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Abstract
Training neural networks requires optimizing a
loss function that may be highly irregular, and
in particular neither convex nor smooth. Popular
training algorithms are based on stochastic gradi-
ent descent with momentum (SGDM), for which
classical analysis applies only if the loss is either
convex or smooth. We show that a very small
modification to SGDM closes this gap: simply
scale the update at each time point by an expo-
nentially distributed random scalar. The resulting
algorithm achieves optimal convergence guaran-
tees. Intriguingly, this result is not derived by a
specific analysis of SGDM: instead, it falls nat-
urally out of a more general framework for con-
verting online convex optimization algorithms to
non-convex optimization algorithms.

1. Introduction
Non-convex optimization algorithms are one of the funda-
mental tools in modern machine learning, as training neural
network models requires optimizing a non-convex loss func-
tion. This paper provides a new theoretical framework for
building such algorithms. The simplest application of this
framework almost exactly recapitulates the standard algo-
rithm used in practice: stochastic gradient descent with
momentum (SGDM).

The goal of any optimization algorithm used to train a neural
network is to minimize a potentially non-convex objective
function. Formally, given F : Rd → R, the problem is to
solve

min
x∈Rd

F (x) = Ez[f(x, z)],

where f is a stochastic estimator of F . In practice, x denotes
the parameters of a neural network model, and z denotes
the data point. Following the majority of the literature,
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we focus on first-order stochastic optimization algorithms,
which can only access to the stochastic gradient ∇f(x, z)
as an estimate of the unknown true gradient ∇F (x). We
measure the “cost” of an algorithm by counting the number
of stochastic gradient evaluations it requires to achieve some
desired convergence guarantee. We will frequently refer to
this count as the number of “iterations” employed by the
algorithm.

When the objective function is non-convex, finding a global
minimum can be intractable. To navigate this complexity,
many prior works have imposed various smoothness as-
sumptions on the objective. These include, but not limited
to, first-order smoothness (Ghadimi & Lan, 2013; Carmon
et al., 2017; Arjevani et al., 2022; Carmon et al., 2019),
second-order smoothness (Tripuraneni et al., 2018; Car-
mon et al., 2018; Fang et al., 2019; Arjevani et al., 2020),
and mean-square smoothness (Allen-Zhu, 2018; Fang et al.,
2018; Cutkosky & Orabona, 2019; Arjevani et al., 2022).
Instead of finding the global minimum, the smoothness con-
ditions allow us to find an ϵ-stationary point x of F such
that ∥∇F (x)∥ ≤ ϵ.

The optimal rates for smooth non-convex optimization
are now well-understood. When the objective is smooth,
stochastic gradient descent (SGD) requires O(ϵ−4) itera-
tions to find ϵ-stationary point, matching the optimal rate
(Arjevani et al., 2019). When F is second-order smooth, a
variant of SGD augmented with occasional random perturba-
tions achieves the optimal rate O(ϵ−7/2) (Fang et al., 2019;
Arjevani et al., 2020). Moreover, when F is mean-square
smooth, variance-reduction algorithms, such as SPIDER
(Fang et al., 2018) and SNVRG (Zhou et al., 2018), achieve
the optimal rate O(ϵ−3) (Arjevani et al., 2019). All of these
algorithms can be viewed as variants of SGD.

In addition to these theoretical optimality results, SGD and
its variants are also incredibly effective in practice across
a wide variety of deep learning tasks. Among these vari-
ants, the family of momentum algorithms have become
particularly popular (Sutskever et al., 2013; Kingma & Ba,
2014; You et al., 2017; 2019; Cutkosky & Orabona, 2019;
Cutkosky & Mehta, 2020; Ziyin et al., 2021). Under smooth-
ness conditions, the momentum algorithms also achieve the
same optimal rates.

However, modern deep learning models frequently incorpo-
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rate a range of non-smooth architectures, including elements
like ReLU, max pooling, and quantization layers. These
components result in a non-smooth optimization objective,
violating the fundamental assumption of a vast majority of
prior works. Non-smooth optimization is fundamentally
more difficult than its smooth counterpart, as in the worst-
case Kornowski & Shamir (2022b) show that it is actually
impossible to find a neighborhood around ϵ-stationary. This
underscores the need for a tractable convergence criterion
in non-smooth non-convex optimization.

One line of research in non-smooth non-convex optimization
studies weakly-convex objectives (Davis & Drusvyatskiy,
2019; Mai & Johansson, 2020), with a focus on finding
ϵ-stationary points of the Moreau envelope of the objectives.
It has been demonstrated that various algorithms, including
the proximal subgradient method and SGDM, can achieve
the optimal rate of O(ϵ−4) for finding an ϵ-stationary point
of the Moreau envelope. However, it is important to note
that the assumption of weak convexity is crucial for the
convergence notion involving the Moreau envelope. Our
interest lies in solving non-smooth non-convex optimization
without relying on the weak convexity assumption.

To this end, Zhang et al. (2020) proposed employing Gold-
stein stationary points (Goldstein, 1977) as a convergence
target in non-smooth non-convex (and non-weakly-convex)
optimization. This approach has been widely accepted
by recent works studying non-smooth optimization (Ko-
rnowski & Shamir, 2022a; Lin et al., 2022; Kornowski &
Shamir, 2023; Cutkosky et al., 2023). Formally, x is a
(δ, ϵ)-Goldstein stationary point if there exists a random
vector y such that E[y] = x, ∥y − x∥ ≤ δ almost surely,
and ∥E[∇F (y)]∥ ≤ ϵ.1 The best-possible rate for finding
a (δ, ϵ)-Goldstein stationary point is O(δ−1ϵ−3) iterations.
This rate was only recently achieved by Cutkosky et al.
(2023), who developed an “online-to-non-convex conver-
sion” (O2NC) technique that converts online convex op-
timization (OCO) algorithms to non-smooth non-convex
stochastic optimization algorithms. Building on this back-
ground, we will relax the definition of stationarity and ex-
tend this O2NC technique to eventually develop a conver-
gence analysis of SGDM in the non-smooth and non-convex
setting.

1.1. Our Contribution

In this paper, we introduce a new notion of stationarity for
non-smooth non-convex objectives. Our notion is a natural
relaxation of the Goldstein stationary point, but will allow
for more flexible algorithm design. Intuitively, the problem

1To be consistent with our proposed definition, we choose to
present the definition of (δ, ϵ)-Goldstein stationary point involving
a random vector y. This presentation is equivalent to the original
definition proposed by (Zhang et al., 2020).

with the Goldstein stationary point is that to verify that a
point x is a stationary point, one must evaluate the gradient
many times inside a ball of some small radius δ about x.
This means that algorithms finding such points usually make
fairly conservative updates to sufficiently explore this ball:
in essence, they work by verifying each iterate is not close
to a stationary point before moving on to the next iterate.
Algorithms used in practice do not typically behave this
way, and our relaxed definition will not require us to employ
such behavior.

Using our new criterion, we propose a general framework,
“Exponentiated O2NC”, that converts OCO algorithms to
non-smooth optimization algorithms. This framework is an
extension of the O2NC technique of Cutkosky et al. (2023)
that distinguishes itself through two significant improve-
ments.

Firstly, the original O2NC method requires the OCO algo-
rithm to constrain all of its iterates to a small ball of radius
roughly δϵ2. This approach is designed to ensure that the
parameters within any period of ϵ−2 iterations remain in-
side a ball of radius δ. The algorithm then uses these ϵ−2

gradient evaluations inside a ball of radius δ to check if
the current iterate is a stationary point (i.e., if the average
gradient has norm less than ϵ). Our new criterion, however,
obviates the need for such explicit constraints, intuitively
allowing our algorithms to make larger updates when far
from a stationary point.

Secondly, O2NC does not evaluate gradients at the actual
iterates. Instead, gradients are evaluated at an intermediate
variable wn lying between the two iterates xn and xn+1.
This conflicts with essentially all practical algorithms, and
moreover imposes an extra memory burden. In contrast, our
algorithm evaluates gradients exactly at each iterate, which
simplifies implementation and improves space complexity.

Armed with this improved framework, we proposed an un-
constrained variant of online gradient descent, which is de-
rived from the family of online mirror descent with compos-
ite loss. When applied within this algorithm, our framework
produces an algorithm that is exactly equal to stochastic
gradient descent with momentum (SGDM), subject to an
additional random scaling on the update. Notably, it also
achieves the optimal rate under our new criterion.

To summarize, this paper has the following contributions:

• We introduce a relaxed convergence criterion for non-
smooth optimization that recovers all useful properties
of Goldstein stationary point.

• We propose a modified online-to-non-convex conver-
sion framework that does not require intermediate
states.

• We apply our new conversion to the most standard
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OCO algorithm: “online gradient descent”. The result-
ing method achieves optimal convergence guarantees
as is almost exactly the same as the standard SGDM
algorithm. The only difference is that the updates of
SGDM are now scaled by an exponential random vari-
able. This is especially remarkable because the ma-
chinery that we employ does not particularly resemble
SGDM until it is finally all put together.

2. Preliminaries
Notations Bold font x denotes a vector in Rd and ∥x∥
denotes its Euclidean norm. We define Bd(x, r) = {y ∈
Rd : ∥x − y∥ ≤ r} and sometimes drop the subscript d
when the context is clear. We use [n] as an abbreviation
for {1, 2, . . . , n}. We adopt the standard big-O notation,
and f ≲ g denotes f = O(g). P(S) denotes the set of all
distributions over a measurable set S.

Stochastic Optimization Given a function F : Rd → R,
F is G-Lipschitz if |F (x) − F (y)| ≤ G∥x − y∥,∀x,y.
Equivalently, when F is differentiable, F is G-Lipschitz if
∥∇F (x)∥ ≤ G,∀x. F is H-smooth if F is differentiable
and ∇F is H-Lipschitz; F is ρ-second-order-smooth if F
is twice differentiable and∇2F is ρ-Lipschitz.
Assumption 2.1. We assume that our objective function
F : Rd → R is differentiable and G Lipschitz, and given
an initial point x0, F (x0) − inf F (x) ≤ F ∗ for some
known F ∗. We also assume the stochastic gradient satisfies
E[∇f(x, z) |x] = ∇F (x),E ∥∇F (x)−∇f(x, z)∥2 ≤ σ2

for all x, z. Finally, we assume that F is well-behaved in
the sense of (Cutkosky et al., 2023): for any points x and y,
F (x)− F (y) =

∫ 1

0
⟨∇F (x+ t(y − x)),y − x⟩ dt.

Online Learning An online convex optimization (OCO)
algorithm is an iterative algorithm that uses the following
procedure: in each iteration n, the algorithm plays an action
∆n and then receives a convex loss function ℓn The goal is
to minimize the regret w.r.t. some comparator u, defined as

Regretn(u) :=
∑n
t=1ℓt(∆t)− ℓt(u).

The most basic OCO algorithm is online gradient de-
scent: ∆n+1 = ∆n − η∇ℓn(∆n), which guarantees
RegretN (u) = O(

√
N) for appropriate η. Notably, in

OCO we make no assumptions about the dynamics of ℓn.
They need not be stochastic, and could even be adversarially
generated. We will be making use of algorithms that obtain
anytime regret bounds. That is, for all n and any sequence of
u1,u2, . . . , it is possible to bound Regretn(un) by some
appropriate quantities (that may be function of n). This is
no great burden: almost all online convex optimization algo-
rithms have anytime regret bounds. For readers interested in
more details, please refer to (Cesa-Bianchi & Lugosi, 2006;
Hazan, 2019; Orabona, 2019).

2.1. Non-smooth Optimization

Suppose F is differentiable. x is an ϵ-stationary point of F
if ∥∇F (x)∥ ≤ ϵ. This definition is the standard criterion
for smooth non-convex optimization. For non-smooth non-
convex optimization, the standard criterion is the following:
x is an (δ, ϵ)-Goldstein stationary point of F if there exists
S ⊂ Rd and P ∈ P(S) such that y ∼ P satisfies E[y] = x,
∥y − x∥ ≤ δ almost surely, and ∥E[∇F (y)]∥ ≤ ϵ.2 Next,
we formally define (c, ϵ)-stationary point, our proposed new
criterion for non-smooth optimization.

Definition 2.2. Suppose F : Rd → R is differentiable, x is
a (c, ϵ)-stationary point of F if ∥∇F (x)∥c ≤ ϵ, where

∥∇F (x)∥c = inf
S⊂Rd

y∼P∈P(S)
E[y]=x

∥E[∇F (y)]∥+ c · E∥y − x∥2.

In other words, if x is a (c, ϵ)-stationary point, then there
exists S ⊂ Rd, P ∈ P(S) such that y ∼ P satisfies E[y] =
x, E ∥y − x∥2 ≤ ϵ/c, and ∥E[∇F (y)]∥ ≤ ϵ. To see how
this definition is related to the previous (ϵ, δ)-Goldstein
stationary point definition, consider the case when c = ϵ/δ2.
Then this new definition of (c, ϵ)-stationary point is almost
identical to (δ, ϵ)-Goldstein stationary point, except that it
relaxes the constraint from ∥y−x∥ ≤ δ to E ∥y−x∥2 ≤ δ2.

To further motivate this definition, we demonstrate that
(c, ϵ)-stationary point retains desirable properties of Gold-
stein stationary points. Firstly, the following result shows
that, similar to Goldstein stationary points, (c, ϵ)-stationary
points can also be reduced to first-order stationary points
with proper choices of c when the objective is smooth or
second-order smooth.

Lemma 2.3. Suppose F is H-smooth. If ∥∇F (x)∥c ≤ ϵ
where c = H2ϵ−1, then ∥∇F (x)∥ ≤ 2ϵ.
Suppose F is ρ-second-order-smooth. If ∥∇F (x)∥c ≤ ϵ
where c = ρ/2, then ∥∇F (x)∥ ≤ 2ϵ.

As an immediate implication, suppose an algorithm achieves
O(c1/2ϵ−7/2) rate for finding a (c, ϵ)-stationary point. Then
Lemma 2.3 implies that, with c = O(ϵ−1), the algorithm au-
tomatically achieves the optimal rate of O(ϵ−4) for smooth
objectives (Arjevani et al., 2019). Similarly, with c = O(1),
it achieves the optimal rate of O(ϵ−7/2) for second-order
smooth objectives (Arjevani et al., 2020).

Secondly, we show in the following lemma that (c, ϵ)-
stationary points can also be reduced to Goldstein stationary
points when the objective is Lipschitz.

2The original definition of (δ, ϵ) Goldstein stationary point
proposed by (Zhang et al., 2020) does not require the condition
E[y] = x. However, as shown in (Cutkosky et al., 2023), this
condition allows us to reduce a Goldstein stationary point to an
ϵ-stationary point when the loss is second-order smooth. Hence
we also keep this condition.

3
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Algorithm 1 O2NC (Cutkosky et al., 2023)

1: Input: OCO algorithm A, initial state x0, parameters
N,K, T ∈ N such that N = KT .

2: for n← 1, 2, . . . , N do
3: Receive ∆n from A.
4: Update xn ← xn−1+∆n and wn ← xn−1+sn∆n,

where sn ∼ Unif([0, 1]) i.i.d.
5: Compute gn ← ∇f(xn, zn).
6: Send loss ℓn(∆) = ⟨gn,∆⟩ to A.

// For output only (update every T iteration):
7: If n = kT , compute wk = 1

T

∑T−1
t=0 wn−t.

8: end for
9: Output w ∼ Unif({wk : k ∈ [K]}).

Lemma 2.4. Suppose F is G-Lipschitz. For any c, ϵ, δ > 0,
a (c, ϵ)-stationary point is also a (δ, ϵ′)-Goldstein stationary
point where ϵ′ = (1 + 2G

cδ2 )ϵ.

2.2. Online-to-non-convex Conversion

Since our algorithm is an extension of the online-to-
non-convex conversion (O2NC) technique proposed by
(Cutkosky et al., 2023), we briefly review the original O2NC
algorithm. The pseudocode is outlined in Algorithm 1, with
minor adjustments in notations for consistency with our
presentation.

At its essence, O2NC shifts the challenge of optimizing
a non-convex and non-smooth objective into minimizing
regret. The intuition is as follows. By adding a uniform
perturbation sn ∈ [0, 1], ⟨∇f(xn−1 + sn∆n, zn),∆n⟩ =
⟨gn,∆n⟩ is an unbiased estimator of F (xn) − F (xn−1),
effectively capturing the “training progress”. Consequently,
by minimizing the regret, which is equivalent to minimizing∑N
n=1⟨gn,∆n⟩, the algorithm automatically identifies the

most effective update step ∆n.

2.3. Paper Organization

In Section 3, we present the general online-to-non-convex
framework, Exponentiated O2NC. We first explain the intu-
itions behind the algorithm design, and then we provide the
convergence analysis in Section 3.1. In Section 4, we pro-
vide an explicit instantiation of our framework, and see that
the resulting algorithm is essentially the standard SGDM.
In Section 5, we present a lower bound for finding (c, ϵ)-
stationary point. In Section 6, we present empirical evalua-
tions.

3. Exponentiated Online-to-non-convex
In this section, we present our improved online-to-non-
convex framework, Exponentiated O2NC, and explain the
key techniques we employed to improve the algorithm. The

Algorithm 2 Exponentiated O2NC

1: Input: OCO algorithm A, initial state x0, parameters
N ∈ N, β ∈ (0, 1), regularizersRn(∆).

2: for n← 1, 2, . . . , N do
3: Receive ∆n from A.
4: Update xn ← xn−1 + sn∆n, where sn ∼ Exp(1)

i.i.d.
5: Compute gn ← ∇f(xn, zn).
6: Send loss ℓn(∆) = ⟨β−ngn,∆⟩+Rn(∆) to A.

// For output only (does not affect training):
7: Update xn = β−βn

1−βn xn−1 +
1−β
1−βnxn.

Equivalently, xn =
∑n
t=1 β

n−txt · 1−β
1−βn .

8: end for
9: Output x ∼ Unif({xn : n ∈ [N ]}).

pseudocode is presented in Algorithm 2.

Random Scaling One notable feature of Algorithm 2 is
that the update ∆n is scaled by an exponential random
variable sn. Formally, we have the following result:
Lemma 3.1. Let s ∼ Exp(λ) for some λ > 0, then

Es[F (x+ s∆)− F (x)] = Es[⟨∇F (x+ s∆),∆⟩]/λ.

In Algorihtm 2, we set sn ∼ Exp(1) and then define xn =
xn−1 + sn∆n. Thus, Lemma 3.1 implies that

E[F (xn)− F (xn−1)] = E⟨∇F (xn),∆n⟩
= E⟨∇F (xn),xn − xn−1⟩.

In other words, we can estimate the “training progress”
F (xn) − F (xn−1) by directly computing the stochastic
gradient at iterate xn. By exploiting favorable properties of
the exponential distribution, we dispense with the need for
the “auxiliary point” wn employed by O2NC.

We’d like to highlight the significance of this result. The vast
majority of smooth non-convex optimization analysis de-
pends on the assumption that F (x) is locally linear, namely
F (xn)− F (xn−1) ≈ ⟨∇F (xn),xn − xn−1⟩. Under vari-
ous smoothness assumptions, the error in this approximation
can be controlled via bounds on the remainder in a Taylor
series. For example, when F is smooth, then F (xn) −
F (xn−1) = ⟨F (xn),xn − xn−1⟩ + O(∥xn − xn−1∥2).
However, since smoothness is necessary for bounding Tay-
lor approximation error, such analysis technique is inappli-
cable in non-smooth optimization. In contrast, by scaling
an exponential random variable to the update, we directly
establish a linear equation that E[F (xn) − F (xn−1)] =

E⟨∇F (xn),xn − xn−1⟩, effectively eliminating any addi-
tional error that Taylor approximation might incur.

A randomized approach such as ours is also recommended
in the recent findings by Jordan et al. (2023), who demon-
strated that randomization is necessary for achieving a
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dimension-free rate in non-smooth optimization. In par-
ticular, any deterministic algorithm suffers an additional
dimension dependence of Ω(d).

Although employing exponential random scaling might
seem unconventional, we justify this scaling by noting
that sn ∼ Exp(1) satisfies E[sn] = 1 and P{sn ≥ t} =
exp(−t) (in particular, P{sn ≤ 5} ≥ 0.99). In other words,
with high probability, the scaling factor behaves like a con-
stant scaling on the update. To corroborate the efficacy of
random scaling, we have conducted a series of empirical
tests, the details of which are discussed in Section 6.

Exponentiated and Regularized Losses The most signif-
icant feature of Exponentiated O2NC (and from which it de-
rives its name) is the loss function: ℓn(∆) = ⟨β−ngn,∆⟩+
Rn(∆). This loss consists of two parts: intuitively, the
exponentially upweighted linear loss ⟨β−ngn,∆⟩ measures
the “training progress” F (xn)− F (xn−1) (as discussed in
Lemma 3.1), andRn(∆) serves as an stabilizer that prevents
the iterates from irregular behaviors. We will elaborate the
role of each component later. To illustrate how Exponential
O2NC works, let un be the optimal choice of ∆n in hind-
sight. Then by minimizing the regret Regretn(un) w.r.t.
un, Algorithm 2 automatically chooses the best possible
update ∆n that is closest to un.

Exponentially Weighted Gradients For now, set aside
the regularizerRn and focus on the linear term ⟨β−ngn,∆⟩.
To provide an intuition why we upweight the gradient by
an exponential factor β−n, we provide a brief overview for
the convergence analysis of our algorithm. For simplicity of
illustration, we assume gn = ∇F (xn) andRn = 0.

Let Sn = {xt}nt=1 and let yn be distributed over Sn such
that P{yn = xt} = pn,t := βn−t · 1−β

1−βn . Our strategy will
be to show that this set Sn and random variable yn satisfy
the conditions to make xn a (c, ϵ) stationary point where xn
is defined in Algorithm 2. To start, note that this distribution
satisfies xn = E[yn]. Next, since there is always non-
zero probability that yn = x1, it’s not possible to obtain a
deterministic bound of ∥yn − xn∥ ≤ δ for some small δ
(as would be required if we were trying to establish (δ, ϵ)
Goldstein stationarity). However, since yn is exponentially
more likely to be a later iterate (close to xn) than an early
iterate (far from xn), intuitively E ∥yn − xn∥2 should not
be too big. Formalizing this intuition forms a substantial
part of our analysis.

In the convergence analysis, we will show x is a (c, ϵ)-
stationary point by bounding ∥∇F (xn)∥c (defined in Def-
inition 2.2) for all n. The condition E[yn] = xn is al-
ready satisfied by construction of yn, and it remains to
bound the expected gradient ∥E[∇F (yn)]∥ and the vari-
ance E ∥yn − xn∥2. While the regularizerRn is imposed

to control the variance, the exponentiated gradients is em-
ployed to bound the expected gradient. In particular, this is
achieved by reducing the difficult task of minimizing the ex-
pected gradient of a non-smooth non-convex objective to a
relatively easier (and very heavily studied) one: minimizing
the regret w.r.t. exponentiated losses ℓt(∆) = ⟨β−tgt,∆⟩.
To elaborate further, let’s consider a simplified illustration
as follows.

Recall that pn,t = βn−t · 1−β
1−βn . By construction of yn,

E[∇F (yn)] =
∑n
t=1pn,t∇F (xt).

Next, for each n ∈ [N ], we define

un = −D
∑n
t=1 pn,t∇F (xt)

∥
∑n
t=1 pn,t∇F (xt)∥

(1)

for someD to be specified later. As a remark, un minimizes
⟨E[∇F (yn)],∆⟩ over all possible ∆ such that ∥∆∥ = D,
therefore representing the optimal update in iterate n that
leads to the fastest convergence.

With un defined in (1), it follows that

1

D

n∑
t=1

pn,t⟨∇F (xt),−un⟩ =

∥∥∥∥∥
n∑
t=1

pn,t∇F (xt)

∥∥∥∥∥
= ∥E[∇F (yn)]∥.

Recall that we assume gt = ∇F (xt) for simplicity. More-
over, in later convergence analysis, we will carefully show
that

∑N
n=1

∑n
t=1 pn,t⟨∇F (xt),−∆t⟩ ≲ 1 − β (see Ap-

pendix C). Consequently,

1

N

N∑
n=1

∥E∇F (yn)∥

=
1

DN

N∑
n=1

n∑
t=1

pn,t⟨∇F (xt),∆t − un⟩

− 1

DN

N∑
n=1

n∑
t=1

pn,t⟨∇F (xt),∆t⟩

≲
1− β
DN

(
1 +

N∑
n=1

βnRegretn(un)

)
.

Here Regretn(un) =
∑n
t=1⟨β−tgt,∆t − un⟩ denotes the

regret w.r.t. the exponentiated losses ℓt(∆) = ⟨β−tgt,∆⟩
for t = 1, . . . , n (assumingRn = 0) and comparator un de-
fined in (1). Notably, the expected gradient is now bounded
by the weighted average of the sequence of static regrets,
Regretn(un). Consequently, a good OCO algorithm that
effectively minimizes the regret is closely aligned with our
goal of minimizing the expected gradient.
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Variance Regularization As aforementioned, we impose
the regularizer Rn(∆) = µn

2 ∥∆∥
2 to control the variance

E ∥yn − xn∥2. Formally, the following result establishes a
reduction from bounding variance to bounding the norm of
∆t, thus motivating the choice of the regularizer.

Lemma 3.2. For any β ∈ (0, 1),

Es
N∑
n=1

Eyn
∥yn − xn∥2 ≤

N∑
n=1

12

(1− β)2
∥∆n∥2.

This suggests that bounding ∥∆n∥2 is sufficient to bound
the variance of yn. Therefore, we impose the regularizer
Rn(∆) = µn

2 ∥∆∥
2, for some constant µn to be determined

later, to ensure that ∥∆n∥2 remains small, effectively con-
trolling the variance of yn.

Furthermore, we’d like to highlight that Lemma 3.2 provides
a strictly better bound on the variance of yn compared to the
possible maximum deviation max ∥yn − xn∥. For illustra-
tion, assume ∆t’s are orthonormal, then max ∥yN−xN∥ ≈
∥x1 − xN∥ = O(N). On the other hand, Lemma 3.2 im-
plies that for n ∼ Unif([N ]), En[Var(yn)] = O( 1

(1−β)2 ).

In particular, we will show that 1−β = N−1/2 when the ob-
jective is smooth. Consequently, E ∥yn − xn∥ = O(

√
N),

which is strictly tighter than the deterministic bound of
max ∥yN − xN∥ = O(N).

This further motivates why we choose this specific distribu-
tion for yn: the algorithm does not need to be conservative
all the time and can occasionally make relatively large step,
breaking the deterministic constraint that ∥yn − xn∥ ≤ δ,
while still satisfying Var(yn) ≤ δ2.

3.1. Convergence Analysis

Now we present the main convergence theorem of Algo-
rithm 2. This is a very general theorem, and we will prove
the convergence bound of a more specific algorithm (Theo-
rem 4.2) based on this result. A more formally stated version
of this theorem and its proof can be found in Appendix C.

Theorem 3.3. Follow Assumption 2.1. Let Regretn(un)
denote the regret w.r.t. ℓt(∆) = ⟨β−tgt,∆⟩ +Rt(∆) for
t = 1, . . . , n and comparator un defined in (1). Define
Rt(∆) = µt

2 ∥∆∥
2, µt = 24cD

α2 β−t, and α = 1− β, then

E ∥∇F (x)∥c ≲
F ∗

DN
+
G+ σ

αN
+ σ
√
α+

cD2

α2

+ E
βN+1RegretN (uN ) + α

∑N
n=1 β

nRegretn(un)

DN
.

Here the second line denotes the weighted average of the
sequence of static regrets, Regretn(wn), w.r.t. the exponen-
tiated and regularized loss ℓt(∆) = ⟨β−tgt,∆⟩ and com-
parator un defined in (1), as we discussed earlier. To see an

immediate implication of Theorem 3.3, assume the average
regret is no larger than the terms in the first line. Then by
proper tuning D = 1√

αN
and α = max{ 1

N2/3 ,
c2/7

N4/7 }, we

have E ∥∇F (w)∥c ≲ 1
N1/3 + c1/7

N2/7 .

4. Recovering SGDM:
Exponentiated O2NC with OMD
In the previous sections, we have shown that Exponentiated
O2NC can convert any OCO algorithm into a non-convex op-
timization algorithm in such a way that small regret bounds
transform into convergence guarantees. So, the natural next
step is to instantiate Exponentiated O2NC with some partic-
ular OCO algorithm. In this section we carry out this task
and discover that the resulting method not only achieves
optimal convergence guarantees, but is also nearly identical
to the standard SGDM optimization algorithm!

The OCO algorithm we will use to instantiate Exponenti-
ated O2NC is a simple variant of “online mirror descent”
(OMD) (Beck & Teboulle, 2003), which a standard OCO
algorithm. However, typical OMD analysis involves clip-
ping the outputs ∆n to lie in some pre-specified constraint
set. We instead employ a minor modification to the standard
algorithm to obviate the need for such clipping.

Inspired by (Duchi et al., 2010), we choose our OCO algo-
rithm from the family of Online Mirror Descent (OMD) with
composite loss. Given a sequence of gradients g̃t := β−tgt
and convex functions ψt(∆),Rt(∆), ϕt(∆), OMD with
composite loss defines ∆t+1 as:

argmin
∆
⟨g̃t,∆⟩+Dψt(∆,∆t) +Rt+1(∆) + ϕt(∆)︸ ︷︷ ︸

composite loss

.

Here Dψt
denotes the Bregman divergence of ψt, and

Rt+1(∆) + ϕt(∆) denotes the composite loss. The com-
posite loss consists of two components. Firstly,Rt+1(∆) =
µt+1

2 ∥∆∥
2 controls the variance of yn, as discussed in Sec-

tion 3. Secondly, OMD is known to struggle under un-
constrained domain setting (Orabona & Pál, 2016), but
this can be fixed with proper regularization, as done in
Fang et al. (2021) (implicitly), and Jacobsen & Cutkosky
(2022) (explicitly). Following a similar approach, we set
ϕt(∆) = ( 1

ηt+1
− 1

ηt
)∥∆∥2 to prevent the norm of ∥∆∥

from being too large.

With ψt(∆) = 1
2ηt
∥∆∥2 where 0 < ηt+1 ≤ ηt, Theorem

4.1 provides a regret bound for this specific OCO algorithm.

Theorem 4.1. Let ∆1 = 0 and ∆t+1 = argmin∆⟨g̃t,∆⟩+

6
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1
2ηt
∥∆−∆t∥2 + µt+1

2 ∥∆∥
2 + ( 1

ηt+1
− 1

ηt
)∥∆∥2. Then

n∑
t=1

⟨g̃t,∆t − u⟩+Rt(∆t)−Rt(u)

≤
(

2

ηn+1
+
µn+1

2

)
∥u∥2 + 1

2

n∑
t=1

ηt∥g̃t∥2.

Note that the implicit OMD update described in Theorem
4.1 can be explicitly represented as follows:

∆t+1 =
∆t − ηtg̃t

1 + ηtµt+1 + ηt(
1

ηt+1
− 1

ηt
)
. (2)

WhenRt = 0 (implying µt = 0), the update formula in (2)
simplifies to an approximation of online gradient descent
(Zinkevich, 2003), albeit with an additional scaling.

4.1. Reduction of Exponentiated O2NC

Upon substituting g̃t = β−tgt where gt = ∇f(xt, zt),
Theorem 4.1 provides a regret bound for Regretn(un) in
the convergence bound in Theorem 3.3. Consequently, we
can bound E ∥∇F (x)∥c for Exponentiated O2NCwith the
unconstrained variant of OMD as the OCO subroutine (with
update formula described in (2)). Formally, we have the
following result:

Theorem 4.2. Follow Assumption 2.1 and consider any
c > 0. Let ∆1 = 0 and update ∆t by

∆t+1 =
∆t − ηtβ−tgt

1 + ηtµt+1 + ηt(
1

ηt+1
− 1

ηt
)
.

Let µt = β−tµ, ηt = βtη, β = 1 − α, µ = 24F∗c
(G+σ)α5/2N

,

η = 2F∗

(G+σ)2N , α = max{N−2/3, (F∗)4/7c2/7

(G+σ)6/7N4/7 }. Then for

N large enough such that α ≤ 1
2 ,

E ∥∇F (x)∥c ≲
G+ σ

N1/3
+

(F ∗)2/7(G+ σ)4/7c1/7

N2/7
.

As an immediate implication, upon solving E ∥∇F (x)∥c ≤
ϵ for N , we conclude that Algorithm 2 instantiated with
unconstrained OGD finds (c, ϵ)-stationary point withinN =
O(max{(G + σ)3ϵ−3, F ∗(G + σ)2c1/2ϵ−7/2}) iterations.
Moreover, in Section 5 we will show that this rate is optimal.

Furthermore, as discussed in Section 2, with c = O(ϵ−1),
this algorithm achieves the optimal rate of O(ϵ−4) when F
is smooth; with c = O(1), this algorithm also achieves the
optimal rate of O(ϵ−7/2) when F is second-order smooth.
Remarkably, these optimal rates automatically follows from
the reduction from (c, ϵ)-stationary point to ϵ-stationary
point (see Lemma 2.3), and neither the algorithm nor the
analysis is modified to achieve these rates.

4.2. Unraveling the update to discover SGDM

Furthermore, upon substituting the definition of ηt, µt (and
neglecting constants G, σ, F ∗), the update in Theorem 4.2
can be rewritten as

∆t+1 =
∆t − ηgt

1 + 1
β (ηµ+ α)

Let ∆t = − βη
ηµ+αmt, then we can rewrite the update of

Exponentiated O2NC with OGD as follows:

mt+1 =
β

1 + ηµ
mt +

α+ ηµ

1 + ηµ
gt,

xt+1 = xt − sn+1 ·
βη

ηµ+ α
mt+1. (3)

Remarkably, this update formula recovers the standard
SGDM update, with the slight modification of an additional
exponential random variable sn+1: let β̃ = β

1+ηµ , which de-

notes the effective momentum constant, and let η̃ = βη
ηµ+α

be the effective learning rate, then (4) becomes

mt+1 = β̃mt + (1− β̃)gt,
xt+1 = xt − st+1 · η̃mt+1. (4)

Smooth case As discussed earlier, when F is smooth, we
set c = O(ϵ−1) to recover the optimal rate N = O(ϵ−4).
This implies c = O(N1/4). Consequently, we can check
the parameters defined in Theorem 4.2 have order α =
O(N−1/2), η = O(N−1), and µ = O(N1/2) (note that
ηµ ≈ α). Therefore, the effective momentum constant is
roughly β̃ ≈ 1 − 1√

N
, and the effective learning rate is

roughly η̃ ≈ 1√
N

. Interestingly, these values align with
prior works (Cutkosky & Mehta, 2020).

Second-order smooth case When F is second-order
smooth and we set c = O(1), we can check that α =
O(N−4/7), η = O(N−1), and µ = O(N3/7) (again
ηµ ≈ α). Consequently, the effective momentum should be
set to β̃ ≈ 1− 1

N4/7 and the effective learning rate should
be η̃ ≈ 1

N3/7 . It is interesting to note that in both smooth
and second-order smooth cases, (1− β̃)η̃ ≈ 1

N .

5. Lower Bounds for finding (c, ϵ)-stationary
points

In this section we leverage Lemma 2.3 to build a lower
bound for finding (c, ϵ)-stationary points. Inuitively,
Lemma 2.3 suggests that O(c1/2ϵ−7/2) is the optimal rate
for finding (c, ϵ)-stationary point. We can indeed prove its
optimality using the lower bound construction by Arjevani
et al. (2019) and Cutkosky et al. (2023).

Specifically, Arjevani et al. (2019) proved the following
result: For any constants H,F ∗, σ, ϵ, there exists objective

7
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(a) Train Loss (b) Train Accuracy (c) Test Accuracy

Figure 1: Experiments on CIFAR-10 with ResNet-18 Network. The curves represent the average performance of each
optimizer in three trials, and the shaded regions denote the standard deviation.

F and stochastic gradient estimator ∇f such that (i) F is
H-smooth, F (x0) − inf F (x) ≤ F ∗, and E ∥∇F (x) −
∇f(x, z)∥2 ≤ σ2; and (ii) any randomized algorithm
using ∇f requires O(F ∗σ2Hϵ−4) iterations to find an ϵ-
stationary point of F . As a caveat, such construction does
not ensure that F is Lipschitz. Fortunately, Cutkosky et al.
(2023) extended the lower bound construction so that the
same lower holds and F is in addition

√
F ∗H-Lipschitz.

Consequently, for any F ∗, G, c, ϵ, define H =
√
cϵ and

σ = G and assume
√
F ∗H ≤ G. Then by the lower

bound construction, there exists F and O such that F is
H-smooth, G-Lipschitz, F (x0) − inf F (x) ≤ F ∗, and
E ∥∇F (x)−∇f(x, z)∥2 ≤ G2. Lipschitzness and variance
bound together imply E ∥∇f(x, z)∥2 ≤ 2G2. Moreover,
finding an ϵ-stationary of F requires Ω(F ∗σ2Hϵ−4) =
Ω(F ∗G2c1/2ϵ−7/2) iterations (since σ = G, H =

√
cϵ).

Finally, note that H =
√
cϵ satisfies c = H2ϵ−1. There-

fore by Lemma 2.3, a (c, ϵ)-stationary point of F is also an
ϵ-stationary of F , implying that finding (c, ϵ)-stationary
requires at least Ω(F ∗G2c1/2ϵ−7/2) iterations as well.
Putting these together, we have the following result:

Corollary 5.1. For any F ∗, c, ϵ and G ≥
√
F ∗(cϵ)1/4,

there exists objective F and stochastic gradient ∇f such
that (i) F is G-Lipschitz, F (x0) − inf F (x) ≤ F ∗, and
E ∥∇f(x, z)∥2 ≤ 2G2; and (ii) any randomized algorithm
using ∇f requires Ω(F ∗G2c1/2ϵ−7/2) iterations to find
(c, ϵ)-stationary point of F .

6. Experiments
In the preceding sections, we theoretically demonstrated
that scaling the learning rate by an exponential random
variable sn allows SGDM to satisfy convergence guaran-
tees for non-smooth non-convex optimization. To validate
this finding empirically, we implemented the SGDM algo-
rithm with random scaling and assessed its performance

against the standard SGDM optimizer without random scal-
ing. Our evaluation involved the ResNet-18 model (He et al.,
2016) on the CIFAR-10 image classification benchmark
(Krizhevsky & Hinton, 2009). For the hyperparameters, we
configured the learning rate at 0.01, the momentum constant
at 0.9, and the weight decay at 5× 10−4. These settings are
optimized for training the ResNet model on the CIFAR-10
dataset using SGDM. We use the same hyperparameters for
our modified SGDM with random scaling.

For each optimizer, we ran the experiment three times under
the same setting to minimize variability. We recorded the
train loss, train accuracy, test loss, and test accuracy (refer
to Figure 1). We also recorded the performance of the
best iterate, e.g., the lowest train/test loss and the highest
train/test accuracy, in each trial (see Table 1).

Table 1: Performance of the best iterate in each trial.

RANDOM SCALING NO YES

TRAIN LOSS (×10−4) 9.82 ± 0.21 9.55 ± 0.37
TRAIN ACCURACY (%) 100.0 ± 0.0 100.0 ± 0.0
TEST LOSS (×10−2) 21.6 ± 0.1 22.0 ± 0.4
TEST ACCURACY (%) 94.6 ± 0.1 94.4 ± 0.2

These results show that the performance of SGDM with
random scaling aligns closely with that of standard SGDM.

7. Conclusion
We introduced (c, ϵ)-stationary point, a relaxed definition of
Goldstein stationary point, as a new notion of convergence
criterion in non-smooth non-convex stochastic optimization.
Furthermore, we proposed Exponentiated O2NC, a modified
online-to-non-convex framework, by setting exponential ran-
dom variable as scaling factor and adopting exponentiated
and regularized loss. When applied with unconstrained

8
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online gradient descent, this framework produces an algo-
rithm that recovers standard SGDM with random scaling
and finds (c, ϵ)-stationary point within O(c1/2ϵ−7/2) iter-
ations. Notably, the algorithm automatically achieves the
optimal rate of O(ϵ−4) for smooth objectives and O(ϵ−7/2)
for second-order smooth objectives.

One interesting open problem is designing an adaptive al-
gorithm with our Exponentiated O2NC framework. Since
our framework, when applied with the simplest OCO al-
gorithm online gradient descent, yields SGDM, a natural
question emerges: what if we replace online gradient de-
scent with an adaptive online learning algorithm, such as
AdaGrad? Ideally, applied with AdaGrad as the OCO sub-
routine and with proper tuning, Exponentiated O2NC could
recover Adam’s update mechanism. However, the conver-
gence analysis for this scenario is complex and demands
a nuanced approach, especially considering the intricacies
associated with the adaptive learning rate. In this vein, con-
current work by Ahn et al. (2024) applies a similar concept
of online-to-non-convex conversion and connects the Adam
algorithm to a principled online learning family known as
Follow-The-Regularized-Leader (FTRL).
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A. Proofs in Section 2
A.1. Proof of Lemma 2.3

Lemma 2.3. Suppose F is H-smooth. If ∥∇F (x)∥c ≤ ϵ where c = H2ϵ−1, then ∥∇F (x)∥ ≤ 2ϵ.
Suppose F is ρ-second-order-smooth. If ∥∇F (x)∥c ≤ ϵ where c = ρ/2, then ∥∇F (x)∥ ≤ 2ϵ.

Proof. Suppose ∥∇F (x)∥c ≤ ϵ, then there exists P ∈ P(S), y ∼ P such that E[y] = x, ∥E∇F (y)∥ ≤ ϵ and
cE ∥y − x∥2 ≤ ϵ.

Assume F is H-smooth. By Jensen’s inequality, E ∥y − x∥ ≤
√
ϵ/c = ϵ/H with c = H2ϵ−1. Consequently,

∥∇F (x)∥ ≤ ∥E∇F (y)∥+ ∥E[∇F (x)−∇F (y)]∥
≤ ∥E∇F (y)∥+ E ∥∇F (x)−∇F (y)∥ (Jensen’s inequality)
≤ ∥E∇F (y)∥+H E ∥x− y∥ (smoothness)
≤ ϵ+H · ϵ/H = 2ϵ.

Next, assume F is ρ-second-order smooth. By Taylor approximation, there exists some z such that ∇F (x) = ∇F (y) +
∇2F (x)(x− y) + 1

2 (x− y)T∇3F (z)(x− y). Note that E[∇2F (x)(x− y)] = ∇2F (x)E[x− y] = 0. Consequently,

∥∇F (x)∥ ≤ ∥E∇F (y)∥+ ∥E[∇F (x)−∇F (y)]∥
≤ ∥E∇F (y)∥+ E ∥ 12 (x− y)T∇3F (z)(x− y)∥ (Jensen’s inequality)

≤ ∥E∇F (y)∥+ ρ
2 E ∥x− y∥2 (second-order-smooth)

≤ ϵ+ ρ
2 · ϵ/c = 2ϵ. (c = ρ/2)

Together these prove the reduction from a (c, ϵ)-stationary point to an ϵ-stationary point.

A.2. Proof of Lemma 2.4

Lemma 2.4. Suppose F is G-Lipschitz. For any c, ϵ, δ > 0, a (c, ϵ)-stationary point is also a (δ, ϵ′)-Goldstein stationary
point where ϵ′ = (1 + 2G

cδ2 )ϵ.

Proof. By definition of (c, ϵ)-stationary, there exists some distribution of y such that E[y] = x, σ2 := E ∥y − x∥2 ≤ ϵ/c,
and ∥E∇F (y)∥ ≤ ϵ. By Chebyshev’s inequality,

P{∥y − x∥ ≥ δ} = P
{
∥y − E[y]∥ ≥

δ

σ
· σ
}

≤ P

{
∥y − E[y]∥ ≥

δ√
ϵ/c
· σ

}
≤ ϵ

cδ2
.

Next, we can construct a clipped random vector ŷ of y such that ŷ = y if ∥y − x∥ < δ, ∥ŷ − x∥ ≤ δ almost surely, and
E[ŷ] = x. In particular, note that P{ŷ ̸= y} ≤ P{∥y − x∥ ≥ δ} ≤ ϵ

cδ2 . Since F is G-Lipschitz,

∥E[∇F (ŷ)−∇F (y)]∥ = P{ŷ ̸= y}∥E[∇F (ŷ)−∇F (y)|ŷ ̸= y]∥

≤ 2G · P{ŷ ̸= y} ≤ 2G · ϵ

cδ2
.

Consequently ∥E[∇F (ŷ)]∥ ≤ ∥E[∇F (y)]∥+∥E[∇F (ŷ)−∇F (y)]∥ ≤ ϵ+ 2Gϵ
cδ2 . This proves that x is also a (δ, ϵ+ 2Gϵ

cδ2 )-
Goldstein stationary point.

11
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B. Proofs in Section 3
B.1. Proof of Lemma 3.2

The proof consists of two composite lemmas. Recall the following notations: Sn = {xt}t∈[n], yn ∼ Pn where Pn(xt) =
βn−t · 1−β

1−βn , and xn =
∑n
t=1 β

n−txt · 1−β
1−βn . Also note two useful change of summation identities:

N∑
n=1

n∑
t=1

=
∑

1≤t≤n≤N

=

N∑
t=1

N∑
n=t

,

n∑
i=1

i−1∑
i′=1

i∑
t=i′+1

=
∑

1≤i′<t≤i≤n

=

n∑
t=1

n∑
i=t

t−1∑
i′=1

.

Proposition B.1. Eyn,s ∥yn − xn∥2 ≤
∑n
t=1 λn,t∥∆t∥2, where

λn,t = 4

n∑
i=t

t−1∑
i′=1

pn,ipn,i′(i− i′), pn,i = Pn(xi) = βn−i · 1− β
1− βn

. (5)

Proof. By distribution of yn, we have

Eyn
∥yn − xn∥2 =

n∑
i=1

pn,i∥xi − xn∥2

=

n∑
i=1

pn,i

∥∥∥∥∥
n∑

i′=1

pn,i′(xi − xi′)

∥∥∥∥∥
2

≤
n∑
i=1

n∑
i′=1

pn,ipn,i′∥xi − xi′∥2 = 2

n∑
i=1

i−1∑
i′=1

pn,ipn,i′∥xi − xi′∥2.

The inequality uses convexity of ∥ · ∥2. Next, upon unrolling the recursive update xt = xt−1 + st∆t,

∥xi − xi′∥2 =

∥∥∥∥∥
i∑

t=i′+1

st∆t

∥∥∥∥∥
2

≤ (i− i′)
i∑

t=i′+1

s2t∥∆t∥2.

Note that st and ∆t are independent and st ∼ Exp(1), so Es[s2t∥∆t∥2] = Es[s2t ]∥∆t∥2 = 2∥∆t∥p. Consequently, upon
substituting this back and applying change of summation, we have

Eyn,s∥yn − xn∥2 ≤ 4

n∑
i=1

i−1∑
i′=1

i∑
t=i′+1

pn,ipn,i′(i− i′)∥∆t∥2

=

n∑
t=1

(
4

n∑
i=t

t−1∑
i′=1

pn,ipn,i′(i− i′)

)
∥∆t∥2.

We then conclude the proof by substituting the definition of λn,t.

Proposition B.2. Define λn,t as in (5), then
∑N
n=t λn,t ≤

12
(1−β)2 .

Proof. In the first part of the proof, we find a good upper bound of λn,t. We can rearrange the definition of λn,t as follows.

λn,t = 4

(
1− β
1− βn

)2 n∑
i=t

t−1∑
i′=1

βn−iβn−i
′
(i− i′) (let j = i− i′)

= 4

(
1− β
1− βn

)2 n∑
i=t

i−1∑
j=i−t+1

βn−iβn−i+j · j (let k = n− i)

= 4

(
1− β
1− βn

)2 n−t∑
k=0

β2k
n−k−1∑

j=n−k−t+1

jβj . (6)

12
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The second line uses change of variable that j = i− i′, and the third line uses k = n− i. Next,

n−k−1∑
j=n−k−t+1

jβj = β

n−k−1∑
j=n−k−t+1

d

dβ
βj = β · d

dβ

 n−k−1∑
j=n−k−t+1

βj


= β · d

dβ

(
βn−k−t+1 − βn−k

1− β

)
=
βa−k+1 − βb−k+1

(1− β)2
+

(a− k)βa−k − (b− k)βb−k

1− β
,

where a = n− t+ 1, b = n. Upon substituting this back into (6), we have

λn,t = 4

(
1− β
1− βn

)2 n−t∑
k=0

β2k

(
βa−k+1 − βb−k+1

(1− β)2
+
aβa−k − bβb−k

1− β
− kβ

a−k − βb−k

1− β

)

= 4

(
1− β
1− βn

)2 n−t∑
k=0

(
βa+1 − βb+1

(1− β)2
+
aβa − bβb

1− β

)
βk − βa − βb

1− β
· kβk. (7)

For the first term,
∑n−t
k=0 β

k = 1−βn−t+1

1−β = 1−βa

1−β . For the second term,

n−t∑
k=0

kβk = β · d
dβ

(
n−t∑
k=0

βk

)
= β · d

dβ

(
1− βa

1− β

)
=
β − βa+1

(1− β)2
− aβa

1− β
.

Upon substituting this back into (7) and simplifying the expression, we have

λn,t = 4

(
1− β
1− βn

)2

·
[(

βa+1 − βb+1

(1− β)2
+
aβa − bβb

1− β

)
· 1− β

a

1− β
− βa − βb

1− β
·
(
β − βa+1

(1− β)2
− aβa

1− β

)]
= 4

(aβa − bβb)(1− βa) + aβa(βa − βb)
(1− βn)2

= . . . = 4
aβa(1− βb)− bβb(1− βa)

(1− βn)2
.

Upon substituting a = n− t+ 1 and b = n, we conclude the first half of the proof with

λn,t ≤ 4
aβa(1− βb)
(1− βn)2

≤ 4 · (n− t+ 1)βn−t+1

1− βn
.

In the second part, we use this inequality to bound
∑N
n=t λn,t. Define K = ⌈ 1

1−β ⌉, then

N∑
n=t

λn,t = 1{t≤K−1} ·
K−1∑
n=t

λn,t +

N∑
n=max{t,K}

λn,t. (8)

For the first summation in (8), for all t ≤ n ≤ K − 1, we have

λn,t ≤ 4 · (n− t+ 1)βn−t+1

1− βn
(i)

≤ 4 · (n− t+ 1)βn−t+1

1− βn−t+1

(ii)

≤ 4 · 1 · β
1

1− β1
≤ 4

1− β
.

(i) holds because 1
1−βn is decreasing w.r.t. n. (ii) holds because f(x) = xβx

1−βx is decreasing for x ≥ 0 and β ∈ (0, 1), so
f(n− t+ 1) ≤ f(1) since n− t+ 1 ≥ 1. Recall that K − 1 ≤ 1

1−β , then the first summation in (8) can be bounded by

1{t≤K−1} ·
K−1∑
n=t

λn,t ≤
K−1∑
n=1

4

1− β
≤ 4

(1− β)2
. (9)

For the second summation in (8), for all n ≥ K ≥ 1
1−β ,

1

1− βn
(i)

≤ 1

1− β
1

1−β

(ii)

≤ lim
x→1

1

1− x
1

1−x

=
e

e− 1
≤ 2.

13
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(i) holds because 1
1−βn is decreasing. (ii) holds because f(x) = 1

1−x
1

1−x
is increasing for x ≥ 0, so f(β) ≤ limx→1 f(x)

for all β ∈ (0, 1). Consequently, the second summation in (8) can be bounded by

N∑
n=max{t,K}

λn,t ≤
N∑

n=max{t,K}

4 · (n− t+ 1)βn−t+1

1− βn
≤ 8

N∑
n=t

(n− t+ 1)βn−t+1 = 8

N−t∑
n=1

nβn (10)

By change of summation,

N∑
n=1

nβn =

N∑
n=1

n∑
i=1

βn =

N∑
i=1

N∑
n=i

βn ≤
N∑
i=1

βi

1− β
≤ 1

(1− β)2
.

We then conclude the proof by substituting (9), (10) into (8).

Lemma 3.2. For any β ∈ (0, 1),

Es
N∑
n=1

Eyn
∥yn − xn∥2 ≤

N∑
n=1

12

(1− β)2
∥∆n∥2.

Proof. By Proposition B.1 and Proposition B.2, we have

Es
N∑
n=1

Eyn
∥yn − xn∥2

(i)

≤
N∑
n=1

n∑
t=1

λn,t∥∆t∥2
(ii)
=

N∑
t=1

(
N∑
n=t

λn,t

)
∥∆t∥2

(iii)

≤
N∑
t=1

12

(1− β)2
∥∆t∥2.

Here (i) is from Proposition B.1, (ii) is from change of summation, and (iii) is from Proposition B.2.

B.2. Proof of Lemma 3.1

Lemma 3.1. Let s ∼ Exp(λ) for some λ > 0, then

Es[F (x+ s∆)− F (x)] = Es[⟨∇F (x+ s∆),∆⟩]/λ.

Proof. Denote p(s) = λ exp(−λs) as the pdf of s. Upon expanding the expectation, we can rewrite the LHS as

Es[F (x+ s∆)− F (x)] =
∫ ∞

0

[F (x+ s∆)− F (x)]p(s) ds

(i)
=

∫ ∞

0

(∫ s

0

⟨∇F (x+ t∆),∆⟩ dt
)
p(s) ds

=

∫ ∞

0

∫ ∞

0

⟨∇F (x+ t∆),∆⟩1{t ≤ s}p(s) dtds

=

∫ ∞

0

(∫ ∞

t

p(s) ds

)
⟨∇F (x+ t∆),∆⟩ dt

(ii)
=

∫ ∞

0

p(t)

λ
⟨∇F (x+ t∆),∆⟩ dt

=
1

λ
Es[⟨∇F (x+ s∆),∆⟩].

Here the (i) applies fundamental theorem of calculus on g(s) = F (x+ s∆)− F (x) with g′(s) = ⟨∇F (x+ s∆),∆⟩ and
(ii) uses the following identity for exponential distribution:

∫∞
t
p(s)ds = exp(−λt) = p(t)/λ.

C. Proof of Theorem 3.3
We restate the formal version of Theorem 3.3 as follows. Recall that Sn = {xt}t∈[n], yn ∼ Pn where Pn(xt) = βn−t· 1−β1−βn ,

and xn =
∑n
t=1 β

n−txt · 1−β
1−βn .

14
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Theorem C.1. Suppose F is G-Lipschitz, F (x0)− inf F (x) ≤ F ∗, and the stochastic gradients satisfy E[∇f(x, z) |x] =
∇F (x) and E ∥∇F (x) − ∇f(x, z)∥2 ≤ σ2 for all x, z. Define the comparator un and the regret Regretn(u) of the
regularized losses ℓt as follows:

un = −D ·
∑n
t=1 β

n−t∇F (xt)
∥
∑n
t=1 β

n−t∇F (xt)∥
, Regretn(u) =

n∑
t=1

⟨β−tgt,∆t − u⟩+Rt(∆t)−Rt(u).

Also define the regularizor asRt(w) = µt

2 ∥w∥
2 where µt = µβ−t, µ = 24cD

α2 and α = 1− β. Then

E ∥∇F (x)∥c ≤
F ∗

DN
+

2G+ σ

αN
+ σ
√
α+

12cD2

α2
+

1

DN

(
βN+1 ERegretN (uN ) + α

N∑
n=1

βn ERegretn(un).

)
.

Proof. We start with the change of summation. Note that

N∑
n=1

n∑
t=1

βn−t(1− β)(F (xt)− F (xt−1)) =

N∑
t=1

(
N∑
n=t

βn−t

)
(1− β)(F (xt)− F (xt−1))

=

N∑
t=1

(1− βN−t+1)(F (xt)− F (xt−1))

= F (xN )− F (x0)−
N∑
t=1

βN−t+1(F (xt)− F (xt−1)).

Upon rearranging and applying the assumption that F (x0)− F (xN ) ≤ F (x0)− inf F (x) ≤ F ∗, we have

−F ∗ ≤ E
N∑
n=1

n∑
t=1

βn−t(1− β)(F (xt)− F (xt−1)) + E
N∑
t=1

βN−t+1(F (xt)− F (xt−1)). (11)

First, we bound the first summation in (11). Denote Ft as the σ-algebra of xt. Note that ∆t ∈ Ft and zt ̸∈ Ft, so by the
assumption that E[∇f(x, z) |x] = ∇F (x),

E[gt | Ft] = E[∇f(xt, zt) | Ft] = ∇F (xt) =⇒ E⟨∇F (xt),∆t⟩ = E⟨gt,∆t⟩.

By Lemma 3.1, E[F (xt)− F (xt−1)] = E⟨∇F (xt),∆t⟩. Upon adding and subtracting, we have

E[F (xt)− F (xt−1)] = E⟨∇F (xt)− gt + gt,∆t − un + un⟩
= E [⟨∇F (xt),un⟩⟩+ ⟨∇F (xt)− gt,−un⟩+ ⟨gt,∆t − un⟩] .

Consequently, the first summation in (11) can be written as

E
N∑
n=1

n∑
t=1

βn−t(1− β) (⟨∇F (xt),un⟩+ ⟨∇F (xt)− gt,−un⟩+ ⟨gt,∆t − un⟩) . (12)

For the first term, upon substituting the definition of un, we have

n∑
t=1

βn−t(1− β)⟨∇F (xt),un⟩ = (1− β)

〈
n∑
t=1

βn−t∇F (xt),−D
∑n
t=1 β

n−t∇F (xt)
∥
∑n
t=1 β

n−t∇F (xt)∥

〉

= (1− βn) · −D
∥∥∥∥∑n

t=1 β
n−t∇F (xt)∑n
t=1 β

n−t

∥∥∥∥
= −D(1− βn)∥Eyn

∇F (yn)∥

Since ∥∇F (xt)∥ ≤ G for all t, ∥Eyn
∇F (yn)∥ ≤ G as well. Therefore, we have

≤ −D∥Eyn
∇F (yn)∥+DGβn.
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Since β < 1,
∑N
n=1 β

n ≤ 1
1−β . Therefore, upon summing over n, the first term in (12) becomes

E
N∑
n=1

n∑
t=1

βn−t(1− β)⟨∇F (xt),un⟩ ≤

(
−D

N∑
n=1

E ∥Eyn
∇F (yn)∥

)
+

DG

1− β
. (13)

For the second term, by Cauchy-Schwarz inequality,

E
n∑
t=1

βn−t⟨∇F (xt)− gt,−un⟩ ≤

√√√√E

∥∥∥∥∥
n∑
t=1

βn−t(∇F (xt)− gt)

∥∥∥∥∥
2

E ∥un∥2.

Since E[∇F (xt)− gt | Ft] = 0, by martingale identity and the assumption that E ∥∇F (x)−∇f(x, z)∥2 ≤ σ2,

E

∥∥∥∥∥
n∑
t=1

βn−t(∇F (xt)− gt)

∥∥∥∥∥
2

=

n∑
t=1

E ∥βn−t(∇F (xt)− gt)∥2 ≤
n∑
t=1

σ2β2(n−t) ≤ σ2

1− β2
.

Upon substituting ∥un∥ = D and 1
1−β2 ≤ 1

1−β , the second term in (12) becomes

E
N∑
n=1

n∑
t=1

βn−t(1− β)⟨∇F (xt)− gt,−un⟩ ≤
N∑
n=1

(1− β) · σD√
1− β2

≤ σDN
√
1− β. (14)

For the third term, upon adding and subtractingRt and substituting the definition of Regretn(u), we have

E
N∑
n=1

n∑
t=1

βn−t(1− β)⟨gt,∆t − un⟩

= E
N∑
n=1

n∑
t=1

(1− β)βn
(
⟨β−tgt,∆t − un⟩+Rt(∆t)−Rt(un)−Rt(∆t) +Rt(un)

)
= E

N∑
n=1

(1− β)βnRegretn(un) + E
N∑
n=1

n∑
t=1

(1− β)βn(−Rt(∆t) +Rt(un)). (15)

Upon substituting (13), (14) and (15) into (12), the first summation in (11) becomes

N∑
n=1

n∑
t=1

βn−t(1− β)(F (xt)− F (xt−1))

≤

(
−D

N∑
n=1

E ∥Eyn
∇F (yn)∥

)
+

DG

1− β
+ σDN

√
1− β

+ E
N∑
n=1

(1− β)βnRegretn(un) + E
N∑
n=1

n∑
t=1

(1− β)βn(−Rt(∆t) +Rt(un)). (16)

Next, we consider the second summation in (11). Since E ∥gt∥ ≤ E ∥∇F (xt)∥ + E ∥∇F (xt) − gt∥ ≤ G + σ and
E⟨∇F (xt),∆t⟩ = E⟨gt,∆t⟩, we have

E[F (xt)− F (xt−1)] = E⟨∇F (xt),∆t⟩ = E⟨gt,∆t − uN ⟩+ E⟨gt,uN ⟩
≤ E⟨gt,∆t − uN ⟩+D(G+ σ).

Following the same argument in (15) by adding and subtractingRt, the second summation becomes

E
N∑
t=1

βN−t+1(F (xt)− F (xt−1)) = E
N∑
t=1

βN+1⟨β−tgt,∆t − uN ⟩+ βN−t+1D(G+ σ)

≤ βN+1 ERegretN (uN ) +
D(G+ σ)

1− β
+ E

N∑
t=1

βN+1(−Rt(∆t) +Rt(uN )). (17)
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Combining (16) and (17) into (11) gives

−F ∗ ≤

(
−D

N∑
n=1

E ∥Eyn
∇F (yn)∥

)
+

DG

1− β
+ σDN

√
1− β

+ E
N∑
n=1

(1− β)βnRegretn(un) + E
N∑
n=1

n∑
t=1

(1− β)βn(−Rt(∆t) +Rt(uN ))

+ βN+1 ERegretN (uN ) +
D(G+ σ)

1− β
+ E

N∑
t=1

βN+1(−Rt(∆t) +Rt(uN )). (18)

As the final step, we simplify the terms involvingRt. Recall thatRt(w) = µt

2 ∥w∥
2, soRt(un) = µt

2 D
2 is independent of

n. Hence, by change of summation,

E
N∑
n=1

n∑
t=1

(1− β)βn(−Rt(∆t) +Rt(un)) + E
N∑
t=1

βN+1(−Rt(∆t) +Rt(uN ))

= E
N∑
t=1

(
N∑
n=t

βn

)
(1− β)︸ ︷︷ ︸

=βt−βN+1

(
−µt

2
∥∆t∥2 +

µt
2
D2
)
+ E

N∑
t=1

βN+1
(
−µt

2
∥∆t∥2 +

µt
2
D2
)

= E
N∑
t=1

βt
(
−µt

2
∥∆t∥2 +

µt
2
D2
)

Recall Lemma 3.2 that E
∑N
n=1 Eyn

∥yn − xn∥2 ≤ E
∑N
t=1

12
(1−β)2 ∥∆t∥2. Upon substituting µt = 24cD2

(1−β)2 β
−t, we have

= E
N∑
t=1

(
− 12cD

(1− β)2
∥∆t∥2 +

12cD3

(1− β)2

)

≤

(
−cDE

N∑
n=1

E
yn

∥yn − xn∥2
)

+
12cD3N

(1− β)2
.

Substituting this back into (18) with α = 1− β, we have

−F ∗ ≤ −DE

[
N∑
n=1

∥Eyn
∇F (yn)∥+ c · Eyn

∥yn − xn∥2
]
+
DG

α
+ σDN

√
α+

D(G+ σ)

α
+

12cD3N

α2

+ βN+1 ERegretN (uN ) + α

N∑
n=1

βn ERegretn(un).

By definition of ∥∇F (·)∥c defined in Definition 2.2, ∥∇F (xn)∥c ≤ ∥Eyn
∇F (yn)∥ + c · Eyn

∥yn − xn∥2. Moreover,
since x is uniform over xn, E ∥∇F (x)∥2,c = 1

N

∑N
n=1 E ∥∇F (xn)∥2,c We then conclude the proof by rearranging the

equation and dividing both sides by DN .

D. Proofs in Section 4
D.1. Proof of Theorem 4.1

Only in this subsection, to be more consistent with the notations in online learning literature, we use w for weights instead
of ∆ as we used in the main text.

To prove the regret bound, we first provide a one-step inequality of OMD with composite loss. Given a convex and
continuously differentiable function ψ, recall the Bregman divergence of ψ is defined as

Dψ(x,y) = ψ(x)− ψ(y)− ⟨∇ψ(y),y − x⟩.

17
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Note that ∇xDψ(x,y) = ∇ψ(x)−∇ψ(y). Moreover, as proved in (Chen & Teboulle, 1993), Dψ satisfies the following
three-point identity:

Dψ(z,x) +Dψ(x,y)−Dψ(z,y) = ⟨∇ψ(y)−∇ψ(x), z − x⟩.

Lemma D.1. Let ψ, ϕ be convex, and define wt+1 = argminw⟨g̃t,w⟩+Dψ(w,wt) + ϕ(w). Then for any u,

⟨g̃t,wt − u⟩ ≤ ⟨g̃t,wt −wt+1⟩+Dψ(u,wt)−Dψ(u,wt+1)−Dψ(wt+1,wt) + ϕ(u)− ϕ(wt+1).

Proof. Let f(w) = ⟨g̃t,w⟩ +Dψ(w,wt) + ϕ(w). Since ψ, ϕ are convex, so is f . Therefore, wt+1 = argminw f(w)
implies that for all u,

0 ≤ ⟨∇f(wt+1),u−wt+1⟩
= ⟨g̃t +∇ψ(wt+1)−∇ψ(wt) +∇ϕ(wt+1),u−wt+1⟩
= ⟨g̃t,u−wt⟩+ ⟨g̃t,wt −wt+1⟩+ ⟨∇ψ(wt+1)−∇ψ(wt),u−wt+1⟩+ ⟨∇ϕ(wt+1),u−wt+1⟩.

Since ϕ is convex, ⟨ϕ(wt+1),u − wt+1⟩ ≤ ϕ(u) − ϕ(wt+1). Moreover, by the three-point identity with z = u,x =
wt+1,y = wt, we have

⟨∇ψ(wt)−∇ψ(wt+1),u−wt+1⟩ = Dψ(u,wt+1) +Dψ(wt+1,w)−Dψ(u,wt).

Substituting these back and rearranging the inequality then conclude the proof.

We restate the formal version of Theorem 4.1 as follows.

Theorem D.2. Given a sequence of {g̃t}∞t=1, a sequence of {ηt}∞t=1 such that 0 < ηt+1 ≤ ηt, and a sequence of {µt}∞t=1

such that µt ≥ 0, letRt(w) = µt

2 ∥w∥
2, ϕt(w) = ( 1

ηt+1
− 1

ηt
)∥w∥2, w1 = 0 and wt updated by

wt+1 = argmin
w
⟨g̃t,w⟩+

1

2ηt
∥w −wt∥2 + ϕt(w) +Rt+1(w).

Then for any n ∈ N,

n∑
t=1

⟨g̃t,wt − u⟩+Rt(wt)−Rt(u) ≤
(

2

ηn+1
+
µn+1

2

)
∥u∥2 + 1

2

n∑
t=1

ηt∥g̃t∥2.

Proof. Denote ψt(w) = 1
2ηt
∥w∥2. Since ψt, ϕt,Rt are all convex and Dψt

(w,wt) =
1

2ηt
∥w −wt∥2, Lemma D.1 holds,

which gives

⟨g̃t,wt − u⟩ ≤ ⟨g̃t,wt −wt+1⟩+Dψt
(u,wt)−Dψt

(u,wt+1)−Dψt
(wt+1,wt)

+ ϕt(u)− ϕt(wt+1) +Rt+1(u)−Rt+1(wt+1).

Equivalently,

⟨g̃t,wt − u⟩+Rt(wt)−Rt(u) ≤ ⟨g̃t,wt −wt+1⟩+Dψt
(u,wt)−Dψt

(u,wt+1)−Dψt
(wt+1,wt)

+ ϕt(u)− ϕt(wt+1) +Rt(wt)−Rt+1(wt+1) +Rt+1(u)−Rt(u). (19)

By Young’s inequality,

⟨g̃t,wt −wt+1⟩ −Dψt(wt+1,wt) ≤
ηt
2
∥g̃t∥2 +

1

2ηt
∥wt+1 −wt∥2 −

1

2ηt
∥wt+1 −wt∥2 =

ηt
2
∥g̃t∥2.

Next, note that

Dψt
(u,wt)−Dψt

(u,wt+1) = Dψt
(u,wt)−Dψt+1

(u,wt+1) +Dψt+1
(u,wt+1)−Dψt

(u,wt+1).

18
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Since ∥u−wt+1∥2 ≤ 2∥u∥2 + 2∥wt+1∥2 and 1
ηt+1
− 1

ηt
≥ 0,

Dψt+1
(u,wt+1)−Dψt

(u,wt+1) + ϕt(u)− ϕt(wt+1)

=

(
1

2ηt+1
− 1

2ηt

)
∥u−wt+1∥2 +

(
1

ηt+1
− 1

ηt

)
(∥u∥2 − ∥wt+1∥2) ≤

(
2

ηt+1
− 2

ηt

)
∥u∥2.

Upon substituting back into (19), we have

⟨g̃t,wt − u⟩+Rt(wt)−Rt(u) ≤
ηt
2
∥g̃t∥2 +Dψt

(u,wt)−Dψt+1
(u,wt+1) +

(
2

ηt+1
− 2

ηt

)
∥u∥2

+Rt(wt)−Rt+1(wt+1) +Rt+1(u)−Rt(u).

Upon telescoping this one-step inequality, we have
n∑
t=1

⟨g̃t,wt − u⟩+Rt(wt)−Rt(u)

≤

(
n∑
t=1

ηt
2
∥g̃t∥2

)
+Dψ1

(u,w1)−Dψn+1
(u,wn+1) +

(
2

ηn+1
− 2

η1

)
∥u∥2

+R1(w1)−Rn+1(wn+1) +Rn+1(u)−R1(u).

We then conclude the proof by using w1 = 0, Dψt(u,w) = 1
2ηt
∥u−w∥2 andRn(w) = µt

2 ∥w∥
2 to simplify

Dψ1
(u,w1)−Dψn+1

(u,wn+1) +

(
2

ηn+1
− 2

η1

)
∥u∥2

≤ 1

2η1
∥u∥2 +

(
2

ηn+1
− 2

η1

)
∥u∥2 ≤ 2

ηn+1
∥u∥2

andR1(w1)−Rn+1(wn+1) +Rn+1(u)−R1(u) ≤ Rn+1(u) +R1(w1) =
µn+1

2 ∥u∥
2.

D.2. Proof of Theorem 4.2

Theorem 4.2. Follow Assumption 2.1 and consider any c > 0. Let ∆1 = 0 and update ∆t by

∆t+1 =
∆t − ηtβ−tgt

1 + ηtµt+1 + ηt(
1

ηt+1
− 1

ηt
)
.

Let µt = β−tµ, ηt = βtη, β = 1 − α, µ = 24F∗c
(G+σ)α5/2N

, η = 2F∗

(G+σ)2N , α = max{N−2/3, (F∗)4/7c2/7

(G+σ)6/7N4/7 }. Then for N

large enough such that α ≤ 1
2 ,

E ∥∇F (x)∥c ≲
G+ σ

N1/3
+

(F ∗)2/7(G+ σ)4/7c1/7

N2/7
.

Proof. First, define D = F∗

(G+σ)
√
αN

, µ = 24cD
α2 and η = 2D

√
α

G+σ . Note that these definitions are equivalent to µ =
24F∗c

(G+D)α5/2N
and η = 2F∗

(G+σ)2N as defined in the theorem.

Next, note that both Theorem C.1 and Theorem D.2 hold since the explicit update of ∆t+1 is equivalent to

∆t+1 = argmin
∆
⟨β−tgt,∆⟩+

1

2ηt
∥∆−∆t∥2 +

(
1

ηt+1
− 1

ηt

)
∥∆∥2 + µt+1

2
∥∆∥2.

Also recall that Regretn(un) =
∑n
t=1⟨β−tgt,∆t − un⟩+Rt(∆t)−Rt(un). Therefore, upon substituting g̃t = β−tgt,

ηt = βtη, µt = β−tµ and ∥un∥ = D into Theorem D.2, we have

ERegretn(un) ≤
(

2

ηn+1
+
µn+1

2

)
E ∥u∥2 +

1

2

n∑
t=1

ηt E ∥g̃t∥2

=

(
2

η
+
µ

2

)
D2β−(n+1) +

η

2

n∑
t=1

β−t E ∥gt∥2.
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By Assumption 2.1, E ∥gt∥2 = E ∥∇F (xt)∥2 + E ∥∇F (xt)− gt∥2 ≤ G2 + σ2. Moreover,
∑n
t=1 β

−t ≤ β−n

1−β . Therefore,

βn+1 ERegretn(un) ≤
(
2

η
+
µ

2

)
D2 +

η(G2 + σ2)

2α

Upon substituting η = 2D
√
α

G+σ (note that G
2+σ2

G+σ ≤ G+ σ) and µ = 24cD
α2 , we have

≤ 2D(G+ σ)√
α

+
12cD3

α2
.

Consequently, with α ≤ 1
2 (so that β−1 ≤ 2), we have

1

DN

(
βN+1 ERegretN (uN ) + α

N∑
n=1

βn ERegretn(un)

)

≤ 1 + 2αN

DN

(
2D(G+ σ)√

α
+

12cD3

α2

)
≲
G+ σ

N
+
cD2

α2N
+ (G+ σ)

√
α+

cD2

α
.

Upon substituting this into the convergence guarantee in Theorem C.1, we have

E ∥∇F (x)∥c ≤
F ∗

DN
+

2G+ σ

αN
+ σ
√
α+

12cD2

α2
+

1

DN

(
βN+1 ERegretN (uN ) + α

N∑
n=1

βn ERegretn(un)

)

≲
F ∗

DN
+
G+ σ

αN
+ (G+ σ)

√
α+

cD2

α2

With D = F∗

(G+σ)
√
αN

and α = max{N−2/3, (F∗)4/7c2/7

(G+σ)6/7N4/7 }, we have

≲
G+ σ

αN
+ (G+ σ)

√
α+

(F ∗)2c

(G+ σ)2α3N2
≲
G+ σ

N1/3
+

(F ∗)2/7(G+ σ)4/7c1/7

N2/7
.
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