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Motivated by the possibility of finding a bosonic quantum spin liquid in the integer spin-S
Heisenberg-Kitaev model on the honeycomb lattice, we derive a Schwinger boson mean field theory
involving both singlet and triplet pairing channels which includes hopping and pairing operators
on equal footing. The mixed construction introduced here is justified by the good comparison with
exact diagonalization energies of the S ≤ 3/2 Heisenberg-Kitaev model and the perfect match with
the Luttinger-Tisza semiclassical energies obtained at large-S. We find various competing gapped
quantum spin liquids close to the Kitaev point. A comparison of their spin excitation spectrum
with the dynamical structure factor obtained from exact diagonalizations allows us to identify the
physical spin liquid ansätz of the model. In particular, we identify a chiral quantum spin liquid
state whose spin excitation spectrum follows closely the exact diagonalization data and survives up
to large spin S ≲ 2. We propose this state as a promising quantum spin liquid candidate for the
integer spin-S antiferromagnetic Kitaev model which may be realized in S = 1 Kitaev materials
A3Ni2XO6 and KNiAsO4.

I. INTRODUCTION

Quantum spin liquids are magnetically disordered
states even at T = 0 which are highly entangled and of-
ten display topological order and fractional excitations1.
A quantum spin liquid (QSL) whose spin excitations are
fractionalized into Majorana fermions arises as the exact
ground state of the S = 1/2 Kitaev spin model. Remark-
ably, non-Abelian anyons predicted in the Kitaev model2

may be detected through the half-quantization of the
thermal Hall conductivity in the Kitaev candidate mate-
rial α-RuCl3.

3,4 Concomitantly with such great progress
achieved on the S = 1/2 Kitaev materials there is grow-
ing interest on the higher spin S Kitaev model which is
not exactly solvable. While A3Ni2XO6 (A=Li, Na and
X=Bi, Sb), Na2Ni2TeO6

5, and KNiAsO4
6 have been pro-

posed as candidate materials of the S = 1 Heisenberg-
Kitaev model, the S = 3/2 Kitaev model may be re-
alized in Cr-based ferromagnets such as CrI3,CrGeTe3

7

monolayers and CrSiTe3.
8

Apart from the exact solution of the S = 1/2 Kitaev
model, the ground state of the classical S → ∞ model is
also well known and consists of a large number of degen-
erate cartesian states9. An order by disorder mechanism
selects states with the smallest self-avoiding walks fol-
lowed by the spins resulting in a fully packed hexagonal
dimer plaquette configurations such as the one depicted
in Fig. 3. For intermediate spin values, 1/2 < S < ∞,
however, the Kitaev model is not exactly solvable even
though plaquette Z2 gauge fluxes can be constructed in
terms of Majorana fermion operators commuting with
the hamiltonian, as for S = 1/2. However, the gen-
eral half-odd-integer Kitaev model with S > 1/2 can-
not be expressed in a simple way in terms of the Majo-
rana operators9 as for S = 1/2. In the integer spin case
bosonic-type of excitations emerge instead in the system.

Hence, it remains an open issue which is the nature of
the ground state and the elementary excitations of the
Kitaev model for arbitrary spin S.

Recent numerical works suggest that while the half-
odd-integer Kitaev model hosts a QSL with Majorana
fermion excitations similar to the S = 1/2 case, the inte-
ger model is most probably gapped hosting excitations of
the bosonic type10–13. This is consistent with the conjec-
ture based on the generalized parton construction14 ex-
tended to S > 1/2 which states that the ground state of
the half-odd-integer S model always consists of a decon-
fined Z2 gauge field coupled to giant Majorana fermions
which leads to a gapless QSL with two giant Majorana
cones. In contrast, the integer S model is conjectured to
host a Z2 gapped spin liquid with bosonic gauge charges.

In the present work we analyze the Heisenberg-Kitaev
model with an arbitrary S using a Schwinger boson ap-
proach. Our aim is to understand the physics of the
integer S Kitaev model in which bosonic excitations
have been proposed to be the elementary spin excita-
tions of the system as discussed above justifying the use
of this approach. Our Schwinger boson mean field the-
ory (SBMFT) uses a mixed singlet/triplet representa-
tion based on all possible hopping and pairing operators
constructed in these channels15–17 rather than the more
standard SU(2) approaches18–21. The reliability of the
mean-field ansätze used is established by comparing the
SBMFT in the large-S limit with the exact ground state
of the classical model recovering the well known Néel,
zig-zag, ferromagnetic, stripy magnetic orders for non-
zero Heisenberg exchange, away from the pure Kitaev
model. Remarkably, the SBMFT predicts different com-
peting QSL solutions of the Kitaev model. A comparison
of the SBMFT spin excitation spectra with exact diag-
onalization data allows us to single out the most likely
QSL among all the ansätze relevant to the integer-S Ki-
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taev model. An intricate chiral QSL is found to be the
most robust solution surviving up to about S = 2 host-
ing an excitation spectra in good agreement with exact
diagonalization data. We speculate that such mean-field
state will be favored by quantum fluctuations beyond the
SBMFT approach becoming the true ground state of the
S = 1 Kitaev model. The possible existence of the Z2

gapped chiral QSL predicted here can be probed through
experiments sensitive to time-reversal symmetry break-
ing on S = 1 AF Kitaev materials such as A3Ni2XO6 and
KNiAsO4.

The rest of the paper is organized as follows. In Sec.
II we introduce the Heisenberg-Kitaev model and the
SBMFT approach used to analyze it. In Sec. III we val-
idate the SBMFT decoupling used here by comparison
to ED calculations and semiclassical approaches. In Sec.
IV we discuss the QSL solutions found within SBMFT
and their physical properties such as their spin excita-
tion spectra are analyzed in Sec. V. Finally, we end our
work in Sec. VI with some conclusions discussing the im-
plication of our results to experiments on S = 1 Kitaev
materials.

II. MODEL AND METHODS
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FIG. 1. (a) The honeycomb lattice and its translation vectors
e⃗1 and e⃗2, the two sub-lattices u and v, the three bond depen-
dent Kitaev couplings and the three nearest neighbor vectors

{d⃗i}. (b) The corresponding first (continuous lines) and sec-
ond (dashed lines) Brillouin zones, and the high symmetry
points. For the dynamical structure factors, we consider the
path KΓMΓ′M ′KM to emphasize possible symmetry break-
ings.

The honeycomb lattice is bipartite and is defined by
Bravais vectors e⃗1 = 2u⃗1 − u⃗2 and e⃗2 = u⃗1 + u⃗2 in the

basis u⃗1 = u⃗x, u⃗2 = 1
2 u⃗x +

√
3
2 u⃗y. As depicted in Fig.1,

any sub-lattice u has 3 nearest neighbors v in directions

d⃗1,2,3. The Heisenberg-Kitaev model on this lattice, with
quantum spin Si at site i, is given by the hamiltonian:

HHK =
∑
⟨i,j⟩γ

ŜiJ
γŜj , (1)

where γ = 1, 2, 3 is either the bond direction and the spin
components x, y, z. In our definition, Jγ are the corre-

sponding coupling diagonal matrices given by diag(Jγ) =
JH(1, 1, 1) + JK(δγ,1, δγ,2, δγ,3), where δi,j is the usual
Kronecker delta, JH the isotropic Heisenberg interaction
and JK the bond direction dependent Kitaev interaction
which explicitly breaks the rotation symmetry of the lat-
tice, as shown in Fig. 1(a). In this work, we set

JH = cos θ, JK = 2 sin θ,

and focus on θ ∈ [0, π] for reasons that are explained
hereafter. Note that thanks to the Klein duality22, it
is always possible to access corresponding ferromagnetic
regimes.
Among the possible methods to study strongly corre-

lated states of matter with possible disordered ground
states such as QSLs, we consider two complementary
quantum approaches, exact diagonalisation (ED) for sys-
tems with spin magnitudes, S ≤ 3

2 , and a parton mean
field theory. The latter has proven to be very versatile
and successful. When partons are Schwinger bosons, it is
possible to derive a mean field theory for pure Heisenberg
models, which treats spin disordered states and magnet-
ically ordered phases on equal footing. A key feature of
such SBMFT is the representation in terms of bond oper-
ators that nicely connects to the expected Sp(N) symme-
try group in the large-N limit23,24. This feature will be
used here to select the most relevant SBMFT by compar-
ing its large-S energies with the ones obtained through
the Luttinger-Tisza approach (LTA)25,26 and ED at lower
S.
We now want to recall the main lines of the SBMFT,

more details can be found in [15–17, 27–30] and references
therein. In the Schwinger boson construction, the spin
operator at, say, site i is written in terms of bosons as:

Ŝi =
1

2
b̂+i σ⃗b̂i (2)

where b̂+i = (b̂+i,↑, b̂
+
i,↓) are bosonic creation operators and

σ⃗ = σ1u⃗x + σ2u⃗y + σ3u⃗3 are the Pauli matrices. Antici-
pating notations, we also define σ0 as the 2 × 2 identity
matrix and define α = 0, 1, 2, 3 as the index of the compo-
nents. For such a mapping to realize physically the spin
S algebra, it is necessary to satisfy the boson constraint

n̂i = b̂+i b̂i = 2S = κ, (3)

i.e. all unphysical states not having exactly κ bosons
per site have to be projected out. If this constraint is
strictly respected, the parton construction is exact. Un-
fortunately, it is very difficult to treat the constraint ex-
actly in practice, and it is then done only on average by
introducing Lagrange multipliers:∑

i

λi (n̂i − κ) , (4)

to the Hamiltonian HHK.
In Eq. (1), HHK contains both the SU(2) symmetric

Heisenberg and the non-SU(2) Kitaev terms which can be
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rewritten in terms of the hopping ĥα and pairing opera-
tors p̂α with α = 0 belonging to the singlet and α = 1, 2, 3
triplet channels. Explicitly, the two terms read:

ĥα
ij =

1

2
b̂+i σ

αb̂j , p̂αij =
i

2
b̂i
(
σασ2

)
b̂j . (5)

At this stage, we have 8 different operators at our dis-
posal and many possible combinations of them can be
used to describe exactly HHK. Following and adapting
the compact and useful notations of [17], it is possible to
obtain general identities of the form

ŜiJ
γŜj = : ĥ+

ijH
γ
ijĥij : +p̂+

ijP
γ
ijp̂ij +Kij , (6)

where : Ô : is the normal order of the operator Ô and

where we have introduced the vectors of hopping ĥij =

(ĥ0
ij , ĥ

1
ij , ĥ

2
ij , ĥ

3
ij)

T and pairing p̂ij = (p̂0ij , p̂
1
ij , p̂

2
ij , p̂

3
ij)

T

operators, and their corresponding bond dependent 4×4
coupling matrices Hγ

ij , P
γ
ij , functions of JH and JK . The

last term Kij is a constant to be determined in function
of the chosen mean field theory.

The Schwinger boson hamiltonian for our present
Heisenberg-Kitaev model can be generically expressed as:

HRK =
∑
⟨i,j⟩γ

: ĥ+
ijH

γ
ijĥij : +p̂+

ijP
γ
ijp̂ij +Kij

+
∑
i

λi(n̂i − κ). (7)

As said above, several choices of Hγ
ij and P γ

ij are possible,
yielding different mean field theories that can drastically
change the results. For example, in the case of Hγ

ij = 0,
only pairing terms are present, but this usually leads to
a bad ground state energy and/or dynamical structure
factors19,21. On the other hand, when P γ

ij = 0, only
magnetic orders are accessible by the theory and possible
QSL states may be overlooked.

A reasonable strategy would be to preserve the SU(2)
symmetry at JK = 0. At this Heisenberg point, HHK

is only written with ĥ0 and p̂0, and properly recovers
the Sp(N ) symmetry group in the large-N expansion
limit23,24.

A natural choice is to take diag(Hγ
ij) =

JH(1, 0, 0, 0)+JK(1, 0, 0, 0), diag(P γ
ij) = −JH(1, 0, 0, 0)−

JK(0, δγ,1, δγ,2, δγ,3) and Kij = 0, corresponding to de-
scribe the non-SU(2) Kitaev bond by the help of triplet
operators only, and the isotropic SU(2) Heisenberg
one by the singlet operator. Similar choice has been
successfully employed in other systems, e.g. for an
exchange Hamiltonian arising in the strong interaction
limit of the layered heavy transition metal oxide com-
pound (Li,Na)2IrO3

16, on a Heisenberg-Kitaev model
on the triangular lattice15 or more recently for a XXZ
model on the pyrochlore17 lattice. In the present model,
this SBMFT does not allow to recover the large-S
classical limit and provides a false energy profile as a
function of θ. In addition, the isotropic term and the

three Kitaev bonds are treated independently such that
ŜiŜj =

∑
γ Ŝ

γ
i Ŝ

γ
j is not necessarily verified.

In this paper, we follow another direction by notic-
ing that the isotropic term can be written as a sum
of singlet and triplet projectors ŜiŜj = − 3

4 |sij⟩⟨sij | +
1
4

[
|t1ij⟩⟨t1ij |+ |t2ij⟩⟨t2ij |+ |t3ij⟩⟨t3ij |

]
from one side, and that

ideally a SBMFT should recover the classical solutions
when S → ∞ from the other side (see the next section
for a comparison with the LT method25,26). We then
define the following operator matrices

P γ
ij = −JHm0 − JKmγ , (8)

Hγ
ij = −P γ

ij and Kij = 0 and where we have intro-

duced diag(m0) = (1,− 1
3 ,−

1
3 ,−

1
3 ), and mγ with γ =

1, 2, 3 as diag(m1) = (+ 1
3 ,+

1
3 ,−

1
3 ,−

1
3 )/3, diag(m2) =

(+ 1
3 ,−

1
3 ,+

1
3 ,+

1
3 ) and diag(m3) = (+ 1

3 ,−
1
3 ,−

1
3 ,+

1
3 ),

verifying the relation m0 = m1 + m2 + m3. It is now
clear that in terms of operators, we have the identities

ŜiŜj =: ĥ+
ijm0ĥij : −p̂+

ijm0p̂ij ,

Ŝγ
i Ŝ

γ
j =: ĥ+

ijmγĥij : −p̂+
ijmγp̂ij , (9)

satisfying ŜiŜj =
∑

γ Ŝ
γ
i Ŝ

γ
j by construction. To study

the HKM, we perform the following mean-field decou-
pling

: ĥ+
ijH

γ
ijĥij : → ĥ+

ijH
γ
ijhij + h∗

ijH
γ
ijĥij − h∗

ijH
γ
ijhij ,

p̂+
ijP

γ
ijp̂ij → p̂+

ijP
γ
ijpij + p∗

ijP
γ
ijp̂ij − p∗

ijP
γ
ijpij ,

where we have defined the expectation vectors pij =

⟨ϕ0|p̂ij |ϕ0⟩ and hij = ⟨ϕ0|ĥij |ϕ0⟩ calculated in the vac-
uum bosonic ground state |ϕ0⟩ for each oriented pair of
interacting spins (i → j), that we inject in Eq. 7 to get the
SBMFT HMF

HK . Although quite standard, we reproduce
the main steps to solving such mean-field hamiltonian for
completeness. In order to be compatible with all known
magnetic orders encountered in the HKM10,12,22,31,32, we
consider a large magnetic unit cell of nu sites contain-
ing 12 × nu complex mean-field parameters (8 per bond
in the unit-cell). We have tried unit cells up to 24 sites
and found that all ansaẗze of this work were compatible
with at most nu = 8, so we only consider this unit cell in
the SBMFT calculations. HMF

HK is self-consistently solved,
starting from random mean-field parameters {pij ,hij}
and adjusting the set of nu independent – the unit cell
is translationally invariant– Lagrange multipliers {λi} to
satisfy the boson constraint. We then obtain the ground
state free of bosons |ϕ0⟩ by diagonalizing the 4nu × 4nu

q-dependent Hamiltonians written in the Fourier space
on a Brillouin zone of linear size l containing l × l mo-
menta (N = nu × l × l sites). The diagonalization is
performed using a Cholesky decomposition33. A new set
of mean-field parameters is then computed in |ϕ0⟩, and
the procedure is repeated until convergence of the mean-
field variables to a desired tolerance (typically 10−11).
Our procedure is then derivative-free, which is easier to
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work with complex parameters. Importantly, we stress
that |ϕ0⟩ is the boson vacuum at T = 0 with a gap scal-
ing like ≃ 1/l for an ordered state29. This means that the
condensation only appears in the thermodynamic limit,
unless the state in purely classical, e.g. the ferromagnetic
state.

III. VALIDATING THE SBMFT
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FIG. 2. Ground state energies per site of the Heisenberg-
Kitaev model in function of θ, obtained by ED for S = 1/2
(black line), S = 1 (gray line) and S = 3/2 (dashed gray line),
and by the Luttinger-Tisza method at the classical limit (blue
line). Colored circles/squares are the corresponding SBMFT
ansätze containing only pairing/hopping operators. Empty
symbols correspond to mean-field solutions reachable only by
adding Bose condensates in the theory (beyond the scope
of this work), such as for the non-fluctuating ferromagnetic
state.

We have calculated the SBMFT dependence of the
ground state energy with the parameter θ ∈ [0, π] by solv-
ing self-consistently HMF

HK for various S which range from
the strong quantum regime (small S) to the large-S limit.
For the latter, the ansätze can be obtained analytically
allowing to fully span the parameter space θ ∈ [0, 2π].
In Fig. 2, we compare our results (symbols) with (i) the
classical limit obtained by the Luttinger-Tisza method26

(blue line) and (ii) the ED for the S = 1/2 (black line),
S = 1 (gray line) and S = 3/2 (dashed gray line) on
12-site clusters. Details are given in Appendices A and
B for (i) and (ii) respectively.

We see that our SBMFT construction at large S
matches perfectly the LT results, validating the proposed
mixed singlet / triplet construction rather than the sep-
arated channels15–17 that would lead to a completely dif-
ferent ground state energy dependence on θ. This sys-
tematic comparisons with the classical energies, as done
here, provides crucial information for deriving the appro-
priate Schwinger boson mean-field decoupling of the spin
interactions. At the special Kitaev point θ = π/2, the
classical state is known to be the Baskaran-Shen-Shankar
(BSS) state made of fully-packed classical dimers dis-

tributed in a star pattern shape maximizing the number
of empty hexagons9. Every dimer possesses an internal
degree of freedom – its orientation – hence resulting to a
massive degeneracy. Such a typical classical spin config-
urations can be obtained within SBMFT, properly recov-
ering the expected classical energy per site N , E

NS2 = −1
is by replacing ⟨SiSj⟩ → ⟨Si⟩⟨Sj⟩ as expected in a classi-
cal situation with no quantum fluctuations, in HHK and
where ⟨Si⟩ is evaluated in the boson vacuum. An exam-
ple of a typical classical dimer configuration is given in
Fig.3.

+ ⃗uz

+ ⃗ux

+ ⃗uy

FIG. 3. Sketch of the spin structure of a typical classical
cartesian BSS state as obtained self-consistently at the Ki-
taev point θ = 1/2 and for a 24-site unit-cell. While obtained
at S = 0.1, the spin averages ⟨Sx,y,z

i ⟩ follow the dimer star
pattern. The classical energy per site N and spin S is ob-
tained from HHK as explained in the text. Classical dimers
are represented by ovals, and the red, gray and blue colors cor-
respond to spin orientations along the x, y and z axes. Dimers
are ordered in a star pattern.

At large S, we have obtained the right sequence of
phases with increasing θ as originally reported22 i.e. the
Néel, the Zig-zag, the FM and the Stripy phases. In
Fig. 2, we use filled symbols for the ansätze that are ac-
cessible within the self-consistency, and empty ones for
solutions that require to properly take into account the
Bose condensation in the SBMFT. While it is not always
necessary at small S on finite systems since the spec-
trum is always gapped, it becomes unavoidable at larger
S for getting solutions satisfying the boson constraint.
For example, the non-fluctuating ferromagnetic state at
θ = π has all the bosons condensed at the Γ point of the
Brillouin zone, and a large portion of them remains con-
densed even at smaller S. In the rest of this paper, we
focus on the regions of filled symbols where a good saddle
point of the self-consistent equations can be stabilized.
A remarkable feature of our SBMFT is that under the

lowering of S down to S = 1/2 and S = 1, the GS en-
ergies remain very close to the ED energies (see Fig. 2).
However, the smaller the S, the larger the difference.
This can be either attributed to the mean-field treatment,
the finite size cluster used for the ED or even the fact
that for the lowest spin, S = 1/2, Majorana fermion ex-
citations have significant effects close to the Kitaev point
that cannot be described in the present theory. In this
work, our main aim is to understand the nature of pos-
sible bosonic QSLs arising in the integer-spin HK model.
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|p0| |p1| |p2| |p3| λ

ϕs = 0 0.1983(8) 0 0 0 0.2293(8)

ϕt = 0 0 0.1975(2) 0.1975(2) 0.1975(2) 0.2240(3)

ϕs = π/2 0.1979(3) 0 0 0 0.2265(1)

ϕt = π/2 0 0.1979(3) 0.1979(3) 0.1979(3) 0.2265(1)

ϕs = π 0.1975(2) 0 0 0 0.2240(3)

ϕt = π 0 0.1983(8) 0.1983(8) 0.1983(8) 0.2293(8)

TABLE I. Non-zero mean-field parameters of the ansätze at
the Kitaev point θ = π/2 and the corresponding Lagrange
multipliers λ for S = 0.1. Note that at this specific point,
exact degeneracy occurs between pairs of states, as can be
seen in the energy zoom of Fig. 5. The results are obtained
for a cluster of nu = 8 sites per unit cell and a linear size of
l = 24.

Thus, in the rest of the paper we will focus on the prop-
erties, physical signatures, and robustness with S of the
QSLs found within our SBMFT. Our results are directly
relevant to the characterization of the QSLs found nu-
merically in other studies of the S = 1 HK model10,12.

IV. QUANTUM SPIN LIQUIDS AND
CHIRALITY

In 2010, Wang applied the projective symmetry group
(PSG) method to classify all the possible Z2 spin liq-
uid states of a SBMFT on the honeycomb antifer-

romagnet based on the ĥ0 and p̂0 operators, up to
third nearest neighbors.34 It has been shown that only
two QSLs are possible which can be distinguished by
their gauge-invariant flux piercing the hexagonal pla-
quettes. The physical observable to quantitatively
differentiate such non-trivial orders can be quantified
through the Wilson loop (WL)34,35, defined as the
phase ϕs = p0ij(−p0∗jk)p

0
kl(−p0∗lm)p0mn(−p0∗ni) around the six

sites i, j, k, l,m, n of an hexagonal plaquette. As Wang
noticed34, in his construction of the PSG, the two QSL
fluxes can be either 0 or π, and both satisfy time-reversal
symmetry (TRS). In general, it is however not forbidden
to find chiral QSLs breaking TRS, as Messio et al.36 have
shown with a more general PSG treatment, on triangu-
lar and square lattices though. In our HK model, in
addition to singlet flux ϕs, we also define triplet flux as
ϕt = p1ij(−p2∗jk)p

3
kl(−p1∗lm)p2mn(−p3∗ni). Other WL can be

constructed, but ϕs and ϕt are enough to characterize all
QSLs found in the present study.

In a translationally and rotationally invariant triplet
state, we expect pγij = p.15 To focus on the properties of
the QSLs, we first start our analysis for strong quantum
fluctuations by reducing the value of the spin down to
S = 0.1. Solving the self-consistent equations, we iden-
tify 6 gapped phases, 3 made only of singlets p0 ̸= 0
with ϕs ̸= 0 and ϕt not defined, and 3 made only of
triplets pγ ̸= 0 with ϕs ̸= 0 and ϕt not defined. In Ta-
ble. I, we give the explicit values of the non-zero mean

field parameters at the Kitaev point θ = π/2 and for a
system with linear size l = 24 of nu = 8 unit-cells, and
the corresponding phase structure is given in Fig. 4. Be-
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FIG. 4. The eight-site magnetic unit cell considered in the
text with its corresponding t⃗1,2 translation vectors. Site in-
dices are written in blue. In the SBMFT, each bond is ori-
ented, here according to the convention indicated by the ar-
rows. Thick bonds are extra phase that has to be multiplied
to the mean field parameters, −1 (blue) or i (red). Three
QSL flux sectors are displayed, (a) the ϕs,t = 0 with nu = 2,
(b) the chiral ϕs,t = π/2 with nu = 8 and (c) the ϕs,t = π
with nu = 4.

fore going in more details in their physical properties, we
discuss in the rest of this section their energies, as shown
in Fig. 5 where circles correspond to the singlet, squares
to the triplets and the colors gray, green, and blue are
the corresponding fluxes ϕs,t = 0, π/2 and π flux sectors.
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E
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FIG. 5. Zoom on the QSL energies around the pure Kitaev
point at θ = π/2 and at strong quantum fluctuations (S =
0.1) obtained by solving the SBMFT self-consistent equations.
Each color corresponds to a flux sector: 0 (black), π/2 (red)
and π (gray). Symbols correspond to the constituents of the
QSLs, either singlets (circles) or triplets (squares). Exact
degeneracies appear at θ = π/2. States with flux of π/2 (red)
are chiral.

Note that the 2 singlet ansätze at ϕs = 0 and π are
the QSLs found by Wang.34 They have have respectively
a magnetic unit-cell of 2 and 4 sites, as shown in panels
(a) and (b) of Fig. 4. The lowest state is ϕs = 0 that, by
increasing S (lowering the quantum fluctuations), even-
tually condenses to the Néel order as expected in the
region θ < π/2 (the complete analysis in function of S is
treated in the next section). Interestingly, we also find a
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chiral 8-site magnetic unit-cell phase displayed on panel
(c), with a flux of ϕs = π/2. Its energy is in between
the two other QSLs, without ever crossing their energies.
This flux gives a pure imaginary phase of i on the ansätz,
and thus breaks TRS implying a chiral QSL.

Interestingly, applying the same phase structures to
triplet ansätze, we find the 3 triplet counterpart of the
3 singlet liquids. The lowest triplet state is now in the
ϕt = π sector, and it condenses to the Zig-zag state at
large S and in the region θ > 1/2, as expected (see also
Fig. 2). As for the singlet states, we find a second chiral
QSL with a flux ϕt = π/2.
The energies of the singlet and triplet QSLs cross each

other at the pure Kitaev point θ = π/2 where every
flux sector is exactly doubly degenerate. As previously
mentioned, for such strongly frustrated model, the clas-
sical state is highly degenerate and an order by disorder
mechanism reduces the degeneracy to that of the BSS
configurations5,9. Quantum mechanically, spin liquids
are found for S = 1/2 and S = 1 as recently reported
in [10–13, and 37]. Our ED analysis shows how spin cor-
relations, ⟨Sx

0S
x
j ⟩, (with 0 a reference site) are zero be-

yond the nearest-neighbor distance in the Kitaev model
for S = 1/2, 1 and S = 3/2, the dependence of the spin
correlations with intersite distance is qualitatively the

same in the three cases (see Fig. 9). This indicates that
indeed a QSL is present in the Kitaev model even for
S = 3/2 whose ground state energy is still quite below
the LT energy (see Fig. 2). We have explored further the
nature of these QSLs by comparing the lowest excitation
energies, ∆ = E1 − E0, of the S = 1/2, 1 Kitaev models
using ED. A straightforward linear extrapolation of ∆
calculated on the small clusters , N ≤ 24, to the thermo-
dynamic limit, suggests that the S = 1 QSL is gapless as
in the the S = 1/2 model which is known to be gapless
from Kitaev’s exact solution. However, the limited clus-
ter sizes available for the finite-size scaling analysis does
not allow to conclude about the possible existence of a
small gap in the S = 1 QSL. In fact while tensor netwok
calculations indicate a gapped QSL for S = 1 HK model,
DMRG concludes that a gapped QSL is present. Further
calculations on larger systems are needed to clarify this
important issue.
It is most likely that one of the present QSLs could

be stabilized at larger S when we go beyond the present
mean field theory. Even beyond the scope of the present
work, it would be interesting to perform a complete PSG
analysis for the present mean field construction in order
to establish the list of all possible chiral ansätze. We let
this question open for a future work.

V. PHYSICAL SIGNATURES

It is very useful to characterize the QSLs found through
their physical signatures such as dynamical and static
structure factors. Also the critical Sc at which they Bose
condense provides interesting information of the QSL
pattern. These questions are addressed in this section
and in addition to previous gauge invariant Wilson loop
observables, we consider the inelastic structure factor:

S(q, ω) =
1

N

∑
m,n

eiq(rm−rn)

∫ +∞

−∞
dte−iωt⟨Sm · Sn⟩,(10)

where m,n run over all N sites of the lattice. Details
about the derivation can be obtained in the literature,
e.g. in [30] for an explicit expression in the case of the

common (ĥ0, p̂0) SBMFT. Integrating over all frequen-
cies ω leads to the equal-time structure factor S(q). Fi-
nally, together with the spin expectation values ⟨Si⟩, we
consider the real space spin-spin correlations to see mag-
netically ordered phases. In Fig. 6 we show the dynamical
and static spin structure factors for the QSLs, at S = 0.1
(two top rows) and at S ≲ Sc (two bottom rows) . All re-
sults are obtained for the Kitaev model, θ = π/2 and for
a system with nu = 8 sites per unit cell, and linear size
of l = 24, namely with N = 4608 sites. In the following,
we describe the dependence of these QSLs solutions on S

and their fate with the suppression of quantum fluctua-
tions when increasing S. We have labeled all the phases
(a) to (f) according to the order displayed in both Figs. 6
and 7. This is also corroborated by their complex static
structure factors, displaying distinctive experimental sig-
natures in actual compounds realizing the HK model.
(a) ansätz ϕs = 0: As said, this state corresponds to the
0-flux Z2 QSL reported by Wang.34 This fragile liquid is
gapped for S < 0.25, and eventually quickly condenses to
the Néel state above. At the Kitaev point, a level cross-
ing with state ϕt = π (detailed below) occurs, and the
Néel state is not the GS anymore. The structure factors
show clear weights on the Γ′ points, in the second BZ.
This is illustrated in Fig. 7 where we have calculated the
real-space spin-spin correlations ⟨Si · Sj⟩.
(b) ansätz ϕt = 0: This state can be viewed as the triplet
counterpart of the previous ansätz. However, one can see
in Fig. 6 how at low S, the spectral weight in the dynam-
ical structure factor is relatively flat and that Bose con-
densation occurs at a much higher spin value S = 1 with
different soft modes. In fact, the main Bragg peaks ap-
pear at the Γ and M points, showing the multi-Q nature
of the phase. Interestingly, the ordered magnetic state,
arising upon Bose condensation, breaks translation sym-
metry leading to a corresponding large magnetic unit cell,
as depicted in panel (b) of Fig. 7. The structure is quite
complex, with strong ferromagnetic correlations, isolated
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S = 0.1 S = 0.1 S = 0.1 S = 0.1 S = 0.1 S = 0.1

S = 0.25 S = 1 S = 2 S = 2 S = 1 S = 0.25

ϕs = 0 ϕt = 0 ϕs = π /2 ϕt = π /2 ϕs = π ϕt = π
ω

ω
(a) (b) (c) (d) (e) (f)

FIG. 6. Dynamical and static spin structure factors for the QSLs discussed in the text., ordered according to their flux(ϕs,t

displayed at the top. All the results are obtained for a system of nu × 24× 24 sites with nu = 8, at the Kitaev point θ = 1/2.
The first two lines at the top are results obtained in the strong quantum fluctuation regime at S = 0.1 where all phases are
gapped. For the two last lines, the same quantities are computed at a spin value very close to the phase transition where the
Bose condensation occurs for the corresponding ansätz. The chiral states at ϕs,t = π/2 are very stable upon increasing S and
remain liquid up to S = 2 where we still see a tiny gap. Both dynamical and static structure factors provide clear distinct
signatures for any of these phases.

by regions of negative ones and surrounded by pins.
(c) ansätz ϕs = π/2: With its pure imaginary Wilson
phase, this state is chiral and breaks TRS. The gap is
large at small S, and the liquid phase survives in a very
large region of S, up to S = 2. This is, together with
phase (d) discussed just after, the best candidate for a
bosonic QSL to be encountered in the HKM. This is un-
fortunately not the smallest solutions we find in the phase
diagram, but its close proximity with the other solutions
makes it a good candidate for the QSL found in the nu-
merical studies of the S = 1 Kitaev model10,12. At very
large spin S = 2, the Bose condensation of the spinons
leads to a very complex phase with a very large magnetic
unit cell as depicted in panel (c) of Fig. 7. However, this
state consisting only on singlets is certainly not the most
exotic QSL found in the present work, despite its chi-
rality. On the other hand and, as discussed below, the
S(q, ω) of this QSL solution is the most consistent with
numerical work on the S = 1 HK model.

(d) ansätz ϕt = π/2: This is certainly the most interest-
ing QSL encountered here. This is a pure triplet QSL
which, due to its purely imaginary Wilson flux it is also
imaginary. The physical signatures of such state shown
in panels (d) of Fig. 6 are quite exotic, with a very com-
plex static structure factor at Sc, and a strong almost
flat low frequency signal even at S = 2, in S(q, ω). The
underlying magnetically ordered state consists on a large
magnetic unit cell with very complex real space spin or-
dering (see Fig. 7(d)). It is interesting to note that the
spins remain almost disordered even at large S = 2, with
local magnetic droplets well separated. This original fea-
ture is cleary different from the fermionic chiral QSLs
found by the authors on the same model for the S = 1/2
case with a Majorana mean-field theory38 and would be
easily checked experimentally if such a state is present in
actual materials.
(e) ansätz ϕs = π: This QSL is the second one re-
ported by Wang in his 2010 article34. It has a π-flux
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per hexagon, and is more robust against the increase of
S, since its Bose condensation occurs near S = 1 (see
Fig. 6). It is worth noticing that the spin pattern ob-
tained by spinon condensation was left as an open ques-
tion by the author34. However, we clearly see in Fig. 7
that, as the author speculated, the corresponding crystal
phase is indeed very complex, with a large size magnetic
unit cell, and various ferro- antiferro-magnetic correla-
tions.
(f) ansätz ϕt = π: In fact, the main Bragg peaks ap-
pear at the M points, showing the multi-Q nature of the
phase. The ordered magnetic state upon Bose conden-
sation is nothing else but the expected zig-zag phase, as
shown by the real-space spin-spin correlations in panel (f)
of Fig. 7, calculated for S = 1/2. Our SBMFT provides
qualitatively the correct sequence of magnetic phases.

0 1 2 3
4 5 6 7

0 1 2 3
4 5 6 7

ϕs = 0

0 1 2 3
4 5 6 7

0 1 2 3
4 5 6 7

0 1 2 3
4 5 6 7

0 1 2 3
4 5 6 7

ϕt = 0

ϕs = π /2 ϕt = π /2

ϕs = π ϕt = π

(a) (b)

(c) (d)

(e) (f)

FIG. 7. Real space spin-spin correlations ⟨Si · Sj⟩ for the 6
ansätze discussed in the text. They are calculated deep in
their crystalline regions where the bosons are already con-
densed, i.e. (a) and (f) at S = 1/2, (b) and (e) at S = 2 and
(c) and (d) at S = 4, for a cluster of 8 × 12 × 12 sites. Blue
(red) disks correspond to positive (negative) correlations. The
larger the radius, the stronger the correlations, in arbitrary
units.

An important question is which of the relevant SBMFT
ansätze discussed above is most likely to be realized in

the Kitaev model, JH = 0 with S > 1/2 since there is
no exact solution available for such models. Insight to
this question can be gained by comparing the dynami-
cal structure factor, S(q, ω), in Fig. 6 for the different
SBMFT ansätze with the ED results of Fig. 10. An im-
portant qualitative feature of S(q, ω) is that the AFMKi-
taev model, JK > 0, has no spectral weight at the q = Γ
point not only for S = 1/2 but also for S = 1, 3/2 consis-
tent also with the classical limit results5. This is in con-
trast to the FM Kitaev model, JK < 0, where the Γ-point
does have substantial spectral weight. A first inspection
of S(q, ω) in Fig. 6 on the AFM Kitaev model shows
how only the singlet ansätze display spectral weight at
the Γ-point. This is in consistent agreement with the ED
results for the JK > 0 of Fig. 10. On the other hand
the dispersion spin excitations in the singlet QSL solu-
tion displayed in the upper row of Fig. 6, for S = 0.1,
is rather flat around ω = 0.18. Hence both the pres-
ence of spectral weight around Γ and the flat dispersion
are in consistent agreement with the ED results for the
JK > 0 of Fig. 10. Apart from this the singlet chiral
phase with ϕs = π/2 is characterized by a flat disper-
sion whose location is shifted to lower energies as S is
increased prevailing all the way up to S ≤ 2. Such flat
excitation dispersion at low energies is reminiscent of the
dispersions found in the classical AFM Kitaev model5.

VI. CONCLUSIONS

Motivated by the possibility of finding a bosonic Ki-
taev spin liquid in the integer spin-S HK model, we have
performed a detailed analysis applying a Schwinger bo-
son approach on the model for arbitrary S complemented
with ED on the S = 1/2, 1 and 3/2 cases, as well as
the LTA valid in the large-S classical regime. The lat-
ter has helped us to construct a proper mean-field theory
that reproduces exactly the classical limit, as it should.
This is achieved by rewriting the spin bilinears of the
HK model in the bond eigenbasis made of singlet and
triplet bonds, by introducing corresponding hopping and
pairing operators. We have then focused on the possi-
ble Z2 QSLs in the strong quantum regime (very low S)
and showed that the two already reported singlet QSLs34

possess their triplet counterparts. Their physical sig-
natures, the dynamic and static structure factors show
clear distinct features, and are quite robust upon Bose
condensation (increasing of S). Surprisingly, by enlarg-
ing the unit-cell to nu = 8 sites, we have been able to
unravel, to the best of our knowledge, two novel chiral
QSLs with a flux of π/2 piercing hexagons, one made of
singlet and the second one its triplet counterpart. While
bosonic chiral QSLS have been obtained within the pro-
jective symmetry group for the Kagomé and the trian-
gular lattice39, these phases have been overlooked on the
honeycomb lattice so far because the projective symme-
try group has only considered for non-chiral ansätze34.
The fact that two chiral QSLs are found in the present
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work also opens the door for the search of other bosonic
chiral QSLs. Comparing our dynamics to the ones ob-
tained with ED for S = 1/2 and S = 1, it seems that the
ϕs = π/2 QSL found in the SBMFT is the most com-
patible QSL with the ED data. Interestingly, this QSL
is very robust against increasing S and remains gapped
even up to S = 2. This is a promising candidate for the
intermediate QSL reported in previous works. We can
expect that quantum fluctuations, beyond the SBMFT
used here, will lower the energy of this ϕs = π/2 below
the rest of close-in-energy QSLs found making it the abso-
lute ground state in a small but finite parameter regime of
the HK model around the Kitaev point. The consistency
of the S(q, ω) of the ϕs = π/2 QSL between SBMFT
and ED suggests that indeed this is the most probable
candidate among the QSLs found within SBMFT for the
ground state of the S = 1 Kitaev model. Further numeri-
cal and/or analytical work beyond the SBMFT is needed
to establish the definitive nature of QSLs in integer HK
models.
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Appendix A: Luttinger-Tisza approximation

For completeness and illustrative purposes we briefly
describe the Luttinger-Tisza approach25,26 to the Kitaev-
Heisenberg model used previously40–42. The LTA is a
semiclassical approach to find the ground state energies
of a given magnetic model. One introduces a Fourier
transform of the spin operators:

Sα
i,s =

1√
Ns

∑
q

eik·RiSα
k,s, (A1)

where Ri denotes the position of the unit cells in the hon-
eycomb lattice (1), s denotes the sublattice type and Ns

the number of sites on each sublattice. We here assume
that there are only two sublattices: s = A,B (nu = 2).

The transformed Heisenberg-Kitaev model in k space
then reads:

H =
∑

k,γ,m,n

Sα
k,nΛ

α
nm(k)Sα

−k,m (A2)

where the three 2×2, Λα(k), with the α = x, y, z matrices
expressed as:

Λα(k) =

(
0 Λα

AB(k)

Λα∗
AB(k) 0

)
(A3)

with:

Λx
AB(k) =

1

2

[
(2JK + JH)e−ik·d1 + JHe−ik·d2 + JHe−ik·d3

]
,

Λy
AB(k) =

1

2

[
JHe−ik·d1 + (2JK + JH)e−ik·d2 + JHe−ik·d3

]
,

Λz
AB(k) =

1

2

[
JHe−ik·d1 + JHe−ik·d2 + (2JK + JH)e−ik·d3

]
,

with d1 = (1, 0), d2 = (− 1
2 ,−

√
3
2 ), a2 = (− 1

2 ,
√
3
2 ). The

Luttinger-Tisza condition on the absolute spin magni-
tude of the whole lattice reads:

∑
k,n

Sk,n · S−k,n = 2NsS
2 = NS2, (A4)

with nu the number of unit cells in the lattice. The
constraint is introduced through a single Lagrange mul-
tiplier, λ, in the free energy: F = H − λ(

∑
k,n Sk,n ·

S−k,n − NS2). The minimization of F leads to a set of
self-consistent equations:

∑
m

Λα
nm(k)Sα

k,m = λSα
k,n. (A5)

Hence, from the diagonalization of each Λα(k) matrix,
we obtain a set of eigenvalues λ. For a given eigenvalue,
the energy of the system can be expressed as:

H =
∑
k,α,n

(∑
m

Λα
nm(k)Sα

k,m

)
Sα
−k,n

= λ
∑
k,n

Sα
k,nS

α
−k,n = λS2. (A6)

So the energy per unit cell of the system is given by the
lowest λ common to all three Γα matrices. The ground
state energy is given by the lowest λ on the 1st Brillouin
zone.

An analytic expression of the eigenvalues of, say Λx(k),
can be obtained and reads:

λ±(k) = ±1

2

√
(2JK + JH)2 + 2J2

H + 2(2JK + JH)JH cos(k · ξ1) + 2(2JK + JH)JH cos(k · ξ2) + 2J2
H cos(k · ξ3),
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with ξ1 = d1 − d2, ξ2 = d1 − d3 and ξ3 = d2 − d3

expressed in terms of the nearest-neighbor vectors: d1 =
(1, 0), d2 = (−1/2,−

√
3/2)) d3 = (−1/2,

√
3/2).

For illustrative purposes we show in Fig. 8 the LT
eigenvalues, λ±(k) for three representative model pa-
rameters including the Heisenberg model, JK = 0, with
JH > 0 (θ = 0) and JH < 0 (θ = π), the Kitaev model,
JH = 0, with JK > 0 and JK < 0 and the intermedi-
ate JK , JH ̸= 0 Kitaev-Heisenberg models JH < 0, JK =
−2JH > 0 (θ = 3π/4) and JH > 0, JK = −2JH < 0
(θ = 7π/8). Based on these results we consider the dif-
ferent cases.

Heisenberg models: θ = 0, π
As can be observed in Fig. 8, for both θ = 0, π, the

lowest eigenvalue λ−(k) has a minimum at k = Γ with
value: λ−(k) = λ(Γ) = −3/2JH . Hence, the ground
state energy per unit cell is:

E0

Ns
= 2S2λ−(Γ) = −3S2JH , (A7)

for both θ = 0, π. For θ = 0, the ground state eigenvector
is:

Sα
Q=Γ,s = (−1)s, (A8)

wit, say, s = 0 for A sites and s = 1 for B sites and α =
x, y or z. Hence, the ground state is Néel ordered with a
fully saturated staggered magnetic moment, |Si,s|2 = S2.
For θ = π, the ground state spin order is:

Sα
Q=Γ,s = ±1, (A9)

which is just a saturated FM with |Si,s|2 = S2.
These results recover the expected ground states of the

AF and FM Heisenberg models on the honeycomb lattice.
The order can be along the x, y or z directions.
Kitaev models: θ = π/2, 3π/2
In these cases the eigenvalues, λ(k), are independent

of k leading to the two flat bands showed in Fig. 8. The
lowest eigenvalue has a value:

λ±(k) = ±JK . (A10)

with a corresponding ground state energy per unit cell:

E0

Ns
= 2S2λ−(Γ) = −2S2JK . (A11)

The ground state eigenvector is independent of k:

Sα
k = (−1)s, (A12)

implying no preferred ordering of the spins: a classical
spin liquid. This is expected since the Kitaev model is
known to lead to a spin liquid even in the classical model.
The ground state energy per unit cell coincides with the
previously found9, E0

Ns
= −JK (note that in our model the

Kitaev term is multiplied by a factor of 2), as it should.
Heisenberg-Kitaev model: θ = 3π/4, 7π/4

In the intermediate parameter regime of the Kitaev-
Heisenberg model for both θ = 3π/4, 7π/4 the lowest
eigenvalue has minima at the M -points. The ground
state energy per unit cell is:

E0

Ns
= 2S2λ−(M) = −2.13182S2JK . (A13)

The ground state magnetic order for the z spin com-
ponent reads:

Sx
i,s = cos(Q ·Ri)(−1)s, (A14)

where Ri are Bravais lattice vectors. The corresponding
ordering vectors, Q = M = (± 2π

3 , 0), describe zig-zag
magnetic order along the z-bonds, as reported previously.
Zig-zag order along the y (z) bonds is found from the
solution of Λy(k) (Λz(k) ) matrices, as it should.
In contrast for θ = 7π/4, the ground state magnetic

order reads:

Sx
i,s = cos(Q ·Ri), (A15)

with, again, Q = (± 2π
3 , 0) which describes stripy mag-

netic order along the x-direction. Stripy order along the
y (z) bonds is found from diagonalizing the Λy(k (Λz(k)
) matrices, as it should.

Appendix B: Exact diagonalization analysis

Several works have treated the ground state properties
of the Kitaev model for S ≥ 1/2 with exact diagonaliza-
tion techniques11,37,43. Here we provide our relevant ED
calculations44 performed to compare with the SBMFT of
the S ≥ 1/2 Kitaev model presented in the main text for
completeness.
In order to explore the magnetic properties of the

ground state of the pure Kitaev model, JH = 0, JK = 2,
on S, we have calculated the normalized real space spin
correlations, Cj = 3⟨Sx

i S
x
j ⟩/S(S+1) with i = 0 taken as

an arbitrary site of the lattice as shown in Fig. 9. The
spin correlations are found to be non-zero only up to the
nearest-neighbors for the S = 1/2, 1, 3/2 cases explored.
This indicates that the ground state is spin disordered
and is a QSL up to S = 3/2. This is a consequence
of the conservation of the Z2 gauge fluxes around the
hexagonal plaquettes9:

Wp = eiπ(S
y
i +Sz

j +Sx
k+Sy

l +Sz
m+Sx

n) (B1)

where i, j, k, l,m, n denote six sites around the plaquette,
p, where the spin operators entering (B1) correspond to
the bonds sticking out from each hexagonal vertex. An-
other important question is whether the Kitaev model
for S > 1/2 is gapped or not. In Fig. 9 we perform a
finite size scaling of the excitation gap ∆E = E1 − E0

comparing the S = 1/2 and S = 1 Kitaev model. The
gap is calculated in clusters with N = 8, 12, 18 and 24
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θ = 0, π

θ = π /2, 3π /2

θ = 3π /4, 7π /4

FIG. 8. Eigenvalues obtained from the Luttinger-Tisza ap-
proach on the Kitaev-Heisenberg model. The k dependence
of λ±(k) eigenvalues are shown for the pure Heisenberg model,
θ = 0, the pure Kitaev, θ = π/2, the intermediate Heisenberg-
Kitaev models, θ = 3π/4 (JH < 0, JK > 0) and θ = 7π/4
(JH > 0, JK < 0).

sites (only for the S = 1/2 case). A straightforward lin-
ear extrapolation of the gap obtained on the two largest
clusters to the thermodynamic limit (1/N → 0) would
lead to a zero gap indicating that the S = 1 case is gap-
less as the S = 1/2. However, due to the limitations on
the size of the accessible clusters a definitive conclusion
on whether the S = 1 model is gapped or not cannot
be reached. Our analysis seems to indicate a more rapid
decrease of the S = 1/2 gap compared with the S = 1
case. Further work on larger clusters is indeed needed to
reach a definitive conclusion on the size of the gap of the
S = 1 Kitaev model.

The physical spin excitations probed in inelastic neu-
tron scattering experiments can be obtained from the
exact dynamical spin spectral function:

S(q, ω) =
∑
α

∑
n

|⟨n|Sα
q |0⟩|2δ(ω − (En − E0)) (B2)

S = 1
2
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S = 3
2
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j

C
j

FIG. 9. Normalized spin correlations Cj = 3⟨Sx
0S

x
j ⟩/S(S+1)

and the gap in the S ≥ 1/2 Kitaev model. The spin cor-
relations, ⟨Sx

0S
x
j ⟩, in the ground state of the Kitaev model

are compared for S = 1/2, 1, 3/2. The dependence of the
gap, ∆E = E1 − E0, on 1/N of the S = 1/2 Kitaev model,
JH = 0, JK = 2, obtained from exact diagonalization up to
24 sites compared with the dependence of the S = 1 Kitaev
model.

where:

Sα(q, ω) =
1√
N

∑
m

eiq·rmSα
m, (B3)

with α = x, y, z and rm denotes lattice site which can be
alternatively denoted by the position of the unit cell, Ri,
and the sublattice index as (Ri, s).
The S(q, ω) on the pure Kitaev model obtained with

ED on N = 12 site clusters is shown in Fig. 10 along
the Γ −M direction. The S(q, ω) for S = 1/2, displays
a gap to a dispersionless band associated with the local-
ized vison excitations as previously found9,45. In agree-
ment with other numerical works, the antiferromagnetic,
JK > 0, S = 1/2 Kitaev model displays no weight at the
q = 0 mode in contrast to the ferromagnetic model with
JK < 0 as found previously5. Although the S(q, ω) for
S = 1 and S = 1/2 are very similar there are also some
differences. For instance, the characteristic peaks around
ω = 0.25 describing the dispersionless spin excitations of
the Kitaev model are broader for S = 1/2 than for S = 1.
Further insight into the nature of the various mag-

netic states arising in the Heisenberg-Kitaev model can
be gained from the direct inspection of its excitation spec-
trum. As discussed above, we are specially interested in
knowing whether QSLs arising in the S > 1/2 Kitaev
model are gapped or not. This can be explored by com-
paring the dependence of the energy excitation spectra
on θ of the S = 1 HK model with the S = 1/2 case
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q = Γ

q = M

S = 1
2 S = 1

2

S = 1 S = 1

JK < 0 JK > 0

q = 2
3 M

S(q
,ω

)

S(q
,ω

)
S(q

,ω
)

S(q
,ω

)

FIG. 10. Dynamical spin spectral function of the Kitaev
model. The S(q, ω)) of the S = 1/2 Kitaev model (JH = 0)
is compared with the S = 1 case for antiferromagnetic and
ferromagnetic JK . The characteristic flat dispersion spectra
of the S = 1/2 Kitaev model is also present for S = 1. The
figure shows the dispersion of the spin excitations along the
Γ-M direction.

as shown in Fig. 11. The figure displays a pronounced
suppression of the excitation energies around θ = π/2
i.e. for the S = 1 AF Kitaev model. This behavior is
also found in the S = 1/2 case around θ = π/2 (see
Fig. 11) where Kitaev exact gapless QSL is expected.
The suppression of excitation energies also arises around
θ = 3π/2 i.e for the FM Kitaev model somewhat sup-
pressed for S = 1 compared to S = 1/2. Due to the
small cluster available (N = 12 sites), it is difficult to
reach a definitive conclusion on whether the S = 1 Kitaev
model is gapped or not based solely on our ED results.
Tensor network calculations10 do suggest that the S = 1
Kitaev model is gapped. However, DMRG calculations12

on cylinders suggest that it is gapless. Further numerical
work is needed to establish this definitely. In any case,
the possibility of a bosonic Z2 QSL as predicted here by
SBMFT is not excluded by either our ED or previous
numerical studies on larger systems.
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