2

ΓΩ4
− τee

2Ω2

)
,

(30)

where we use dimensionless units for τee (measured in the
units of τ) and η (measured in the units of v2Fτ.).
The first line of this equation represents asymptotic of

Eq. (18) at Ω → ∞. The second line represents viscosity-
induced correction. The collision time τee appears in this
correction due to dispersion of η. It is worth noting that
at Γ → ∞ viscosity term in non-zero only due to this dis-
persion. Having in mind that dimensionless η equals to
τee/4τ, one can easily see that viscosity gives a small cor-
rection for any Γ. At very high frequency this correction
scales as 1/Ω4.

B. Viscosity-driven directional plasmons

In this subsection, we demonstrate that viscosity of
the electron liquid, alhtough yielding a small correction

to the electron ratchet effect, fully determines excitation
of travelling directional plasmons [66–69].
Physics behind directional plasmons is as follows. Let

us consider plasmonic oscillations of the density in the
channel. Perturbation theory yields two terms which os-
cillate both in t and in x: term of the first order n(1,0) and
the second order term n(1,1). The sum of these terms can
be presented as two waves propagating in the opposite
directions

n(1,0) + n(1,1) =C1 cos(qx− ωt− α1)

+ C2 cos(qx+ ωt− α2),
(31)

where C1,2 and α1,2 are the amplitudes and phases of
these waves, respectively.
Since the grating gate structure does not have inversion

center, the symmetry of the problem allows for C1 ̸= C2.
Then, the number of right- and left-moving plasmons is
different and one can define

Spl = s(C2
1 − C2

2 ) (32)

as a flux of directional plasmons travelling in a certain
direction. Calculation of Spl is presented in the Appendix
C. In the limit η → 0, the result reads

Spl

S0
=

Ω

(1 + Ω2)((Ω2 − Ω2
q)

2 +Ω2)
, (33)

where

S0 =
e3τ5q4h|E0|2U0η sinϕ

m3s
∝ η Ξ (34)

We see that S0 is proportional to η (we neglect here terms
of the order of η2 and higher order). Hence, remarkably,
the directed travelling plasmons are absent in the ideal
electron liquid and appear only due to viscosity. We also
see that S0 as expected is proportional to the asymmetry
parameter Ξ. We also notice that Spl does not depend on
Γ.
Dependence of the directed plasmons flux on the di-

mensionless frequency is plotted in Fig. 5. This depen-
dence contains symmetric plasmonic resonsnce similar to
the resonance is dc ratchet current for Γ → ∞. However,
in contrast to electronic ratchet, the resonance at Ω = 0
is absent.

V. CONCLUSION

To conclude, we have studied thermoelectric and
viscous contributions to the radiation-induced electron
ratchet current Jrat and to the flux of the travelling di-
rectional plasmons, Spl, in asymmetric dual-grating gate
structure without inversion center. We have demon-
strated that thermoelectric effects do not change Spl but
dramatically modify Jrat. By contrast, viscosity of the
electron liquid leads to a small correction to Jrat but
fully determines the flux of directed plasmons.
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FIG. 5. Dependence of the directed plasmons flux on the
dimensionless frequency for different quality factors
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Appendix A: Calculation of the ratchet current within a simplified method for T ≪ EF

1. Linear polarization

In this Appendix, we present derivation of photo-induced dc current, Jrat, within a simplified approach, which
is valid in the strongly degenerated Fermi gas, when T ≪ EF. The approach is based on perturbative solution of
simplified HD equations Eq. (13) and Eq. (14) with respect to external perturbation a. DC current appears in the
order (2,1), i.e. is proportional to hE2

0U0, and can be presented as a sum two terms:

Jrat,x =
eτ

m
N0 ⟨nax⟩(2,1)t,x = J I

rat,x + J II
rat,x, (A1)

where

J I
rat,x = −eτ

m
N0

〈
n(2,0) ∂U

∂x

〉
t,x

, (A2)

J II
rat,x =

eτ

m
N0

〈
n(1,1)Ex

〉
t,x

(A3)

Hence, instead of calculation of the third order perturbative contribution to the current it is sufficient to calculate
the second order correction to the dimensionless concentration n.

We start with calculation of the linear response: n(1,0), n(0,1), v(1,0), v(0,1). Linearizing Eqs. (13) and (14), we find:

n(1,0) = − ehE0q sin(qx)

2m(ω2
q − ω2 − iγω)

e−iωt + h.c.,

v(1,0) = − eE0

2m(γ − iω)
e−iωt − ehE0ω cos(qx)

2im(ω2
q − ω2 − iγω)

e−iωt + h.c.,

n(0,1) =
eV0

ms2
cos(qx+ θ),

v(0,1) = 0.

(A4)

Substituting Eq. (A4) into nonlinear terms one can perform high order iteration and do the next iterations by using
the following matrix equation: (

n

v

)(i,j)

=
1

is2q̂2 + ω̂γ − iω̂2

(
iγ − ω̂ q̂

q̂s2 ω̂

) (
Jn

Jv

)(i,j)

, (A5)

7



where q̂ = −i∂x, ω̂ = −i∂t and (
Jn

Jv

)(i,j)

=

(
∂x(nvx)

vx∂xvx (1 + 2/Γ)

)(i,j)

, (A6)

are non-linear sources arising in the (i, j) order of the perturbation expansion. In order to calculate n(2,0) and n(1,1),
we need to calculate (

Jn

Jv

)(2,0)

=

(
−∂x(v

(1,0)n(1,0))

−v(1,0)∂xv
(1,0)(1 + 2/Γ)

)
, (A7)

and (
Jn

Jv

)(1,1)

=

(
−∂x(v

(1,0)n(0,1))

0

)
, (A8)

where n(1,0), n(0,1), v(1,0) are given by Eq. (A4). After some algebra, we get

n(2,0) = n(2,0)(x) =
e2|E0|2h cos (qx)(−γΓ + i(2 + Γ)ω)

4s2m2Γ(γ + iω)(ω2
q − ω(iγ + ω))

+ h.c.,

n(1,1) = n(1,1)(x, t) = − e2E0U0q sin (qx+ θ)

2s2m2(ω2
q − ω(iγ + ω))

e−iωt + h.c..

(A9)

Here, we left only time-independent terms in n(2,0), skipping terms exp(±2iωt), which do not give contribution to the
dc response. Substituting Eq. (A9) into Eqs. (A2) and (A3), we finally arrive at

J I
rat,x

J0
=

(
(2 + Γ)ω2(ω2 − ω2

q ) + γ2((2 + Γ)ω2 + Γω2
q )
)

τ2Γ(γ2 + ω2)(γ2ω2 + (ω2 − ω2
q )

2)
, (A10)

J II
rat,x

J0
=

(
ω2
q − ω2

)
τ2(γ2ω2 + (ω2 − ω2

q )
2)
, (A11)

2. Arbitrary polarization

Calculations presented in Appendix A 1 can be easily generalized for the case of arbitrary polarization, when the
electric field is given by Eq. (20) and Eq. (21). In this case, hydrodynamic equations involve also y−component of
the velocity:

∂n

∂t
+

∂[(1 + n)vx]

∂x
= 0, (A12)

∂vx
∂t

+
vx
τ

+ s2
∂n

∂x
= ax −

(
1 +

2

Γ

)
vx

∂vx
∂x

− 2

Γ
vy

∂vy
∂x

, (A13)

∂vy
∂t

+
vy
τ

= ay − vx
∂vy
∂x

, (A14)

where ax = e/m(Ex − ∂U/∂x),ay = eEy/m. The calcaulations are fully analogous to the ones presented in Appendix
A 1. Here, we present most important modifications without going into technical details. We start with calculation

of the linear response: n(1,0), n(0,1), v
(1,0)
x , v

(1,0)
y , v

(0,1)
x . Linearizing Eqs. (A12), (A13) and (A14), we find:

n(1,0) = − ehE0xq sin(qx)

2m(ω2
q − ω2 − iγω)

e−iωt + h.c.,

v(1,0)x = − eE0x

2m(γ − iω)
e−iωt − ehE0xω cos(qx)

2im(ω2
q − ω2 − iγω)

e−iωt + h.c.,

v(1,0)y = −eE0y(1 + h cos(qx))

2m(−γ + iω)
e−i(ωt+θ) + h.c.,

n(0,1) =
eV0

ms2
cos(qx+ θ),

v(0,1) = 0.

(A15)
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where E0x = E0 cosα,E0y = E0 sinα.Substituting Eq. (A15) into nonlinear terms one can perform high order iteration
and do the next iterations by using the following matrix equation:

 n

vx

vy


(i,j)

=
−i

s2q̂2 − ω̂(iγ + ω̂)

iγ + ω̂ q̂ 0

q̂s2 ω̂ 0

0 0 ω̂ − q̂2s2

iγ+ω̂


 Jn

Jvx

Jvy


(i,j)

, (A16)

where q̂ = −i∂x, ω̂ = −i∂t and Jn

Jvx

Jvy


(i,j)

=

 −∂x(nvx)

−vx∂xvx (1 + 2/Γ)− (2/Γ)vy∂xvy

−vx∂xvy


(i,j)

, (A17)

are non-linear sources arising in the (i, j) order of the perturbation expansion. In order to calculate n(2,0) and n(1,1),
we need to calculate  Jn

Jvx

Jvy


(2,0)

=

 −∂x(v
(1,0)
x n(1,0))

−v(1,0)∂xv
(1,0)(1 + 2/Γ)− (2/Γ)v

(1,0)
y ∂xv

(1,0)
y

v
(1,0)
x ∂xv

(1,0)
y

 , (A18)

and  Jn

Jvx

Jvy


(1,1)

=

 −∂x(v
(1,0)
x n(0,1))

0

0

 , (A19)

where n(1,0), n(0,1), v(1,0) are given by Eq. (A15). After some algebra, we get

n(2,0) = n(2,0)(x) =
e2|E0|2h cos (qx)

4m2s2Γ

(
(γΓ− iω(2 + Γ)) cos2 α

(γ + iω)(iγω + ω2 − ω2
q )

− 2 sin2 α

γ2 + ω2

)
+ h.c.,

n(1,1) = n(1,1)(x, t) = −e2E0U0q cosα sin (qx+ θ)

2s2m2(ω2
q − ω(iγ + ω))

e−iωt + h.c..

(A20)

We will find the DC current Jrat by the following formula

Jrat =
eτ

m
N0

〈
n(1,1)E− n(2,0) ∂U

∂x
ex

〉
t,x

(A21)

Substituting n(1,1) and n(2,0) into Eq. (A21), we get Jrat,x and Jrat,y:

Jrat,x
J0

=
P0[2ω

4 − 3ω2ω2
q + ω4

q + γ(2ω2 + Γω2
q )] + PL1 ω2

q (γ
2Γ + ω2 − ω2

q ))

τ2Γ(γ2 + ω2)(γ2ω2 + (ω2 − ω2
q )

2
(A22)

Jrat,y
J0

=
(ω2

q − ω2)PL2 + γωPc

2τ2(γ2ω2 + (ω2 − ω2
q )

2)
. (A23)

Appendix B: Viscosity contribution

In this Appendix, we solve Eq. (28) together with Eq. (A12) (with vx = v). The calcaulations are fully analogous
to the ones presented in Appendix A 1. Here, we present most important modifications without going into technical
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details. We start with calculation of the linear response: n(1,0), n(0,1), v(1,0), v(0,1). Linearizing Eqs. (A12) and (28)
we find:

n(1,0) = − ehE0q sin(qx)

2m(ω2
q − ω2 − iγω)− iq2ωη(ω))

e−iωt + h.c.,

v(1,0) = − eE0

2m(γ − iω)
e−iωt − ehE0ω cos(qx)

2im(ω2
q − ω(ω + iγ)− iq2ωη(ω))

e−iωt + h.c.,

n(0,1) =
eV0

ms2
cos(qx+ θ),

v(0,1) = 0.

(B1)

Substituting Eq. (A15) into nonlinear terms one can perform high order iteration and do the next iterations by using
the following matrix equation:

(
n

v

)(i,j)

=
−i

s2q̂2 − ω̂(iγ + ω̂)− iq̂2ω̂η̂

(
iγ + ω̂ + iq̂2ω̂η̂ q̂

q̂s2 ω̂

) (
Jn

Jv

)(i,j)

, (B2)

where q̂ = −i∂x, ω̂ = −i∂t, η̂ = η/(1 − iω̂τee) , Jn and Jv are determined by Eq. (A6).Next, we repeat the steps
described in appendix (A 1), and get n(1,1) and n(2,0):

n(2,0) = n(2,0)(x) =
e2|E0|2h cos (qx)(−γΓ + i(2 + Γ)ω − q2Γη(0))

4m2s2Γ(γ + iω)(ω2
q − (iγ + ω)ω − iq2ωη(ω))

+ h.c.,

n(1,1) = n(1,1)(x, t) = − e2E0U0q sin (qx+ θ)(iγ + ω + iq2η(ω))

2s2m2(iγ + ω)(ω2
q − ω(iγ + ω)− iq2ωη(ω))

e−iωt + h.c..

(B3)

Substituting n(1,1) and n(2,0) into Eq. (15), we find total current for viscosity with arbitrary dispersion η(ω):

Jrat,x
J0

=
(γ − iω)(2γΓ− 2iω + q2Γη(0)) + q2Γ(γ + iω)η(ω)

τ2Γ(γ2 + ω2)(ω2
q − (iγ + ω)ω − iq2ωη(ω))

+ h.c. (B4)

We assume that viscosity η(ω) has the following dispersion Ref. [70]:

η(ω) =
η

1− iωτee
, (B5)

where τee is the electron-electron collision time. Then, the dc photoresponse is given by

Jrat,x
J0

=
1

τ2Γ

2(1 + τ2eeω
2)(ω4 − ω2ω2

q + γ(ω2 + Γω2
q ))

(γ2 + ω2)((1 + τ2eeω
2)(γ2ω2 + (ω2 − ω2

q )
2)) + 2q2ηω2(γ + τee(ω2

q − ω2))
+

+
1

τ2Γ

q2η
[
ω2γ(2 + γΓτee) + ω4τee(Γ− 2) + Γω2

q (2γ + τeeω
2(γτee − 1))

]
(γ2 + ω2)((1 + τ2eeω

2)(γ2ω2 + (ω2 − ω2
q )

2)) + 2q2ηω2(γ + τee(ω2
q − ω2))

(B6)

Appendix C: Directed plasmons

Oscillating contributions to the concentration n(1,1), and n(1,0) calculated in the previous section can be easily
presented as:

n(1,0) = A1 cos(ωt) sin(qx) +B1 sin(ωt) sin(qx), (C1)

n(1,1) = A2 cos(ωt) sin(qx+ ϕ) +B2 sin(ωt) sin(qx+ ϕ), (C2)
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where A1, B1, A2, B2 are given by:

A1 =
ehE0q(ω

2 − ω2
q )

m(γ2ω2 + (ω2 − ω2
q )

2 + q2ηω2(2γ + q2η))
,

B1 = − ehE0qω(γ + q2η)

m(γ2ω2 + (ω2 − ω2
q )

2 + q2ηω2(2γ + q2η))
,

A2 =
e2qE0U0

[
(γ2 + ω2)(ω2 − ω2

q ) + q2γη(2ω2 − ω2
q ) + q4η2ω2

]
s2m2(γ2 + ω2)((ω2 − ω2

q )
2 + γ2ω2 + q2ηω2(2γ + q2η))

,

B2 = −
e2qE0U0ω

[
γ(γ2 + ω2) + q2η(ω2

q + 2γ2) + q4η2γ
]

s2m2(γ2 + ω2)((ω2 − ω2
q )

2 + γ2ω2 + q2ηω2(2γ + q2η))
.

(C3)

Here η = η(0). The amplitudes C1 and C2 reads:

C1 =
1

2

√
(B1 +B2 cosϕ+A2 sinϕ)2 + (−B2 sinϕ+A2 cosϕ+A1)2, (C4)

C2 =
1

2

√
(−B1 −B2 cosϕ+A2 sinϕ)2 + (B2 sinϕ+A2 cosϕ+A1)2 (C5)

The flux of travelling directed plasmons is expressed through these coefficients as follows:

Spl = s(C2
1 − C2

2 ) = s(A2B1 −A1B2) sinϕ (C6)

Substitutin Eq. (C3) into Eq. (C6), and keeping linear in η term only, we get

Spl = − e3q4|E0|2U0ωη sinϕ

sm3(γ2 + ω2)((ω2 − ω2
q )

2 + γ2ω2)
. (C7)

Finally, by using dimensionless variables we arrive at Eq. (33) of the main text.
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G. Cywiński, P. Prystawko, J.  Lusakowski, S. D.
Ganichev, S. Rumyantsev, W. Knap, and V. Y. Ka-
chorovskii, Phys. Rev. B 104, 045301 (2021).

[31] Yahniuk and et al., arXiv:2402.03956 (2024).
[32] Hild and et al., arXiv:2402.17540 (2024).
[33] E. Mönch, S. O. Potashin, K. Lindner, I. Yahniuk, L. E.

Golub, V. Y. Kachorovskii, V. V. Bel’kov, R. Huber,
K. Watanabe, T. Taniguchi, J. Eroms, D. Weiss, and
S. D. Ganichev, Phys. Rev. B 105, 045404 (2022).

[34] E. Mönch, S. O. Potashin, K. Lindner, I. Yahniuk, L. E.
Golub, V. Y. Kachorovskii, V. V. Bel’kov, R. Huber,
K. Watanabe, T. Taniguchi, J. Eroms, D. Weiss, and
S. D. Ganichev, Phys. Rev. B 107, 115408 (2023).

[35] B. N. Narozhny, I. V. Gornyi, A. D. Mirlin, and
J. Schmalian, Ann. Phys. 529, 1700043 (2017).

[36] A. Lucas and K. C. Fong, J. Phys. Condens. Matter 30,
053001 (2018).

[37] B. N. Narozhny, Ann. Phys. 411, 167979 (2019).
[38] M. Polini and A. K. Geim, Phys. Today 73, 28 (2020).
[39] R. N. Gurzhi, J Exp Theor Phys 17, 521 (1963).
[40] R. N. Gurzhi, Soviet Physics JETP 20, 953 (1965).
[41] R. N. Gurzhi, Sov. Phys.-Uspekhi 11, 255 (1968).
[42] M. J. M. de Jong and L. W. Molenkamp, Phys. Rev. B

51, 13389 (1995).
[43] D. A. Bandurin, I. Torre, R. K. Kumar, M. B. Shalom,

A. Tomadin, A. Principi, G. H. Auton, E. Khestanova,
K. S. Novoselov, I. V. Grigorieva, L. A. Ponomarenko,
A. K. Geim, and M. Polini, Science 351, 1055 (2016).

[44] J. Crossno, J. K. Shi, K. Wang, X. Liu, A. Harzheim,
A. Lucas, S. Sachdev, P. Kim, T. Taniguchi, K. Watan-
abe, T. A. Ohki, and K. C. Fong, Science 351, 1058
(2016).

[45] P. J. W. Moll, P. Kushwaha, N. Nandi, B. Schmidt, and
A. P. Mackenzie, Science 351, 1061 (2016).

[46] F. Ghahari, H.-Y. Xie, T. Taniguchi, K. Watanabe, M. S.
Foster, and P. Kim, Phys. Rev. Lett. 116, 136802 (2016).

[47] R. K. Kumar, D. A. Bandurin, F. M. D. Pellegrino,
Y. Cao, A. Principi, H. Guo, G. H. Auton, M. B.

Shalom, L. A. Ponomarenko, G. Falkovich, K. Watanabe,
T. Taniguchi, I. V. Grigorieva, L. S. Levitov, M. Polini,
and A. K. Geim, Nat. Phys. 13, 1182 (2017).

[48] D. A. Bandurin, A. V. Shytov, L. S. Levitov, R. K. Ku-
mar, A. I. Berdyugin, M. B. Shalom, I. V. Grigorieva,
A. K. Geim, and G. Falkovich, Nat. Commun. 9 (2018),
10.1038/s41467-018-07004-4.

[49] B. A. Braem, F. M. D. Pellegrino, A. Principi, M. Röösli,
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