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ABSTRACT
JWST observations have the potential to provide unprecedented constraints on the history of reionization and the sources
responsible for the ionizing photons due to the detection of large populations of faint galaxies at 𝑧 ≫ 6. Modelling reionization
requires knowing both the number of ionizing photons that are produced by galaxies and the fraction of those photons that escape
into the intergalactic medium. Observational estimates of these values generally rely on spectroscopy for which large samples
with well-defined selection functions remain limited. To overcome this challenge, we present an implicit likelihood inference
(ILI) pipeline trained on mock photometry to predict the escaped ionizing luminosity of individual galaxies ( ¤𝑛ion) based on
photometric magnitudes and redshifts. Compared to traditional SED-fitting methods, the new ILI pipeline is consistently more
accurate and significantly faster. We deploy the method on a sample of 4,559 high-redshift galaxies from the JADES Deep survey,
finding a gentle redshift evolution of log10 ( ¤𝑛ion) = (0.08 ± 0.01)𝑧 + (51.60 ± 0.06), with late-time values for ¤𝑁ion consistent
with theoretical models and observations. We measure the evolution of the volume-averaged ionized fraction and optical depth
to find that observed populations of star-forming galaxies are capable of driving reionization to completion at 𝑧 ∼ 5.3 without
the need for AGN or other exotic sources. The 20% of UV-brightest galaxies (𝑀UV < −18.5) in our sample can reionize only
∼ 30% of the survey volume, demonstrating that faint LyC emitters are crucial for reionization.
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1 INTRODUCTION

By the end of the Epoch of Reionization, the Universe had undergone
its last major phase-transition, and the intergalactic medium (IGM)
became mostly transparent to the Lyman Continuum (LyC: 𝜆 ⩽
912Å) photons. While current constraints place the mean redshift
of reionization at 7.8 ≲ 𝑧 ≲ 8.8 (Planck Collaboration et al. 2016),
various observational studies find that this process was complete by
a redshift in the range 𝑧 ∼ 5 − 6 (Fan et al. 2006; Kulkarni et al.
2019a; Becker et al. 2021; Bosman et al. 2022), contributing to the
picture that this process was patchy (Iliev et al. 2006; Becker et al.
2015; Puchwein et al. 2023).

Generally, it is believed that the majority of ionizing photons are
produced by young, massive stars in galaxies that undergo rapid
star formation (e.g. Shapiro & Giroux 1987; Robertson et al. 2015;
Hassan et al. 2018; Rosdahl et al. 2018). However, it is still un-
clear whether this is driven by a small number of massive sources
or from more “democratic” contributions from a large number of
low-mass galaxies (Paardekooper et al. 2015; Livermore et al. 2017;
Mason et al. 2019a; Finkelstein et al. 2019; Naidu et al. 2020; Wu
& Kravtsov 2024). Furthermore, certain observational constraints
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such as the low optical depth to Thompson scattering (Planck Col-
laboration et al. 2016) and high fraction of broad-line active galactic
nucleus (AGN) with large bolometric luminosities among galaxies
at redshifts 𝑧 ∼ 4 − 6 (Giallongo et al. 2015, 2019) all suggest that
the contribution of AGN to the ionizing photon budget may be im-
portant. However, the late reionization of helium (Kriss et al. 2001;
Zheng et al. 2004; Shull et al. 2004; Furlanetto & Oh 2008; Shull
et al. 2010; Worseck et al. 2016) points to the fact that AGN cannot
be a dominant component of hydrogen reionization. Furthermore,
difficulties in accurately measuring their masses and accretion rates
at high redshifts (e.g. Li et al. 2024) as well as their relative spar-
sity suggest that they dominate the ionizing photon budget only at
lower redshifts 𝑧 ≲ 4 (e.g. Kulkarni et al. 2019b; Dayal et al. 2020;
Trebitsch et al. 2021, 2023).

Three quantities need to be constrained in order to model the
evolution of reionization. First is the UV luminosity function, 𝜌UV,
which describes the number density of sources at a given redshift
and UV magnitude. This has been measured from deep imaging
surveys (e.g. Bowler et al. 2020; Bouwens et al. 2021; Harikane et al.
2022; Robertson et al. 2023; Varadaraj et al. 2023; Donnan et al.
2023, 2024), though the majority of the uncertainty comes from
survey completeness (e.g. Robertson et al. 2023). Similarly, while
photometric redshift estimates are occasionally known to be a source
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of uncertainty1, these have been found to be generally consistent with
spectroscopic confirmations (e.g. Hainline et al. 2024).

Second is the ionizing photon production rate per UV luminosity,
𝜉ion. This can be predicted either by stellar population synthesis mod-
els during spectral energy distribution (SED) fitting (e.g. Leitherer
et al. 1999; Stanway & Eldridge 2018), or inferred from emission
lines such as H𝛼 or H𝛽 (e.g. Maseda et al. 2020; Saxena et al. 2024)
or O III equivalent widths (Chevallard et al. 2018; Tang et al. 2019).
Here, uncertainties are primarily driven by differences in stellar pop-
ulation models (e.g. the presence of binaries, initial mass function,
gas geometry, etc.) as well as assumptions about physical conditions
in the H II regions of sources emitting ionizing photons.

Third, one must account for the fraction of the produced ionizing
photons that escape their host galaxy into the IGM ( 𝑓esc). Due to
the fact that this depends on complex non-linear physics on small
scales in the interstellar medium (ISM) (e.g. Kimm et al. 2019, 2022;
Kakiichi & Gronke 2021), 𝑓esc is highly line-of-sight dependent
(e.g. Fletcher et al. 2019; Choustikov et al. 2024a; Yuan et al. 2024
and references therein), and cannot be directly measured at redshifts
𝑧 ≳ 4 due to the increasingly neutral IGM (e.g. Worseck et al. 2014;
Inoue et al. 2014),
𝑓esc arguably carries the most uncertainty. The escape fraction

of ionizing photons has been studied extensively using both galaxy
formation simulations (e.g. Kimm & Cen 2014; Xu et al. 2016;
Trebitsch et al. 2017; Rosdahl et al. 2018, 2022; Ma et al. 2020;
Saxena et al. 2022a; Giovinazzo et al. 2024) and observations of
low-redshift analogues (e.g. Leitherer et al. 2016; Schaerer et al.
2016; Steidel et al. 2018; Izotov et al. 2018b,a; Flury et al. 2022a,b).
In the case of simulations, capturing the production and transfer of
LyC photons through a multi-phase ISM into a realistic CGM is dif-
ficult. To do so requires self-consistently capturing a large dynamical
range, along with realistic models for the ISM and feedback pro-
cesses (Kimm et al. 2019, 2022; Rosdahl et al. 2022). In contrast,
it is not clear whether these observed analogues are representative
of high-redshift galaxies or plagued by selection effects (e.g. Katz
et al. 2022b, 2023b; Brinchmann 2023; Schaerer et al. 2022). In both
cases, the general strategy is to derive indirect diagnostics, that trace
physically favourable conditions to LyC production and escape from
the ISM (Choustikov et al. 2024b). These include a variety of differ-
ent indirect tracers, including properties of Ly𝛼 emission (Jaskot &
Oey 2014; Henry et al. 2015; Verhamme et al. 2015, 2017; Steidel
et al. 2018; Pahl et al. 2021; Naidu et al. 2022; Choustikov et al.
2024a), high [O III] 𝜆5007/[O II] 𝜆𝜆3726, 3728 (O32) ratios (Naka-
jima & Ouchi 2014), particularly negative UV continuum slopes (𝛽)
(Chisholm et al. 2022), low amounts of UV attenuation (Saldana-
Lopez et al. 2022), Mg II 𝜆𝜆2796, 2804 doublet ratios (Chisholm
et al. 2020), strong C IV 𝜆𝜆1548, 1550 emission (Schaerer et al.
2022; Saxena et al. 2022b), S II deficits (Chisholm et al. 2018; Wang
et al. 2021), relative sizes of resonant line surface brightness pro-
files (Choustikov et al. 2024a; Leclercq et al. 2024) and multivariate
models (Mascia et al. 2023b; Choustikov et al. 2024b).

The primary limitation is that the vast majority of the methods used
to infer these properties on a case-by-case basis require spectroscopic
information about a given galaxy, which is expensive (particularly in
comparison to photometric surveys). Furthermore, studies that are
able to make use of photometric observations to constrain certain
parameters (primarily by using SED fitting) often require making
assumptions about the others (particularly 𝑓esc) being constant or

1 Particularly in the case of sources at apparently extreme redshifts (e.g.
Donnan et al. 2023).

evolving on a population level only (e.g. Boyett et al. 2022; Simmonds
et al. 2023, 2024b). Finally, performing advanced SED fitting over a
large galaxy sample is a very computationally expensive and time-
consuming exercise.

Given the availability of unprecedented photometric data from
JWST, the objective of the present work is to develop a model to
infer the total escaping output of ionizing photons of a given source
based on JWST NIRCAM photometric measurements. To do this, we
build an implicit likelihood inference (ILI) pipeline developed using
LTU-ILI (Ho et al. 2024) trained on dust-attenuated mock photometry
of a statistical sample of representative high-redshift galaxies from
the SPHINX20 simulation (Rosdahl et al. 2022; Katz et al. 2023a).
This pipeline is able to make accurate and fast predictions for the
ionizing photon contribution ( ¤𝑛ion) of individual sources with re-
liable uncertainties, based on filters used by the JWST Advanced
Deep Extragalactic Survey2 (JADES: Eisenstein et al. 2023a). Using
public data from JADES, we aim to explore the redshift evolution of
¤𝑛ion for a sample of 4,559 photometrically selected galaxies at high
redshift. Finally, we will combine these measurements to constrain
the evolution of the global ionizing photon production rate ( ¤𝑁ion),
allowing us to investigate the redshift evolution of reionization in the
GOODS-S field.

This paper is arranged as follows. First, in Section 2 we outline the
pipeline that we have built to predict ¤𝑛ion based on JWST photometry.
In Section 3 we benchmark our inference pipeline and compare it
with another SED-fitting method. Next, in Section 4 we apply this
pipeline to a sample of JADES galaxies imaged using JWST NIRCam
and characterise the ionizing photon contributions of this population
of galaxies. Using this, we then compute the evolution of the ionized
fraction of the IGM. Finally, we conclude in Section 5.

Throughout this paper, we assume a flat ΛCDM cosmology with
cosmological parameters compatible with Planck Collaboration et al.
(2014)3 as well as a primordial baryonic gas of hydrogen and helium,
with mass contents of 𝑋 = 0.75 and 𝑌 = 0.25, respectively.

2 A MODEL FOR ESCAPING IONIZING LUMINOSITY
WITH IMPLICIT LIKELIHOOD INFERENCE

ILI, also known as simulation-based inference (SBI) or likelihood-
free inference (LFI), is a class of methods to infer the statistical
relationship between the observed data (𝑿) and the underlying pa-
rameters of a model that generated the data (𝜽). For a thorough review
see for example, Marin et al. (2011) or Cranmer et al. (2020). To infer
𝜽 from 𝑿, the Bayes theorem states that the posterior distribution of
𝜽 is given by

P(𝜽 |𝑿, 𝐼) ∝ L(𝑿 |𝜽 , 𝐼)𝜋(𝜽 |𝐼), (1)

where L(𝑿 |𝜽 , 𝐼) is the likelihood of the data given the model, 𝜋(𝜽 |𝐼)
is the prior distribution of the model parameters, and 𝐼 denotes the
remaining information required to specify the model. In many appli-
cations, the likelihood function may be unknown or computationally
intractable while the mapping 𝜽 → 𝑿 is available. Thus, ILI relies on
a “simulator” which can or has generated such synthetic data to pop-
ulate a high-dimensional space of model parameters and observed

2 In principle, the method outlined in this paper is extendable to almost any
other JWST survey. However, we have focused on JADES because it is a
particularly deep survey with a large number of filters, making it an ideal
proving ground.
3 This is chosen to be consistent with the training data from the SPHINX20

simulation (Rosdahl et al. 2022).
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data (see Figure 1 in Ho et al. 2024). In turn, this can be used to
infer the distribution of plausible model parameters that may have
generated the observed data by slicing the space at the observed data.

In this work, we opt for the neural posterior estimation method (Pa-
pamakarios & Murray 2016; Greenberg et al. 2019), which directly
emulates the posterior distribution. This is particularly suitable be-
cause in our case we have a single model parameter ( ¤𝑛ion) and a
13-dimensional space of observed data. Specifically, to be consistent
across all sources, we use photometric magnitudes in the F115W,
F150W, F200W, F277W, F335M, F356W, F410M and F444W filters
normalised by the apparent UV magnitude (𝑚1500

AB ), three colours
(F115W-F150W, F150W-F277W, and F277W-F444W) as well as
𝑚1500

AB and redshift. However, other flavours of ILI exist such as the
neural likelihood estimation (Alsing et al. 2018; Papamakarios et al.
2018) or the neural ratio estimation (Hermans et al. 2019).

In case of neural posterior estimation, we wish to approximate the
“true” posterior P(𝜽 |𝑿, 𝐼) with the neural posterior P̂ (𝜽 |𝑿, 𝐼) while
only having access to samples Dtrain = {𝑿𝑖 , 𝜽𝑖} from the simulator.
The neural posterior may be decomposed as

P̂ (𝜽 |𝑿, 𝐼) = 𝜋(𝜽 |𝐼)
𝑝(𝜽 |𝐼) 𝑞𝒘 (𝜽 |𝑿, 𝐼), (2)

where 𝑝(𝜽 |𝐼) is the proposal prior representative of the distribution
of 𝜽 in the simulated (training) data and 𝑞𝒘 (𝜽 |𝑿, 𝐼) is the neural net-
work output. Although typically 𝑞𝒘 is modelled with a normalizing
flow (Papamakarios et al. 2019), in our case 𝜽 is only 1-dimensional
and thus we opt for a mixture density network (Bishop 1994). Specifi-
cally, we use a Gaussian mixture density network to model 𝑞𝒘 , where
the neural network with weights and biases 𝒘 outputs the parameters
of the mixture (mean and standard deviation of each component of
the mixture). Furthermore, we also assume the prior and proposal
distributions to be identical. During training, the network parameters
𝒘 are optimized using a loss function

𝐿 = −
∑︁

𝑖∈Dtrain

log P̂ (𝜽𝑖 |𝑿𝑖 , 𝐼), (3)

introduced by Papamakarios & Murray (2016). We implement the
neural posterior estimator using LTU-ILI4 pipeline introduced by Ho
et al. (2024).

In order to train the model, we use 13,800 mock line-of-sight dust-
attenuated photometric observations of star-forming galaxies from
SPHINX20 (Rosdahl et al. 2018, 2022), a cosmological radiation hy-
drodynamical simulation of reionization in a 20 cMpc box with suffi-
cient resolution to resolve the multi-phase ISM in a large population
of constituent galaxies. Specifically, this data-set consists of a sam-
ple of 1, 380 star-forming galaxies at 𝑧 = 10, 9, 8, 7, 6, 5, and 4.64.
These galaxies were selected to have 10 Myr averaged SFR ⩾
0.3 M⊙yr−1, so that they form a representative sample of galaxies that
could be observed by a flux-limited JWST survey (Choustikov et al.
2024b). Available as part of the SPHINX20 Public Data Release (SP-
DRv1, Katz et al. 2023a), each galaxy has been post-processed with
RASCAS (Michel-Dansac et al. 2020) to simulate the self-consistent
generation and propagation of an SED consisting of the stellar con-
tinuum, nebular continuum and nebular emission lines. A peeling
algorithm (e.g. Yusef-Zadeh et al. 1984; Zheng & Miralda-Escudé
2002; Dĳkstra 2017) was used to mock observe these dust-attenuated
SEDs along ten consistent lines-of-sight, producing photometric im-
ages and magnitudes in JWST NIRCam filters. Comparisons between
mock SPHINX20 and JADES photometry and colour have been car-
ried out, confirming that this is a representative sample (see Figs. 15

4 https://github.com/maho3/ltu-ili

Hyperparameter Optimized Value
Number of hidden features ✓ 21
Number of mixture components ✓ 3
Optimizer learning rate ✓ 8.932 × 10−4

Training batch size ✓ 45
Early stopping criterion ✓ 13
Validation fraction ✗ 0.2
Gradient norm clipping ✗ 5

Table 1. Selected hyperparameters of the ILI model predicting log ¤𝑛ion from
JADES filters and source redshift. The hyperparameter naming follows the
LTU-ILI interface and we outline the hyperparameter optimization routine
in Section 2.

and 16 of Katz et al. 2023a). A complete description of the methods
used to generate this data-set are provided in Katz et al. (2023a) and
Choustikov et al. (2024b).

We train the model to predict log10 ¤𝑛ion, apply standard scaling
to both the features and targets, and opt for a 20-80% test-train split
by galaxies, not by individual lines-of-sight, to ensure that a single
galaxy is not present in both splits. Furthermore, to make training
more robust, we only use galaxies with 𝑓esc ⩾ 10−6 to remove a small
tail of outliers5 and ensure that the full distribution of ¤𝑛ion values
are represented in the training set. We use Optuna (Akiba et al.
2019) to optimize the following hyperparameters: number of hidden
features in the network, number of mixture components, optimizer
learning rate, training batch size and the early stopping criterion. We
run Optuna for 1, 000 trials to find the best hyperparameters and
optimize the mean of Eq. (3) in a 10-fold cross-validation across
galaxies. We list the selected hyperparameters to predict log ¤𝑛ion
from the JADES filters and redshift in Table 1.

Having trained the model, we can draw samples from P̂ (𝜽 |𝑿, 𝐼).
When testing the model on simulated data without uncertainties, we
either draw 1, 000 samples from the learnt posterior or summarize
those draws with the maximum posterior value and an asymmetric 1𝜎
uncertainty around it. On the other hand, when applying the model to
observational data with uncertainties, we assume the uncertainties to
be Gaussian such that 𝑿 ±Δ𝑿 and re-sample 𝑿 500 times, each time
sampling 1, 000 draws from the posterior. In doing so, we propagate
both the model and photometric uncertainties into the prediction of
𝜽 .

In Fig. 1 we compare the predicted ¤𝑛ion with the true ¤𝑛ion of
SPHINX20 galaxies, isolating the sample of mock observations at each
redshift in our sample. We note that we train a single model with red-
shift as a feature as opposed to training a separate model for each red-
shift bin. In all cases, we find that the running mean of the distribution
matches the one-to-one line well, with the complete sample having a
median absolute error (MAE) of 0.31 dex. The model performs par-
ticularly well for sources with log10 ( ¤𝑛ion/[photon/s]) > 51, strug-
gling more with the LyC-dimmest sources at the highest redshifts
for which training data is limited. For completeness, we perform a
variety of other benchmark tests on the model. These are discussed
in Appendix A.

Finally, we highlight that this method allows us to predict the
global escaped ionizing luminosity of high-redshift galaxies without
having to dust-correct observations or assume some model for the
LyC escape fraction. As a result, this method is completely self-
consistent, simple and efficient; as compared to traditional SED-
fitting methods.

5 Doing so improves the general performance of the model, as machine
learning methods can struggle to reproduce outliers.
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Figure 1. Histogram of ¤𝑛ion predicted using the ILI pipeline applied to mock dust-attenuated photometry of SPHINX20 galaxies as well as the true values
computed using RASCAS, broken down by redshift bins. We include the running means in red as well as the median absolute error (MAE) for each redshift bin,
showing how well the model performs in this validation experiment.

3 BENCHMARKING THE MODEL

3.1 Comparison with BAGPIPES

While we have shown that our model is accurate with well-behaved
uncertainties, it is important to compare the efficacy of this method
to that of a traditional SED-fitting code. To this end, we use
BAGPIPES (Carnall et al. 2018) with priors given in Table 2. For
a random sample of 30 galaxies from the SPHINX20 database we use
BAGPIPES to find the best-fit model spectrum for each line-of-sight
mock photometry. We note that to ensure that this is a fair test, we
only sample galaxies from the test set of the ILI model introduced
in Section 2.

The model spectrum is converted to a photon flux and integrated
over rest-frame wavelengths ⩽ 912 Å to compute ¤𝑛ion. To model the
escape fraction, we repeat the process described in Chisholm et al.
(2022) and Mascia et al. (2023b). For the former, we fit the UV spec-
tral index (𝛽, such that 𝑓𝜆 ∝ 𝜆𝛽) in the range 𝜆 ∈ [1300, 1800] Å.
These UV continuum slopes are then converted into an approximate
escape fraction ( 𝑓 C22

esc ) using Equation 11 of Chisholm et al. (2022).
For the latter, we use the effective half-light radius (𝑅𝑒) of the galaxy
mock observed in the F115W filter and measured by PHOTUTILS
(Bradley et al. 2016; see also Katz et al. 2023a; Choustikov et al.
2024a), the ratio of [O III] 𝜆5007/[O II] 𝜆𝜆3726,3728 (O32

6) pre-
dicted by BAGPIPES as well as 𝛽 as discussed above. These are
then combined using the multivariate estimator given by Equation 1
of Mascia et al. (2023b) to produce the estimate of 𝑓M23

esc . The prod-
uct of the calculated ¤𝑛ion and one of the inferred escape fractions is

6 We note that BAGPIPES is not designed to predict emission line fluxes
based on wide and medium band photometry. Therefore, these values of O32
are likely to be a large source of uncertainty.

Description Parameter Prior
SFH: Double Power Law

Time of SFR Peak 𝜏 / Gyr U(0, 10)
Falling Slope log10 𝛼 U(−2, 3)
Rising Slope log10 𝛽 U(−2, 3)
Stellar Mass log10 (𝑀∗/𝑀⊙ ) U(6, 10)
Metallicity log10 (𝑍/𝑍⊙ ) U(−1, 1)

Dust: SMC (Gordon et al. 2003)
V-band Attenuation 𝐴𝑉 U(0, 2)
Birth Cloud Reduction 𝜂 2
Absorption Exponent 𝑛 G(0.7, 0.3)

Nebular
Ionization Parameter log10𝑈 −2

Redshift
Source Redshift 𝑧 𝑧SPHINX20

Table 2. BAGPIPES priors used to fit SPHINX20 photometry in the JADES
filters, inspired by those used in Carnall et al. (2018). U(𝑢min, 𝑢max ) denotes
a uniform distribution between 𝑢min and 𝑢max, G(𝜇, 𝜎) a Gaussian distri-
bution with mean 𝜇 and standard deviation 𝜎, and if a single value is given
then the parameter is fixed.

taken as the final prediction. Finally, we repeat this process by also
predicting ¤𝑛ion using the ILI model described in Section 2.

This entire process is demonstrated in Fig. 2, where we display
all of the necessary information for all 10 lines-of-sight for a ran-
domly selected SPHINX20 galaxy at redshift 𝑧 = 6. On the top, we
show the full mock SPHINX20 SED (in colour), the mock JWST NIR-
Cam photometry in the JADES filters (green), as well as the best-fit
BAGPIPES SED (black), confirming that it is a good match. On the
bottom, we show the full ILI posterior distribution for each sight line
(with matched colours). In each case, we include the true value of
¤𝑛ion, computed directly from RASCAS ( ¤𝑛SPHINX20

ion , solid), the best-

MNRAS 000, 1–16 (2024)
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esc ṅBAGPIPES
ion fM23
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Figure 2. Comparison between the implicit likelihood inference (ILI) and BAGPIPESmethods to inferring ¤𝑛ion for a random SPHINX20 galaxy at redshift 𝑧 = 6.
In the long panels, we include the mock SED (colour), mock JWST NIRCam photometry in the JADES filters (green), and best-fit BAGPIPES SED (black) for
each line of sight. On the bottom, we include the full posterior distributions for ¤𝑛ion as sampled by the ILI pipeline, along with the true (solid) value, best-fit ILI
(dashed) and best-fit BAGPIPES predictions (dot-dashed) using 𝑓esc models from Chisholm et al. (2022) and Mascia et al. (2023b).
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Figure 3. Comparison between the escaped ionizing luminosity of 30
SPHINX20 galaxies as predicted using the ILI pipeline ( ¤𝑛ILI

ion) and BAGPIPES
( 𝑓esc ¤𝑛BAGPIPESion ), coloured by the true value computed using RASCAS
( ¤𝑛SPHINX20

ion ). Because this quantity needs to also be inferred, we show
BAGPIPES values computed using two different predictions for the LyC escape
fraction, using the method from Chisholm et al. 2022 (points) and Mascia
et al. 2023b (crosses).

fit ILI prediction ( ¤𝑛ILI
ion, dashed), along with the best-fit BAGPIPES

predictions ( ¤𝑛BAGPIPESion ) with 𝑓 C22
esc (dot-dashed) and 𝑓M23

esc (dotted).
Here, we find that the ILI-inferred values are typically much more
accurate and consistent than those inferred from BAGPIPES model
SEDs, despite the fact that BAGPIPES is inferring the SED well. Fur-
thermore, it is clear to see that the lines-of-sight for which this is not
the case (3 and 6) are significantly dustier than the others. In these
cases, the ILI pipeline performs as expected and produces a more un-
certain, broader posterior that tends to under-predict ¤𝑛ion. However,
the larger error bars confirm that the model is behaving as required.
In practise, a similar behaviour was found for lines-of-sight with
extremely blue spectral slopes, in which case the model would over-
predict ¤𝑛ion. Finally, it is interesting to compare the relative success
of the two BAGPIPES results. Here, we find that these methods tend
to over-predict ¤𝑛ion for a given source. However, in all cases, the in-
ferred ¤𝑛ion based on the LyC escape fractions predicted by Chisholm
et al. (2022) is more accurate than those predicted by Mascia et al.
(2023b).

While this is reassuring, it is crucial to confirm that these trends
exist for a larger sample of galaxies. To this end, Fig. 3 shows a
comparison between ¤𝑛ILI

ion and ¤𝑛BAGPIPESion , with points coloured by the
true value of ¤𝑛SPHINX20

ion . We find that the BAGPIPES methods tend
to consistently over-predict the escaped ionizing luminosity, as com-
pared to ILI-predicted values. Next, we find that the 𝛽 slope method
of Chisholm et al. (2022) performs slightly better than the multivari-
ate method given by Mascia et al. (2023b). We note that in trials,
𝑓M23
esc was more accurate for galaxies with the greatest LyC escape

fractions, with issues otherwise being driven by the dependence on
O32 and 𝑅𝑒. Furthermore, the method proposed by Chisholm et al.
(2022) was previously shown to fit SPHINX20 galaxies well (see Fig-

ure 8 of Choustikov et al. 2024b), suggesting that the over-estimates
are driven by BAGPIPES itself.

It is now necessary to understand where the disagreements high-
lighted in Fig. 3 come from. To explore this further, we proceed to
compare both prediction methods directly with the true value of ¤𝑛ion
in Fig. 4. In the left panel, we plot the true value from SPHINX20 ver-
sus the ILI prediction, along with associated error bars, while on the
right, we plot the true value against the BAGPIPES values, using 𝑓M23

esc
(purple), 𝑓 C22

esc (pink), as well as the escape fraction computed using
RASCAS, 𝑓 SPHINX20

esc (salmon). Here, we learn several things. First,
the ILI method is the most accurate, consistently agreeing across the
whole sample. Moreover, in the rare cases where there are strong
disagreements, we find significantly wider uncertainties, showing
that the model is performing as expected. Next, we find that the UV
slope-corrected value from Chisholm et al. (2022) is reasonably sim-
ilar to that computed using the true value of 𝑓esc, albeit with more
scatter. In contrast, the values predicted using the multivariate model
of Mascia et al. (2023b) seem to systematically over-predict ¤𝑛ion by
around an order of magnitude on average. Together, this highlights
the fact that a large part of the uncertainty seen in Fig. 2 is due to the
assumed escape fraction models. Finally, we note that while the ILI-
inferred values have no apparent bias, the use of BAGPIPES along
with the ‘true’ value of 𝑓esc from SPHINX20 tends to over-predict
¤𝑛ion for galaxies releasing the most ionizing photons, confirming
that this particular over-estimate arises due to imperfect fitting with
BAGPIPES. This is consistent with previous work which has shown
that SED-fitting methods tend to over-predict 𝜉ion compared to emis-
sion line-based techniques, e.g. using PROSPECTOR (Johnson et al.
2021) (see Figure 7 of Simmonds et al. 2024b). This may be signifi-
cant for discussions of whether reionization is driven by the brightest
or faintest leakers (e.g. Finkelstein et al. 2019; Naidu et al. 2020), by
artificially boosting the impact of the strongest sources.

Recently, Muñoz et al. (2024) discussed the possibility that
present-day JWST observational constraints on 𝜌UV (e.g. Donnan
et al. 2024) and 𝜉ion (e.g. Simmonds et al. 2024b) suggest that there
might be too many LyC photons, reionizing the Universe too early for
alternative probes of the IGM. Muñoz et al. (2024) extrapolated the
𝑓esc model of Chisholm et al. (2022). However, the results of Fig. 4
suggest that doing so (alongside SED-fitted estimates of 𝜉ion) is
likely to over-estimate the number of escaping LyC photons. These
effects will compound to contribute to this conclusion by artificially
boosting the ionizing contribution of high-redshift galaxies.

3.2 Why is there a Difference Between ILI and BAGPIPES?

As we have shown in the previous Section, the predicted values of ¤𝑛ion
using the ILI pipeline and BAGPIPES can be dramatically different.
As such, it is crucial to discuss why this might be the case, especially
given the fact that both methods work by effectively searching for the
best-fit SED from a reference sample.

The similarity between these two methods comes from the fact that
ILI is trained on a library of mock photometry (based on underlying
SEDs, see discussion in Section 4.3 of Katz et al. 2023a) and then
interpolates between them to infer ¤𝑛ion, while BAGPIPES generates a
large sample of model SEDs, processes them to compute photometry
and iterates this process to find a best-fitting model, which is then
integrated to compute ¤𝑛ion (see also Carnall et al. 2018). These are
effectively the same operations, albeit in different orders. However,
while both the SPHINX20 and BAGPIPES SEDs account for nebular
contributions with CLOUDY, the primary difference is that they use dif-
ferent stellar population synthesis models. Namely, SPHINX20 makes

MNRAS 000, 1–16 (2024)
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Figure 4. (Left): Comparison between the true value of escaped ionizing luminosity ( ¤𝑛SPHINX20
ion ) of training-set SPHINX20 galaxies computed using RASCAS

with predictions from the ILI pipeline. We include asymmetric 1𝜎 error bars based on the ILI posteriors, as discussed in Section 2. Right: Comparison between
the true value of ¤𝑛ion with predictions using the best-fit BAGPIPES SED. Here, we use LyC escape fractions computed using methods proposed by Mascia et al.
(2023b) (purple), Chisholm et al. (2022) (pink), as well as the true values computed by RASCAS (salmon).

use of BPASS SEDs (Stanway & Eldridge 2018) while BAGPIPES
uses the 2016 version of Bruzual & Charlot (2003) models. This may
introduce a systematic bias in the production of ionizing flux, with
binary evolution increasing the hardness of the spectrum blueward of
912 Å, particularly at low metallicities (Stanway et al. 2016; Eldridge
et al. 2017). This compounds with the results of Figs. 3, 4, confirming
that the BAGPIPES method significantly over-predicts ¤𝑛ion.

The second difference is that galaxies are not made up of a single
H II region with some intrinsic metallicity and ionization parameter.
As such, the fact that galaxies in our SPHINX20 sample have resolved
multi-phase ISMs, as well as contributions from multiple H II regions
with non-zero escape fractions (see also Nakajima et al. 2013; Law
et al. 2018; Ramambason et al. 2022) and diffused ionised gas (see
also Zhang et al. 2017; Kewley et al. 2019) all contribute to pro-
ducing more realistic nebular emission. However, one place where
SPHINX20 falters similarly to BAGPIPES is in the fact that it uses equi-
librium abundances for non-hydrogenic species. It has been shown
that galaxy-scale simulations with non-equilibrium thermochemistry
produce dramatically different abundance distributions (Katz 2022;
Katz et al. 2022a), however we leave explorations of how this effects
the complete forward-modelling of SEDs to future work. Finally, our
analysis has also taken into account the impact of the nebular con-
tinuum on the escaped ionizing luminosity, which has recently been
shown to be important (Simmonds et al. 2024a).

The third difference is that the star-formation histories (SFHs) of
SPHINX20 galaxies (see Figure 7 of Katz et al. 2023a) are governed by
a realistic environment, capturing effects such as mergers (e.g. Kavi-
raj et al. 2015; Fensch et al. 2017; Pearson et al. 2019) and gas
accretion from the circumgalactic medium (Conselice et al. 2013;
Putman 2017; Luo et al. 2021). In turn, simple SFH prescriptions
employed by codes like BAGPIPES do not capture this effect, leading
to discrepancies in inferred quantities (Lower et al. 2020; Narayanan
et al. 2024). Using non-parametric SFHs it may, however, be possible
to mimic the more realistic SFHs that simulations are able to generate

(e.g. Wan et al. 2024), though such exercises are beyond the scope of
the present work.

Next, we must consider the fact that in this exercise, we are fun-
damentally trying to predict an angle-averaged property by using
line-of-sight observables. While our ILI model has been trained on
multiple sight-lines for each object and therefore produces fairly con-
sistent outputs (see Fig. 2), this is particularly a challenge for indirect
models for the LyC escape fraction (Choustikov et al. 2024a,b). While
we do not discuss this further, another potential option here is to use
a framework such as ILI to predict angle-averaged 𝑓esc based on the
same photometric information to then combine with traditional SED
fitting.

Another important issue is that SPHINX20 makes use of a Kroupa-
like initial mass function (IMF, Kroupa 2001), whereas BPASS and
BAGPIPES can be tweaked to account for differing IMFs (e.g. Stan-
way & Eldridge 2023). This is particularly important in the context
of recent work suggesting deviations from a standard IMF at high
redshifts and low metallicities (Cameron et al. 2023), that in this
context would particularly influence the ionizing radiation field7.

A further consideration to note is that of dust attenuation. The
assumptions taken in the post-processing of dust in SPHINX20 have
already been discussed extensively (Katz et al. 2023a; Choustikov
et al. 2024b), however the key issue for our work is the fact that the
attenuation law used is fixed to scale with metallicity. In principle,
this can be overcome by reprocessing each SPHINX20 galaxy with
RASCAS using a variety of different attenuation laws, thus expanding
the training set and building this flexibility into the ILI model. In
contrast, SED modelling with BAGPIPES is able to self-consistently
modify and fit the levels and kinds of dust attenuation. This likely

7 Naturally, a self-consistent treatment of this would also affect the distribu-
tion and feedback of stars in the SPHINX20 simulation. We leave explorations
of this to future work.
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Figure 5. Thumbnail images of 18 galaxies in GOODS-S imaged by JWST NIRCam as part of JADES (Eisenstein et al. 2023a). RGB images are made using
F444W in the red channel, F200W in the green and F090W in the blue channel. For each galaxy, we provide the absolute UV luminosity, ¤𝑛ion predicted by our
ILI pipeline as well as photometric redshift. Galaxies are shown in order of their ionizing photon contributions at each redshift.

explains why it is better able to infer ¤𝑛ion for particularly dusty sight
lines8 (see sight-lines 3 and 6 of Fig. 2).

The final important difference is that the SPHINX20 simulation does
not include AGN. As such, the model presented in this paper will
only be able to account for the star-forming component of galaxies.
This should not be a significant issue for our purposes, as AGN
are expected to be a subdominant portion of the sources, whose
contribution to reionization is expected to be small (e.g. Dayal et al.
2020; Trebitsch et al. 2021). For a complete discussion of the caveats
implicit in the modelling and post-processing of our mock dataset of
SPHINX20 galaxy photometry, the reader is invited to consult Katz
et al. (2023a) and Choustikov et al. (2024b).

To conclude, we reiterate that the ILI method presented in this
paper is generally more accurate than an SED-fitting alternative and
produces self-consistent uncertainties while also taking significantly
less time to run (with a speed-up of ∼ 102 − 103). This makes it
a comparable, if not superior option for investigating the contribu-
tion of a large number of galaxies imaged using photometry toward
reionization.

4 PREDICTING THE ESCAPED IONIZING
LUMINOSITIES FOR A POPULATION OF JADES
GALAXIES

4.1 Application to JADES NIRCam Data

We now apply our ILI pipeline to real data to infer the ionizing
photon luminosity of photometrically-observed galaxies. To do so,

8 This is due to the fact that there is a limited number of such sight-lines in
SPHINX20.

we use NIRCam Deep imaging (Rieke et al. 2023), taken and pub-
licly released9 as part of the JWST Advanced Deep Extragalactic
Survey (JADES: Eisenstein et al. 2023a). These data are taken in
the GOODS-S field, covering an area of ∼ 25 arcmin2. Specifi-
cally, we make use of magnitudes in the F115W, F150W, F200W,
F277W, F335M, F356W, F410M, and F444W filters, computed using
a Kron parameter of 𝐾 = 2.5, which has been point spread function-
convolved to the resolution in the F444W filter, as recommended in
the data release. To complete our feature set, we also use photometric
redshifts derived using EAZY (Brammer et al. 2008), as included in
the JADES catalogue (Hainline et al. 2024). Apparent UV magni-
tudes, 𝑚1500

AB , are computed by fitting a power law ( 𝑓𝜆 ∝ 𝜆𝛽) to the
three filters nearest to rest-1500Å, selected for each redshift. For a
full discussion of the approach as well as comparisons to spectro-
scopic redshifts the reader is directed to Hainline et al. (2024) and
Rieke et al. (2023). Before proceeding, we make the following cuts
to reduce our sample:

• We require a signal-to-noise ratio (S/N) in all filters redward of
F200W to be greater than or equal to 3.

• We remove any sources that have been flagged as stars or that
are affected by diffraction spikes.

• We remove any sources with 𝑀UV ⩽ −23 at 𝑧 > 6 as these are
likely to be dominated by AGN.

Following this process, we are left with a sample of 4,559 galaxies.
For each object, we use the ILI pipeline to predict ¤𝑛ion based on ob-

served magnitudes in each filter normalised by 𝑚1500
AB , three colours

(F115W-F150W, F150W-F277W, and F277W-F444W), and 𝑚1500
AB .

In each case, we account for the model, photometric magnitude, and

9 All of the JADES data used in this paper can be found on the MAST
data-base at https://doi.org/10.17909/z2gw-mk31.
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Figure 6. Escaping ionizing luminosity as a function of observed absolute UV
magnitude for our sample of JADES (coloured by redshift) and SPHINX20

(gray) galaxies. Other observational data from Saxena et al. (2024) and Sim-
monds et al. (2024b) are included for comparison in cyan and red. In each
case, we follow each papers’ method to predict 𝑓esc. For the former, we use
the multivariate model from Choustikov et al. (2024b), while in the latter we
infer 𝑓esc from the absolute UV magnitude based on the relation from Ander-
son et al. (2017). We also include a histogram of the observed absolute UV
magnitudes for our sample of JADES (black) compared to SPHINX20 (gray)
galaxies. Finally, the cut of UV-bright and UV-dim galaxies (𝑀UV = −18.5)
used elsewhere in this paper is also shown as a dashed line. Galaxies brighter
than this value account for 20% of the sample.

redshift uncertainties by resampling as described in Section 2. As an
overview, Fig. 5 shows 18 example galaxies from the JADES cata-
logue in redshift bins of 𝑧 ∈ {6, 7, 8}. Here, we compile RGB images
composed of F444W in the red channel, F200W in the green and
F090W in the blue. For each object, we also list their observed abso-
lute UV luminosity, predicted value of ¤𝑛ion from the ILI pipeline, and
photometric redshift. Galaxies are shown in order of their ionizing
photon contributions in each given redshift bin.

Next, in Fig. 6, we show the escaped ionizing luminosity of JADES
galaxies as a function of their observed absolute UV magnitude,
coloured by redshift. For comparison, we include spectroscopic mea-
surements from Saxena et al. (2024) (cyan) as well as SED fitted
predictions using PROSPECTOR from Simmonds et al. (2024b) (red).
In both cases, we follow the reported methods of predicting 𝑓esc. In
the first case, we use the multivariate model proposed by Choustikov
et al. (2024b), while in the latter we use escape fractions inferred
from the absolute UV magnitude (𝑀UV), based on the VULCAN
simulation (Anderson et al. 2017). However, we caution that the re-
lation between 𝑀UV and 𝑓esc has been shown to be very dependent
on stellar mass (see Figures 12 and 13 of Choustikov et al. 2024b)
and is in general not a good predictor for 𝑓esc (e.g. Flury et al. 2022b;
Saxena et al. 2024; Choustikov et al. 2024b). Both sets of values are

included, with intrinsic ¤𝑛ion shown as an arrow and escaped ¤𝑛ion
given as points.

Here, we can see that there is some correlation between ¤𝑛ion and
𝑀UV. Galaxies with 𝑀UV < −20 are rare, but all have large es-
caped ionizing luminosities ( ¤𝑛ion ≳ 1052 photons/s). We find that
UV-dim galaxies with 𝑀UV > −17 are much more common but
have much smaller values of ¤𝑛ion, with all of these galaxies having
¤𝑛ion ≲ 1053 photons/s. To illustrate the distribution of absolute UV
magnitudes, we include a histogram (top) comparing the distribu-
tion of JADES galaxies to those from SPHINX20. Beyond confirming
that SPHINX20 galaxies are suitable analogues, this shows the sheer
number of UV-dim galaxies in our sample. We define an absolute
UV magnitude cut at 𝑀UV = −18.5 (shown as a dashed line), which
is used to explore whether faint galaxies are the dominant contribu-
tors of ionizing photons during the epoch of reionization (Finkelstein
et al. 2019, cf. Naidu et al. 2020).

Fig. 7 shows the inferred values of ¤𝑛ion as a function of redshift
for all JADES galaxies in our sample, along with associated error
bars. We colour points by their redshift uncertainty, to highlight
the objects whose ionizing luminosity uncertainties are dominated
by photometric redshift uncertainties. For comparison, we include
other observational data from Saxena et al. (2024) (corrected using
the 𝑓esc relation of Choustikov et al. 2024b; cyan) and Simmonds
et al. (2024b) (corrected with the 𝑀UV relation of Anderson et al.
2017; red). Given we have uncertainties in both ¤𝑛ion and 𝑧, we use
ROXY (Bartlett & Desmond 2023)10, which provides an unbiased
linear fit accounting for uncertainties in both 𝑥 and 𝑦. We find a weak
evolution with redshift, given by:

log10 ( ¤𝑛ion / [photons/s]) = (0.08 ± 0.01)𝑧 + (51.60 ± 0.06), (4)

that we also plot (lime) with associated 3𝜎 uncertainties. We find that
this matches our running mean (blue) well. Such a slow evolution
with 𝑧 is in agreement with previous works, which suggest little
change in 𝜉ion (e.g. Saxena et al. 2024; Simmonds et al. 2024b) as
well as the LyC escape fraction (Mascia et al. 2023b). Next, we see
that there is a small secondary population present, with ¤𝑛ion lower by
about 2 dex. These are likely to be galaxies with particularly dusty
sight lines, for which the model tends to struggle and under-estimates
¤𝑛ion

11. This can also be seen, due to the particularly large error bars
of these objects (see also the discussion of sight lines three and six
in Figure 2).

Next, we use the intrinsic ionizing luminosities ( ¤𝑛R22
ion ) and LyC

escape fractions ( 𝑓 R22
esc ) from the SPHINX20 simulation to compute

average values for each redshift bin. In doing so, we show the aver-
age of the product of these two quantities (⟨ 𝑓 R22

esc ¤𝑛R22
ion ⟩, representing

the ILI approach) as well as the product of their respective averages
(⟨ 𝑓 R22

esc ⟩⟨ ¤𝑛R22
ion ⟩, representing the use of population-averaged statis-

tics) in gold. We find that in general these two values do not agree,
with the latter method over-predicting the average escaped ionizing
luminosity by 0.5 dex toward the end of reionization. This empha-
sizes the fact that it is the angle-averaged product of these two quan-
tities which is important to measure in order to accurately investigate
galaxy contributions to reionization.

Finally, we can also see the fundamental UV magnitude limit
derived from the JADES NIRCam depths (Eisenstein et al. 2023a).
This leads to a reduction in the number of sources with redshift,
as JWST is able to see fewer sources with the given S/N in each

10 https://github.com/DeaglanBartlett/roxy
11 In practise, it was found that the presence of this group of outliers did not
affect the line of best-fit given in Equation 4.
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Figure 7. Predicted ionizing luminosities of JWST galaxies coloured by their photometric redshift uncertainties. Error bars are produced by resampling the
model and photometric uncertainties, as described in the text. We include a running mean (blue) as well as a line of best-fit (lime), computed using ROXY (Bartlett
& Desmond 2023). For comparison, we include data from Saxena et al. (2024) and Simmonds et al. (2024b), as described in Fig. 6. Finally, we also include
global averages for escaped ¤𝑛ion, computed at each redshift in SPHINX20 (gold). This is to demonstrate the over-prediction which comes from studying these
two quantities in isolation.

filter. We note that in practise, the trend seen in Fig. 7 remains fairly
unchanged with respect to signal-to-noise cuts.

4.2 Implication for Reionization in GOODS-S

Now that we have predictions for the ionizing luminosity of a large
number of galaxies in the GOODS-S field, we can reconstruct a
reionization history for the survey volume. To do this, we integrate the
ionizing luminosity contributions in numerous redshift bins, while
also integrating the comoving volume of each bin, as follows:

¤𝑁ion (𝑧) = 𝜌UV (𝑧)𝜉ion (𝑧) 𝑓esc =

∫ 𝑧+𝛿𝑧
𝑧−𝛿𝑧

d𝑧 ¤𝑛ion (𝑧)∫ 𝑧+𝛿𝑧
𝑧−𝛿𝑧

d𝑉 (𝑧)
. (5)

This tells us how many ionizing photons are being emitted by galaxies
per Mpc3 in a given redshift bin. This value can then be compared
to various models of reionization. It is instructive to use Equation 26
from Madau et al. (1999):

¤𝑁ion = (1051.2 [photons/s/Mpc3]) 𝐶
(
1 + 𝑧

6

)3 (Ωbℎ
2
50

0.08

)2
, (6)

where Ωb is the baryonic density fraction of the Universe and 𝐶 is
the ionized hydrogen clumping factor, accounting for the fact that
baryons are not uniformly distributed through the IGM. In particular,
this model depends on a time-dependent clumping factor that is

typically calibrated with large-scale simulations (e.g. So et al. 2014,
see also Gnedin & Madau 2022 for a review).

Fig. 8 shows the integrated redshift evolution of ¤𝑁ion for all galax-
ies in our sample, as compared to the theoretical models from Finkel-
stein et al. (2019); Kulkarni et al. (2019a), Bayesian-inferred history
from (Mason et al. 2019a) as well as various observational data (Sim-
monds et al. 2024b; Rinaldi et al. 2023; Mascia et al. 2023a). Finally,
we include curves showing the number of ionizing photons required
to ionize the neutral IGM for various clumping factors𝐶 ∈ {1, 3, 10}
given by Eq. (6). We find that our data is consistent with all of the ob-
servations, and predicted histories for the evolution of ionizing pho-
ton sources. It is also interesting to explore the question of whether
reionization is driven by a small number of UV-bright sources or by
a large number of UV-dim sources. To test this, we make a further
cut in our data, computing ¤𝑁ion for all galaxies in our sample with
𝑀UV < −18.5 (magenta) and 𝑀UV ⩾ −18.5 (purple), accounting
for the two groups respectively. We find that at late times (𝑧 ≲ 8) the
cohort of UV-dimmer galaxies (that account for 80% of the popula-
tion) release more ionizing photons into the IGM overall, agreeing
with previous work (e.g. Finkelstein et al. 2019). It is difficult to
constrain the two groups’ relative importance beyond this redshift
due to the difficulty in observing dim galaxies with such a selection
function at these distances.

However, there are several key points to discuss. The first is that,
as noted previously, our model does not specifically include AGN.

MNRAS 000, 1–16 (2024)
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Figure 8. Number density of ionising photons produced and emitted into the IGM within the GOODS-S field as a function of redshift, based on ILI predictions
of individual galaxies. We include lines for the entire sample (black) as well as for UV-bright galaxies (𝑀UV < −18.5; magenta) and UV-dim galaxies
(𝑀UV ⩾ −18.5; purple). For the full sample, we also include uncertainties computed by resampling both photometric and model uncertainties (dark purple).
Comparisons with a Bayesian-inferred history (Mason et al. 2019a), theoretical model (Finkelstein et al. 2019), and observational data (Simmonds et al. 2024b;
Rinaldi et al. 2023; Mascia et al. 2023a) are also provided, as well as an analytical estimate of the number of photons required to ionize the neutral IGM for
various clumping factors 𝐶 ∈ {1, 3, 10} (Madau et al. 1999).

Therefore, while we do include AGN hosts as sources (as we do not
make any AGN-related selection cuts apart from removing excep-
tionally bright sources), our model does not account for any changes
in the production or escape of ionized photons induced by the pres-
ence of an AGN (e.g. Grazian et al. 2018). Therefore, we do not
observe, for instance, the late-time bump in ionizing luminosity that
AGN cause (Kulkarni et al. 2019b; Dayal et al. 2020; Trebitsch et al.
2021). The second is that at the highest redshifts, our prediction of
¤𝑁ion become under-estimated due to the UV magnitude limit im-

posed by JADES being a flux-limited survey, thus effectively reduc-
ing the completeness of the sample at 𝑧 ≳ 8 (see also the discussion
in Robertson et al. 2023).

Now, we aim to use this sample to produce an explicit reionization
history, tracing the evolution of the ionized fraction (𝑄HII) based on
only our sample of galaxies. To do this, we make use of the modified
“reionization equation” of Madau (2017):

𝑑𝑄HII
𝑑𝑡

=
¤𝑁ion

⟨𝑛H⟩(1 + ⟨𝜅LLS
𝜈𝐿 ⟩/⟨𝜅IGM

𝜈𝐿 ⟩)
− 𝑄HII
𝑡rec

, (7)

where ⟨𝑛H⟩ = 1.9×10−7 cm−3 is the comoving number density of hy-
drogen in the IGM (Gnedin & Madau 2022) and ⟨𝜅LLS

𝜈𝐿
⟩ and ⟨𝜅IGM

𝜈𝐿
⟩)

are absorption coefficients due to high-density clumps known as
Lyman-limit systems (Crighton et al. 2019; Becker et al. 2021; Zhu
et al. 2023; Georgiev et al. 2024) as well as the IGM itself. This term
is proportional to 1−𝑄HII and becomes important as ionized bubbles
begin to merge and overlap (at 𝑧 ∼ 6), accounting for the presence of
optically thick absorbers that ensure that the mean-free path of LyC
photons remains small once overlap begins to occur (Gnedin & Fan
2006; Furlanetto & Mesinger 2009; Worseck et al. 2014). The ratio
of these two quantities is given as a function of redshift in Equation
32 of Madau (2017) and is taken as 0 for 𝑧 > 6. Finally, 𝑡rec is an
“effective” recombination timescale in the IGM. For our purposes,

we use the following fitting formula:

𝑡rec = 2.3
(
1 + 𝑧

6

)−4.35
Gyr, (8)

based on analysis of a radiation hydrodynamical simulation by So
et al. (2014). We choose this expression because it does not require
an estimate of the clumping factor 𝐶, although much work has been
carried out to estimate redshift-dependent values of 𝐶 using cosmo-
logical hydrodynamic simulations (Kohler et al. 2007; Pawlik et al.
2009; Finlator et al. 2012; Shull et al. 2012; So et al. 2014; Kaurov
& Gnedin 2014). We note, however, that there is evidence for a large
galaxy over-density in GOODS-S at 𝑧 ∼ 5.4 (Helton et al. 2024),
which may further stress the effectiveness of this approximation at
low redshifts, towards the end of reionization. In fact, as expected,
we also find a slight bump in ¤𝑁ion (Figure 8) at this redshift.

Another key quantity to compute is the Thompson optical depth
to the microwave background, 𝜏. This can be computed as (Kuhlen
& Faucher-Giguère 2012; Robertson et al. 2015; Robertson 2022):

𝜏(𝑧) = 𝑐𝜎𝑇 ⟨𝑛H⟩
∫ 𝑧

0
𝑑𝑧′

(1 + 𝑧′)2
𝐻 (𝑧′)

[
1 + 𝜂𝑌

4𝑋

]
𝑄HII (𝑧′), (9)

where 𝑐 is the speed of light, 𝜎𝑇 is the Thompson cross section, and
we assume that helium is fully ionized (𝜂 = 2) at redshifts 𝑧 < 4 and
singly ionized (𝜂 = 1) before this.

Using these expressions, as well as our results from Fig. 8, in Fig. 9
we show the computed evolution histories and associated uncertain-
ties for 𝑄HII

12 (left) and 𝜏 (right). In the case of 𝑄HII, we compare

12 Due to the flux limits of the survey, we solve Equation 7 from 𝑄HII = 0
at 𝑧 = 13. We also artificially set 𝑄HII = 1 once reionization is complete.
This is due to the fact that Eq. (7) is only valid until a given patch is nearing
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particularly important at high redshift (𝑧 ≳ 8), but can only reionize 35% of the volume by themselves, despite accounting for the brightest 20% of the sample.
The large number of remaining UV-dim galaxies dominate at lower redshifts, reionizing 85% of the survey volume. Thus, neither group are solely responsible,
but together are able to drive reionization to completion by 𝑧 ∼ 5.3. For comparison to 𝑄HII, we include simulation results from Kulkarni et al. (2019a) as well
as a number of observational results (Ouchi et al. 2010; Schenker et al. 2014; McGreer et al. 2015; Greig et al. 2017; Davies et al. 2018; Mason et al. 2018,
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to results from Kulkarni et al. (2019a) as well as observational con-
straints (Ouchi et al. 2010; Schenker et al. 2014; McGreer et al.
2015; Greig et al. 2017; Davies et al. 2018; Mason et al. 2018,
2019b; Ďurovčíková et al. 2020). For 𝜏, we compare to results from
Kulkarni et al. (2019a); Robertson et al. (2015) as well as constraints
from Planck Collaboration et al. (2016).

We find that the galaxies considered within this sample are able
to complete reionization within the GOODS-S region by 𝑧 ∼ 5.3.
Furthermore, the rapid evolution in 𝑄HII for the full sample begins
very late, being only ∼ 20% complete at 𝑧 = 7, in agreement with
various observational probes favouring a relatively late reionization
(Ouchi et al. 2010; Schroeder et al. 2013; Schenker et al. 2014;
Oñorbe et al. 2017; Bañados et al. 2018; Villasenor et al. 2022) as
well as Planck (Planck Collaboration et al. 2016). Finally, as before,
we repeat this calculation for the UV-bright and UV-dim galaxies
defined in Fig. 6. Here, we find that UV-bright galaxies are only able
to reionize ∼ 30% of the volume by themselves, despite accounting
for the brightest 20% of the population. On the other hand, the larger
number of UV-dim galaxies become completely dominant at 𝑧 < 7.5,
managing to ionize ∼ 80% of the volume by themselves. As such,
we conclude that neither group of sources is able to reionize the
Universe on time solely by themselves, but that the complete set of
star-forming galaxies are able to complete reionization without the
help of AGN or more exotic sources of ionizing photons (Furlanetto
& Oh 2008; Robertson et al. 2015; Liu et al. 2016; Kulkarni et al.
2019b; Dayal et al. 2020; Ma et al. 2021; Trebitsch et al. 2021, 2023).

complete reionization. The interested reader is directed to discussions in
Robertson et al. (2013); Madau (2017); Gnedin & Madau (2022).

An important caveat is the fact that in this analysis we are only
integrating so far down the UV luminosity function, owing to the flux
limited sample of JADES13 (Eisenstein et al. 2023a) as well as our
selection function. In doing so, we are not completely sampling galax-
ies at fainter magnitudes (particularly at 𝑧 ≳ 7), with no meaningful
representation at 𝑀UV ⩾ −15. In turn, these sources may have com-
parable ¤𝑛ion contributions, despite the potential turnover at the faint
end of the UV luminosity function (Bouwens et al. 2022; Williams
et al. 2024). For example, recent work by Wu & Kravtsov (2024) sug-
gests that for a constant 𝑓esc, dwarf galaxies with 𝑀UV > −14 might
contribute ≈40-60% of the ionizing photon budget at 𝑧 > 7, reducing
to ≈20% at 𝑧 = 6, highlighting the need to account for these objects.
In practise, including these sources will increase ¤𝑁ion (particularly at
higher redshifts), thus particularly modifying the intermediate reion-
ization history and making it conclude slightly earlier, potentially in
line with other observational constraints. As such, it would be inter-
esting to repeat this exercise with other deep surveys (e.g. JADES
Origin Field; Eisenstein et al. 2023b, NGDEEP; Bagley et al. 2024,
GLASS; Treu et al. 2022), wider surveys (e.g. CEERS; Bagley et al.
2023, PRIMER; Dunlop et al. 2021, COSMOS-WEB; Casey et al.
2023) and particularly those which are targeted at lensing clusters
which can push to even fainter UV luminosities (e.g. UNCOVER;
Bezanson et al. 2022). We leave such explorations to future work,
though note that our model can also be trained on other sets of JWST
filters and is therefore suitable for these applications.

In the case of the Thompson optical depth, we recover a redshift
evolution in agreement with previous results from Robertson et al.

13 For a complete discussion, the reader is directed to Robertson et al. (2023).
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(2015); Kulkarni et al. (2019a) up to 𝑧 ∼ 6. However, at redshifts
beyond this, we similarly find that the reduced number of sources in
our sample at higher redshift leads to a value of 𝜏 = 0.043, falling
below the constraints from Planck (Planck Collaboration et al. 2016).
In agreement with the evolution of𝑄HII, the majority of optical depth
evolution is driven by UV-dim galaxies, confirming their importance.

It is important to note that we do not suggest that the curve shown
in Fig. 9 is the definitive history of reionization in GOODS-S, par-
ticularly given that we do not have a complete sample by definition
(see the selection described in Section 4.1). Instead, the purpose of
this work has been to show that galaxy properties such as (but not
limited to14) ¤𝑛ion can be self-consistently derived from photometry.
It is, however, particularly interesting that the sample studied here
is able to drive reionization to completion on a realistic time-scale,
leaving space for ever dimmer galaxies to make their mark. In con-
clusion, this work further accentuates the fact that while JWST has
certainly ushered in a new era for the study of reionization, it is nec-
essary to use deep surveys with well-defined selection functions and
self-consistent models to build a complete picture of cosmic dawn.

5 CONCLUSIONS

We have implemented an implicit likelihood inference (ILI) model
based on the LTU-ILI pipeline (Ho et al. 2024) to predict the angle-
averaged escaped ionizing luminosity, ¤𝑛ion, of Epoch of Reionization
galaxies based on observed photometric magnitudes and redshifts.
Trained on 13,800 mock dust-attenuated photometric line-of-sight
measurements of JWST analogues from the SPHINX20 simulation
(Katz et al. 2023a), this model has been validated and shown to
perform better than estimates computed using SED-fitting techniques
with BAGPIPES, including better performance across multiple lines-
of-sight for the same object. One of the key novelties of our model
compared to previous analyses is that rather than treating the ionizing
photon production efficiency and LyC escape fraction as separate
quantities, they are inferred together. Hence, our method does not
require a separate prescription for the LyC escape fraction, 𝑓esc, or
for any dust-correction, as these are handled self-consistently by the
model.

This ILI model was then deployed on a sample of 4,559 photo-
metrically observed galaxies in the GOODS-S field as part of the
JADES programme (Eisenstein et al. 2023a), allowing us to explore
the redshift evolution of ¤𝑛ion, the number density of ionizing photons
released into the intergalactic medium (IGM), ¤𝑁ion, as well as the
volume-averaged ionized fraction of hydrogen, 𝑄HII.

Our conclusions are as follows:

• Our ILI method for the inference of ¤𝑛ion from photometry is
more accurate (and produces self-consistent uncertainties) than tra-
ditional SED-fitting methods. Additionally, it is orders of magnitude
faster, allowing for easy application to large datasets.

• In a comparative test against an SED-fitting method on a sample
of SPHINX20 galaxies, BAGPIPES was found to perform worse, often
over-estimating ¤𝑛ion for galaxies which release the most ionising
photons. Furthermore, estimates from BAGPIPES required the use
of a model for the LyC escape fraction, which further inflated this
over-estimate.

14 In principal such a method (using ILI applied to photometry) can be
leveraged to predict any galaxy property included in the SPHINX20 public
data release.

• For our sample of photometric galaxies, ¤𝑛ion evolves slowly
with redshift, as: log10 ( ¤𝑛ion) = (0.08 ± 0.01)𝑧 + (51.60 ± 0.06).

• Star-forming galaxies observed within this sample are capable
of producing a reionization history that begins late and completes at
𝑧 ∼ 5.3.
• UV-dim galaxies (with 𝑀UV ⩾ −18.5, accounting for 80% of

the sample) are able to reionize ∼ 80% of the survey volume, while
UV-bright galaxies (with𝑀UV < −18.5, 20% of the sample) reionize
∼ 30% of the volume. Thus, neither subgroup is capable of driving
reionization by themselves but faint galaxies appear to be crucial.

We have utilised the synergy of photometric JWST observations
and cosmological radiation hydrodynamic simulations with a re-
solved multi-phase interstellar medium to build an inference pipeline
for the luminosity of ionizing photons released into the IGM by
galaxies during the Epoch of Reionization. Beyond providing valu-
able insight into the contributions of star-forming galaxies to the
evolution of reionization, this work further highlights the necessity
for observers and simulators to work together as we continue to
explore the cosmic dawn.
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APPENDIX A: VALIDATING THE MODEL ON SPHINX20

Here, we proceed to complete a variety of benchmark tests on the
model described in Section 2.

First, in order to further confirm that the uncertainties produced
by the model are self-consistent, in Fig. A1 we show histograms of
the standardised residuals given by:

𝑥 ≡
¤𝑛predicted
ion − ¤𝑛true

ion

⟨unc( ¤𝑛predicted
ion )⟩

, (A1)

where ⟨unc( ¤𝑛predicted
ion )⟩ is the average of the asymmetric 1𝜎 uncer-

tainties of the ILI posterior. We include histograms for the full sample
(black) as well as for the observed UV-bright (𝑀UV ⩽ −18.5; ma-
genta) and UV-dim (𝑀UV > −18.5; purple) sight-lines of SPHINX20
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Figure A2. Probability integral transform diagnostic for the ILI model, quan-
tifying the proportion of posterior samples that are below the true value.

galaxies. For completeness, we also show the means (bold) and stan-
dard deviations (dashed), as well as the standard Gaussian distribu-
tion, G(0, 1), as a comparison. We find that in all three cases our ILI
model performs very well, without significant outliers. Interestingly,
the model performs better in the case of UV-bright galaxies.

To further reinforce this point, we also inspect the Probability Inte-
gral Transform (PIT, Cook et al. 2006) diagnostic, shown in Fig. A2.
The PIT quantifies the proportion of posterior samples 𝜽 that are
below the true value. If the distribution of PIT values is uniformly
distributed, then the predicted posterior distributions are consistent
with the true values (Zhao et al. 2021). The PIT distribution is typ-
ically assessed on a percentile-percentile plot, which compares the
cumulative density function of PIT values to that of a uniform ran-
dom variable. If the learnt posterior is well-calibrated, then the two
cumulative density functions should agree. If not, the PIT plot is a
useful probe of a global bias or over- and under-dispersion. We verify
that the test-set PIT distribution of our ILI model predicting log ¤𝑛ion
passes this test.

Lastly, we also verify that the predictions of our ILI model agree
with those of an Extra-Trees regressor (ET, Geurts et al. 2006) as
implemented in scikit-learn (Pedregosa et al. 2011). While this
is not a validation of the ILI pipeline, it is nevertheless a useful sanity
check. We similarly optimize the hyperparameters of the ET model
and find that the maximum posterior ILI and ET predictions are
correlated with a Spearman correlation coefficient of 0.98 and that
with respect to the true values the ILI model marginally outperforms
the ET, while also providing self-consistent uncertainties.
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