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We use a renormalized mean field theory to study the Gutzwiller projected BCS states of the
extended Hubbard model in the large U limit, or the t-t′-J-J ′ model on a two-dimensional checker-
board lattice. At small t′/t, the frustration due to the diagonal terms of t′ and J ′ does not alter the
dx2

−y2-wave pairing symmetry, and the negative (positive) t′/t enhances (suppresses) the pairing
order parameter. At large t′/t, the ground state has a s − s wave symmetry. At the intermediate
t′/t, the ground state is d+ id or d+ is-wave with time reversal symmetry broken.

PACS numbers: 74.20.Rp, 74.20.-z, 74.25.Dw

I. INTRODUCTION

Geometrically frustrated systems with strong correla-
tion have attracted much attention due to the highly non-
trivial interplay between frustration and correlation1,2.
In such systems the pairwise interaction does not coin-
cide with the geometry of the lattice, which may lead
to exotic ground states. In particular, frustration in
quantum magnets may cause certain types of magneti-
cally disordered quantum phases, including the resonat-
ing valence bond (RVB) spin liquid state3 and the valence
bond crystal state4. The quantum spin liquid state could
become unconventional superconducting state when the
charge carriers are introduced. There have been ex-
perimental evidences for the unconventional supercon-
ductors in these systems. Examples are the triangu-
lar layer cobaltates compound NaxCoO2

5, layered or-
ganic conductor κ-(ET)2Cu2(CN)3

6, the Kagome com-
pound SrCr8Ga4O19

7, and 3-dimensional (3D) beta type
transition-metal pyrochlore material KOs2O6

8,9.
To describe the interplay between frustration and cor-

relation, we consider a t-t′-J-J ′ model on a 2D checker-
board lattice, and analyze the possible superconducting
pairing symmetry of the model. The checkerboard lat-
tice is a frustrated one, and may be considered as a 2D
projection of a 3D corner-sharing lattice of pyrochlore.
A schematic checkerboard lattice is illustrated in Fig. 1.
The Hamiltonian reads,

H = −
∑

〈ij〉σ

tijPD(c†iσcjσ + h.c.)PD +
∑

〈ij〉

Jij ~Si · ~Sj

− µ
∑

iσ

c†iσciσ (1)

where c†iσ is an electron creation operator with spin σ at

site i, ~Si is a spin operator for electron, µ is the chemi-
cal potential, and 〈ij〉 denotes a neighboring pair on the
lattice. PD is a Gutzwiller projection operator to impose
no double electron occupation at any site on the lattice.
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FIG. 1: (Color online). Schematic structure of 2D checker-
board lattice. Solid (open) circles represent sublattice A (B).
The hopping integral and spin-spin coupling are t and J for
the nearest neighbor links (solid lines), and t′ and J ′ for the
diagonal or next nearest neighbor links (dashed lines), respec-
tively.

tij and Jij stand for the hopping integrals and antifer-
romagnetic exchange couplings respectively, and tij = t,
Jij = J for the nearest neighbor (n.n) links and tij = t′,
Jij = J ′ for the diagonal or the next n.n. links as shown
in Fig. 1. For convenience, we use x, y to represent the
n.n. links while a, b to describe the two diagonal links.
The Hamiltonian may be viewed as a strong coupling
limit of a Hubbard model on the lattice with n.n. and
next n.n. hopping integrals t and t′ respectively and a
on-site Coulomb repulsive interaction U . Hereafter we
use t as an energy unit and set J/t = 1/3. We choose
J ′/J = (t′/t)2, consistent with the superexchange rela-
tion of J = 4t2/U in the large U limit of the Hubbard
model.

The model has certain limiting cases. At t′/t → 0, the
model is reduced to the t-J model on a square lattice. At
t′/t → ∞, the model becomes a collection of independent
1D t′-J ′ chains. At t′/t = 1, it is an isotropic checker-
board lattice with a highly geometrically frustrated struc-
ture.
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Previous theoretical investigations mainly focused on
the half-filled case without charge carriers. A variety of
techniques have been employed to study the quantum
antiferromagetism on such a lattice10,11,12,13,14. Various
quantum paramagnetic ground states may appear, which
include some translational symmetry breaking states and
a quantum spin liquid state. The introduction of dop-
ing with mobile charge carriers in a frustrated quan-
tum antiferromagnet may result in the appearance of
unconventional superconductivity15,16,17,18,19. Generally
speaking, geometric frustration may play a key role in
the mechanism of unconventional superconductivity. Re-
cently exact diagonalization approaches have been em-
ployed to study the superconducting fluctuations in this
system with t′=t and J ′=J20,21,22. They found evidence
of enhancement in pairing amplitude at arbitrarily small
J/t for a specific sign of the hopping amplitude.
In this paper, we apply the plain vanilla version of the

RVB theory23,24 to study the ground state of the t-t′-J-
J ′ model on a 2D checkerboard lattice. The competition
among various superconducting states will be examined.
Since our primary interest is on the possible pairing sym-
metry of the superconducting state for the doped system,
we will not consider the possible long-range magnetic or-
dering in the present paper. Our main results can be
summarized below. The dx2−y2-wave pairing found for
the t-J model extends to a large region in parameter
space of t′/t and doping concentration δ, and the nega-
tive t′/t enhances the pairing while the positive t′/t sup-
presses the pairing. At small doping and for |t′/t| ∼ 1,
there is a small region where the pairing symmetry is
d + id or d + is. At |t′/t| > 1, there are regions where
the pairing symmetry belongs to a s− s wave.
The rest of the paper is organized as follows. In Sec.

II, we apply the renormalized mean field theory to study
the RVB state. In Sec. III, we present our numerical
results on the possible superconducting ground states.
In particular, four distinct superconducting phases show
up in the phase diagram as a function of t′/t and the
doping δ. Sec. IV is a summary. The diagonalization of
the mean-field Hamiltonian and the explicit form of the
self-consistent equations are presented in the Appendix.

II. FORMALISM

We use a Gutzwiller projected BCS state3 as a trial
wavefunction to study the ground state and the corre-
sponding pairing symmetry of the Hamiltonian (1). The
trial wavefucntion is of the form,

|ΨGS〉 =
∏

i

(1− ni↑ni↓)|ΨBCS〉 (2)

where ni,σ = c†i,σci,σ, and the projection operator
∏

i

(1−
ni↑ni↓) removes the doubly occupied electron states on
every lattice site i. We use a renormalized mean field
theory 23,24 to calculate the energy of the Hamiltonian

(1). In the renormalized mean field theory, we adopt the
Gutzwiller approximation to replace the projection by
a set of renormalized factors, which are determined by
statistical countings25,26. We have

〈c†iσcjσ〉 = gt〈c†iσcjσ〉0, 〈~Si · ~Sj〉 = gs〈~Si · ~Sj〉0 (3)

where gt and gs are the Gutzwiller renormalized factors
and are given by23 gt = 2δ/(1 + δ) and gs = 4/(1 + δ)2

where δ denotes the doping density. Therefore, the vari-
ational calculations of H of Eq. (1) in the projected BCS
state is reduced to the variational calculations of an ef-
fective Hamiltonian Heff given below in the unprojected
BCS states |ΨBCS〉 for Heff .

Heff =
∑

〈ij〉σ

−gttij(c
†
iσcjσ + h.c) +

∑

(ij)

gsJij ~Si · ~Sj

− µ
∑

iσ

niσ. (4)

To proceed further, we introduce particle-particle and

particle-hole mean fields, (τ = ±x̂,±ŷ,±â,±b̂, see Fig.
1)

∆τ = 〈c†i↑c
†
i+τ↓ − c†i↓c

†
i+τ↑〉0

ξτ =
∑

σ

〈c†iσci+τ,σ〉0. (5)

Here we focus on the translational invariant state with
the spin singlet and even parity superconducting pairing
symmetry, where ∆i,i+τ = ∆i+τ,i = ∆τ , and χi,i+τ =
χτ . The superconducting order parameter is a 2× 2 ma-
trix representing the two sublattices,

∆SC(~k) =

(

〈c†
~k↑A

c†
~−k↓A

〉 〈c†
~k↑A

c†
~−k↓B

〉
〈c†~k↑Bc

†
~−k↓A

〉 〈c†~k↑Bc
†
~−k↓B

〉

)

(6)

Within the Gutzwiller approximation, it is related to ∆τ

by

∆SC(~k) = gt

(

∆acoska ∆xcoskx +∆ycosky
∆xcoskx +∆ycosky ∆bcoskb

)

(7)

In the limit of δ = 0, consistent with the fact that the
ground state is a Mott insulator at half filling. At small

δ, we have ∆SC(~k) ∼ δ.
In terms of these mean fields, the effective Hamiltonian

can be expressed as

HMF =
∑

〈ij〉σ

−3

8
gsJij [ξijc

†
iσcjσ +∆ijciσcjσ̄ + h.c.]

−gttij(c
†
iσcjσ + h.c)− µ

∑

iσ

niσ + const. (8)

There are eight independent complex mean-field
parameters: ξx, ξy,∆x,∆y on the n.n. links and
ξa, ξb,∆a,∆b on the next n.n. links. Here we assume
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FIG. 2: Phase diagram of t-t′-J-J ′ model on a checkerboard
lattice in parameter space of hole density δ and t′/t obtained
by the renormalized mean field theory. The phases are indi-
cated by their superconducting pairing symmetry defined in
Table I, and J ′/J = (t′/t)2.

all the particle-hole mean fields ξ to be real. We denote
θx,y, θa,b, and θx,a as the relative phases of (∆x,∆y),
(∆a,∆b), and (∆x,∆a), respectively. The energy per
site can be expressed in terms of the mean fields and is
given by

Egs = −2gtt(ξx + ξy)− gtt
′(ξa + ξb)

−3

8
gsJ(ξ

2
x + ξ2y + |∆x|2 + |∆y|2)

− 3

16
gsJ

′(ξ2a + ξ2b + |∆a|2 + |∆b|2). (9)

The mean field parameters ξ and ∆ and the chemical po-
tential µ can be determined by solving the self-consistent
Eq. (5) together with an equation for the hole density.
The mean field state at zero temperature can be obtained
by the diagonalization of HMF . We then determine the
lowest energy state for each set of parameters t′/t and
δ. The detailed formalism of the diagonalization of HMF

and the self consistent equations can be found in Ap-
pendix. These equations can be solved numerically, and
the results are given in the next section.

III. NUMERICAL RESULTS

In this section, we present the numerical results of the
self-consistent renormalized mean field theory for Hamil-
tonian Eq. (1) on the checkerboard lattice. We will first
discuss the phase diagram, then provide detailed analyses
of the mean field parameters as functions of δ for several
typical values of t′/t. The phase diagram is shown in Fig.
2. The ground state at δ = 0 is a Mott insulator. At finite
doping, the ground state is a superconducting state, with
four different types of pairing symmetry, as illustrated in

TABLE I: The pairing symmetries (shown in Fig. 2 and
used in the text) of the ground states of t-t′-J-J ′ model on a
checkerboard lattice and their corresponding mean fields ∆τ

of Eq. (5). θτ,τ ′ are the relative phase between ∆τ ′ and ∆τ

.

Pairing symmetry mean field parameters

d ∆x = −∆y , ∆a = ∆b = 0

d+ id ∆x = −∆y, ∆a = −∆b, θx,a ≈ π/2

s− s ∆x = ∆y, ∆a = ∆b, θx,a = π

d+ is ∆x = −∆y, ∆a = ∆b, θx,a ≈ π/2

Table 1. Here we classify the pairing symmetry in terms
of the relative phases between ∆y and ∆x, between ∆b

and ∆a, and between ∆a and ∆x. Such a classification is
consistent with the four-fold rotational symmetry in the
Bravis lattice of the checkerboard structure.

At the limit t′=J ′=0, the model is reduced to the t-J
model, and the ground state has a dx2−y2 or d-wave sym-
metry23,27 at finite doping. This pairing state is robust
against the next n.n. terms. As we can see from Fig. 2,
the d-wave pairing symmetry of the ground state extends
to a large region of both positive and negative values of
t′/t. In such state, ∆a = ∆b = 0, but there is an ad-
ditional self-energy term arising from the next n.n. spin
coupling. There are nodal quasiparticles, whose position
are determined by the crossing of the lines cos kx = cos ky
and the Fermi surface, similar to those obtained in the
t-J model. Note that the d-wave pairing has been previ-
ously found to be stable against the weak frustrations as
studied by various authors15,16,19 on anisotropic triangu-
lar lattices. At large |t′/t|, the ground state has a s − s
wave pairing symmetry with ∆x = ∆y and ∆a = ∆b.
In that state, the relative phase between ∆a and ∆x is
π. Between the above two regions, there is a small pa-
rameter region around |t′/t| = 1, where the ground state
has a d + id pairing symmetry at small δ, and a d + is
phase at larger δ for negative t′/t. In both d + id and
d + is states, the relative phases between ∆a and ∆x

are close to π/2, and are weakly dependent of δ, and
the time reversal symmetry is spontaneously broken. We
note that Hamiltonian (1) is asymmetric with respect to
positive and negative values of t′/t, which is reflected in
our phase diagram. Similar to the case in the t-J model,
the particle-particle mean field amplitude ∆ disappears
at large δ, and the ground state becomes a normal metal.
The details of the phase boundaries between the super-
conducting and normal metallic states will be elaborated
below. We also note that in the limit |t′/t| → ∞, the
ground state becomes 1D-like.

In Fig. 3, we display the amplitudes of the mean
field parameters as functions of δ at the symmetric point
t′/t = 1. At very low hole density, the ground state
has d + id-wave pairing symmetry, and ∆a = i|∆a|, but
|∆a| ≪ ∆x. As δ increases, the ground state becomes a
d-wave, and ∆a = ∆b vanishes. In comparison with the
mean field amplitudes found in the t-J model, ξx is sim-
ilar and insensitive to δ, but ∆x decreases more rapidly
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FIG. 3: (Color online). Amplitudes of mean fields ξ and ∆
as functions of hole density δ for parameters t = t′ = 1, J =
J ′ = 1/3. The ground state has d + id pairing (see Table 1)
at 0 < δ < 0.02, and dx−y2 -wave pairing at 0.02 < δ < 0.15,
and is a normal state at δ > 0.15.
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FIG. 4: (Color online). Amplitudes of the mean fields ξ and
∆ as functions of δ for parameters t = 1, t′/t = 1.1, J =
1/3, J ′/J = 1.21. The ground state is a s− s wave at 0.02 <
δ < 0.12, and a normal state otherwise.

in the checkerboard model as δ increases. The latter may
be understood as the consequence of the non-zero value
of ξa in the present case, which increases rapidly as δ in-
creases. Note that the s− s wave state has a very close
energy, although it is slightly higher than either d+id- or
d- wave states. Recently, Poilblanc21 performed a finite
cluster exact diagonalization study of the t-J model on a
checkerboard lattice. Some exotic states for positive t are
found to have dx2−y2-, s− s- symmetries, which appears
to be consistent with our results.

The mean field amplitudes as functions of δ for the
model at t′/t = 1.1 are depicted in Fig. 4. The ground
state is a s − s wave at 0.02 < δ < 0.12. The pairing
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FIG. 5: (Color online). Amplitudes of mean fields ξ and ∆ as
functions δ in the case of t = 1, J = 1/3, t′/t = −0.5 J ′/J =
0.25. ∆a = ∆b = 0, and the ground state has a d-wave pairing
symmetry(see Table 1).

amplitudes disappear around δ = 0.12, indicating the
ground state to be a normal metallic state at δ > 0.12. As
we can see, the correlations along the diagonal directions

(â and b̂) become more important than those along x̂
and ŷ directions at t′/t > 1. Note that the results near
the half filled need to be cautious. At the half filling,
the mean field ground state has only non-zero values of
ξa and ξb, indicating that the state is a collection of the

decoupled chains along the directions of â and b̂. This
may attribute to the poor Gutzwiller approximation on
1D systems23.

In Fig. 5 and Fig. 6, we show typical δ dependence
of the mean field amplitudes for parameters t′/t < 0. In
this case, ξa and ξb have the opposite sign with ξx or
ξy. At small value of |t′/t|, the ground state is a d-wave
state, the amplitudes of the mean fields are illustrated
in Fig. 5 for t′/t = −0.5. In that state, ∆a = ∆b =
0, and ξa = ξb are small and changes sign at δ > 0.2.
Interestingly, ∆x decreases much slower as δ increases,
in comparison with that in the t-J model. This suggests
that the superconducting state may extend to a much
larger hole density.

In Fig. 6, we plot the mean field amplitudes for t′/t =
−1. Away from half-filling, the amplitudes of mean fields
change nonmonotonically and there exist three distinct
pairing symmetries with respect to different doping lev-
els. As hole density increases, the ground state evolves
from the d + id-wave state (∆a = −∆b = i|∆a|) to the
d-wave state and to d+ is-wave state (∆a = ∆b = i|∆a|),
as we can see from the figure that the amplitude of ∆a

decreases to zero around δ = 0.02 and arises again at
δ = 0.06. In contrast to the d + id-wave state, the am-
plitude of ∆a(b) is comparable to ∆x in the d + is-wave
state. In comparison with the case of positive t′/t, we
note that the suppression of ∆x becomes much slower
as δ increases and the superconductivity appears more
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FIG. 6: (Color online). Amplitudes of mean fields ξ and ∆ as
functions δ for the parameters t = 1, J = J ′ = 1/3, t′ = −1.
The ground state is d + id-wave at 0 < δ < 0.02, d-wave at
0.02 < δ < 0.06, and d+ is-wave at δ > 0.06.

favored for negative t′/t. This result is in agreement
with previous studies for a t-J model on a triangular
lattice15,16. An intuitive physical understanding of such
effect can be given as follows: for positive t′/t, the t′ and t
terms in kinetic energy match quite well, so that t′ term
may enhance the kinetic energy (make it lower), hence
suppress the pairing amplitude; for negative t′/t, the t′

term may introduce frustration in kinetic energy, hence
enhances the pairing amplitude. The situation here is
similar to that in cuprates, where the positive t′/t case
corresponds to the electron-doped system while the neg-
ative t′/t case corresponds to the hole-doped system. It
is well known that the hole-doped system has a higher
transition temperature while the electron-doped system
has a lower one and a substantial region in doping with

antiferromagentic long range order which we have not
considered in the present paper for simplicity.

IV. SUMMARY

We have applied the renormalized mean field theory
to study the Gutzwiller projected BCS ground state for
the t-t′-J-J ′ model on a highly frustrated checkerboard
lattice. As charge carriers are introduced, the half filled
Mott insulator is evolved to resonating valence bond su-
perconducting states, with four types of pairing symme-
tries depending on the hole density and the parameter
t′/t. We have found that the dx2−y2 symmetry state pre-
viously obtained for the t-J model is most stable in a
large parameter region for small values of |t′/t|. In this
region, the d- wave pairing order parameter is suppressed
for positive t′/t and enhanced for negative t′/t. At large
value of |t′/t|, the ground state is found to be so-called
s − s wave. Around |t′/t| = 1, we have found the time
reversal symmetry broken states. d + id- and d + is-
symmetries states are the most stable. The appearance
of the exotic superconducting pairing symmetry in the
t-t′-J-J ′ model on a checkerboard lattice may be viewed
as the interplay between geometrically frustration and
strong electron correlation. Our results may shed light
on the understanding of the novel pairing symmetry fea-
tures of highly frustrated systems.
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from the University of Hong Kong, and NSF in China
No.10225419 and No.10674117.
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V. APPENDIX

In the appendix, we present detailed calculations of
the mean field theory. We first diagonalize the mean
field Hamiltonian (6) on the checkerboard lattice. We
carry out the Fourier transformation of electron operator
in the two sublattices A and B,

ciσ =
∑

~k

1√
N

a~kσ exp(i
~k · ~ri), i ∈ A (10)

ciσ =
∑

~k

1√
N

b~kσ exp(i
~k · ~ri), i ∈ B (11)

The summation over ~k = (kx, ky) runs in the reduced
Brillouin zone. N is the number of sites in each sub-
lattice. By using a spinor representation, the effective
Hamiltonian can be written as

Heff =
∑

~k

η†
~k
M~k

η~k + const., (12)

where η†~k
= (a†~k↑

, b†~k↑
, a−~k↓, b−~k↓) and the matrix M~k

reads

M~k
=

(

A(~k)− µ B(~k)

B†(~k) −A(~k) + µ

)

(13)

where both A(~k) and B(~k) are 2× 2 matrices whose ele-
ments are given by

A11 = −(2gtt
′ +

3

4
gsJ

′ξa)coska

A22 = −(2gtt
′ +

3

4
gsJ

′ξb)coskb

A12 = A21 = −2gtt(coskx + cosky)

−3

4
gsJ(ξxcoskx + ξycosky)

B11 =
3

4
gsJ

′∆a cos ka

B22 =
3

4
gsJ

′∆b cos kb

B12 = B21 =
3

4
gsJ(∆x cos kx +∆y cos ky)

with kτ = ~k · ~τ . The matrix M~k
can be diagonalized by

employing an unitary transformation as

[

γ1†
~k↑
, γ2†

~k↑
, γ1

−~k↓
, γ2

−~k↓

]

=

[

a†~k↑, b†~k↑, a−~k↓, b−~k↓

]











u1
1 u2

1 −v1∗2 −v2∗1
u1
2 u2

2 −v1∗2 −v2∗2
v11 v21 u1∗

1 u2∗
1

v12 v22 u1∗
2 u2∗

2











where the ~k dependence of un
i and vni are implied. The

matrix element u and v satisfy the following conditions:

∑

i

u1
iu

2∗
i + v1i v

2
i = 0

∑

i

−u1
i v

2
i + v1i u

2
i = 0

∑

i

un
1u

n∗
2 + vn∗1 vn2 = 0

∑

i

un
1v

n∗
2 − un

1v
n
2 = 0

In terms of u’s and v’s the self-consistent equations for
eight mean field and the hole density are given by,

ξx(y) =
2

N

∑

k,n

[fun∗
1 un

2 + (1− f)vn1 v
n∗
2 ] cos kx(y),

ξa =
2

N

∑

k,n

[f |un
1 |2 + (1− f)|vn1 |2] cos ka,

ξb =
2

N

∑

k,n

[f |un
2 |2 + (1− f)|vn2 |2] cos(kb),

∆x(y) =
2

N

∑

k,n

[(1− f)un
1v

n∗
2 − fvn∗1 un

2 ] cos kx(y),

∆a =
2

N

∑

k,n

(1− 2f)un
1v

n∗
1 cos ka,

∆b =
2

N

∑

k,n

(1− 2f)un
2v

n∗
2 cos kb,

1− δ =
2

N

∑

k,n

f |un
2 |2 + (1− f)|vn2 |2,

where the band index n runs over 1, 2 and f is the Fermi
distribution function f(En) which is step function at zero
temperature. The diagonalization of M~k

and the self-
consistent equations are carried out numerically to obtain
the phase diagram and the results reported in the text.


