Exciting half-integer charges in a quantum point contact

I. Snym an ${ }^{1}$ and Y.V. N azarov ${ }^{2}$
${ }^{1}$ Instituut-Lorentz, Universiteit Leiden, P .O . B ox 9506, 2300 RA Leiden, T he N etherlands ${ }^{2} \mathrm{~K}$ avli Institute of N anoscience, D elft U niversity of Technology, 2628 CJ D elft, The N etherlands (D ated: N ovem ber 18, 2021)

Abstract

W e study a voltage-driven quantum point contact (Q P C) strongly coupled to a qubit. W e predict pronounced observable features in the Q P C current that can be interpreted in term s of half-integer charge transfers. O ur analysis is based on the K eldysh generating functional approach and contains general results, valid for all coherent conductors.

The quantum point contact ${ }^{1}$ has becom e a basic concept in the eld of Q uantum Transport ow ing to its sim plicity. Its com m on experim ental realization is a narrow constriction that connects tw o m etallic reservoirs. A n adequate theoretical description for this setup is a noninteracting one-dim ensional electron gas interrupted by a potentialbarrier. T he barrier is com pletely characterized by its scattering m atrix. T his enables the scattering approach to Q uantum Transport ${ }^{2}$. This allows one to describe the average current through the QPC, as well as uctuations aw ay from this average, in term sof single electronspassing through the constriction ${ }^{3}$. T he strength of the scattering approach is its ability to describe not only traditional realizations of a Q P C , but all coherent conductors, including di usive wires and tunneling junctions.

D espite the correctness of the non-interacting electron description, truly m any-body quantum correlations do exist and are observable in a QPC.T hey m anifest them selves in the full counting statistics of electron transfenc3 and allow for detection of two-particle entanglem ent ${ }^{4}$ through the m easurem ent of non-local current correlations. This suggests that the observation of m any-body e ects in a QPC crucially relies on a proper detection schem e. In this Letter, we give an exam ple of how an appropriate detector uncovers such non-trivialm any-body e ects as half-integer charges.

W e probe the QPC with a charge qubit. Such a device has already been realized using single and double quantum dots. P reviously, the QPC has been used as a detector of the qubit state ${ }^{5,6}$. W e propose a schem e in which the roles are reversed. P rovided the qubit and QPC are coupled strongly, the switching between the qubit states is accom panied by severe Ferm i-Sea shakeup in the QPC.Thed.c. current in the QPC is sensitive to the ratio of the qubit sw itching rates and thereby provides inform ation about these severe shake-ups.

Before analising the system in detail, the follow ing qualitative conclusions can be drawn. The qubit ow es its detection capabilities to the follow ing fact: In order to be excited it has to absorb a quantum " ofenergy from the QPC.H ere " is the qubit levelsplitting, a param eter that can be tuned easily in an experim ent by m eans of a gate voltage. The Q PC supplies the energy by transfering charge from the high voltage reservoir to the low voltage reservoir. T he transfer of charge q allow s qubit
transitions for level spllttings " < qV , V being the bias voltage applied.

W e can assum e that successive sw itchings of the qubit betw een its states $\bar{j} i$ and Zi are rare and uncorellated. T he qubit dynam ics are then characterized by the rates 21 to Sw itch from state $\mathcal{1} i$ to state $2 i$ and 12 from Ri to 7 li . The stationary probability to nd the qubit in state Ri is determ ined by detailed balance to be $\mathrm{p}_{2}=$ ${ }_{21}=(12+21)$. This probability can be observed experim entally by m easuring the current in the Q PC.T he current displays random telegraph noise, sw itching betw een tw o values I_{1} and I_{2}. These correspond to the qubit being in the state jli or Ri respectively. The d.c. current I gives the average over m any $s w$ itches and is thus related to the stationary probability by $I=\left(\begin{array}{ll}1 & p_{2}\end{array}\right) I_{1}+p_{2} I_{2}$. T he values of I_{1}, I_{2} and I are determ ined through m easurem ent and p_{2} is inferred.

W hen the Q P C and qubit are w eakly coupled $\frac{7,8}{8}$, a single electron is transfered ${ }^{9}$. This liberates at m ost energy eV , implying that the rate 21 is zero when "> eV and the rate 12 is zero when " $<\mathrm{eV}$. The resulting p_{2} changes from 1 to 0 upon increasing " w thin the interval $\mathrm{eV}<\mathrm{"}<\mathrm{eV}$. Cusps at " $=\mathrm{eV}$ signify that charge e is transferred. [See Fig. (2a)]

G uided by our understanding of weak coupling we can speculate as follow s about what happens at strong coupling. A part from single electron transfers, we also expect the coordinated transfers of groups of electrons. A group of n electrons can provide up to neV of energy to the qubit. Therefore, peculiarities in p_{2} should $a p-$ pear at the corresponding level splittings " = neV, $\mathrm{n}=1 ; 2 ; 3 ;:$:10 H ow ever, it is not apriori obvious that these peculiarities are pronounced enough to be observed. T he reason is the decoherence of the qubit states induced by electronspassing through the Q P C .T he Fourier transform of the qubit transition rate acquires an exponential dam ping factore ${ }^{W}{ }^{\mathrm{Jj}}, \mathrm{W}{ }^{1}$ being the decoherence tim e . T his sm oothes out peculiarities at the energy scale W. In the strong coupling regim e, the decoherence tim e is estim ated to be short, W ' $\mathrm{eV}=$. A s a result, it is not clear whether peculiarities at neV are the dom inant feature at strong coupling.

Therefore, strong coupling of the QPC and the qubit requires quantitative analysis. W e have reduced the problem to the evaluation of a determ inant of an in nitedim ensional W ienerH opf operator. W e calculated the
determ inant num erically and found that peculiarities at multiples ofeV arem inute. T heir contribution to p_{2} does not exceed $10{ }^{4}$ and is seen only at logarithm ic scale and at m oderate couplings. Instead, far m ore prom inent features occurs at " $=\frac{1}{2} \mathrm{eV}$. General reasoning does not predict this. Straight-forw ard energy balance argum ents force us to conclude that qubit Sw itching is accom panied by the transfer of charge $e=2$ through the QPC. T his frees up energy eV $=2$, stim ulating qubit transitions when " $<\mathrm{eV}=2$. In other words, the qubit sw itching excites a half-integer charge and sim ultaneously detects it. Fractionalcharge is know n to occur in strongly interacting m any-electron system $s^{11,12,13}$ in equilibrium. In contrast to this, the electrons in the QPC can be regarded non-interacting except during the short tim e the qubit is sw itching. O ur system is also unusual in that the halfinteger charge is only produced during qubit sw itching and is not present in the equilibrium state.

Let us now tum to the details of our analysis. The system is illustrated in F ig. (1). The H am iltonian for the system is

$$
\begin{equation*}
\hat{H}=\hat{\mathrm{T}}+\hat{U}_{1} \text { jlih1 } j+\left(\hat{U}_{2}+"\right) \text { Rih2j+ (jlih2j+ 2ih1) } \tag{1}
\end{equation*}
$$

The operator \hat{T} represents the kinetic energy of $Q P C$ electrons. The operator \hat{U}_{k} describes the potential barrier seen by QPC electrons when the qubit is in state $k=1 ; 2$ and corresponds to a scattering m atrix s_{k} in the scattering approach. (W e use a \check" to indicate a m atrix in the space of transport channels.) Q P C electrons do not interact directly w ith each other but rather w ith the qubit. T his interaction is the only qubit relaxation m echanism included in ourm odel. We work in the lim it ! 0 where the inelastic transition rates $12 ; 21$ betw een qubit states are sm all com pared to the energies eV and ". In this case, the qubit sw itching events can be regarded as independent and incoherent.

N ow consider the qubit transition rate 21 . To low est

FIG. 1: A schem atic picture of the system considered. It consists of a charge qubit coupled to a Q P C.T he shape of the Q P C constriction, and hence its scattering m atrix, depends on the state of the qubit. T he QPC is biased at voltage V . A gate voltage controls the qubit level splitting ". T here is a sm all tunneling rate betw een qubit states.
order in the tunneling am plitude it is given by

$$
\begin{align*}
& \text { Z } 0 \\
& 21=2^{2} R e \quad d \quad e^{i "} \\
& 1 \mathrm{~h} \\
& \lim _{0} \operatorname{tr} e^{i \hat{H} \hat{H}_{2}} e^{i \hat{H} \hat{H}_{1}\left(t_{0}\right)}{ }_{0} e^{i \hat{\hat{H}_{1}}\left(t_{0}\right)^{l}}: \tag{2}
\end{align*}
$$

This is the usualFerm iG olden Rule. The H am iltonians \hat{H}_{1} and \hat{H}_{2} are given by $\hat{H}_{k}=\hat{T}+\hat{U}_{k}$ and represent Q PC dynam ics when the qubit is held xed in state jki. The trace is over Q P C states, and 0 is the initial Q P C density m atrix. T he evaluation of the integrand is a special case of a general problem in the extended K eldysh form alism ${ }^{14}$. T he task is to evaluate the trace of a density m atrix after \bra's" have evolved w ith a tim e-dependent H am iltonian $\hat{H} \quad$ (t) and \kets" w ith a di erent H am ittonian $\hat{H_{+}}(t)$.

$$
\begin{equation*}
e^{\mathrm{A}}=\operatorname{tr} \mathrm{T}^{+} e^{i \int_{1}^{1} d t \hat{H}_{+}(t)}{ }_{o \mathrm{~T}} \quad \mathrm{e}^{i \int_{1}^{1}{ }_{1} d t \hat{H} \quad(t){ }^{i}} \text { : } \tag{3}
\end{equation*}
$$

W e im plem ented the scattering approach to obtain the general form ula

$$
\begin{equation*}
A=\operatorname{tr} h h^{h}(1 \quad \hat{f})+\hat{s}_{+} \hat{f}^{i} \quad \operatorname{tr} \ln s: \tag{4}
\end{equation*}
$$

T he operators \hat{s} and \hat{f} have both continuous and discrete indices. T he continuous indices refer to energy, or in the Fourier transform ed representation, to tim e. T he discrete indices refer to transport channel space. The operators $s=s$ ((t) ($\quad t)$ are diagonal in time. The tim e-dependent scattering m atriges s ((t) describe scattering by the H am iltonians $\hat{H} \quad$ (t) at instant t. (It is the hall-m ark of the scattering approach to express quantities in term s of scattering m atrices rather than H am iltonians.) The operator $\hat{f}=\mathrm{f}(\mathrm{E}) \quad\left(\mathrm{E} \quad \mathrm{E}^{0}\right)$ is diagonal in the energy representation. The m atrix $f(\mathbb{E})$ is diagonalin channelspace, representing the individualelectron
lling factors in the di erent channels. A full derivation of Eq. (4) w ill be given elsew here. It generalizes sim ilar relations published in 15,16 .

In order to apply the general result to Eq. (2), the tim e-dependent scattering m atriges $s(t)$ are chosen as

$$
\begin{align*}
s_{+}(t) & =s_{1}+(t \quad)(t)(s \quad s) ; \tag{5}\\
s & =s_{1}: \tag{6}
\end{align*}
$$

The QPC scattering m atrices $s_{1}\left(s_{2}\right) w$ ith the qubit in the state $1(2)$ are the m ost im portant param eters of our approach.

W ithout a bias-voltage applied, the Q P C -qubit setup exhibits the physics of the Anderson orthogonality catastrophe ${ }^{17}$. For the equilibrium QPC, the problem can be m apped ${ }^{15}$ onto the classic Ferm iEdge singularIty ($F E S$) problem $18,19,20$. T he authors olt ${ }^{18}$ e ectively com puted A in equilibrium. O ur setup is sim pler than the generic FES problem since there is no tunneling from the qubit to the Q P C . A s a result, not allprocesses considered in ${ }^{15}$ are relevant for our setup. W e only need
the so-called closed loop contribution. T he relevant part of the FES result for our setup is an anom alous power law ${ }_{21}^{(0)}(")=\left({ }^{(1)} \frac{1}{j^{\prime \prime} j} \frac{j^{\prime \prime j}}{E_{c: 0}:} \quad\right.$ for the equilibrium rate. H ere $E_{c: o}$: is an upper cuto energy. The anom alous exponent is determ ined by the eigenvalues of $\mathrm{s}_{2}^{\mathrm{Y}} \mathrm{S}_{1}{ }^{21}$ as
$=\frac{1}{4^{2}} \operatorname{Tr} \ln ^{2}\left(\mathrm{~S}_{\mathrm{f}}^{\mathrm{y}} \mathrm{S}_{\mathrm{i}}\right)$. The logarithm is de ned on the branch (;]. For a one or two channel point contact, $0 \ll 1$.

W e now give the details of our calculation for the rates out of equilibrium R_{1} From Eq. (2) and Eq. (4) it follow s that 21 (") / $j^{2} j_{1}^{R_{1}} d e^{i "} \operatorname{Det} \hat{Q}^{(V)}()$. Forpositive tim es , the operator $\hat{Q}^{(V)}()$ is de ned ad ${ }^{15}$.

$$
\begin{equation*}
\hat{Q}^{(V)}()=1+\left(S_{2}^{1} S_{1} \quad 1\right)^{\wedge}() \hat{f}^{(V)} \tag{7}
\end{equation*}
$$

while for negative,$\hat{Q}^{(\mathrm{V})}()=\hat{Q}^{(\mathrm{V})}\left(\quad Y\right.$ The tim E^{-} interval operator ${ }^{\wedge}()=(t \quad \ell)(t)(t)$ is diagonal in tim e and acts as the identity operator in channelspace for tim es $t=t^{0} 2[0 ;]$ and as the zero-operator outside this tim e-interval.

For the purpose of num erical calculation of the determ inant we have to regularise $\hat{Q}^{(V)}(\mathrm{I})$. This is done by multiply ing w ith the inverse of the zero-bias operator to de ne a new operator $\sigma()=\hat{Q}^{(0)}()^{1} \hat{Q}^{(V)}()$. Its determ inant is evaluated num erically. The rate 21() at bias voltage V is then expressed as the convolution $21(")={ }^{R} \quad \frac{d^{n 0}}{2}{ }_{21}^{\text {eq }}\left(\begin{array}{ll}(") & P^{\Gamma}\left("^{0}\right)\end{array}\right)$ of the equilibrium rate and the Fourier transform of $P^{r}()=D \operatorname{etq}(V)()$, that contains alle ects of the bias voltage V.

W e im plem ented this calculation num erically, and com puted the probability p_{2} to nd the qubit in state Ri. D etails of our num erical m ethod are presented in A ppendix A. O urm ain results are presented in F ig. (2). W e used 2 scattering m atrices param etrized by

FIG . 2: The occupation probability p_{2} of qubit state $2 i$. At weak coupling betw een the QPC and qubit, (F ig. a, b) the transfer of a single electron w ith charge e is detected. P eculiarities at eV =2 at strong coupling (F ig. c, d) constitute the detection of half integer charges $e=2$. Scattering m atrices were param eterized as in Eq. 8. Fig. a, b, c and d respectively correspond to $==16,=4,7=10$ and $4=5$.

$$
\mathrm{s}_{2}^{1} \mathrm{~s}_{1}=\quad \underset{i \sin }{\cos } \quad \begin{gather*}
i \sin \tag{8}\\
\cos
\end{gather*}
$$

and repeated the calculation for several 2 [0;]. Sm all corresponds to weak coupling. The curve at $==16$ is alm ost indistinguishable from the perturbative weak coupling lim it discussed in the introduction. Cusps at
eV indicate that qubit sw itching is accom panied by the transfer of charge e in the QPC.
T he increasing decoherence sm oothes the cusps for the curve at $==4(2 \mathrm{~b})$. W hen the coupling is increased beyond $==2$ steps appear at $e V=2$ (c). This implies charge fractionalization $e!~ e=2$. Further increase of the coupling results in a shanpening of the steps (d).

K now $n \mathrm{~m}$ echanism s of charge fractionalization do not seem to provide an im ediate explanation of our ndings. The Q uantum H allm echanism ${ }^{11}$ does not give even fractionsw hile the instanton m echanism ${ }^{12}$ requires a quasiclassicalboson eld. There is an indirect analogy w ith the m odel of interacting particles on a ring threaded by a magnetic $u x^{13}$. There, one expects that the energy eigenvalues are periodic in ux w ith period of one ux quantum . H ow ever, the exact B ethe-A nsatz solution ${ }^{13}$ reveals a double period of eigenvalues w ith adiabatically varying ux. This is a signature of half-integer charge quantization.

For our non-equilibrium setup, energy eigenvalues are not particulary useful. T he natural eigenvalues to describe the phenom enon are those of the oprator $\mathscr{Q}^{(V)}()$. They depend on the param etereV which is an analogue of ux. The product of the eigenvalues, i.e. the deter-

F IG . 3: The behavior of eigenvalues for at weak and strong Q P C -qubit coupling respectively. The param eter that param eterises the scattering m atrix equals $=16$ (bottom) and $4=5$ (top) representing the weak and strong coupling lim its respectively. For $==16$ individual eigenvalues travel from 1 to $\cos =16,0: 9808$ at a rate of approxim ately one per $2=e V$. For $=4=5$, eigenvahes travel tow ards $\cos 4=5^{\prime} \quad 0: 8090<0$ at a rate of one per $2=e \mathrm{eV}$, as shown in (a). Deviations from the correct asym ptotics are due to nite size e ects. Figure (b) contains the second derivative of $P^{\sim}()=D \operatorname{et} \hat{Q}^{(0)}()^{1} \hat{Q}^{(V)}()$. (T he second derivative is taken to rem ove an average slope and curvature.) O scillations w ith period $\mathrm{h}=\mathrm{eV}$ are seen (bottom) for $==16$, while for
$=4=5$ (top), the periodicity of $P^{\sim}()$ doubles.
m inant $P^{r}()$ is not precisely periodic in since it decays at large ow ing to decoherence. Still, it oscillates and the period of these oscillations doubles as we go from weak to strong coupling (F ig. 3b). The doubling can be understood in term s of the transfer of the eigenvalues of $\mathscr{Q}^{(V)}$ () upon increasing (F ig 3a) assum ing the param etrization (8). In the large lim it, energy-tim e uncertainty can be neglected in a \quasi-classical" approxim ation: The operator ${ }^{\wedge}()$ pro jects onto a very long tim e interval, and is replaced by the identity operator. $\widetilde{Q}^{(V)}$ becom es diagonal in energy. A lleigenvalues that are not equal to 1 are concentrated in the transport energy window $0<\mathrm{E}<\mathrm{eV}$ where the lling factors in the QPC reservoirs are not the same. For $s_{2}{ }^{1} S_{1}$ param etrized as in (8) these eigenvalues equal cos(). There are eV $=2$ of them. In other words, the num ber ofeigenvalues equal to cos grows linearly w th . N um ericaldiagonalization of $\mathbb{Q}^{(V)}$ () (Fig. 3a) show s that one eigenvalue is transfered from 1 to $\cos ()$ during tim e $2=e V$. If cos >0 as in the weak coupling case, this gives rise to $P()$ oscillations w ith frequency eV=2 m anifesting integer charges. H ow ever cos becom es negative at stronger couplings, so that P () changes sign w ith each eigenvalue transfer. T wo eigenvalues have to transfer to give the sam e sign. T he result is a period doubling of the oscillations in $P^{r}()$ and hence half-integer charges. This resem bles the behavior of the wave vectors of the B ethe-A nsatz solution in^{13}.

The param etrization (8) of the $s_{2}^{y} s_{1}$ is not general. H ow ever, the eigenvalue transfer argum ents help to understand generalscattering m atrices. E igenvalue transfer still occurs at frequency eV=2 but instead of traveling along the real line, eigenvalues follow a trajectory inside the unit circle in the com plex plane. Fractional charge is pronounced if the end point of the tra jectory has a negative real part. N um erical results for general scattering m atrices are presented in A ppendix B.

Results presented so far are for \spinless" electrons. Spin degeneracy is rem oved by e.g. high magnetic eld. If spin is included, but scattering rem ains spin independend, then two degenerate eigenvalues are transported sim ultaneously. In this case, the half-integer charge dissapears for the param etrization (8) but persists for the m ore general choice of com plex eigenvalues. The results of further num ericalw ork that con m this are presented in A ppendix C.

W e have studied a quantum transport setup that can easily be realized w th current technology, nam ely that of a quantum point contact coupled to a charge qubit. The qubit is operated as a measuring devioe, its output signal \mid the probability $p_{2} \mid$ is directly seen in the QPC current. The dependence of the signal on the qubit level splitting reveals the nature of charged excitations in the voltage-driven QPC.W hen the qubit is weakly coupled to the QPC, the dependence reveals excitations with electron charge e. W e dem onstrated that for stronger coupling, the dependence suggests the existence of the excitations that carry half the charge of an
electron.

APPENDIXA:NUMERICALMETHOD

In this A ppendix we give a m ore detailed account of the num erical calculation of the qubit tunneling rates 12 (") and 21 (") than is presented in the m ain text. O ur starting point is Eq. (7) of the m ain text. In order to discuss qubit transitions from $j 1 i$ to $2 i$ as well as the reverse transition sim ultaneously, we change notation slightly. In what follow S , indiges i and f refer to the initial and nal state of the qubit respectively. W e consider \forw ard" transitions $(\mathrm{f} ; \mathrm{i})=(2 ; 1)$ and \backslash backward" transitions $(f ; i)=(1 ; 2)$. The central ob ject of num ericalw ork is the operator

W e recall that the m atrioes S_{i} and S_{f} are the scattering m atrioes of Q P C electrons w hen the qubit is in state i or f. ${ }^{\wedge}()$ is a tim e-interval operator,

$$
\begin{array}{llll}
()_{t} ; t^{0} 0= & (t \quad t) ; 0 & 1 & 0<t< \tag{A2}\\
0 & \text { otherw ise }
\end{array}
$$

$\hat{f}^{(V)}(")$ is diagonal in energy. It contains the lling factors of QPC-electrons in the various channels, including any bias voltage that m ay be present. Its form in the tim eboasis (at zero tem perature) is given below in Eq. (A 9). The operator $\hat{Q}_{\mathrm{fi}}^{(\mathrm{V})}$ () has an innite num ber of eigenvalues outside the neighborhood of 1 in the complex plain. This implies that a regularization of the determ inant is needed. Indeed, if one naively assum es the unregularized determ inant to be well-de ned and possesing the usual properties of determ inants, such as D et $\left(A_{1} B\right)=\operatorname{Det}(A) D$ et (B), one m ay show that $D \operatorname{et} \hat{Q}_{f i}^{(V)}()=D \operatorname{et} \hat{Q}_{\text {if }}^{(V)}() . W$ ere this true, it would have implied that $12(")=21$ ("). This cannot be correct. At low tem peratures, the qubit is far m ore likely to em it energy than to absorb it, m eaning that one of the tw o rates should dom inate the other.

Regularization is achieved by multiplying w ith the inverse of the equilibrium operator. The operator $\widetilde{Q}_{f i}()=$ $\hat{Q}_{f i}^{(0)}()^{1} \hat{Q}_{f i}^{(V)}()$ only has a nite num ber of eigenvalues for nite that are not in the neighbornood of 1 , and so its determ inant can be calculated num erically in a straight-forw ard m anner. (In this expression, $\hat{Q}_{f i}^{(0)}()$ is the operator \hat{Q} when the QPC is in itially in equilibrium, i.e. the bias voltage V is zero.) W e therefore proceed as follow s: W e de ne

$$
\begin{equation*}
\mathrm{P}^{\sim}\left(\mathrm{h}=\mathrm{Det}^{\mathrm{Q}} \hat{Q}_{21}^{(0)}()^{1} \hat{Q}_{21}^{(V)}()^{i}\right. \tag{A3}
\end{equation*}
$$

and $P^{\sim}\left({ }^{\prime \prime}\right)==^{R} d e^{i "} P^{\sim}()$ as its Fourier transform. The equilibrium rate $\underset{f i}{e q}(")$ is known from the study of the

Ferm iEdge singularity. It is
$w h e r e E_{c: 0}$: is a cut-o energy of the order of E_{F} and

$$
\begin{equation*}
=\frac{1}{4^{2}} \operatorname{Tr} \ln ^{2}\left(S_{f}^{\mathrm{y}} \mathrm{~S}_{\mathrm{i}}\right): \tag{A5}
\end{equation*}
$$

The logarithm is de ned on the branch (;]. W ith the help of these de nitions we have
where our task is to calculate $\mathrm{P}^{\sim}(")$ num erically.
The operator $\hat{Q}_{21}^{(V)}$ () will be considered in the tim e (i.e. Fourier transform of energy) basis. W e restrict ourselves to the study of single channelQ PC's, in which case the scattering m atrices s_{1} and s_{2} are $2 \quad 2 \mathrm{~m}$ atrices in Q P C -channel space. We work in the standard channel space basis where

$$
s_{k}=\begin{array}{lll}
r_{k} & t_{k}^{0} \tag{A7}\\
t_{k} & r_{k}^{0}
\end{array}
$$

w ith t; t^{0} the left and right transm ission am plitudes and $r ; r^{0}$ the left and right re ection am plitudes. Because ${ }^{\wedge}()$ is a projection operator that com m utes w th the scattering m atrioes, we can evaluate the determ inant in the space of spinor functions (t) de ned on the interval t 2 [0;]. (We consider > 0.) Then

$$
\begin{align*}
& h_{\hat{\boldsymbol{Q}^{\prime}}} \quad \text { i } \\
& \hat{Q}_{21}^{(V)}\left(\begin{array}{ll}
1 & (t)=(t)+\left(s_{2}^{y} s_{1}\right. \\
\text { 1) } & d t^{0} f^{(V)}\left(t \quad t^{0}\right) \quad\left(t^{0}\right)
\end{array}\right. \tag{A8}
\end{align*}
$$

where

$$
\begin{aligned}
& f^{(V)}(t)=\frac{Z}{2} e^{i " t} \quad\left(^{\prime \prime \prime}\right)\left(\begin{array}{ll}
0 & \\
0 & (e V)
\end{array}\right. \\
& =\frac{i}{2\left(t+i 0^{+}\right)}+i \frac{1 \quad z}{2} \frac{e^{i t e V}}{2 t}(\text { A } 9)
\end{aligned}
$$

is the Fourier transform of the zero-tem perature ling factors of the reservoirs connected to the QPC and 0^{+} is an in nitesim al positive constant. D iscretization of this operator proceeds as follow s. W e choose a tim estep t such that $\mathrm{N}==\mathrm{t}$ is a large integer. We w ill represent $\hat{Q}_{21}^{(V)}\left(\right.$) (and $\left.\hat{Q}_{21}^{(0)}()^{1}\right)$ as $2 \mathrm{~N} \quad 2 \mathrm{~N}$ dim ensional m atrices. W e de ne a dim ensionless quantity $=e V t . P^{r}()$ can only depend on in the combination eV because there are no other tim e-or energy scales in the problem. W e will therefore vary by keeping N xed and varying . U sing the identity

$$
\begin{equation*}
\frac{1}{t \quad i \neq}=P \quad \frac{1}{t} \quad i \quad \text { (t) } \tag{A10}
\end{equation*}
$$

we nd a discretized operator

$$
\begin{aligned}
& \left.\stackrel{h}{1+\left(\mathrm{s}_{2}^{\mathrm{y}} \mathrm{~s}_{1}\right.} \quad 1\right)^{\wedge} \hat{\mathrm{f}}^{\mathrm{i}} \\
& =k_{k l}+\left(s_{2}^{y} S_{1} \quad \text { 1) } \frac{1}{2 k l}+\frac{1}{2 i(1 \quad k)}(1 \quad k 1)\right.
\end{aligned}
$$

To test the quality of the discretization as well as its range of validity we do the follow ing. W hen $s_{2}^{y} s_{1}$ is close to identity, we can calculate $P^{\sim}($) perturbatively, both for the original continuous operators and for its discretized approxim ation. If we take $s_{2}^{y} s_{1}=e^{i} \times$ then to order ${ }^{2}$ we nd

$$
P_{\text {cont. }}(1)=1+2 \bar{L}_{2}^{2 Z_{N}} d z \frac{\cos (z) \quad 1}{z^{2}}(\mathbb{N}
$$

where $=\mathrm{N}=e \mathrm{~V}$ for the continuous kemelw hile for the discretized version we nd
which indicates that the range of validity is 2 .
In practice we take $N=2^{8}$. Larger N would dem and the diagonalization of m atrices that are too large to handle num erically. We nd results suitably accurate up to $==4$, thereby giving us access to $P^{\sim}()$ for j j2 [0; $64=e V]$.
To sum m erize, the procedure for calculating the transition rates 21 and 12 is

1. For given scattering m atrioes s_{1} and s_{2}, calculate $P^{\sim}()$ num erically using the discrete approxim ations for the operators $\hat{Q}_{21}^{(V)}()$ and $\hat{Q}_{12}^{(0)}$ (). U se a xed large m atrix size, and work in units []$=[\mathrm{eV}]^{1}$. G enerate data form any positive values of .
2. Extend the results to negative by exploiting the sym m etry $P^{\prime}()=P^{\Omega}(\quad)$, and Fourier transform the data.
3. Form the convolutions of Eq. A 6 w th the known equilibrium rates to obtain the non-equilibrium rates.

APPENDIX B:CHOICEOFSCATTERING MATRICES

In the m ain text we con ned our attention to the one param eter fam ily of scattering m atrioes

$$
s_{2}^{y} s_{1}=\begin{array}{cc}
\cos & i \sin \tag{B1}\\
i \sin & \cos
\end{array}:
$$

For this choice, $\mathrm{P}^{\Upsilon}(\mathrm{)}$ is a real function of time. For < $=2$ its uctuations are associated w ith energies eV due to the transfer of eigenvalues from 1 to cos at a rate of one per $h=e V$. For $>=2$ how ever, cos is negative and two eigenvalues have to be transfered before the sign of $P^{r}($) retums to its in itial value. The period of uctuantions of $P^{r}()$ doubles and becom es associated w ith energies $e V=2$. Because $P^{r}()$ is real, the uctuationsw ith positive and negative energies are equal: $P^{\sim}(")=P^{\sim}\left("^{\prime}\right) . T$ is translates into the follow ing feature of the probability p_{2} to nd the qubit in state $2 i$. For
$<\quad=2, p_{2}(")$ changes from 1 to 0 in an energy interval of length 2 eV . For $>=2$, this interval shrinks to eV . The boundry of the interval is de ned m ore shanply the closer is to 0 or . The shrinking from 2 eV to eV of the interval in which p_{2} varies signi cantly is explained in term sof charge fractionalization: For $>=2$ the excitations in the QPC transm it half the charge of an electron so that the energy that the qubit can absonb from the $Q P C$ changes from eV to $\mathrm{eV}=2$.

Since the Q PC scattering m atrices contain param eters that are not under experim ental control, it is relevant to ask how the results are altered when a m ore general choige

$$
s_{2}^{y} s_{1}=\begin{array}{cc}
e^{i} \cos & i \sin \tag{B2}\\
i \sin & e^{i} \cos
\end{array}
$$

w th $2\left[\frac{1}{2} \bar{T}_{2}\right]$ and $2[0 ;]$ is m ade for the scattering m atrioes. W ith this choioe, eigenvalues travel from 1 to e^{i} cos at a rate of one per $2=e V$. This m eans that the period doubling of $P^{r}()$ no longer takes place.

FIG. 4: The function $P^{\sim}(")$ that contains the e ect of the bias voltage V.A s explained in the text, $s_{2}^{y} s_{1}$ w as param eterized as in Eq. (B2). A value $=\overline{9}$ is used througout. The values of in (a), (b), (c) and (d) are respectively $\frac{-1}{6}$, $\frac{2}{3}$ and $\frac{5}{6}$. W hen $<=2$, then $P^{\sim}(")$ has a fairly sym m etric peak centered at $\mathrm{eV}=2$. The tails of this peak vanish at "' ($=2 \quad 1) \mathrm{eV}$. W hen $>=2$, there are two asym m etric peaks at $\mathrm{eV}=2$ and ($1 \quad=2$)eV. The value offr (") is signi cantly larger for " $2[\mathrm{eV}=2 ;(1 \quad=2) \mathrm{eV}]$ than outside this interval.

The phase of $\mathrm{P}^{\sim}($) does not retum to its original value after the transfer of tw o eigenvalues. R ather, one expects uctuations associated w ith an energy ($n \quad-$)eV; $n=$ 0; 1; 2;:::B ecause () is no longer real, positive and negative frequencies don't contribute equally. H ow ever, while the eigenvalue tra jectories lie close to the real line, one can expect results sim ilar to those obtained for real $\mathrm{Pr}(\mathrm{)}$. W e obtained num erical results for four scattering m atriges of the form (B2). We chose $=\frac{1}{6} ; \frac{1}{3} ; \frac{2}{3}$ and $\frac{5}{6}$. To shanpen abrupt features we chose $==9$ so that the exponential decay of $P^{\prime}()$ is associated w ith a long decoherence tim e:' $0: 06 \mathrm{~h}=\mathrm{eV}$. A s depicted in F ig. (4), we found $P^{\sim}(")$ to behave as follow s. For close to zero, $\mathrm{P}^{\sim}(")$ consists of one peak situated at " $=\overline{2} \mathrm{eV}$. The tails of this peak vanish at " $=1 \overline{2} \mathrm{eV}$. The closer to zero that is taken, the m ore abrupt this behavior of the tails becom e. As is increased, a second peak starts appearing at $"=1 \quad \overline{2} \mathrm{eV}$. W hen
$=0$, the height (and w idth) of this peak exactly equals that of the peak at $\overline{2} \mathrm{eV}$. In the interval " $2-\mathrm{eV}$; $1 \quad-\mathrm{eV}$ that is bounded by the peaks, $P^{\sim}()$ is signi cantly larger than in the region outside the peaks. This behavior ofP (") translates into the occupation probabilities p_{2} (") depicted in F ig. (5). For $<=2$, p_{2} (") still changes from unity to zero in an interval of length $2 e V \mathrm{~m}$ anifesting excitations w ith charge e while for $>=2$ the interval shrinks to eV , indication halfinteger charge. The closer m oves to 0 or , the shanper the intervalbecom es de ned. W e therefore conclude that the fractionalcharge phenom enon in the Q PC is not conned to the special choige B 1) of scattering m atrices.

F IG . 5: T he p robability $p_{2}\left({ }^{\prime}\right)$. $\mathrm{s}_{2}^{\mathrm{y}} \mathrm{s}_{1}$ is chosen as in F ig. (4) : A value $=\overline{9}$ is used througout. The values of in (a), (b), (c) and (d) are respectively $\overline{6}, \frac{3}{3}, \frac{2}{3}$ and $\frac{5}{6}$. W hen $<=2$, the occupation probability p_{2} is signi cantly di erent from its asym ptotic values 0 and 1 in an " interval of 2 eV . W hen
$>\quad=2$, this interval shrinks to eV. The boundaries of the interval are m ore sharply de ned the closer is to $=2$. The shrinking of the interval corresponds to a cross-over in the Q PC from excitations that transm it charge e to excitations that transm it charge $e=2$.

APPENDIX C:INCLUSION OF SPIN

Up to this point we have considered spin less electrons in the Q PC. In this A ppendix we investigate the e ect of including spin. W e still take the interaction betw een the QPC and the qubit to be spin independent. H ow ever, the m ere existence of a spin degree of freedom fror Q PC electrons doubles the dim ension of channel space. T he narrow est QPC now has tw o channels in stead of one and $P_{s=\frac{1}{2}}^{\sim}()=P_{s=0}^{r}()^{2}$, i.e. the determ inant $P_{s=\frac{1}{2}}^{\sim}() w$ th spin included is the square of the determ inant $\mathrm{P}_{s}{ }_{s=0}(\mathrm{)}$ without spin. For real determ inants, squaring kills the phase. This m eans that the observed period doubling for the param etrization of Eq. (B1) disappears and with it the half integer charge features of p_{2}. Physically, it could be that tw o charge e $=2$ excitations are transm itted through the QPC sim ultaneously. H ow ever, fractional charge is saved by the fact that, for $\in 0, \mathrm{P}_{s=0}^{r}$ (") has tw o peaks w ith di erent heights. Suppose the relative peak heights are A and 1 A, i.e.

$$
\begin{equation*}
\mathrm{P}_{\mathrm{s}=0}() \quad(1 \quad \mathrm{~A})^{i} \mathrm{e}^{\mathrm{e}} \mathrm{eV}+A e^{(1 \quad \overline{2}) \mathrm{eV}} \tag{C1}
\end{equation*}
$$

where A is a real num ber betw een 0 and $\frac{1}{2}$. $\quad(A=0$ corresponds to $=0$ while $A=\frac{1}{2}$ corresponds to $=$.) It follow s that $P_{s=\frac{1}{2}}($ ") has three peaks at

$$
\begin{aligned}
& \text { 1. " }=2_{\overline{2}} \mathrm{eV} \text { with height }\left(\begin{array}{ll}
1 & \mathrm{~A}
\end{array}\right)^{2}, \\
& \text { 2. " }=1 \quad 2 \overline{2} \mathrm{eV} \text { with height } 2 \mathrm{~A}(1
\end{aligned}
$$

3. and " $=2 \quad 2_{2}$ eV with height A^{2}

A s long as A is sm all, i.e. is not too close to , the rst tw o peaks will dom inate the third, and a signature of fractional charge m ay stillbe observable in $p_{2}\left({ }^{\prime \prime}\right) . F$ ig.

FIG.6:The probability p_{2} (") w ith $s p$ in included. $\mathrm{s}_{2}^{\mathrm{y}} \mathrm{s}_{1}$ is chosen as in Fig. (4) and (5): A value $=\overline{9}$ is used througout. The values of in (a), (b), (c) and (d) are respectively ${ }_{6}, \overline{3}$, $\frac{2}{3}$ and $\frac{5}{6}$. Fractional charge features are still clearly visible for $>=2$.
(6), contains p_{2} calculated for the sam e scattering m atrices as in F ig. (5), but w ith spin included. T he cases when $=\frac{2}{3}$ and $=\frac{5}{6}$ still contain clear half-integer charge features. For very close to (not shown) these features disappear.
${ }^{1}$ B. J. Van W ees et al., Phys. Rev. Lett. 60848 (1988).
${ }^{2}$ M . Buttiker, P hys. R ev. B 417906 (1990).
${ }^{3}$ L. S. Levitov, H. Lee and G. H. Lesovik, J. M ath. Phys. 374845 (1996).
${ }^{4}$ C.W . J. B eenakker, C.Em ary and M . K inderm ann, P hys. Rev.Lett. 91, A rt. N o. 147901 (2003).
${ }^{5}$ J. M. Elzerm an, Phys. R ev. B 67 A rt. No. 161308 (R) (2003).
${ }^{6}$ J.R.P etta eta. P hys.R ev.Lett. 93 A rt. N o. 186802 (2004).
7 I.L.A leiner, I.L., N.S.W ingreen and Y.M eir, Phys. R ev. Lett. 793740 (1997).
${ }^{8}$ Y . Levinson, Europhys. Lett. 39299 (1997)
${ }^{9}$ E.O nac, Phys. R ev. Lett. 96 A rt. No. 176601 (2006).
10 J. Tobiska, J.D anon, I. Snym an and Y .V . N azarov, P hys. Rev. Lett. 96 A rt. No. 096801 (2006).
${ }^{11}$ R. B. Laughlin, P hys. R ev. Lett. 501395 (1983).
12 R. Jackiw and C.R ebbi, Phys. Rev.D 133398 (1976).
${ }^{13}$ B. Sutherland and B.S.Shastry, P hys. R ev. Lett. 65, 1833 (1990).
${ }^{14}$ Y.V.N azarov and M.K inderm ann, Euro. Phys. J. B 35, 413 (2003).
${ }^{15}$ D. A. Abanin and L.S.Levitov, P hys. R ev. Lett. 93 A rt. No. 126802 (2004).
${ }^{16}$ D. A. Abanin and L. S. Levitov, Phys. Rev. Lett. 94 A rt. No. 186803 (2005).
${ }^{17}$ P.W. A nderson, P hys. R ev. Lett. 241049 (1967).
${ }^{18}$ G.D.M ahan, Phys. Rev. 163612 (1967).
19 P.N ozieres and C.T .D e D om in icic, P hys. R ev. 178 10971107 (1969).
${ }^{20}$ K.A. M atveev and A. I. Larkin, Phys. R ev. B 46 1533715347 (1992).
${ }^{21}$ K . Y am ada and K . Y osida, P rog. Th.Phys. 681504 (1982).

