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A presentation and a generalisation are given of the phenom enon of level rearrangem ent, which
occurswhen an attractive long-range potential is supplem ented by a short-range attractive potential
of increasing strength. This problem hasbeen discovered in condensate-m atter physics and has also
been studied in the physics of exotic atom s. A sin ilar phenom enon occurs In a situation inspired
by quantum dots, where a short-range interaction is added to an ham onic con nem ent.
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I. NTRODUCTION

In 1959, Zeldovich [I] discovered an interesting phenom enon whilk considering an excited electron in a sam i-
conductor. Them odeldescribing the electron {hole system consistsofa Coulom b attraction m odi ed at short-distance
1. A sin ilarm odel is encountered in the physics of exotic atom s: ifan electron is substituted by a negatively-charged
hadron, this hadron feelsboth the Coulomb eld and the strong interaction of the nuclkus. The Zel’/dovich e ect has
also been discussed for atom s In a strong m agnetic eld [3].

Zeldovich [I] and later Shapiro and his collaborators {4, |15] ook at how the atom ic spectrum evolves when the
strength of the shortrange Interaction is increased, so that it becom es m ore and m ore attractive. The rst surprise,
when this problem is encountered, is that the atom ic spectrum is alm ost unchanged even so the nuclear potential
at short distance is much larger than the Coulomb one. W hen the strength of the short-range interaction reaches
a critical value, the ground state of the system leaves suddenly the dom ain of typical atom ic energies, to becom e a
nuclar state, w ith large negative energy. T he second surprise is that, sin ultaneously, the rst radialexcitation leaves
the range of values very close to the pure Coulomb 2S energy and drops towards (out slightly above) the 1S energy.
In other words, the \hok" left by the 1S atom ic levelbecom ing a nuclear state is inm ediately lled by the rapid &l
of the 2S. Sim ilarly, the 3S state replaces the 2S, etc. This is why the process is nam ed \level rearrangem ent". An
illistration is given in Fig.[d, for a sim ple square well potential supplem enting a C oulom b potential.
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In this article, the phenom enon of level rearrangem ent is review ed and generalised, to account for cases w here the
narrow potential is located anywhere n a wide attractive well. An exam pl is provided by a short—range pairw ise
Interaction acting between two particles con ned in an ham onic potential, a problem inspired by the physics of
quantum dots. The basic quantum m echanics of exotic atom s will be brie y summ arised, in particular with a
discussion about the D eser{Truem an form ula that gives the energy shift of exotic atom s n termm s of the scattering
length of the nuclear potential. A pedestrian derivation of this form ula w illbe given In A ppendix, which extents is
validity beyond the case of exotic atom s. The link from the Coulomb to the ham onic cases w ill also be discussed In
light of the fam ous K ustaanhein o{Stiefe]l K S) transform ation, which is reviewed in severalpapers (see, eg., [€] and
refs. there) and nds here an interesting application.
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T he discussion ism ainly devoted to one-din ensionalproblem sorto S-states (*= 0) in three din ensions. Th Sec.fiZ 1,
it is extended to the st P-state 2P), and it is shown that the rearrangem ent is m uch sharper for P and higher
states than for S states.

II. COULOMB POTENTIAL PLUS SHORT-RANGE ATTRACTION
T he sin plest m odel of exotic atom s corresponds to the H am iltonian
1
H = -+ v ; @)
r

where v (r) has a range that is very short as com pared to the Bohr radius of the pure C oulom b problem . T hroughout
this paper, the energy units are set such that ~>=@2 )= 1,where isthe reduced mass. In {I) the scaling properties
of the Coulomb interaction are also used to x the elem entary charge e = 1, w ithout loss of generality. T he study
w illbe restricted here to S-wave states. T he case of P -states or higher waves is brie y discussed in Sec.[/1.
As an example, a sinple square well v(r) = b 1) is chosen in Figlll, wih a radius b = 0:01 which is
an all com pared to the Bohr radius, which isB = 2 in our units. If alone, this potential v (r) requires a strength
W= @2n  1F ®=4 to support n bound states in S-wave, w ith num erical values f ,I’g= £2:46;222;::g. These
are precisely the values at w hich the atom ic spectrum is rearranged in F ig.[I, w ith the nS state falling into the dom ain
of nuclear energies and all other iS atom ic statesw ith 1> n experiencing a sudden change and drops to (out slightly
above) the unperturbed (1 1)S energy.
T he theory of level shifts of exotic atom s is rather well established, see eg., [1, Ch. 6]. T he discussion is restricted
here to non-relativistic potentials, though exotic atom s have been m ore recently studied in the fram ework ofe ective
eld theory [8]. O rdinary perturbation theory is not applicable here. For instance, a hard core of radius b m uch
an aller than the Bohr radius B produces a tiny upward shift of the level, whike rst-order perturbation theory gives
an in nite contrbution! T he expansion param eter here is not the strength of the potential, but the ratio b=B of its
range to the Bohr radiis, and m ore precisely, the ratio a=B of is scattering length to the Bohr radiis. The scheme
of this \radius perturbation theory" is outlined in [B]. For the sake of this paper, the st order temm of this new
expansion is su cient. It isdue to Deser et al. [[10], Truem an [L1], etc., and reads
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where a is the scattering length in the potential v(r). Here, Eqg;, & 1=(4rf) i our units) is the pure Coulomb
energy, and E, the energy of nS lvel of the modi ed Coulomb interaction (h = 1;2;:::). Only in the case where

v (r) is very weak, the scattering length is given by the Bom approxin ation, ie., a / , and ordinary perturbation
theory is recovered. A pedestrian derivation of [2) is given in Appendix A . The presence of a instead of i [2)
Indicates that the strong potential v (r) actsm any tin es, so that the shift isby no m ean a perturbative e ect.

The D eser{Truem an form ula has som etin es been blam ed for being inaccurate. In fact, if the scattering length is
calculated w ith Coulom b Interference e ects, i is usually extrem ely good., see, eg., [12] for a discussion and [L3] for
higher-order corrections. H owever, this approxin ation obviously breaks down if the scattering length becom es very
large, ie., if the potential v (r) approaches the situation of supporting a bound state.

Now the pattem in Fig.[l can be read as follow s. For am allpositive , the additionalpotential is deeply attractive
but produces a am all scattering length and hence a an all energy shift. A s the critical strength = ; for binding
In v(r) is approached, the scattering length increases rapidly, and there is a sudden change of the energies. The
ground-state of the system , which is an atom ic 1S level or small and a deeply bound nuclar state for & 1
evolves continuously (from rst principles it should be a concave function of , and m onotonic ifv(r) < 0 [14]).

Beyond the critical region 1, the scattering length a becom es am all again, but positive. Rem arkably, the
D eser{Truem an mula [J) is again valid, and accounts for the nearly horizontal plateau experienced by the second
state nearEy;; = 1=4. A spectroscopic study near & 1 would reveala sequence of seem ingly 1S, 2S, 3S, etc.,
states slightly shiffed upwards though the Coulomb potential ism odi ed by an attractive temm . This is Intin ately
connected w ith very low energy scattering: a negative phaseshift can be ocbserved with an attractive potential
which has a weakly-bound state, and m in ics the e ect of a repulsive potential. (The di erence w illm anifest itself if
energy increases: the phase-shift produced by a repulsive potentialwillevolve as (T) ! 0 as the scattering energy
T increases, whilke for the attractive potentialw ith a bound state, according to the Levinson theorem , (T) ! J)

T he occurrence of an atom ic levelnearE;; = 1=4 for & 1 can also be understood from the nodal structure.
A deeply-bound nuclear state has a short spatial extension, of the order b. To ensure orthogonality w ith this nuclar
state, the rst atom ic state should develop an oscillation at short distance, w ith a zero at ry Ib=2. T his zero isnearly



equivalent to the e ect ofa hard core of radius rg . Hence, ifu (r) denotes the reduced radialw ave function, the upper
part of the spectrum evolves from the boundary condition u (0) = 0 to u (ry) = 0, a very am all change if ry B.

A s pointed out, eg., in Refs. [2,[15], the E, / n 3 behaviour is equivalent to a constant \quantum defect". For
Instance, the spectrum of peripheral S-w aves excitations of R ydberg atom s is usually w ritten as

~2 1

E,= ———;
" 2 B2 m %

3)

where B is the Bohr radiis, the reduced mass, and de nes the quantum defect. A constant is equivalent to

E, / n 3, as or the Truem an ®mula [J). Ideed, if the excitation of the inner electron core is neglected, the
dynam ics is dom inated by the Coulomb potential 1=r flt by the last electron, which becom es stronger than 1=r
when this electron penetrates the core. W ithin this m odel, one can vary the strength of this additional attraction
from zero to its actualvalue, or even higher, and it has been clain ed that the Zeldovich e ect can be cbserved In
this way, especially at high n E].

ITII. THE LIM IT OF A POINT INTERACTION

The sin plest solvable m odel of exotic atom s is realised w ith a zerorange interaction. The form alism of the so—
called \point-nteraction" is well docum ented, see, eg., [L€], where the case of a point=nteraction supplem enting the
Coulomb potential is also treated, w ithout, however, a detailed discussion of the resulting spectrum .

Tt is known that an attractive delta finction leads to a collapse in the Schrodinger equation. In m ore rigorous
temm s, the H am iltonian should be rede ned to be selfadpint. For S-wave, a point interaction of strength g = 1=3a,
Jocated at r = 0, changes the usualboundary conditionsu (0) = 0,u%(0) = 1 (possbly m odi ed by the nom alisation)
by u’=u = 1=a at r= 0. Note that a is the C oulom b-corrected scattering length.

In this m odel, the S-wave eigenenergies are given by u’(0)=u (0) = l=a applied to the reduced radialwave fiinction
of the pure Coulom b problem , which results into [L6]

1 1
F( 2k)=1=a; F&)= ((1+x) -—hE’) —; @)
2 2xX
In tem s of the digamm a function &) = O)= (x). Ushg the re ection Hmula [17], the finction F can be
rew ritten as
1 2 1
F( x)= oot(x)+ &) —-—h&)+_—; ©)
2 2x
explaining the behaviour observed on the left-hand side of Fig.[d. Equation [@) showsthat a ! 1 corresponds to
3
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tentialsupplem ented by a point interaction.

the plain Coulomb interaction, where E,, = Ey;, . For sm all deviations, the Truem an formula [2) can be recovered
form Eq. [@), as shown in [L6]. The behaviour of the rst nS levels is displayed in Fig.[3, for a .ncreasing from this
Iim it: a sharp changes is clearly seen near 1=a = 0, beautifully illustrating the Zel’dovich e ect.

A oom prehensive analytic treatm ent of the Zeldovich e ect has been given by K ok et al. [15] using a delta-shell
Interaction v (r) / (r R),both Por S-waves and higherwaves (*> 0).
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IV. REARRANGEMENT W ITH SQUARE W ELLS
A . M odel

T he pattems of energy shifts experienced by exotic atom s when the strength of nuclear potential increases can be
studied in a sim pli ed m odelw here the three-din ensionalC oulom b interaction is replaced by a one-dim ensionalsquare
well supplem ented by a narrow square well in the m iddle: the odd-state sector has the sam e type of rearrangem ent
as the exotic atom s, whilke the even sector show s a new type of rearrangem ent. The e ect of sym m etry breaking can
be studied by m oving the attractive spike aside from the m iddle.

The potential, shown in Fig.[d, reads

V)= Vv RP ¥) % RE ¥); ®6)

wih valie V W% Pr0< kj< Ry,and W rR; < kj< R, and 0 for kj> R,, see Fig.[d. Slightly sinpler
would be the case ofan In nie square well In which an additionalwell is digged: it can be proposed as an exercise.
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T he starting point V; = 0 with the model [d) is an one-din ensional square well of depth V, and radius R,. Tts
Intrinsic spectral properties depends only on the product R%Vz . W ih a value 80, which is realised in the ollow ing
exampleswih R, = 1 and V; = 80, there are six bound states, three even levels and three odd ones. See, eg., [LE8]
for solving the square well problem .

B. 0Odd states in a sym m etric double well

Besides a nom alisation f;tctorp 5, the odd sector is valent to the S-wave sector In a central potentialV (r).
T he radialwave fiinction u (r) isthusu (r) = u; (r) = sin(x Vi B) brr< Ry,andu) = u; ) = u; R1) cosk®(x
Ry)1+ W Ry)sink®@ Ry)FkifR; < r< Ry with k% =V, ¥, and suitable changessin ! sinh and cos ! cosh
ifk? > V,. The eigenenergies can be cbtained by m atching this interm ediate solution u, to the extemal solution
us (r) = exp( kr) atr = R, , ie, Wmposihg u; R2)u R2) W R2)usR2) = 0. The calultion involves only
elem entary trigonom etric fiinctions, and the spectrum can be com puted easily.

The energy lvels as fiinctions of V; are displayed in Fig.[H. The rearrangem ent pattem is clearly seen, and is
especially pronounced ifR; R, . The di erence from the Coulomb case is that, for the square well, when a bound
state collapses from the \atom ic" to the \nuclear" energy range, a new state is created from the continuum .
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FIG .5: Levelrearrangem ent of the odd (thin line) and even (thick line) states of the double squarewel, with R, = 1,V, = 80,
R1 = 001 and increasing V; .

C . Even states in a double well

The even spectrum of the potential [@) is given by w (x) = w; X) = Oos(xpV1 ®) oro x < Rj,and w x) =
Wy )= w; Ry)cosk®x R+ w)Rp)sink®x R;)FkUifR; < x< Ry with k% = v, ¥, and suitable changes
sin ! sinh and cos! cosh ifk? > V,. Then them atching tow (x) = w3 ) = exp ( kx) gives the eigenenergies.

The results are shown in Fig.[H, w ith the sam e param eters as for the odd part. T he sam e pattem of \plateaux" is
seen as for the odd parts, w ith, how ever, som e noticeable di erences:

In quantum m echanics w ith space dimension d = 1 (@ctually for any d 2), any attractive potential supports
at least one bound state. In particular, a nuclear state develops In the narrow potential of width 2R; even
for arbitrarily sm all values of its depth V; . Hence the ground-state level starts in m ediately alling down asV;
Increases from zero,

The rst even excitation does not stabilise near the value of the unperturbed even ground state, it reaches a
plateau corresponding to the rst unperturbed odd state.

Sin ilarly, each higher even level acquires an energy corresponding to the neighbouring unperturbed odd level.

W hen YR% reaches about 2 46, enabling the narrow square wellto support a second state, a new rearrangem ent
is observed, w ith, again, values close to these of the unperturbed odd spectrum .

In short, the energies corresponding to the even states of the initial spectrum quickly disappear. The energies
corresponding to the odd states rem ain, and becom e an ost degenerate, except when a rearrangem ent occurs.

The degeneracy observed in Fig.[d depends crucially on the addtional potential being of very short range. For
com parison the case of a wider range R; = 0:1 is shown in Fig.[d. Though the rearrangem ent pattem is clearly
visble, the transition is much am oother, and the aln ost degeneracy lim ited to am aller intervals of the coupling
constant V;, and Jless pronounced.

D . Spectrum in an asym m etric potential

To check the interpretation ofthe pattems observed for the odd and even parts ofthe spectrum , ket usbreak pariy
and consider the asymm etric double well of Fig.[d. For the sake of illustration, the centre of the spike is taken at
Ro = 0:. The spectrum , as a filnction ofV;, is displayed in F ig.[8: P Jateaux are observed, again, w ith energy values
corresponding approxim ately to the com bination of (i) the spectrum in a wellofdepth % between x = Rg + R1
and x = R, and a hard core on the kft, ie., a boundary condition w Ry + R;) = 0, and (ii) the spectrum in a well
ofdepth , between x = Ry, and x = R Ry withw Rg R;)= 0.
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It is interesting to ollow how the wave fiinction evolves when a rearrangem ent occurs. In F ig.[d, the third level is
chosen. ForV; = 0, i isthe st even excitation with energy E 5 / 62:18, and the wave function u (x) is the usual
sihus fiinction m atching exponential tails. On the st plateau, wih energy near 70, this wave fiinction is alm ost
entirely located on the right. A s rearrangem ent takes place, the probability is shared by both sides. O n the second
plateau, w ith a energy near 73 corresponding to the ground state In the w ider part w ith hard wallat Ry, the wave
function ism ostly on the left.

W hen the narrow wellhas only deeply bound states, i acts as an e ective hard wallbetween the two boxes, at the
right and and the kft ofR . However, when a new state occursw ith a an allenergy and an extended wave function,
it opens the gate, and states can m ove from the right to the left, or vicewersa.

It is possble to study how the spectrum in Fig.[8 evolves if the centre of the spike moves to the right, ie.,
Ry ! Ry R;: the dotted line m ove up and disappear, whilk the dashed lines m ove down and becom e m ore
num erous. Eventually, if the depth V; is large, the spectrum becom es very sin ilar to the odd part of the spectrum
in Figs.[4,[3, except ra changeR; ! 2R; and R, ! 2R, . This illustrates again that for the upper part of the
spectrum , a deep hol is equivalent to a hard wall

V. REARRANGEMENT IN QUANTUM DOTS
A . Levelrearrangem ent in an hamm onic well

T here is a considerable recent literature on quantum dots [L9], usually dealing w ith m any particles in a trap, w ith

a magnetic eld. Let us consider the simnpli ed problem of two particles con ned by a wide ham onic trap, and
Interacting w ith short-range forces,

b o PL, P

2m 2m

+KrP+Kri+ v(r, nj: @)

T he centre-ofm ass oscillates in a pure ham onic potential, and the separation r = r, 1n is govemed by

p2
h="—+Kr’+ v ; @)
m
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FIG . 8: Spectrum in the asymm etric double squarewellof Fig.[1, with R, = 1,V, = 50, R; = 0:01, Ry = 0:l and variabl
V1. The dotted lines correspond to the states In thebox [ R2;Ro], and the dashed ones to those In the box Ro;R2], allw ith
depth V, and hard wallat Ro .
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FIG . 9: W ave function of the third level in the asym m etric double squarewellof Fig.[1, with R, = 1,V, = 80, R, = 001,
Ro = 0:1 and variable V; near a rearrangem ent. An enlargem ent of the region near x = 0:1 would con m that the wave
function and is derivative are continuous.

If v (r) is attractive or, at least, has attractive parts, v (r) will support bound states for large enough . The same
phenom enon of level rearrangem ent is observed, as shown in the sin ple exam ple of ham onic oscillator and square
well. A s for the case ofexotic atom s, the e ect of \level repulsion” is observed, that ovoids any crossing of tra fctories
corresponding to the sam e orbitalm om entum .
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B . Dependence upon the radialnum ber

A s for the theory, it is sin ilar to that of exotic atom s. The analogue of the Truem an{D eser form ula, for any
Iong-range potential com bined w ith a shortrangfe potential, reads

E, ' 4 ajn.OF; ©)

Indicating that the energy shift is proportionalto the square ofthe value at the origin ofthe wave function ofthe pure
Iong-range potential. Tt is worth pointing that the dependence upon the radialnum bern isdi erent for the Coulomb
and the oscillator problem s:

For a narrow pocket of attraction added to an ham onic con nem ent, the energy shifts at large n Increase as

n'=?, since the square of the wave fiinction at the origh is j , Q)F = 8=§1_B M+ 1;1=2)], where B isthe beta

fiunction. But for very arge enough n, the rst nodes of the radial fuinction com e in the range of v (r), and then
E decreasesw ith n. M oreover, for very large n, the radial Schrodinger equation is dom inated at short distance

by the energy tem .

Fora Coulomb interaction, 3 0)F / n 3,and hence E, / n 3, a weltknown property of exotic atom s. A's
explained, eg. In a review article on protonium [R(0] and brie y explained In Appendix, the rst node of the
nS radial function, as n increases, does not go to 0. In the case ~2=Q )= & = 1, the node of the 2S level is
at r= 4, whik the rstnode ofnS at largen isatr’ 3%7. Hence the Coulomb wave finction never exhbits
nodes w ithin the range of the nuclear potential. M oreover, the energy termm is always negligble in com parison
wih wv(r) at short distances.

C. From Coulomb to harm onic rearrangem ent

The K S transform ation [€] relates C oulom b and ham onic-oscillator potentials. T he radialequation fora Coulomb
system in three dimension Wih ~= 2 = 1) reads

AWAY l
L{D(r) + gu(r) —u (r) Eu@ = 0; 10)
r2 r
withu@©)= O0Oandu@) ! Oasr! 1 becomes
L + 1
‘”()+¥()+4(E)2(> 4 ()=0; an
ifr= 2,u@= 2 (),andL = 2+ 1=2. Themodi ed angularm om entum can be interpreted as relevant in a

higherdin ensionalworld [6]. But Eq. [[I) is precisely the Schrodinger equation for the three-dim ensional oscillator
wih ( xed) energy 4 and oscillator strength 4( E ) Which is positive), ie.,

P—
4 = 4FE B3+ 4n+ 2L); n= 0;1;:::; 12)



which is equivalent to the Bohr form ula

2
BT TQrns e a3
where 1+ n + ‘isthe usualprincipal quantum num ber of atom ic physics.

Now, an additional potential v (r) in the Coulomb equation results into a shortrange tem 4 v ( ?) added to
the ham onic oscillator, and all results obtained for exotic atom s translate into the properties listed for a narrow hol
added to an hamm onic well.

N ote that the n dependence is also explained. In the K S transfom ation, the energy E E < 0) in the Coulomb
system becom es the strength  4E of the oscillator, whilke four tin es the ne structure constant, ie, 4 ( > 0 for
attraction) becom es the energy eigenvalue of the oscillator w ith angularm om entum L . If n increases, the oscillator
deduced from the K S transform ation becom es looser, and hence less sensitive to the short range attraction 4 2v(?).
Tomaintain a xed oscillator strength, one should in agine a di erent Coulomb system foreach n,with / n, hence
a Bohr radius ndependent of n, and a wave fiinction at the orighh j (0)F / n ! istead ofn ° in the usual case.
Then, in this situation, E / n ! forthe Coulomb system ,and  / ™2 for the ham onic oscillator.

VI. REARRANGEMENT AND LEVEL ORDERING

In the above exam pls, there is an interesting superposition of potentials with di erent levelordering properties.
A square well potential, if deep enough to support m any bound states, has the ordering R1]

1S < 2P < 3D < 25 < ::: (14)

W e are adopting here the sam e notation as In atom ic physics is adopted, ie. 2P is the st P-state, 3D the 1rst
D —state, etc. The Coulom b potential, on the other hand, exhibits the welkknow n degeneracy

1S < 25=2P <35 =3P =3D < :::; 15)
while for the ham onic-oscillator case,
1S < 2P < 25 =3D < :::; (16)
w ith equal spacing.

T he pattem 0f1S, 2S and 2P levels or Coulomb (left) orham onic oscillator (right) supplem ented by a short—range
square well of increasing strength is given in F ig.[11l.

FIG.1l: 1S and 2S lkvels (solid line) and
2P level (dotted line), for Coulomb (left)
orham onic-oscillator (right) potentialplus
a square well of radius b = 0:1 of increas—
ing strength . T he horizontal lines are the
unperturbed values, the vertical ones indi-
cate the strength at which the squarewell
alone starts supporting a new bound state.

In the Coulomb case, the degeneracy isbroken at anall asE 2S) < E (2P ) since the 2P wave function vanishes
atr= 0. The 2S dropswhen the 1S state falls Into the region of desp binding. H owever, the 2P state becom es bound
into the square wellnear ¥ = 2, earlier than the 2S for which this occurs near ¥ = 9 2=4. This explains the
observed crossing.

In the ham onic oscillator case, there is a rem arkabl doubl crossing. The 2S drops by the phenom enon of
rearrangem ent, and crosses the 2P levelwhich is rst alm ost unchanged. W hen the 2P lkevel becom es bound by the
square-well, i crosses again the 25, which 2lls down for higher strength.

N ote that those pattems do not contradict the general theorem s on kevel ordering, which have been elaborated in
particular for understanding the quarkonium spectra In potentialm odels R2,[123]. If the squarewell v is considered
as the largen Ilim it of w, (r) = =+ (=bf], the Laplacian v, = (v, )%=r can be calculated explicitly, and is
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easily seen to be positive for an allr and negative for large r. Hence the theorem RZ,123] statingthatE 2P ) < E 23)
if V > 0 and vicewversa cannot be applied here. In our case V = l=r+ v, wih the Coulomb part having a
vanishing Laplacian, orV = r* + v,with @?)> 0.

Figure[I]l clearly indicates that the rearrangem ent ismuch sharper for P -states that for S-states. T he study could
be pursued for higher value of the orbital m om entum and the rearrangem ent would be observed to becom e even
shaper.

VII. OUTLOOK

In this article, som e ram arkable spectral properties of the Schrodinger equation have been exhibited, which occur
w hen a strong short-range Interaction is added to a w ide attractive well. W hen the short—range part is desp enough to
support one orm ore bound states, it acts as repulsive barrier on the upper part of the spectrum . T hus the low lying
Jevels are approxim ately those which are in wide well, w ith, how ever, the condition that the wave fiinction vanishes
In the region of strong attraction.

Tt is Interesting to ollow the spectrum as a finction of the strength of the additional short-range attraction.
T he energy curve exhbit sharp transitions from intervals where they vary slow Iy. T his is the phenom enon of level-
rearrangem ent, discovered years ago, and generalised here.

Tt is worth pointing out an im portant di erence between one and higher dim ensions regarding rearrangem ent
phenom enon. Since in one dim ension, one has the inequality E, ; < E,, there cannotbe any crossing of levels during
rearrangem ent. H owever, while in higher din ensions, there cannot be any crossing between levels w th sam e angular
m om entum , several crossings of levels w ith di erent angularm om entum w ill nomm ally occur.

M ost applications in the literature dealw ith exotic atom s, but the phenom enon was rst revealed In the context
of condense-m atter physics, and could well nd new applications there. Layers could be com bined, w ith a variety of
voltages, and a variety of Interlayer distances, and the situation can perhaps be realised where a tiny change of one
of the voltage could provoke a sudden change of the bound state spectrum .

Theproblem ofparticlesin a trap, w ith individualcon nem entand an additionalpairw ise interaction, has stim ulated
a coplous literature, but the Ievel rearrangem ent occurring at the transition from individualbinding to pairw isesbinding
w as never underlined, at least to our know ledge.

Several further investigations could be done. T he problem of absorption has already been m entioned, and i is our
Intent to study i in som e detail. The sub ct is already docum ented in the case of exotic atom s, as pions, kaons
and especially antiprotons have inelastic interaction w ith the nucleus. It has been shown that the phenom enon of
rearrangem ent disappears if the absorptive com ponent of the interaction becom es too strong. See, eg., 24,125] and
refs. there.

Tt could be also of Interest to study how the system behave, as a function of the coupling factors, if two orm ore
attractive holes are envisaged inside a single w ide well.

APPENDIX A:TRUEMAN{DESER FORM ULA

W e give here a pedestrian derivation of the Truem an{D eser form ula. C onsider a repulsive interaction added to a
long-range attractive potential Vy (r) in unit such that ~*=@m ) = 1. This shortrange repulsion, at energy E ’ 0 is
equivalent to a hard core potential of radius a, where a is the scattering length ofV . Hence the pure Coulomb and

them odi ed Coulomb problem s results for orbitalm om entum ‘= 0 into
W) + Vo @uo () = Equo @ ;  ug@)=0; u@)=0;
L{D(r)+vo(r)u(r)=Eu(r); u@)=0; u@)=0": @Aal)

A fter m ultiplication by u and uy, regoectively, the di erence leads to
Z
E Eo) U ()u () dr = u’@)uo @) : @z2)

a

In the LH S, the Integral is close to the nom alisation integralofug oru, ie., close to uniy. IfVy (r) is sm ooth, then
u (r) does not di ermuch from the shifted version ug (r + a) of the unperturbed solution. Hence u’@) " uo©).Alo
Ug is nearly linearnearr= 0, and ug @) ’ u’(0)a, and eventually

E Ey’ u’0)a: @3)
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which reduces to Q) ifVy ) = 1=r. For a m oderately attractive potential, a is negative, but the formula and is
derivation rem ain valid.

Fora Coulom b potential, the square ofwave fiinction at the origin ofthe nS state, j , 0)F = ug (0)?, decreases like
1=n3, and so does the energy shift, a property which is wellknown for exotic atom s.

T he n-dependence of  , (0)F hasbeen discussed, eg., in the context of chamm onium physics 22,123]. For pow er-law
potentials ( )r ( isthe sign function), j, (O)fr increaseswith n if < 1, and decreasesif > 1. If = 1, then
jn 0)F is independent ofn (after nom alisation). T his can be seen from the Schw inger om ula R4,123]

Z 1
u’(0)? = v %r)u? (@)dr ; @ 4)

w hich is also usefiil for num erical calculations.
For the ham onic oscillator (rescaled to  WP@) + Pu () = E u ) HrS waves), it can be shown that

u’ (0)? = 1=B (3=2;3=2+ n=2) P @5)
In tem s of the Euler function B (x;y) = &) )= ®+ vy).

Note that the question of a lJarge n lim it has a di erent answer for the Coulomb and oscillator cases. In the
form er case, the n-S radialwave function u, (r) extends outside when n increases, w th an asym ptotic decrease (in our
nom alisation) exp( r=@n). The2S stateiswy (r) / r(@ r)exp( r=4) hasits rst (@n unigue) node at ¥ (2) = 4.
A s n increases, this st node r; (h) necessarily decreases, as a consequence of the interlacing theorem , however,
lim,, 1 ’ 3%7,the rstnode of the Bessel function which satis esy®+ y=r= 0, y(0) = 0. Hence if a potential is
short—ranged for 15, it is also short-ranged for allnS states, and also for states with orbitalmomentum ‘> 0. On
the other hand, for the ham onic oscillator, allnS states have about the sam e size, w th the sam e asym pg;;oEc fallo
exp ( ¥=2).Asn increases, the radialequation is approxin ately u®+ 4nu = 0,wih rstnoder; () = 4n.Hence
an additionalpotential whose range is short but nite w ill feel the node structure of states w ith very high n, and the
approxin ation leading to the generalised D eser{Truem an omula [J) ceases to be valid. These considerations hold

for an ham onic oscillator w th xed strength.
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