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W e study a voltage-driven quantum point contact (QP C) strongly coupled to a qubit. W e predict
pronounced observable features in the Q PC current that can be Interpreted in tem s of halfdinteger
charge transfers. O ur analysis is based on the K eldysh generating finctional approach and contains

general resuls, valid for all coherent conductors.

T he quantum point contact has becom e a basic con—
cept In the eld of Q uantum Transport ow ing to its sin —
plicity. Tts com m on experin ental realization is a narrow
constriction that connects two m etallic reservoirs. An
adequate theoretical description for this setup is a non—
Interacting one-dim ensional electron gas interrupted by
a potential barrier. T he barrier is com pletely character-
ized by its scattering m atrix. T his enables the scattering
approach to Quantum Transport?. This allow s one to
describe the average current through the QPC, as well
as uctuations away from this average, in tem s of singlke
electronspassing through the constriction® . T he strength
of the scattering approach is is ability to describe not
only traditional realizations of a QP C, but all coherent
conductors, ncluding di usive w ires and tunneling jinc-
tions.

D espite the correctness of the non-interacting electron
description, truly m any-body quantum correlations do
exist and are cbservable In a QP C . They m anifest them -
selves in the fi1ll counting statistics of electron transfers®
and allow for detection of two-particle entanglem ent?
through the m easurem ent of non-local current correla—
tions. This suggests that the observation ofm any-body
e ects n a QPC crucially relies on a proper detection
schem e. In this Letter, we give an exam pl ofhow an ap—
proprate detector uncovers such non-trivialm any-body
e ects as halfinteger charges.

W e probe the QPC wih a charge qubit. Such a de-
vice has already been realized using single and double
quantum dots. P reviously, the QPC hasbeen used as a
detector of the qubit state®€. W e propose a schem e
which the rols are reversed. P rovided the qubi and
QPC are couplkd strongly, the swiching between the
qubit states is accom panied by severe Ferm iSea shake—
up In the QPC .Thed.c. current in the QP C is sensitive
to the ratio of the qubit sw itching rates and thereby pro—
vides nform ation about these severe shake-ups.

Before analising the system in detail, the follow ng
qualitative conclusions can be drawn. The qubit owes
its detection capabilities to the follow Ing fact: In order
to be excited it hasto absorb a quantum " ofenergy from
the QPC .Here " is the qubit level splitting, a param eter
that can be tuned easily In an experin ent by m eans of
a gate voltage. The QP C supplies the energy by trans—
fering charge from the high voltage reservoir to the low
volage reservoir. T he transfer of charge g allow s qubit

transitions for level splittings " < ¢V , V being the bias
voltage applied.

W e can assum e that successive sw tchings of the qubit
between is states jli and Pi are rare and uncorellated.
T he qubit dynam ics are then characterized by the rates

21tos~:'i:chﬂ0m statejl.ltostateyland 12 from
P1ito Ji. The stationary probability to nd the qubit
In state Pi is determ ined by detailed balance to be p; =

21=( 12+ 21). Thisprobability can be cbserved exper-
In entally by m easuring the current in the QPC .The cur-
rent digplays random telegraph noise, sw itching between
two values ) and I, . T hese correspond to the qubit be-
ing in the state jli or Pi respectively. Thed.c. current I
gives the average overm any sw itches and is thus related
to the stationary probability by I = 1 p)h + L.
The values 0of I;, I, and I are detem ined through m ea—
surem ent and p; is inferred.

W hen the QPC and qubit are weakly coupled’#, a sin—
gle electron is transfered? . T his lberates at m ost energy
eV, m plying that the rate ,; iszerowhen " > &V and
the rate 1, is zero when " < eV . The resulting p
changes from 1 to 0 upon Increasing " w ithin the interval

eV < "< &V.Cuspsat"= &V signify that charge e
is transferred. See Fig. (Ra)]

G uided by our understanding ofweak coupling we can
speculate as follow s about what happens at strong cou-—
pling. Apart from sihgle electron transfers, we also ex—
pect the coordinated transfers of groups of electrons. A
group of n electrons can provide up to neV of energy
to the qubit. Therefore, peculiarities In p, should ap—
pear at the corresponding level splittings " = nev,
n = 1;2;3;::£2 However, i is not apriori covious that
these peculiarities are pronounced enough to be observed.
T he reason is the decoherence of the qubit states induced
by electronspassing through theQ PC .T heFouriertrans—
form ofthe qubit transition rate acquires an exponential
dam ping factore " ¥, W ! being the decoherence tin e.
T his sn oothes out peculiarities at the energy scaleW . In
the strong coupling regin e, the decoherence tin e is esti-
m ated to be short, W ' &V=. A sa resul;, it is not clear
w hether peculiarities at neV are the dom inant feature at
strong coupling.

T herefore, strong coupling of the Q PC and the qubit
requires quantitative analysis. W e have reduced the
problem to the evaluation ofa determm nant ofan in nie-
din ensional W ienerH opf operator. W e calculated the
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determm inant num erically and found that peculiarities at
multiplesofeV arem inute. T heir contrbution to p, does
not exceed 10 4 and is seen only at logarithm ic scale and
at m oderate couplings. Instead, farm ore prom inent fea—
tures occurs at " = %eV . General reasoning does not
predict this. Straight-forw ard energy balance argum ents
force us to conclude that qubit switching is accom pa—
nied by the transfer of charge e=2 through the QPC.
T his frees up energy eV=2, stin ulating qubit transitions
when " < &V=2. In other words, the qubi sw tching ex—
cites a half+integer charge and sin ultaneously detects it.
Fractional charge is known to occur in strongly interact—
ing m any-electron system sti2242 in equilbrim . In con—
trast to this, the electrons in the QP C can be regarded
non-interacting except during the short tin e the qubit is
sw itching. Our systam is also unusual in that the half-
Integer charge is only produced during qubit sw itching
and is not present in the equilbrium state.

Let us now tum to the details of our analysis. The
system is illustrated in Fig. [I). The H am iltonian forthe
system is

H = T+0, 4inl3# O+ " RiRF# @Giki Rikly @)

T he operator T represents the kinetic energy of QPC

electrons. T he operator [;Alk describes the potential bar-
rier seen by QPC electrons when the qubit is in state
k = 1; 2 and corresgoonds to a scattering m atrix s in
the scattering approach. W e use a \check" to indicate
am atrix in the space of transport channels.) QP C elec—
trons do not iInteract directly w ith each other but rather
w ith the qubit. This interaction is the only qubi relax—
ation m echanisn inclided in ourm odel. W e work In the
Iim it ! 0 where the inelastic transition rates 12;21

betw een qubit states are am all com pared to the energies
eV and ". In this case, the qubit sw itching events can be
regarded as independent and incoherent.

Now consider the qubit transition rate

21. TO Jowest

FIG. 1l: A schem atic picture of the system considered. It
consists of a charge qubit coupled to a Q PC . T he shape ofthe
QPC constriction, and hence its scattering m atrix, depends
on the state of the qubi. The QPC is biased at volage V .
A gate voltage controls the qubit level splitting ". There is a
an all tunneling rate  between qubit states.

order In the tunneling am plitude it is given by
Z
21=2 2Re d ei"
"no X X i
Tm  tr ein e H( %) Oeiﬁl( ) Q)
[

This is the usualFem iG olden Rule. The H am iltonians
Pfl and sz are given by HAk = T+ tfk and represent
QPC dynam ics when the qubit isheld xed In state ki.
The trace isover QPC states, and ( is the nitialQPC
density m atrix. T he evaluation ofthe integrand is a spe—
cial case of a general problem in the extended K eldysh
om alisn 4. T he task isto evaluate the trace ofa density
m atrix after \bra’s" have evolved w ith a tim e-dependent
Ham iltonian H () and \kets" w ith a di erent H am ilto—
nian £, ().

h i

H i [t acd
A dtH . () oT elfl tHo® . (3

f=-trrre
W e in plem ented the scattering approach to obtain the
general form ula

h i

A=trh ¢ @ HH+&f trhs: @)

The operators 8§ and £ have both continuous and dis—
crete indices. T he continuous indices refer to energy, or
In the Fourier transform ed representation, to tine. The
discrete indices refer to transport channel space. The
operators 8 = s (&) (& ® are diagonalin tine. The
tin edependent scattering m atrices s  (t) describbe scat—
tering by the H am iltonians H () at nstant t. (It is the
halltm ark of the scattering approach to express quanti-
ties In tem s of scattering m atrices rather than Ham il
tonians) The cperator £ = £E) & E)) is diagonal
In the energy representation. Them atrix £ E ) is diago—
nalin channel space, representing the individualelectron
Iling factors in the di erent channels. A full derivation
ofEq. [@) willbe given elsswhere. Tt generalizes sin ilar
relations published nt32¢,
Th order to apply the general resuk to Eq. [2), the
tin edependent scattering m atrices s (t) are chosen as

st ©=s1+ (t ) ( BDds 9); 5)
s =s;: (6)

The QPC scattering m atrices s; (sp) with the qubit in
the state 1 2) are the m ost In portant param eters of our
approach.

W ithout a biaswvoltage applied, the Q PC qubit setup
exhibits the physics of the Anderson orthogonality
catastrophe!’. For the equilbrium QPC, the problm
can be m apped!® onto the classic Ferm i Edge shgular-
ity FES) problemi81220  The authors of2 e ectiely
com puted A In equilbrium . Our setup is sin pler than
the genericFE S problem since there is no tunneling from
the qubi to the QPC .A s a resul, not allprocesses con—
sidered n?® are relevant for our setup. W e only need



the so—called closed loop contribution. T he relevant part
of the FES result for our setup is an anom alous power

(0) _ 1 33
B M= 0 "y g

Here E .. isan upper cuto energy. T he anom alous ex—

for the equilbriim rate.

ponent  is detem ned by the eigenvalues of s?s;%! as

= ;& Trh®¢8) . The bgarithm is de ned on the
branch ( ; 1. For a one or two channel point contact,
0< < 1.

W e now give the details ofour calculation for the rates
out of equiliorium ., From Eq. ) and Eq. @) it ©lows

that 21 (") / 373 11 d e petd V) ( ).Forpositive
tines , the operatord V) ( ) isde ned ad®.

SV )=1+ st D(HEW )
while for negative ,3Y) () =¢d"Y) ( ¥ The tine-

intervaloperator ()= & © @© ( t) is diagonal
In tin e and acts as the identity operator in channel space
frtmest= t°2 0; ]and as the zero-operator outside
this tim e-interval.

For the purpose of num erical calculation of the deter-
m inant we have to reqularise § ¥ ( ). This is done by
muliplying with the inverse of the zero-bias operator to

de ne a new operator 0 ( ) = @ () 1QA(V)( ). Tts
determm nant is evaluated num erically. The rate ,1( )
at bias volfage V is then expressed as the convolution

(M = 8@ Hp (0 of the equilbrim rate
and the Fourier transform of P'( ) = DetQ V) ( ), that
contains alle ects ofthe biasvolage V.

We mmplmented this calculation num erically, and
com puted the probability p, to nd the qubi in state
Pi. Details of our num erical m ethod are presented in
Appendix A .Ourm ain results are presented In Fig. (2).
Weused 2 2 scattering m atrices param etrized by
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FIG . 2: The occupation probability p, of qubit state Ri. At
weak coupling between the QPC and qubi, Fig. a, b) the
transfer of a single electron w ith charge e is detected. Pecu—
liarities at eV=2 at strong coupling Fig. c, d) constitute
the detection of half integer charges e=2. Scattering m atri-
ces were param eterized as n Eqg. 18. Fig. a, b, c and d
respectively correspond to = =16, =4,7 =10 and 4 =5.

cos isin

1o —
S &1 isin  ocos ®
and repeated the calculation orseveral 2 [0; 1. Small
corresponds to weak coupling. The curve at = =16

is alm ost indistinguishable from the perturbative weak
coupling lin it discussed in the introduction. Cusps at

eV indicate that qubit sw itching is accom panied by the
transfer of charge e in the QPC.

T he Increasing decoherence an oothes the cusps for the
curve at = =4 (2b). W hen the coupling is ncreased
beyond = =2 stepsappearat eV=2 (c).Thisinplies
charge fractionalization e ! e=2. Further increase of the
coupling results in a sharpening of the steps d).

Known m echanian s of charge fractionalization do not
seam to provide an inm ediate explanation of our nd-
ings. The Quantum H allm echanisn ! doesnot give even
fractionsw hile the instanton m echanisn 12 requiresa qua—
siclassicalboson eld. There is an indirect analogy w ith
the m odel of interacting particles on a ring threaded by
a magnetic ux*3. There, one expects that the energy
elgenvalues are periodic in ux w ih period of one ux
quantum . However, the exact Bethed nsatz solutiont3
reveals a doubk period of eigenvalues w ith adiabatically
varying ux. This is a signature of half-integer charge
quantization.

For our non-equilbriim setup, energy eigenvalues are
not particulary useful. The natural eigenvalues to de—
scribe the phenom enon are those ofthe opratorQ ) ( ).
T hey depend on the param etereV  which isan analogue
of ux. The product of the eigenvalues, ie. the deter-
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FIG . 3: The behavior of eilgenvalies for at weak and strong
Q PC—qubit coupling resgpectively. The param eter that pa-
ram eterises the scattering m atrix equals =16 (ottom ) and
4 =5 (top) representing the weak and strong coupling lin —
its respectively. For = =16 individual eigenvalies travel
from 1 to cos =16 ’ 0:9808 at a rate of approxin ately
one per 2 =V . For = 4 =5, elgenvalues travel towards
cosd =57 08090 < 0 at a rate ofoneper2 =€V, asshown
in (@). Deviations from the correct asym ptotics are due to
nite size e ects. Figure (o) contains the second derivative
of B'( )=Detd@ () dY) (). (The second derivative is
taken to rem ove an average slope and curvature.) O scillations
w ith period h=eV are seen (pottom ) for = =16, whilk for
= 4 =5 (top), the periodicity of P ( ) doubles.



m inant P'( ) isnot precisely periodic In  since it decays
at large  ow Ing to decocherence. Still, it oscillates and
the period of these oscillations doubles as we go from
weak to strong coupling Fig. 3b). The doubling can
be understood in tem s of the transfer of the eigenval-
ues of @ V) () upon Increasing  (Fig 3a) assum ing the
param etrization [§). I the Jarge lim it, energy-tin eun—
certainty can be neglected in a \quasiclassical" approxi-
m ation: T he operator ) progctsonto a very long tin e
interval, and is replaced by the identity operator. g V)
becom es diagonal In energy. A 1l eigenvalues that are not
equalto 1 are concentrated in the transport energy w in—
dow 0 < E < &V where the lling factors in the QPC
reservoirs are not the same. Fors, 1sl param etrized as
in [8) these eigenvalues equalcos( ). There are &V =2
ofthem . In other words, the num ber ofeigenvalues equal
to cos grow s linearly with . Num ericaldiagonalization
of @ V) () Fig. 3a) shows that one eigenvalue is trans-
fered from 1to cos( ) duringtine2 =&V .Ifcos > 0Oas
In the weak coupling case, thisgives rise to P ( ) oscilla—
tions w ith frequency eéV=2 m anifesting integer charges.
However cos becom es negative at stronger couplings,
so that P ( ) changes sign w ith each eigenvalue transfer.
Two eigenvalues have to transfer to give the sam e sign.
T he resul is a period doubling ofthe oscillations in P* ( )
and hence half-nteger charges. This resembles the be-
havior of the wave vectors of the B etheA nsatz solution

nt3.

The param etrization [8) of the sgsl is not general.
H ow ever, the eigenvalie transfer argum ents help to un-—
derstand general scatteringm atrices. E igenvalue transfer
still occurs at frequency eV=2 but instead of traveling
along the real line, eigenvalues follow a tra fctory inside
the unit circle n the com plex plane. Fractionalcharge is
pronounced if the end point of the tra fctory has a neg—
ative realpart. Num erical results for general scattering
m atrices are presented in Appendix B .

Resuls presented so far are for \spinless" electrons.
Spin degeneracy is rem oved by eg. high m agnetic ed.
If spin is included, but scattering rem ains soin indepen—
dend, then two degenerate eigenvalues are transported
sin ultaneously. In this case, the half-integer charge dis-
sapears for the param etrization [§) but persists for the
m ore general choice of com plex eigenvalues. T he resuls
of further num ericalw ork that con m this are presented
In Appendix C .

W e have studied a quantum transport setup that can
easily be realized w ith current technology, nam ely that
of a quantum point contact coupled to a charge qubit.
The qubi is operated as a m easuring device, is out—
put signal | the probability p, | is directly seen in
the QPC current. The dependence of the signalon the
qubit level splitting reveals the nature of charged exci
tations In the voltagedriven QPC . W hen the qubit is
weakly coupled to the QP C, the dependence reveals ex—
citations w ith electron charge e. W e dem onstrated that
for stronger coupling, the dependence suggests the exis—
tence of the excitations that carry half the charge of an

electron.

APPENDIX A:NUMERICALMETHOD

In this Appendix we give a m ore detailed account of
the num erical calculation of the qubit tunneling rates

12 (") and 23 (") than is presented in the main text.
Our starting point is Eqg. (7) of the mahn text. In or-
der to discuss qubit transitions from jli to Pi aswell
as the reverse transition sim ultaneously, we change no-
tation slightly. In what follow s, indices i and £ refer to
the initial and nal state of the qubit respectively. W e
consider \forward" transitions (£;i) = ;1) and \back-
ward" transitions (£;i) = (1;2). The central ob Fct of
num erical work is the operator
(

1+ (lse 1)

1+ (sls; 1)

)f(V) ™)
)f\(V) ™

<0 a1)
>0

W e recall that the m atrices s; and s¢ are the scattering
m atrices of Q PC electronswhen the qubit is in state ior
f. A( ) is a tin e-interval operator,

1 0< t<
)

i° 0 othemie &2

()t ;0 0= (€
£V) (") is diagonalin energy. It contains the lling fac—
tors of Q PC-electrons in the various channels, includ-
Ing any bias voltage that may be present. TIts fom
In the tinebasis (@t zero tem perature) is given be-
low n Eq. [R9Y). The operator QAf(vi)( ) has an In-—

nite number of eigenvalies outside the neighborhood
of 1 in the complx plain. This inplies that a regu—
larization of the determ inant is needed. Indeed, if one
naively assum es the unregularized determm nant to be
wellde ned and possesing the usual properties of deter—
m inants, %lch as Det(AiB ) = Det@)Det®B), one may

show that Det@ff(vi)( ) =DetQAj(_\f])( ). W erethistrue,

i would have in plied that 12 (") = 21 ("). This cannot
be correct. At low tem peratures, the qubit is arm ore
likely to em it energy than to absorb i, m eaning that one
of the two rates should dom inate the other.

R egularization is achieved by m ultiplying w ith the in—
verse ofthe equilbrium operator. T he operatorQe; ( ) =

Q/\éol) () 1Q/\f(vi) ( ) only has a nie number of eigenval-

ues or nite  that are not in the neighborhood of 1,

and so its determ inant can be calculated num erically in
£ (0)

a straight-forward m anner. (In thisexpression,Q ;' ( ) is
the opeJ:atorQA when the QPC is initially in equilbriim ,
ie. the biasvoltage V is zero.) W e therefore proceed as

follow s: W e de ne

h
4 (0)

i
P()=Det$5 ()5 ()

o @3)

R in
and P (")= d € P () asisFourier transform . The
equilbriim rate (") is known from the study of the



Fem iEdge sihqgularity. It is

o ) 1
Mm=3F ( — @ 4)

where E ... Isa cut-o energy ofthe order ofEr and

- n® (s} 5
=12 TrIn® (sgsi) Aa>5)
The logarithm is de ned on the branch ( ; 1. W ith
the help ofthese de niions we have
Z
d"O
= AeFe ®6)

w here our task is to calculate P* (") num erically.

The operatorQAZ(\:]L) () will be considered In the tine
(ie. Fourder transform of energy) basis. W e restrict our—
selves to the study of single channelQ PC’s, in which case
the scattering m atrices s; and s, are 2 2 m atrices in
QPC channel space. W e work In the standard channel
space basis where

Sk =

i @

I tlg
I

=3

with t; t° the Jeft and right transm ission am plitudes and
r; ¥ the left and right re ection am plitudes. Because
") isa progction operator that comm utes w ith the
scattering m atrices, we can evaluate the determ nant in
the space of spinor functions (t) de ned on the interval

t2 0; ]. Weconsider > 0. Then
h i Z
Sy = w+rEs 1 WiV § ©
0
@8)
w here
a" - (m 0
V) — - it
£ 5 0 &« M
i 1 ; e itev 1
= ® 9)

—+ 1

2 (c+ i0%) 2 2t

is the Fourder transform of the zero-tem perature 1ling

factors of the reservoirs connected to the QPC and 0F

is an In nitesin al positive constant. D iscretization of

this operator proceeds as follow s. W e choose a tin estep
t such that N = =t is a large integer. W e

will represent ) () @d @S () 1) as2N 2N di-
m ensionalm atrices. W e de ne a din ensionless quantity
= &V t. P( ) can only depend on  in the combina-

tion €V becausethere areno othertin e-orenergy scales

In the problem . W e will therefore vary by kesping N
xed and varying . U sing the identity
L P ! i ©® @ 10)
= - i
t  i0 t

we nd a discretized operator

h i
1+ sy 1 F
K1
- y 1 1
= xt s 15 at m)(l x1)
1, el k)
+ 2 5kt m(l k1) } (A 1l)

nonequilbrium correction

To test the quality of the discretization as well as is
range of validity we do the Hllow .ng. W hen s}s; is close
to dentity, we can calculate P () perturbatively, both for
the original continuous operators and for its discretized
approxin ation. Ifwe take sjs; = €' * then to order ?
we nd
22w cos(z ) 1
Foont.( y= 14+ 2 2— . dZT (I Z)
@a12)
where = N =&V forthe continuouskemelw hile forthe
discretized version we nd

_ 2X l<::os( ) 1
Paise. ()= 1% 2 o= ——— N ) a1y
-1
w hich indicates that the range of validiy is 2
In practice we take N = 28, Larger N would de-

m and the diagonalization ofm atrices that are too large
to handle num erically. W e nd results suitably accu-
rateup to = =4, thereby giving usaccesstoP ( ) or
j j2 D;64 =eV 1.

To sum m erize, the procedure for calculating the tran—
sition rates 21 and 12 is

1.For given scattering m atrices s; and s, calculate
P’ ( ) num erically using the discrete approxin ations
brtheoperatorsQAg) () andQAg) ().Ussa xed
large m atrix size, and work n units [ 1= EV]?.
G enerate data form any positive values of

2. Extend the resuls to negative

symmetry P ( ) = P (
the data.

by exploiting the
), and Fourder transform

3.Fom the convolutions of Eq.[AH wih the known
equilbrium rates to obtain the non-equilbrim
rates.

APPENDIX B:CHOICE OF SCATTERING
M ATRICES

In the m ain text we con ned our attention to the one
param eter fam ily of scattering m atrices
isin
cos

Ccos

y
sis; = .
2=t isin

B1)



For this choice, P/ ( ) is a real function of tine. For

< =2 is uctuations are associated wih energies

eV due to the transfer of eigenvalies from 1 to cos
at a rate ofone per h=eV . For > =2 however, cos
is negative and tw o eigenvalues have to be transfered be-
fore the sign of P'( ) retums to is iniial value. The
period of uctuantions of P' ( ) doubles and becom es as—
sociated w ith energies eV=2. BecauseP ( ) is real, the
uctuationsw ith positive and negative energies are equal:

PP(")= P ( ").Thistranshtes into the follow ing feature
of the probability p, to nd the qubit in state Ri. For

< =2, (") changes from 1 to 0 in an energy inter—
valof length 26V . For > =2, this Interval shrinks to
eV . The boundry ofthe interval is de ned m ore sharply
the closer isto 0 or The shrinking from 2eV to
eV of the nterval in which p, vares signi cantly is ex—
plined In tem sof charge fractionalization: For > =2
the excitations in the QP C transm it half the charge of
an electron so that the energy that the qubit can absorb
from the QPC changes from €V to eV=2.

Since the Q PC scattering m atrices contain param eters
that are not under experim ental control, it is relevant
to ask how the results are altered when a m ore general
choice

i

e cos isin
s3s1 = . ; B2)
isin e cos
with 2 [ z73]land 2 D; ]ismade for the scatter-

Ing m atrices. W ih this choice, eigenvalues travel from
1 toe" cos ata rate of one per 2 =eV . This means
that the period doubling of P ( ) no longer takes place.

Nonequilibrium correction, P

[g]

1 -1
Level splitting, ¢ [eV]

FIG.4: The function P (") that contains the e ect of
the bias voltage V . Asexplined in the text, s‘z’sl was pa-—
ram eterized as in Eq. B2)). A valie = 5 isused througout.
Thevaluesof in @), ), () and (d) are respectively =, 35,

ZT and 5? W hen < =2,thenP (") hasa fairly sym m etric
peak centered at &V =2 . The tails of this peak vanish at
"o =2 1)eV.W hen > =2, there aretwo asymm et—
ricpeaksat €V =2 and (1 =2 )eV . The value ofP” (")

is signi cantly larger for "2 [ eV =2 ; (1 =2 )eV ] than
outside this interval.

T he phase of P" ( ) does not retum to its origihal value
after the transfer of tw o eigenvalues. R ather, one expects
uctuations associated with an energy 0 7—)eV; n =
0; 1; 2;:::BecausP ( ) isno onger real, positive and
negative frequencies don’t contrbute equally. H owever,
w hile the eigenvalue tra ctories lie close to the real line,
one can expect resuls sin ilar to those obtained for real
P ( ). W e obtained num erical results for four scattering
m atrices of the orm [B2). W e chose = % ;E ;2

i3 ;3 and
5

¢ - To sharpen abrupt features we chose =
that the exponential decay of P'( ) is associated wih a
long decoherence time: ¥ 0:06h=eV . A sdepicted In Fig.

=9 o

@), we Pund P (") to behave as ollows. For close to
zero, P* (") consists of one peak situated at "=  5-&V.
T he tails of this peak vanish at " = 1 5 ev.The

closer to zero that is taken, the m ore abrupt this be—
havior of the tails become. As is increased, a sec—
ond peak starts appearing at "= 1 - &V. W hen

= 0, the height (and width) of this peak ex—
actly equals that of the peak at 3-eV . In the interval

"2 7&eV; 1 7 &V that is bounded by the peaks,

P’ ( ) issigni cantly larger than in the region outside the
peaks. Thisbehavior of P' (") translates into the occupa—
tion probabilitiesp, (") depicted in Fig. [B). For < =2,
P2 (") still changes from uniy to zero n an interval of
length 2eV m anifesting excitations w ith charge e while
for > =2 the interval shrinks to eV , indication half-
iInteger charge. The closer movesto 0 or ,the sharper
the Intervalbecom esde ned. W e therefore conclude that
the fractionalcharge phenom enon in the Q PC isnot con—
ned to the special choice [B1l) of scattering m atrices.

0.5

Occupation probability, po

1 0 1 1 0 1
Level splitting, € [eV]

FIG .5: The probability p, ("). sgsl ischosen asin Fig. [):
A valie = 5 isused througout. The valuesof in @), ©),
(c) and (@) are respectively -, 5, % and 2. W hen < =2,
the occupation probability p, is signi cantly di erent from
its asym ptotic values 0 and 1 In an " intervalof2eV . W hen

> =2, this interval shrinks to €V . The boundaries of the
interval are m ore sharply de ned the closer isto =2. The
shrinking of the interval corresponds to a crossover In the
QPC from excitations that tranam it charge e to excitations
that transm it charge e=2.



APPENDIX C:INCLUSION OF SPIN

Up to this point we have considered spinless electrons
In theQPC .In thisAppendix we investigate the e ect of
Including spin. W e still take the interaction betw een the
QPC and the qubi to be soin independent. H owever,
the m ere existence of a spin degree of freedom for QPC
electrons doubles the dim ension of channel space. The
narrowest Q PC now hastwo channels In stead ofone and
P_1()=PFPeo( F,ie. thedeteminantP_; ( ) with

2 2
sodn included is the square of the determ inant Pe— o ( )
w ithout spin. For real determm inants, squaring kills the
phase. This m eans that the observed period doubling
r the param etrization of Eq. [B1]) disappears and w ith
i the half nteger charge features of p,. Physically, i
could be that two charge e=2 excitations are tranam itted
through the QPC sinulaneously. However, fractional
charge is saved by the fact that, or 6 0,Ps= (") has
two peaks with di erent heights. Suppose the relative

peak heightsareA and1 A, ie.
Peeo() @ AYE ¥ +ae ¢ 27 C1)
where A is a real num ber between 0 and @a =0

1
z-
= OwhikeA = % correspondsto = )

(") has three peaks at

corresponds to
It ollow s that P .

1
2
2—-eV with height @AY,

2~ eV withheight2A 1 A)

3.and "= 2 2- eV with height A®

As long as A is anall, ie. is not too close to , the
rst two peaks w ill dom nate the third, and a signature
of fractional chargem ay stillbe observable in p, (). Fig.

0.5

Occupation probability, po

00 Lo N

1 0 1 1 0 1
Level splitting, € [eV]

FIG .6: The probability p; (") w ith spin included. 532’51 is
chosen asinFig. @) and [B): A valne = 5 isused througout.
Thevaluiesof in @), ), () and d) are respectjye]yg,g,
27 and 5? . Fractional charge features are still clearly visble
for > =2.

[@), contains p2 calculated for the sam e scattering m a—
trices as in Fig. [3), but wih spin included. The cases

when =% and =2 stillcontain clear halfinteger
charge features. For very close to (hot shown) these
features disappear.
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