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The exact numerical diagonalization and thermodynamics in an ensemble of small Hubbard clus-
ters in the ground state and finite temperatures reveal intriguing insights into the nascent charge
and spin pairings, Bose condensation and ferromagnetism in nanoclusters. The phase diagram off
half filling strongly suggests the existence of subsequent transitions from electron pairing into un-
saturated and saturated ferromagnetic Mott-Hubbard like insulators, driven by electron repulsion.
Rigorous criteria for the existence of quantum critical points in the ground state and corresponding
crossovers at finite temperatures are formulated. The phase diagram for 2× 4-site clusters illus-
trates how these features are scaled with cluster size. The phase separation and electron pairing,
monitored by a magnetic field and electron doping, surprisingly resemble phase diagrams in the
family of doped high Tc cuprates.
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I. INTRODUCTION

Despite tremendous experimental and theoretical ef-
forts, there is still no microscopic theory that can yield
comprehensive support for the bare Coulomb interac-
tion originated pairing correlations, phase separation
and pseudogap phenomena in clusters, small nanopar-
ticles, transition metal oxides and high Tc cuprates
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. The recent discovery of the fer-
romagnetic insulators at room-temperature has further
stimulated a great interest related to the role of on-site
Coulomb interaction in the origin of ferromagnetism [11].
Electrons in a finite Hubbard lattice, subjected to strong
on-site electron repulsion near half filling, can lead to
spontaneous ferromagnetism [12] and the finite tempera-
ture phase diagram is expected to be applicable to disul-
fides [13]. Moderate Coulomb interaction can also lead
to phase separation and formation of mesoscale struc-
tures (such as ”stripes”) under doping of Mott insu-
lating ”parent” materials with highly correlated elec-
trons, including high Tc cuprates [14, 15, 16, 17]. Al-
though the experimental determination of various inho-
mogeneous phases in the cuprates is still somewhat con-
troversial [15, 16], the underdoped high Tc superconduc-
tors (HTSCs) have many common features and are of-

ten characterized by crossover temperatures below which
excitation (pseudo)gaps in the normal-state are seen to
develop [17]. The detailed manner in which Tc and
crossover temperature changes under variation of elec-
tron concentration, magnetic field or pressure (Coulomb
interaction) is also of fundamental interest for the formu-
lation of the microscopic models responsible for nascent
superconductivity [18]. In the optimally doped cuprates,
the correlation length of dynamical spin fluctuations is
very small [19] and hence short-range fluctuations are
dominant over long-range ones. Therefore, a microscopic
theory, with short-range dynamical correlations, can give
useful insight into nascent superconductivity in clusters
and the rich physics observed in the high-Tc cuprates.
In our opinion, thermodynamic properties of small Hub-
bard clusters under variation of composition, size, struc-
ture, temperature and magnetic field have not been fully
explored, although there have been numerous exact cal-
culations [20, 21]. From this perspective the exact diag-
onalization of small Hubbard nanoclusters can give in-
sights related to the origin of superconductivity and fer-
romagnetism in an ensemble of clusters, nanoparticles,
and eventually, nanomaterials [22, 23].

The following questions are central to our study: (i)
Using exact cluster studies, is it possible to obtain a mi-
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croscopic understanding of charge and spin separation
and electron charge pairing and identify various possible
incipient phases at finite temperatures? (ii) Is it pos-
sible for ferromagnetism to occur in Mott-Hubbard like
insulators away from half filling? (iii) Do these nanoclus-
ter phase diagrams retain important features, such as
quantum critical points and crossovers that are known
for mesoscopic structures and large thermodynamic sys-
tems? (iv) When treated exactly, what essential features
can the simple Hubbard clusters capture that are in com-
mon with the transition metal oxides, cuprates, etc.?
In addition, 4-site (square) cluster is the basic build-

ing block of the CuO2 planes in the HTSCs and it can be
used as a block reference to build up larger superblocks
in 2D of desirable L × L sizes [24, 25, 26, 27, 28]. Short
range electronic correlations provide unique insight into
the Nagaoka ferromagnetism in small 2D and 3D fer-
romagnetic particles [12, 13], exact thermodynamics of
many-body physics, which are difficult to obtain from
approximate methods [22]. Here we present also strong
evidence underlining the occurrence of saturated and un-
saturated ferromagnetism [29], particle-particle, particle-
hole pairings and corresponding temperature driven Bose
condensation (BC) crossovers for spin and charge degrees
in mesoscale structures.
The paper is organized as follows. In the following

section we present the model and formulate exact ther-
modynamics in grand canonical ensemble approach. In
the third section, we introduce the charge and spin pseu-
dogaps and define corresponding new order parameters.
In section four, we present the results of numerical cal-
culations for electron density and magnetization versus
chemical potential and illustrate how to calculate vari-
ous phase boundaries for particle-particle/hole pairing,
phase separation instabilities, quantum critical points in
the ground state and crossovers at finite temperatures.
The results for the 2× 4 cluster are used to illustrate
how these features are scaled with the cluster size. The
concluding summary is presented in the closing section.

II. MODEL AND FORMALISM

The quantum and thermal fluctuations of electrons in
finite clusters can be described by the Hubbard Hamil-
tonian, placed in a magnetic field h as,

H = −t
∑

<ij,σ>σ

c+iσ cjσ − µ
∑

i,σ

niσ +
∑

i

Uni↑ni↓ −

hγ
∑

iσ

(ni↑ − ni↓), (1)

with the hopping amplitude t (energies are measured in
the units of t) and on-site Coulomb interaction U ≥ 0.
Here γ = 1

2
is the magnetic moment of an electron and

µ is the chemical potential for the ensemble of clusters.
This work utilizes statistical canonical and grand canoni-
cal ensembles using analytical eigenvalues for 4-site clus-

ters with periodic boundary conditions [23]. In addi-
tion, here we present the results of exact numerical diag-
onalization of 2 × 4 square 2D clusters, using numerical
eigenvalues in the above ensembles to study thermal and
quantum fluctuations.

In nanoparticles electrons and holes are limited to
small regions and an effect known as quantum confine-
ment yields discrete spectrum and energy-level spacings
between filled and empty states that can modify the ther-
modynamics. Because the small clusters are far from
thermodynamic limit, one can naively think that the
standard tools for the description of phase transitions
are not applicable and other concepts are needed. How-
ever, it is important to realize that phase transitions and
corresponding temperature driven crossovers in the grand
canonical ensemble can very well be defined and classified
for finite systems without the use of the thermodynamic
limit. It is further shown also how spatially inhomoge-
neous configurations like phase separations can be ob-
tained using the canonical ensemble. We illustrate how
phase transitions on the verge of an instability and phase
separation (segregation) can be defined and classified un-
ambiguously in finite Hubbard clusters [23]. It is thus
possible to define phase transitions and crossovers even
in small systems with local Coulomb forces, which are not
thermodynamically stable. There is also strong support
with regard to the effectiveness of the grand canonical ap-
proach for studies of magnetism in small clusters due to
recent experimental findings that average magnetization
of a ferromagnetic cluster is a property of the ensemble
of isolated clusters but not of the individual cluster [1, 2].

One can eliminate next nearest neighbor couplings by
replacing the planar square lattice with independent 4-
site clusters and treat them as an ensemble immersed
in a particle heat reservoir, where electrons can trans-
fer from cluster to cluster due to the thermal fluctua-
tions [23]. Earlier we formulated a new scheme in which
thermodynamical/statistical notions, concepts and theo-
retical methodologies are tailored for the calculations of
exact thermodynamics in a grand canonical ensemble of
4-site clusters. Degrees of freedom for charge and spin,
electron and spin pairings, temperature crossovers, quan-
tum critical points, etc. were extracted directly from the
thermodynamics of these clusters [22, 23]. The grand
partition function Z (where the number of particles N
and the projection of spin sz are allowed to fluctuate)
and its derivatives are calculated exactly without taking
the thermodynamic limit [22]. The charge and spin fluc-
tuation responses to electron or hole doping level (i.e.
chemical potential µ) and an applied magnetic field (h)
resulting in weak saddle point singularities (crossovers),
which display clearly identifiable, prominent peaks in cor-
responding charge and spin density of states [23].
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III. CHARGE AND SPIN PSEUDOGAPS

We apply the grand canonical ensemble of decoupled
clusters in contact with a bath reservoir allowing for the
particle number to fluctuate. It is straightforward to cal-
culate the above thermodynamic properties and some of
these results for the 2- and 4-site clusters were reported
earlier [22]. Using these eigenvalues, we have evaluated
the exact grand partition function and thermal averages
such as magnetization and susceptibilities numerically as
a function of the set of parameters {T, h, µ, U}. Using
peaks in spin and charge susceptibilities, phase diagrams
in a T vs µ plane for arbitrary U and h can be con-
structed. This approach also allows us to obtain quan-
tum critical points (QCPs) and rigorous criteria for var-
ious sharp transitions, such as the Mott-Hubbard (MH),
antiferromagnetic (AF) or ferromagnetic (F) transitions
in the ground state [22] and charge (particle-particle) or
spin condensation at finite temperatures [23] using peaks
in charge or spin susceptibilities (see below).
The difference in energies for a given temperature be-

tween configurations with various numbers of electrons is
obtained by adding or subtracting one electron (charge)
and defined as,

∆c(T ) = [E(M − 1,M ′;U, T )− E(M + 1,M ′;U, T )]−
2[E(M,M ′;U, T )− E(M + 1,M ′;U, T )],(2)

where E(M,M ′;U, T ) is the lowest canonical (ensemble)
energy with a given number of electrons N = M + M ′

determined by the number of up (M) and down (M ′)
spins. The quantity ∆c(T ) is related to the discretized
second derivative of the energy with respect to the num-
ber of particles, i.e. charge susceptibility χc. We define
the chemical potential energies at finite temperature as
µ±,

µ+ = E(M + 1,M ′;U : T )− E(M,M ′;U, T ) (3)

µ− = E(M,M ′;U : T )− E(M − 1,M ′;U : T ). (4)

Eqs. (3) and (4) at T = 0 are identical to those in-
troduced in [30], near half filling. One usually refers to
MH transitions, plateaus or gaps in 〈N〉 vs µ, as those
occurring only at half filling 〈N〉 = 4 in the 4-site clus-
ter with lower and upper Hubbard subbands separated
by the energy gap. At half filling, one can recall MH
and AF critical temperatures, at which corresponding
MH and AF gaps disappear. Similar steps (gaps) at
other 〈N〉 in charge and spin degrees will be referred
to as MH-like and AF-like plateaus respectively in or-
der to distinguish these. This terminology would also
apply to all the labelings in Fig. 1 and the rest of the
paper. Using the definitions (3) and (4), the correspond-
ing charge energy gap, ∆c(T ), at finite temperature can
be written as a difference, ∆c(T ) = µ+ − µ−. No-
tice that µ+(T ) and µ−(T ) identify peak positions in
a T − µ space for charge susceptibility χc at finite tem-
perature. The condition ∆c(T ) > 0 provides electron-
hole (excitonic) excitations, with a positive pseudogap,

∆e−h(T ) ≥ 0 [22]. Accordingly, the condition ∆c(T ) < 0
with µ−(T ) > µ+(T ) gives electron-electron pairing with
positive energy, ∆P (T ) > 0 [23]. Using the above defini-
tions for µ± we can combine them and write:

∆c(T ) =

{

∆e−h(T ), for µ+ > µ−

∆P (T ), for µ− > µ+,
(5)

where ∆e−h(T ) ≥ 0 serves as a natural order parameter
and will be called a MH-like pseudogap at nonzero tem-
perature, since χ has a small, but nonzero weight inside
the gap at infinitesimal temperature. At T = 0, this gap
will be labeled a true gap since χc is exactly zero inside.
For a given U , we define the crossover critical tempera-
ture Tc(U) at which the electron-hole pairing pseudogap
vanishes and a Fermi liquid state, with µ− = µ+, be-
comes stable.
At zero temperature, the expression for electron bind-

ing energy ∆P (T ) is identical to true gap introduced in
Ref. [35] and at nonzero temperature it will be called
a pairing pseudogap. We can easily trace the peaks of
χc(µ) at finite temperature, and find Tc(µ) at which a
possible maximum occurs for a given µ. At finite temper-
ature, the charge susceptibility is a differentiable function
of µ and the peaks, which may exist in a limited range

of temperature, are identified easily from the conditions,
χ

′

c(µ±) = 0 with χ
′′

c (µ±) < 0. The charge pseudogap at
half filling µ0 = µ+ = µ− = U

2
vanishes at TMH which

can be identified clearly with χ
′

c(µ0) = 0 and χ
′′

c (µ0) = 0;
i.e. as the temperature corresponding to a point of in-
flexion in χc(µ). This procedure describes rigorous condi-
tions for identifying the MH transition temperature and
a similar one can be carried out for the spin gap, ∆s(T ),
by following the evolution of spin susceptibilities χs(µ) as
a function of µ. Possible peaks in the zero magnetic field
spin susceptibility χs(µ), when monitored as a function
of µ, can be used to define an associated temperature,
Ts(µ), as the temperature at which such a peak exists
and a spin pseudogap as the separation between two such
peaks.
Similar to the charge plateaus seen in 〈N〉 versus µ,

we can trace the variation of magnetization 〈sz〉 versus

an applied magnetic field h and identify the spin plateau
features which can be associated with staggered mag-
netization or short range AF. We calculate the critical
magnetic field hc± for the onset of magnetization which
depends on U , T and N , by flipping a down spin, or an
up spin [23]. The difference in energies for given temper-
ature between configurations with various spins defines
the spin pseudogap

∆s(T ) =
h+ − h−

2
, (6)

where h+ and h− identify the peak positions in the
h space for the spin susceptibility χs. The condition
∆s(T ) > 0 yields spin (AF-like) paring, ∆AF (T ) > 0,
with a positive (spin) pseudogap [23]. Accordingly, the
condition ∆s(T ) < 0 with h−(T ) > h+(T ) yields a ferro-
magnetic pairing pseudogap, ∆F (T ) > 0, for spin (triplet
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FIG. 1: Variation of average electron concentration versus µ

in ensemble of 4-site clusters for various U values. The result
for U = −4 is given for comparison with U = 4. The inset
shows the variation of charge susceptibility χc versus µ for
U = 4.

or quadruplet) coupling. Using the above definitions for
h± we can combine both as,

∆s(T ) =

{

∆AF (T ), for h+ > h−

∆F (T ) for h− > h+.
(7)

This natural order parameter in a multidimensional pa-
rameter space µ, U, T at nonzero temperature will be
called a spin pairing pseudogap. We define the crossover
temperatures TP

s and TF as the temperatures at which
the corresponding spin pseudogaps vanish and a spin
paramagnetic state, with h− = h+, is stable. Similarly,
following the peaks in zero magnetic field spin suscepti-
bility, a spin pseudogap ∆s(T ), and an associated Ts(µ)
can be defined [23].

IV. RESULTS

A. 〈N〉 versus µ

In Fig. 1 for the 4-site cluster, we explicitly show the
variation of 〈N〉 versus µ below half filling for various
U values in order to track the variation of charge gaps
with U . The opening of the gap is a local correlation
effect, and clearly does not follow from long range order,
as exemplified here. For infinitesimal U > 0, true gaps
at 〈N〉 = 1, 2 develop and they increase monotonically
with U . In contrast, the charge gap at 〈N〉 = 3 opens at

U ≥ Uc(0) (a critical value; see Ref. [23]) and relatively
low temperatures. Thus at low temperature, 〈N〉 (ex-
pressed as a function of µ in Fig. 1) evolves smoothly for
U ≤ Uc(0), and shows finite leaps across the MH plateaus
at 〈N〉 = 2, 4. In Fig. 1, in the vicinity 〈N〉 = 3, one
can notice two phases. At U ≤ Uc(T ), a negative charge
gap with midgap states is a signature of electron-electron
pairing at low temperatures. For U ≥ Uc(T ), the MH-
like charge gap in (5) is positive µ+ > µ−, which favors
electron-hole pairing similar to MH gap at half filling.
As U increases, 〈sz〉 versus µ reveals islands of stability;
the minimal spin state 〈sz〉 = 0 at U ≤ Uc(0); unsatu-
rated ferromagnetism 〈sz〉 = 1

2
at Uc(0) < U < UF (0);

saturated Nagaoka ferromagnetism, with maximum spin
〈sz〉 = 3

2
at U > UF (0) (not shown in Fig. 1). As U → ∞,

the charge and spin gaps at 〈N〉 ≃ 3 gradually saturate

to its maximum → 2(2−
√
2)t and 2−

√
3 values respec-

tively. At 〈N〉 ≃ 2, we have full charge-spin reconcilia-
tion when the spin gap at quarter filling approaches the
charge gap, 4(

√
2 − 1)t, as U → ∞. The chemical po-

tential gets pinned upon doping in the midgap states at
〈N〉 ≃ 3 and U = 4. Such a density profile of 〈N〉 versus
µ near 〈N〉 = 3, closely resembles the one calculated at
U = −4 for the attractive 4-site Hubbard cluster in Fig. 1
and, is indicative of possible particle or hole pairing.

B. Quantum critical points

The exact expression for the charge gap, ∆c
3(U : 0), at

〈N〉 ≃ 3 has been derived earlier in Ref. [22]. At zero
temperature, the sharp transition at critical parameter
Uc(0) is defined from the condition ∆c

3(Uc : 0) ≡ 0 which
yields, Uc(0) = 4.58399938. The vanishing gap at Uc(0)
in the ground state can be directly linked to the quantum
critical point [31] (QCP) for the onset of pair formation.
Indeed the QCP, U = Uc(0), separates electron-electron
pairing from MH-like electron-hole pairing regime. The
QCP turns out to be a useful point for the analysis of
the phase diagram at zero and non-zero temperatures.
The QCP and the corresponding singular doping depen-
dencies on the chemical potential and the departure from
that point at nonzero crossover temperatures on T − µ
phase diagrams for various U values are given in sec-
tion IVF. Exactly at U = Uc(0) there is no charge-spin
separation and, a spin paramagnetic state coexists with a
Fermi liquid similar to non-interacting electrons, where
U = 0. At zero temperature the analytical expression
for the charge gap first was derived in Ref. [22]. Using
definition introduced in (5), the corresponding electron-
electron pairing gap, ∆P (0),

∆P (0) = − 2√
3

√

(16 + U2) cos
γ

3
− U

3
+

2

3

√

(48 + U2) cos
α

3
−
√

32 + U2 + 4
√

64 + 3U2, (8)

exists only at at U < Uc(0). In contrast, the electron-
hole pairing is zero at U < Uc(0) and exists in the ground
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state only for all U > Uc(0). The electron-hole pairing
gap, ∆e−h(0), within the range Uc < U < UF (0) is

∆e−h(0) =
2√
3

√

(16 + U2) cos
γ

3
+

U

3
+

√

32 + U2 + 4
√

64 + 3U2 − 2

3

√

(48 + U2) cos
α

3
, (9)

Above the critical point U ≥ UF (0) the electron-hole gap
is

∆e−h(0) =
2√
3

√

(16 + U2) cos
γ

3
−

2

3

√

(48 + U2) cos
α

3
+

U

3
+ 4. (10)

where corresponding parameters in Eqs. (8), (9) and

(10) α = arccos{(4U
3

− U3

27
)/(16

3
+ U2

9
)

3

2 } and γ =

arccos{(4U)/(16
3
+ U2

3
)

3

2 }. At relatively large U ≥
4.584, the energy gap ∆c

3(U : 0) becomes positive for
〈N〉 = 3. With increasing temperature, this pseudogap
∆c

3(U : T ) increases. Due to (ground state) level cross-
ings, the spin degeneracy in an infinitesimal magnetic
field is lifted at QCP, UF (0) = 8+4

√
7 ≃ 18.583 (10) and

the ground state becomes a ferromagnetic insulator with
the maximum spin 〈sz〉 = 3

2
[23, 32]. The critical value,

Uc(T ) at which ∆c
3(U : T ) = 0, depends on the temper-

ature. At U < Uc(0), ∆
c
3(T ) in a limited range of U is

negative [23]. Thus according to Eq. (2), the states with
〈N〉 = 3 become energetically less favorable when com-
pared with 〈N〉 = 2 and 〈N〉 = 4 states. This is explicit
evidence for the electron phase separation instability and
the existence (at finite temperature) of particle-particle
or hole-hole binding despite a bare electron repulsion. At
zero temperature, U > UF (0) and 〈N〉 = 3, the calcu-
lated spin gap ∆s

3(U : T ), for transition from 〈sz〉 = 1

2
to

〈sz〉 = 3

2
,

∆s
3(U : T = 0) =

√

32 + U2 + 4
√
64 + 3U2

2
− 2− U

3
,(11)

is also negative, which manifests a thermodynamic insta-
bility (χs < 0) and the phase separation into ferromag-
netic ”domains” with 〈sz〉 = 3

2
and 〈sz〉 = − 3

2
in the

ensemble of clusters. Thus we can classify and see var-
ious phases, phase transitions and phase separations in
finite systems. Therefore, phase transitions in interacting
many-body system is not a characteristic of an infinitely
large thermodynamic system, but can well be defined in
canonical and grand canonical ensembles for finite sys-
tems without the use of the thermodynamic limit.

C. Electron charge and spin pairings

The fact that electron pairing can arise directly from
the on-site electron repulsion between electrons in small
clusters was found quite early [33, 34, 35, 36]. However,
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FIG. 2: Crossover temperatures versus U for 4-site phase dia-
gram near optimally doped 〈N〉 = 3 regime. Here Tc denotes
the crossover temperature for the onset of the MH-like para-
magnetic insulator with electron-hole pairing gap and spin
(gapless) liquid, onset of electron-electron pairing below TP ,
Bose condensation of electron charge and coupled spin pairs
below TP

c , unsaturated (TUF ) and saturated ferromagnetic
(TF ) crossovers in MH-like insulators with electron-hole pair-
ing. Note that electron-electron pairing is unlikely to occur
above T > 0.08 in a spin (gapless) liquid phase. The energies
and temperatures are measured in units of t = 1, the hopping
parameter.

it is not a priori obvious that such a mechanism in an
ensemble of small clusters can survive at finite tempera-
tures. Our exact solution demonstrates that it does sur-
vive. In Fig. 2, we show condensation with bound, dou-
ble electron charge and decoupled spin at U ≤ Uc(0) and
TP
s (U) ≤ T ≤ TP

c (U). Below TP
s (U), the spin degrees

are also condensed with ’bosonization’ of spin and charge
degrees and possible ’superconductivity’. As an impor-
tant observation we found is that the variation of pair-
ing gaps, ∆P (U) and ∆e−h(U) versus U , in the ground
state closely follows the variation of TP

c (U), and Tc(U)
respectively. For U ≤ Uc(0) there is correlation between
the spin pairing gap ∆P

s (U) and corresponding crossover
temperature TP

s (U) versus U . At larger U ≥ Uc(0), we
found similar correlations in U space between ferromag-
netic spin pairing gaps and corresponding ferromagnetic
crossover temperatures.
Our calculations for the U ≤ Uc range may also be

used to reproduce the behavior of Tc(p) versus pressure
p in the HTSCs, if we assume that the parameter U de-
creases with increasing pressure. In Fig. 2, the crossover
temperatures for electron-electron, TP

c , electron-hole, Tc,
and, coupled spin, TP

s , pairings are plotted as a function
of U . The shown condensation of both doubled electron
charge, and zero spin sz = 0 (singlet) degrees below TP

s

is indicative of a possible mechanism of superconductiv-
ity in the HTSCs near optimal doping. In the HTSCs,
superconducting transition temperature Tc generally in-
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creases with pressure first, reaches the maximum value at
some critical pressure pc and then decreases with pres-
sure [39] in agreement with our result for the variation
of TP

s (U) versus U . These pressure effects in the cuprate
family reflect the changes in electron pairing due to the
moderate Coulomb interaction U . Notice, that at enough
large U , Tc(p) decreases with U under pressure, as it is
shown in Fig. 2. This might explain why the pressure
Tc(p) decreases across some of organic and families alkali
doped fullerene superconductors [40].
Our results for N ≈ 3 in Fig. 2 suggest that the en-

hancement of Tc in the parental MH cuprates, with rela-
tively large U in the optimally doped HTSCs, can be due
to an increase of pairing by decreasing U under pressure
rather than an increase of the pressure-induced hole con-
centration. Thus it appears that the 4-site cluster near
N ≈ 3 indeed captures the essential physics of the pres-
sure effect on electron pairing and BC in HTSCs near
optimal doping. Similarly, our calculations in Fig. 2
for U ≥ Uc range can also be useful in predicting the
variation of TUF (p) and TF (p) versus pressure p in fer-
romagnetic insulators and Co-doped anatase TiO2 [11].

D. Charge-spin separation

Until recently, electrons were thought to carry their
charge and spin degrees simultaneously. It is certainly
true for non-interacting electrons, where U = 0. At
zero temperature, a paramagnetic Fermi liquid with zero
charge and spin gaps in Fig. 2 exists only at U = 0 and
U = Uc(0). At finite temperatures the corresponding
charge pseudogaps vanish at particle-partricle/hole pair-
ing crossover temperatures and there is also no sign of
charge and spin separation above Tc and TP

c . However,
as temperature decreases below these crossover tempera-
tures only the charge pseudogaps are formed, while spin
excitations remain gapless and these paramagnetic spin
liquid states coexisting with electron-electron or MH-like
electron-hole pairings will be labeled as a charge-spin sep-
aration. Gapless spin response due to small variations of
magnetic field or electron concentration (chemical poten-
tial) is independent of the charge degrees of freedom. By
decreasing temperature, a partial charge-spin reconcilia-
tion takes place in Fig. 2 below ferromagnetic crossover
temperatures due to the formed spin pseudogap with cou-
pled charge and spin degrees. Accordingly, electron-hole
pairs and ferromagnetic coupled spins are bounded in
charge and spin sectors below ferromagnetic crossover
temperature. The effect of charge-spin separation be-
comes stronger with increasing U > Uc(0), since the
distinction between the corresponding charge and spin
crossover temperatures increases with U (see Fig. 2).
In Fig. 3, we examine the behavior of charge and spin

degrees of freedom below the spin condensation temper-
ature TP

s . Fig. 3 shows how the spin degrees, at an
infinitesimal magnetic field, follow the charge. Notice
how strong inter-configuration charge and spin fluctua-
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FIG. 3: The average number of electrons and magnetization
dependencies versus an applied magnetic field at U = 2.5,
T = 0.003 and µP = 0.4746. Note how a small change in
the chemical potential (from µP ± 0.005) forces the (paired)
system into a magnetic spin liquid state with an unpaired spin
and N ≈ 3.

tions can be monitored by small variation of a chemical
potential or magnetic field. The coupling between the
spin and charge degrees of freedom is manifested due
to the composite nature of the electron, having charge
(holon) and spin (spinon). Thus, the spin singlet pairing
in the spin sector and the electron-electron or hole-hole
pairings in the charge sector are not independent but
demonstrate coherency and a strong coupling between
them, which is necessary for possible ’superconductiv-
ity’. Below the critical temperature of crossover TP

c , the
charge degrees are coupled and simultaneous condensa-
tion of spin degrees below TP

s results in reconciliation of
charge and spin and possible full ’bosonization’ of elec-
trons. Thus the electron fragments into the charge and
spin excitation states and superconductivity arises due to
the charge-spin separation and subsequent condensation
of these charge and spin degrees that are both bosonic in
nature [5].

E. Phase separation

The mechanism of phase separation (i.e segregation) in
small clusters near 〈N〉 = 3 is also quite straightforward
and simply depends on the pairing conditions in charge
and spin channels respectively [23]. At U > Uc(0) in
Fig. 2, we notice a stable ferromagnetic state with un-
saturated magnetization and a ferromagnetic state with
saturated Nagaoka magnetization at larger U > UF (0)
values. As temperature increases the system undergoes
a smooth crossover from a ferromagnetic MH-like insu-
lator with ∆e−h 6= 0 and ∆F 6= 0 into a paramagnetic
MH insulator with 〈sz〉 ≈ 0. The ferromagnetic critical
temperature TF (U) increases monotonically with U and
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as U → ∞ the limiting TF (U → ∞) = 0.0125 value ap-
proaches to the maximum spin pairing temperature TP

s .
A ferromagnetic phase with broken symmetry was ob-
tained here in the presence of an infinitesimal magnetic
field and increasing temperature leads to a F-PM tran-
sition and restoration of the symmetry in paramagnetic
phase. The level crossing at Uc(0) (UF (0)) in the pres-
ence of an appropriate infinitesimal magnetic field brings
about phase separation of the thermodynamically unsta-
ble ensemble of clusters with h− > h+ into spin up and
spin down ferromagnetic ”domains” (see section IVA).

It appears that the canonical approach yields also an
adequate estimation of possible pair binding instability
near 〈N〉 = 3 in an ensemble of small clusters at rela-
tively low temperature and moderate U ≤ Uc(0). New
important features appear if the number of electrons
〈N〉 = 3 is kept fixed for the whole system of decou-
pled clusters, placed in the (particle) bath, by allowing
the particle number on each separate cluster to fluctuate.
One is tempted to think that due to symmetry, there is
a single hole on each cluster within the 〈N〉 = 3 set in
the ensemble. However, due to thermal and quantum
fluctuations in the density of holes between the clusters
U < Uc(0)), it is energetically more favorable to form
pairs of holes. In this case, snapshots of the system at
relatively low temperatures and at a critical value (µP in
Fig. 4) of the chemical potential would reveal equal prob-
abilities of finding (only) clusters that are either hole rich
(〈N〉 = 2) or hole poor (〈N〉 = 4). Thus ensemble of 4-
site clusters at 〈N〉 = 3 is thermodynamically unstable,
µ+ ≤ µ−, and can lead to macroscopic phase separation
onto hole-rich and hole-poor regions recently detected in
super-oxygenated La2−xSrxCuO4+y, with various Sr con-
tents [10, 23].

The level crossing under slight doping (infinitesimal
variation of chemical potential) brings about phase sep-
aration of ensemble of clusters and this can be linked to
the formation of inhomogeneity, consisting of hole-poor
(superconducting) and hole-rich (antiferromagnetic) ”do-
mains” at U < Uc(0). Thus we can conclude that ensem-
ble of 4-site clusters with 〈N〉 = 3 at relatively low tem-
peratures is unstable for all U > 0 values with regard to
phase separation due to spontaneous symmetry braking
into ferromagnetic or superconducting ”domains” either
in spin or charge sectors respectively.

The T -µ phase diagram for the 4-site cluster near µP ,
is shown in Fig. 4. This exact phase diagram at U = 4
in the vicinity of the optimally doped (N ≈ 3) regime
has been constructed based on the condition ∆c(T ) < 0
with µ−(T ) > µ+(T ), reported earlier in Ref. [23]. The
electron pairing temperature, TP

c , identifies the onset of
charge pairing. As temperature is further lowered, spin
pairs begin to form at TP

s . At this temperature (with
zero magnetic field), spin susceptibilities become very
weak indicating the disappearance of the 〈N〉 ≈ 3 states.
Below this spin pairing temperature, only paired states
in ”metallic” liquid (∆e−h = 0) in the midgap region
are observed to exist having a certain rigidity, so that
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FIG. 4: The phase T -µ diagram in canonical ensemble of four-
site clusters close to 〈N〉 ≈ 3 and µP = 0.658 at U = 4. The
phase below TP

c suggests the existence of electron-electron
pairing at finite temperature with unpaired spin states. The
zero (magnetic) spin susceptibility peak in spin (melted) liq-
uid state terminates at finite TP

s and as temperature is fur-
ther lowered the spin pairs begin to form. This picture with
µ
−
(T ) > µ+(T ) supports the idea that there is inhomoge-

neous, electronic phase separation here. As U increases above
Uc(0) = 4.584, these inhomogeneities disappear and a stable
unsaturated ferromagnetic MH-like insulating region emerges
around optimal doping shown in Fig. 5.

a nonzero magnetic field or a finite temperature is re-
quired to break the pairs. From a detailed analysis, it
becomes evident that the system is on the verge of an in-
stability; the paired phase competing with a phase that
suppresses pairing which has a high, zero-field magnetic
susceptibility. As the temperature is lowered, the num-
ber of 〈N〉 ≈ 3 (unpaired) clusters begins to decrease
while a mixture of (paired) 〈N〉 ≈ 2 and 〈N〉 ≈ 4 clus-
ters appears. In Fig. 4 the spin pairing phase below
TP
s competes with a phase (having a high magnetic sus-

ceptibility) that suppresses pairing at ‘moderate’ tem-
peratures. Surprisingly, the critical doping µP (which
corresponds to a filling factor of 1/8 hole-doping away
from half filling), where the above pairing fluctuations
take place when U < Uc(0), is close to the doping level
near which numerous intriguing properties have been ob-
served in the hole-doped HTSCs. For example, the spin
pseudogap can be driven to zero also by applying a suit-
able magnetic field. This factor leads to the stability of
electron ”dormant” magnetic configuration in a narrow,
critical doping region close to 〈N〉 ≈ 3, competing with
〈N〉 = 2 and 〈N〉 = 4 states as have seen in a recent
experiment [10]. Thus our results, at electron concen-
tration 〈N〉 ≈ 3, clearly demonstrate phase separation
and breakdown of Fermi liquid behavior due to electron-
electron/hole pairings and Nagaoka ferromagnetism in
the absence of long-range order.
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F. Phase diagrams

In Figs. 4 and 5, the phase diagrams for the ensem-
ble of 4-site clusters are shown, where we define the
charge peak (i.e maxima) Tc(µ) to be the temperature
with maximum χc(µ) at a given µ. Possible peaks in the
zero magnetic field spin susceptibility χs(µ), when mon-
itored as a function of µ, can also be used to define an
associated temperature, Ts(µ). In addition, for a given
µ, TAF (µ) defines the temperature at which AF (spin)
gap disappears, i.e. ∆s(TAF ) = 0. These have been
constructed almost exclusively using the temperatures,
Tc(µ), Ts(µ) and TAF (µ), defined previously. We have
identified the following phases in these diagrams: (I) and
(II) are charge pseudogap phases separated by a phase
boundary where the spin susceptibility reaches a maxi-
mum, with ∆e−h(T ) > 0, ∆AF (T ) = 0; at finite tempera-
ture, phase I has a higher 〈N〉 and coupled spin compared
to phase II spin liquid phase; Phase (III) is a MH-like
antiferromagnetic insulator with bound charge and spin,
when ∆e−h(T ) > 0, ∆AF (T ) > 0; phase separation (PS)
in T − µ plane for U = 4 with a vanished charge gap at
〈N〉 = 3, now corresponding to the opening of a pairing
gap (∆P (T ) > 0) in the electron-electron channel with
∆c

3(U : T ) < 0. We have also verified the well known fact
that the low temperature behavior in the vicinity of half
filling, with charge and spin pseudogap phases coexisting,
represents an AF insulator [22]. However, away from

half filling, we find very intriguing behavior in thermo-
dynamical charge and spin degrees of freedom. In both
phase diagrams, we find similar MH-like (I), (II) and AF-
like (III) charge-spin separated phases in the hole-doped
regime. In Fig. 5, spin-charge separation in phases (I)
and (II) originates for relatively large U in the under-
doped regime. In contrast, Fig. 4 shows the existence (at
U = 3) of a line phase (with pairing) similar to U < 0
case with electron pairing (∆P (T ) > 0), when the chem-
ical potential is pinned up on doping within the highly
degenerate midgap states near (underdoped) 1/8 filling.

Among other interesting results, rich in variety for
U > 0, sharp transitions and quantum critical points
(QCPs) are found between phases with true charge and
spin gaps in the ground state; for infinitesimal T > 0,
these gaps are transformed into ‘pseudogaps’ with some
nonzero weight between peaks (or maxima) in suscepti-
bilities monitored as a function of doping (i.e. µ) as well
as h. We have also verified the well known fact that the
low temperature behavior in the vicinity of half filling,
with charge and spin pseudogap phases coexisting, repre-
sents an AF insulator in the Hubbard clusters [22]. How-
ever, away from half filling, we find very intriguing behav-
ior in thermodynamical charge and spin degrees of free-
dom. In both phase diagrams, we find similar MH-like
(I), (II) and AF-like (III) charge-spin separated phases
in the hole-doped regime. In Fig. 5, spin-charge separa-
tion in phases (I) and (II) originates for relatively large
U in the underdoped regime. We have also seen that
a reasonably strong magnetic field has a dramatic effect
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FIG. 5: Temperature T vs chemical potential µ phase dia-
gram for the grand canonical ensemble of four-site clusters
at U = 6 and h = 0. Regions I, II and III are quite simi-
lar to the ones found in enlarged Fig. 4 for U = 4 [23], again
showing strong charge-spin separation. However, a charge gap
opens as a new bifurcation (I and II phases) which consists
of charge and spin pseudogaps, (replacing the line phase P in
the previous figure: see text). In the the vicinity of 〈N〉 ≈ 3
below TUF (µ) unsaturated ferromagnetism coexists with the
MH-like insulator.

(mainly) on the QCP at µs, at which the spin pseudogap
disappears. The regions (I) and (II), with the prevail-
ing charge gap ∆c(T ) > 0, are separated by a boundary
where the spin gap vanishes. At critical doping µs with
Ts → 0, the zero spin susceptibility χs exhibits a sharp
maximum. The critical temperature Ts(µ), which falls
abruptly to zero at critical doping µs, implies [15] that
the pseudogap can exist independently of possible super-
conducting pairing in Fig. 5. In contrast, Fig. 4 shows the
existence at U = 3 of a line phase (with pairing) similar
to U < 0 case with a spin pseudogap (∆s(T ) > 0) and
electron pairing pseudogap (∆P (T ) > 0), when the chem-
ical potential is pinned up on doping within the highly
degenerate midgap states near (underdoped) 1/8 filling.

We have also seen that a reasonably strong magnetic
field has a dramatic effect (mainly) on the QCP at µs, at
which the spin pseudogap disappears. It is evident from
our exact results that the presence of QCP at zero tem-
perature and critical crossover temperatures, give strong
support for cooperative character of existing phase tran-
sitions and crossovers in finite size clusters as in large
thermodynamic systems [37, 38].

As an important remark, in the noninteracting case,
U = 0, the charge and spin peaks follow one another (in
sharp contrast to the U = 4 and 6 cases, in regions I and
II where charge (as well as spin) maxima and minima
are well separated) indicating that there is no charge-
spin separation, even in the presence of a magnetic field.
In the entire range of µ, the charge and spin fluctuations
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in ensemble of 2× 4 clusters with the couplings c = 1 between
the squares for various U values, h = 0 and T = 0.02. Here
we can easily identify regions quite similar to the ones found
in Fig. 1, showing strong charge-spin separation with various
crossover temperatures. This phase suggests the existence of
electron-electron pairing at low temperatures, T ≤ 0.028.

directly follow one another, i.e. without charge-spin sep-
aration. For interacting electrons, we notice similar re-
spond of charge and spin degrees at 〈N〉 = 3 only at
single point, U = Uc(0). In the atomic limit, t = 0, a full
charge-spin separation, exactly at half filling, takes place
in the ground state and the corresponding MH crossover
temperature of the metal-insulator transition occurs at
TMH = U/(2 ln 2).

G. Coupled 4-site clusters

We have also carried out exact numerical diagonaliza-
tion and calculations of the charge gap and pairing in
8-site, 2× 4 planar clusters with periodic boundary con-
ditions in both directions, to illustrate similar effects on
the properties described above for the 4-site clusters. The
pairing fluctuations that are seen for the 4-site cluster are
found to exist for 2× 4 ladders near half filling (〈N〉 ≈ 7)
as well. Most of the trends observed for the 4-site clus-
ters, such as the MH-like charge (pseudo) gap, AF-like
(pseudo) gap, (spin) pseudogap, electron and spin pairing
(pseudo) gaps and with corresponding crossover temper-
atures are also observed here. Moreover, we find corre-
sponding critical Uc(0) and UF (0) values for the pairing
instabilities and vanishing of corresponding pseudogaps
at finite temperatures TUF and TF similar to the 4-site
cluster. The fluctuations that occur here at optimal dop-
ing are among the states with 〈N〉 ≈ 6, 7 and 8 electrons.
At 〈N〉 ≈ 7, we clearly observe the dormant magnetic
state as noticed in the 4-site cluster with a slight varia-
tion of the chemical potential or magnetic field. Thus our

exact cluster simulations of the Hubbard model displays
incipient pairing, ferromagnetism, phase separation and
other phenomena are remarkably similar to those found
in small nanoparticles, transition metal oxides and high
Tc cuprates [14].

V. CONCLUSION

In summary, we have illustrated how to obtain phase
diagrams and identify the presence of temperature driven
particle-particle/hole and spin pairing crossovers below
U < Uc(0), quantum critical points (µs, µc) and charge-
spin separation regions for any U > Uc(0) in the ensemble
of 4-site Hubbard clusters as doping (or chemical poten-
tial) is varied. Specifically, our exact solution pointed
out an important difference between the U = 4 and
U = 6 phase diagrams near half filling (i.e. one hole off
half filling), which can be tied to electron-electron pair-
ing and possible superconductivity and ferromagnetism
in doped HTSCs and transition metal oxides or disul-
fides respectively. Our results show the pairing crossover
near 〈N〉 ≈ 3 and strongly suggest that particle-particle
pairing and spin coupling can exist at U < Uc(0), while
particle-hole binding and ferromagnetism is presumed to
occur for U > Uc(0). Exactly at U = Uc, paramagnetic
Fermi liquid is stable in the ground state and all finite
temperatures. At U > UF (0), there is another subse-
quent transition into a saturated ferromagnetic insulator
with maximum spin 〈sz〉 ≈ 3

2
. It is also apparent that

short-range correlations alone are sufficient for pseudo-
gaps to form in small 4-site and larger 2× 4 clusters,
which can be linked to the generic features of phase di-
agrams in temperature and doping effects seen in the
HTSCs. The exact cluster solution shows how charge and
spin gaps are formed at the microscopic level and their
behavior as a function of doping (i.e. chemical potential),
magnetic field and temperature. The spin and charge
crossover temperatures can also be associated with the
formation of pairing gaps below TP

c (U). As temperature
decreases further, a simultaneous BC of spin degrees of
freedom takes place below TP

s (U). The increase of TP
s (U)

with decrease of U below Uc in Fig. 2 reproduces the vari-
ation of Tc versus p in the optimally and nearly optimally
doped HTSC materials [39], which suggests a significant
increase of pairing temperature Tc under pressure or U
due to the enhancement of the zero temperature charge
and spin pairing gaps. In addition, our calculations pro-
vide important benchmarks for comparison with Monte
Carlo, RSRG, PCT and other approximations.
Finally, we have developed novel theoretical concepts

and techniques, which are especially suitable and effi-
cient for understanding of nascent superconductivity and
magnetism using the canonical and grand canonical en-
semble for small clusters. Our results show the cooper-
ative nature of phase transition phenomena in finite-size
clusters similar to large thermodynamic systems. The
developed approach allows an exact and unbiased study
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of the Fermi liquid instabilities in small clusters without
the assumption of a broken symmetry. The small nan-
oclusters exhibit particle-particle, spin-spin pairings in a
limited range of U , µ and T and share very important
intrinsic characteristics with the HTSCs and magnetic
oxides. These ideas could be useful in different areas out-
side the cluster field, to systems ranging from molecules

to continuous media, and applied for understanding of
phase separation and incipient spontaneous superconduc-
tivity and ferromagnetism in small nanometer-scale clus-
ters and Nb, Co nanoparticles [1, 2, 3, 4]. This research
was supported in part by the U.S. Department of Energy
under Contract No. DE-AC02-98CH10886.
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