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Q uantum Ising m odelin onedim ension isan exactly solvableexam pleofa quantum phasetransi-

tion.W e investigate itsbehaviorduring a quench caused by a gradualturning o� ofthe transverse

bias�eld.The system isthen driven ata �xed rate characterized by thequench tim e �Q acrossthe

criticalpointfrom a param agnetic to ferrom agnetic phase.In agreem entwith K ibble-Zurek m ech-

anism (which recognizes thatevolution isapproxim ately adiabatic far away,butbecom esapproxi-

m ately im pulsesu�ciently nearthecriticalpoint),quantum stateofthesystem afterthetransition

exhibitsa characteristic correlation length �̂ proportionalto thesquarerootofthequench tim e�Q :

�̂ =
p
�Q . The inverse ofthis correlation length is known to determ ine average density ofdefects

(e.g. kinks) after the transition. In this paper,we show that this sam e �̂ controls the entropy of

entanglem ent,e.g.entropy ofa block ofL spinsthatareentangled with therestofthesystem after

thetransition from theparam agneticground stateinduced by thequench.ForlargeL,thisentropy

saturatesat 1

6
log

2
�̂,asm ighthave been expected from the K ibble-Zurek m echanism .Close to the

criticalpoint,the entropy saturates when the block size L � �̂,but{ in the subsequentevolution

in the ferrom agnetic phase { a som ewhatlargerlength scale l=
p
�Q ln�Q developsasa resultofa

dephasing processthatcan be regarded asa quantum analogue ofphase ordering,and the entropy

saturateswhen L � l.W ealso study thespin-spin correlation using both analyticm ethodsand real

tim e sim ulationswith the Vidalalgorithm .W e �nd thatatan instantwhen quench iscrossing the

criticalpoint,ferrom agnetic correlationsdecay exponentially with thedynam icalcorrelation length

�̂,but(asforentropy ofentanglem ent)in the following evolution length scale lgradually develops.

The correlation function becom es oscillatory at distances less than this scale. However,both the

wavelength and thecorrelation length ofthese oscillationsare stilldeterm ined by �̂.W ealso derive

probability distribution forthe num berofkinksin a �nite spin chain afterthe transition.

PACS num bers: 03.65.-w,73.43.N q,03.75.Lm ,32.80.Bx,05.70.Fh

I. IN T R O D U C T IO N

Phase transition isa fundam entalchange in the char-

acterofthestateofa system when oneofitsparam eters

passesthrough the criticalpoint.Stateson the opposite

sides ofthe criticalpoint are characterized by di�erent

typesofordering.In a second orderphasetransition,the

fundam entalchange iscontinuousand the criticalpoint

ischaracterized by divergencesin thecoherence(orheal-

ing)length and in therelaxation tim e.Thiscriticalslow-

ing down im pliesthatno m atterhow slowly a system is

driven through thetransition itsevolution cannotbeadi-

abaticclosetothecriticalpoint.Ifitwereadiabatic,then

the system would continuously evolve between the two

typesofordering.However,in the wakeofthe necessar-

ily non-adiabatic(and approxim ately im pulse)evolution

in thecriticalregion,orderingofthestateafterthetran-

sition is not perfect: It is a m osaic ofordered dom ains

whose �nite size depends on the rate ofthe transition.

Thisscenario was�rstdescribed in thecosm ologicalset-

ting by K ibble [1]who appealed to relativistic casuality

to set the size ofthe dom ains. The dynam icalm echa-

nism relevantforsecond orderphasetransitionswaspro-

posed by one ofus [2]. It is based on the universality

ofcriticalslowing down,and leadsto prediction thatthe

size of the ordered dom ains scales with the transition

tim e�Q as�wQ ,wherew isa com bination ofcriticalexpo-

nents. The K ibble-Zurek m echanism (K ZM )for second

ordertherm odynam icphasetransitionswascon�rm ed by

num ericalsim ulations ofthe tim e-dependent G inzburg-

Landau m odel[3]and successfully tested by experim ents

in liquid crystals[4],superuid helium 3 [5],both high-

Tc [7]and low-Tc [8]superconductors and even in non-

equilibrium system s[9].W ith theexception ofsuperuid
4He { where the early detection ofcopious defect for-

m ation wassubsequently attributed to vorticity inadver-

tently introduced by stirring,and the situation rem ains

unclear{ experim entalresultsareconsistentwith K ZM ,

although m oreexperim entalwork isclearly needed to al-

low form orestringentexperim entaltestsofK ZM .

The K ibble-Zurek m echanism is thusa universalthe-

ory of the dynam ics ofsecond order phase transitions

whoseapplicationsrangefrom thelow tem peratureBose-

Einstein condensation (BEC)[10]to theultra high tem -

peraturetransitionsin thegrand uni�ed theoriesofhigh

energy physics. However, the zero tem perature quan-

tum lim it rem ained unexplored untilvery recently,see

Refs.[11,12,13,14,15,16],and quantum phase tran-

sitionsare in m any respectsqualitatively di�erentfrom

transitionsat�nitetem perature.M ostim portantly tim e

evolution isunitary,sothereisnodam ping,and thereare

nottherm aluctuationsthatinitiatesym m etry breaking

http://arxiv.org/abs/cond-mat/0701768v1
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in K ZM .

Q uantum stateofthem any body system isindeed pro-

foundly di�erentfrom a classicalstate:Instead ofa sin-

gle broken sym m etry con�guration it m ay (and,gener-

ally,will) contain allofthe possible con�gurationsin a

superposition.In addition to the ‘classical’way ofchar-

acterizing this state through the density ofexcitations

(e.g. defects), one can wonder how entangled various

partsofthe system are with each other. Von Neum ann

entropy ofa fragm entdue to itsentanglem entwith the

restofthe system is a convenientway to quantify this.

Itcan be com puted asa function ofthe size ofthe frag-

m ent. In equilibrium ,and away from the criticalpoint,

thisentropyofentanglem entsaturatesatdistancesofthe

order ofthe coherence length � ofthe system at values

� ln� foronedim ensionalsystem s.However,atthecrit-

icalpoint(whereequilibrium coherencelength � becom es

in�nite) entropy ofentanglem ent divergeswith the size

ofthe fragm ent. In particular,in one dim ensionalsys-

tem s,thecriticalentanglem ententropydivergeslogarith-

m ically (� lnL)with thelength L ofthechain fragm ent

[17].

Thisequilibrium behaviorsuggeststhequestion:W hat

is the entanglem ent entropy left behind by an out-of-

equilibrium phasetransition? Such a transition willpass

through the criticalpoint (where entanglem ent entropy

islogarithm ically divergent)butthiswillhappen ata �-

nite rate setby the quench tim e �Q . W e show thatthe

resulting entanglem ententropy isofthe orderof� ln�̂,

where �̂ isthe healing (coherence)length atthe instant

when criticalslowing down forces the system to switch

from the approxim ately adiabatic to approxim ately im -

pulse (‘diabatic’)behavior.Thissuggeststhatthe sam e

process that determ ines the size ofregions that \break

sym m etry in unison" (which sets the density of topo-

logicaldefects left by the transition) is also responsible

for the resulting entanglem ent ofform ation left by the

quench. This �nding is consistent with recent results

on quantum phase transitionsinduced by instantaneous

quenches [18]which indicate that structures present in

the initialpre-transition state determ ine the structures

(and hence entanglem ent ofform ation) that arise after

an instantaneous quench: O ur results also suggestthat

{ in accord with K ZM { it is a good approxim ation to

considerquench to be approxim ately adiabaticuntilthe

instant t̂ � 1=
p
�Q before the criticalpoint is reached,

and approxim ately im pulse (e.g. nearly instantaneous)

insidethistim e interval.Thisalso con�rm sand extends

results ofthe recent study ofCherng and Levitov [15]

who com puted entropy density and correlationsinduced

by quenches in one-dim ensionalchains,and concluded

thattheirresultssupportK ZM .

W hile our results below are established for the one-

dim ensionalquantum Ising m odel(which hastheconsid-

erableadvantageofbeingexactlysolvable),weconjecture

thatsim ilarbehaviorwillbeencountered in otherquan-

tum phase transitions, and that their non-equilibrium

evolution can beanticipated usingequilibrium criticalex-

ponentsusing K ZM .Thisconjecture can be then tested

in avarietyofsystem sthatundergoquantum phasetran-

sitionsboth in condensed m atterand in atom ic physics

experim ents.

Accordingto Sachdev [19],theunderstanding ofquan-

tum phasetransitionsisbased on two prototypicalm od-

els.O neisthequantum rotorm odeland theotheristhe

one-dim ensionalquantum Ising m odel. O fthe two only

the Ising m odelisexactly solvable. Itis de�ned by the

Ham iltonian

H = �

NX

n= 1

�
g�

x
n + �

z
n�

z
n+ 1

�
: (1)

with periodicboundary conditions

~�N + 1 = ~�1 : (2)

Q uantum phasetransitiontakesplaceatthecriticalvalue

g = 1 ofan externalm agnetic �eld. W hen g � 1,then

theground stateisaparam agnetj! ! ! � � � ! iwith all

spinspolarized up along the x-axis.O n the otherhand,

when g � 1,then therearetwodegenerateferrom agnetic

ground stateswith allspinspointing eitherup ordown

along the z-axis: j""" :::"i or j### :::#i. In an in-

�nitesim ally slow classicaltransition from param agnetto

ferrom agnet,thesystem would chooseoneofthetwo fer-

rom agnetic states. In the analogousquantum case,any

superposition ofthese two statesisalso a ‘legal’ground

stateproviding itisconsistentwith otherquantum num -

bers (e.g. parity) conserved by the transition from the

initialparam agneticstate.However,when N ! 1 ,then

energy gap atg = 1 tends to zero (quantum version of

the criticalslowing down) and it is im possible to pass

the criticalpoint at a �nite speed without exciting the

system . As a result,the system ends in a quantum su-

perposition ofstateslike

j:::"#####"""""""####""""""#:::i (3)

with �nitedom ainsofspinspointingup ordown and sep-

arated by kinkswhere the polarization ofspinschanges

its orientation. Average size ofthe dom ains or,equiva-

lently,average density ofkinks depends on a transition

rate. W hen the transition isslow,then the dom ain size

islarge,butwhen itisvery fast,then orientation ofindi-

vidualspinscan becom erandom ,uncorrelated with their

nearestneighbors.Transition tim e�Q can beunam bigu-

ously de�ned when we assum e thatclose to the critical

pointatg = 1tim e-dependent�eld g(t)drivingthetran-

sition can be approxim ated by a linearquench

g(t< 0) = �
t

�Q
: (4)

with theadjustablequench tim e�Q .Density ofkinksaf-

terthe linearquench wasestim ated in Ref.[12]showing

thatK ZM can be also applied to quantum phasetransi-

tions.In thisderivation,itisconvenientto useinstead of
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g(t)a dim ensionlessparam eter�(t)=
g� gc
gc

= g� 1. As

in classicaltransitions[2],onecan assum etheadiabatic-

im pulse approxim ation [23,24]. The quench begins in

the ground state atlargeinitialg and the initialpartof

theevolution isadiabatic:thestatefollowstheinstanta-

neousground stateofthesystem .Theevolution becom es

non-adiabaticcloseto thecriticalpointwhen theenergy

gap ’ j�jbecom escom parableto theinstantaneoustran-

sition ratej_�=�jat�̂ ’ �
� 1=2

Q
when thecorrelation length

in the ground state isproportionalto

�̂ = �
1=2

Q
: (5)

Assum ing im pulse approxim ation, the quantum state

doesnotchangeduringthefollowingnon-adiabaticstage

ofthe evolution between �̂ and � �̂. Consequently,the

quantum state at � �̂ is expected to be approxim ately

theground stateat �̂ with thecorrelation length propor-

tionalto �̂ and thisisthe initialstate forthe �naladia-

baticstageoftheevolution after�̂.Thisargum entshows

thatwhen passing acrossthe criticalpoint,the state of

the system gets im printed with a �nite K Z correlation

length proportionalto �̂. In particular,this correlation

length determ inesaveragedensity ofkinksafterthetran-

sition as

n ’
1

�
1=2

Q

: (6)

Thisisan orderofm agnitudeestim atewith an unknown

O (1)prefactor. The estim ate wasroughly con�rm ed by

num ericalsim ulations in Ref.[12]. Not m uch later the

problem wassolved exactly in Ref.[14],seealsoRef.[15],

with the exact solution con�rm ing the K ZM scaling in

Eq.(6).

In the next section we review and expand the exact

solution,and then use the expanded version to obtain a

m ore com plete setofresults. In Subsection IID,we de-

rive G aussian probability distribution forthe num berof

kinksm easured afteraquench in a�niteIsingspin chain.

In Section III,wecalculateentropy ofentanglem entofa

block ofL spinsaftera dynam icaltransition and in Sec-

tion IV -work out spin-spin correlation functions. W e

concludein Section V.

II. EX A C T SO LU T IO N

A . Energy spectrum

Hereweassum ethatthenum berofspinsN iseven for

convenience.AfterthenonlocalJordan-W ignertransfor-

m ation [20],

�
x
n = 1� 2cyncn ; (7)

�
z
n = �

�
cn + c

y
n

� Y

m < n

(1� 2cym cm ); (8)

introducing ferm ionic operators cn which satisfy anti-

com m utation relations
�
cm ;c

y
n

	
= �m n and fcm ;cng =

�
cym ;c

y
n

	
= 0 the Ham iltonian (1)becom es[21]

H = P
+
H

+
P
+ + P

�
H

�
P
�
; (9)

where

P
� =

1

2

"

1�

NY

n= 1

�
x
n

#

=
1

2

"

1 �

NY

n= 1

�
1� 2cyncn

�
#

(10)

are projectorson the subspaces with even (+ ) and odd

(� )num bersofc-quasiparticlesand

H
� =

NX

n= 1

�

gc
y
ncn � c

y
ncn+ 1 � cn+ 1cn �

g

2
+ h:c:

�

:(11)

arecorrespondingreduced Ham iltonians.Thecn’sin H
�

satisfy periodic boundary conditionscN + 1 = c1,butthe

cn’sin H + m ustobey cN + 1 = � c1 { e.g,\antiperiodic"

boundary conditions.

Theparity ofthe num berofc-quasiparticlesisa good

quantum num ber and the ground state has even parity

forany non-zero valueofg.Assum ing thata quench be-

ginsin thegroundstate,wecan con�netothesubspaceof

even parity.H + isdiagonalized by theFouriertransform

followed by Bogoliubov transform ation [21].TheFourier

transform consistentwith theantiperiodicboundarycon-

dition cN + 1 = � c1 is

cn =
e� i�=4

p
N

X

k

cke
ikn

; (12)

wherepseudom om enta k take\half-integer" values:

k = �
1

2

2�

N
;:::;�

N � 1

2

2�

N
: (13)

Ittransform sthe Ham iltonian into

H
+ =

X

k

n

2[g� cos(ka)]c
y

k
ck+

sin(ka)

h

c
y

k
c
y

� k
+ c� kck

i

� g

o

: (14)

Diagonalization ofH + is com pleted by the Bogoliubov

transform ation

ck = ukk + v
�
� k

y

� k
; (15)

provided thatBogoliubov m odes(uk;vk)areeigenstates

ofthe stationary Bogoliubov-deG ennesequations

� uk = + 2[g� cosk]uk + 2sinkvk ;

� vk = � 2[g� cosk]vk + 2sinkuk : (16)

There are two eigenstatesfor each k with eigenenergies

� = � �k,where

�k = 2

q

[g� cosk]2 + sin2 k : (17)
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The positiveenergy eigenstate

(uk;vk)�

h

(g� cosk)+
p
g2 � 2gcosk+ 1;sink

i

;

(18)

which has to be norm alized so that jukj
2 + jvkj

2 = 1,

de�nesthe quasiparticleoperatork = u�kck + v� kc
y

� k
,

and thenegativeenergy eigenstate(u
�

k
;v

�

k
)= (� vk;uk)

de�nes 
�

k
= (u�

k
)�ck + v

�

� k
c
y

� k
= � 

y

� k
. After

the Bogoliubov transform ation,the Ham iltonian H + =
1

2

P

k
�k

�


y

k
k � 

� y

k

�

k

�

equivalentto

H
+ =

X

k

�k

�


y

k
k �

1

2

�

; (19)

which isasim ple-lookingsum ofquasiparticleswith half-

integerpseudom om enta.However,thanksto the projec-

tion P + H + P + in Eq.(9)only stateswith even num bers

ofquasiparticlesbelong to the spectrum ofH .

B . Linear quench

In the linear quench Eq.(4), the system is initially

(t � � �Q ) in its ground state at large initialvalue of

g � 1,butwhen g isram ped down to zero,the system

getsexcited from itsinstantaneousground state and,in

generalits�nalstateatt= 0 has�nitenum berofkinks.

Com paring the Ising Ham iltonian Eq.(1)atg = 0 with

the Bogoliubov Ham iltonian (19) at g = 0 we obtain a

sim pleexpression fortheoperatorofthenum berofkinks

N �
1

2

NX

n= 1

�
1� �

z
n�

z
n+ 1

�
=

X

k


y

k
k : (20)

Thenum berofkinksisequalto thenum berofquasipar-

ticlesexcited atg = 0.Theexcitation probability

pk = h (0)j
y

k
kj (0)i (21)

in the �nalstate can be found with the tim e-dependent

Bogoliubov m ethod.

The initialground stateisBogoliubov vacuum j0ian-

nihilated by allquasiparticle operatorsk which are de-

term ined by the asym ptotic form of the (positive en-

ergy) Bogoliubov m odes (uk;vk) � (1;0) in the regim e

ofg � 1.W hen g(t)isram ped down,then thequantum

state j (t)i gets excited from the instantaneousground

state.Thetim e-dependentBogoliubov m ethod m akesan

Ansatz that j (t)i is a Bogoliubov vacuum annihilated

by asetofquasiparticleannihilation operators~k de�ned

by a tim e-dependentBogoliubov transform ation

ck = uk(t)~k + v
�
� k(t)~

y

� k
; (22)

with the initial condition [uk(� 1 );vk(� 1 )] = (1;0).

In the Heisenberg picture, the Bogoliubov m odes

[uk(t);vk(t)] m ust satisfy Heisenberg equation

i~ d

dt
ck = [ck;H

+ ]with the constraintthat d

dt
~k = 0.

The Heisenberg equation isequivalentto the dynam ical

version ofthe Bogoliubov-deG ennesequations(16):

i~
d

dt
uk = + 2[g(t)� cosk]uk + 2sink vk ;

i~
d

dt
vk = � 2[g(t)� cosk]vk + 2sink uk : (23)

Atanyvalueofg,Eqs.(23)havetwoinstantaneouseigen-

states.Initially,them ode[uk(t);vk(t)]isthepositiveen-

ergy eigenstate,butduring the quench itgets\excited"

to a com bination ofthe positive and negative m ode. At

the end ofthe quench att= 0 when g = 0 wehave

[uk(0);vk(0)]= A k (uk;vk)+ B k

�
u
�

k
;v

�

k

�
(24)

and consequently ~k = A kk � Bk
y

k
. The �nalstate

which is, by construction,annihilated by both ~k and

~� k is

j (0)i=
Y

k> 0

�

A k + B k
y

k

y

� k

�

j0i: (25)

Pairsofquasiparticleswith pseudom om enta (k;� k)are

excited with probability

pk = jB kj
2
; (26)

which can befound by m appingEqs.(23)totheLandau-

Zener (LZ) problem (sim ilarity between K ZM and LZ

problem was�rstpointed outby Dam skiin Ref.[23]).

Thetransform ation

� = 4�Q sink

�

�
t

�Q
+ cosk

�

(27)

bringsEqs.(23)to the standard LZ form [22]

i~
d

d�
uk = �

1

2
(��k)uk +

1

2
vk ;

i~
d

d�
vk = +

1

2
(��k)vk +

1

2
uk ; (28)

with � � 1

k
= 4�Q sin

2
k. Here the tim e � runsfrom � 1

to ��nal = 2�Q sin(2k) corresponding to t= 0. Tunnel-

ing between thepositiveand negativeenergy eigenstates

happens when � 2 (� �
� 1

k
;�

� 1

k
). ��nal is welloutside

this interval,��nal � � � 1

k
,for long wavelength m odes

with jkj� �

4
. Forthese m odes,tim e � in Eqs.(28)can

be extended to + 1 m aking them fully equivalentto LZ

equations [22]. This equivalence can be used to easily

obtain severalsim ple results [14]described in the next

subsection.

C . Sim ple results

In thelim itofslow transitionswecan assum ethatonly

long wavelength m odes,which have sm allgaps at their
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anti-crossingpoints,can getexcited.Forthesem odes,we

can use the LZ form ula [22]forexcitation probability:

pk ’ e
� �

2�
k � e

� 2��Q k
2

: (29)

This approxim ation is self-consistent only when the

width ofthe obtained G aussian (4��Q )
� 1=2 ism uch less

than �

4
or,equivalently,for slow enough quenches with

�Q � 1.W ith theLZ form ula (29),wecan calculatethe

num berofkinksin Eq.(20)as

N =
X

k

pk : (30)

Thereareatleasttwo interesting specialcases:

� W hen N ! 1 i.e. in the lim itofquantum phase

transition,the sum in Eq.(30)can be replaced by

an integral. The expectation value ofdensity of

kinksbecom es

n = lim
N ! 1

N

N
=

1

2�

Z �

� �

dk pk =
1

2�

1
p
2�Q

: (31)

The density scales like �
� 1=2

Q
in agreem ent with

K ZM ,see Eq.(6). Thus,slowerquenches lead to

fewerdefects.

� Following Ref.[12],wecan ask whatthefastest�Q
iswhen no kinksgetexcited in a �nitechain ofsize

N .Thiscritical�Q m arksa crossoverbetween adi-

abatic and non-adiabatic regim es. In otherwords,

we can ask whatthe probability for a �nite chain

is to stay in the ground state. As di�erent pairs

ofquasiparticles(k;� k)evolve independently,the

probability to stay in theground stateistheprod-

uct

PG S =
Y

k> 0

(1� pk) : (32)

W ellon the adiabatic side only the pair
�
�

N
;� �

N

�

islikely to getexcited and wecan approxim ate

PG S � 1� p�
N

� 1� exp

�

� 2�3
�Q

N 2

�

: (33)

A quench in a �nite chain isadiabaticwhen

�Q �
N 2

2�3
: (34)

Reading thisinequality from rightto left,the size

N ofa defect-free chain grows like �
1=2

Q
. This is

consistentwith Eq.(6,31).

D . P robability distribution ofthe num ber ofkinks

Equation (31) givesan average density ofkinks m ea-

sured after a quench to zero m agnetic �eld g = 0. In

a �nite chain,an average num ber ofkinks is N = N n,

provided that the transition is non-adiabatic unlike in

Eq.(34). The average N is an expectation value ofa

probability distribution P (N )forthenum berofkinksN

m easured aftera quench.

The num ber ofkinks N is the num ber ofquasiparti-

clesexcited by the end ofthe quench. Asquasiparticles

areexcited in pairswith oppositequasim om enta(k;� k),

the num ber ofkinks N m ust be even. A pair (k;� k)

is excited with the probability pk in Eq.(29). W e can

asign to each pair of quasiparticles a random variable

xk which is1 when the pairisexcited and 0 otherwise:

xk = 1 with probability pk and xk = 0 with probability

1� pk. W e wanta probability distribution forthe sum

N =
P

k> 0
2xk. This is a sum ofindependent random

variablesof�nite varianceso fora largenum berofvari-

ables,the sum N becom es a G aussian random variable

with a m ean N = N n and �nite variance� N .

W e have to be carefulto specify when the num berof

random variables is large. Naively,on a N -site lattice,

thereareN =2 pairsofquasiparticles(k;� k),orindepen-

dentrandom variablesxk,and the num berseem sto be

largewhen N islarge.O n second thought,itisclearthat

variableswith pk � 0 orpk � 1 cannotreally countbe-

causethey arehardly random atall.A look attheG aus-

sian pk in Eq.(29)showsthatthe range ofk > 0 where

0 � pk � 1 has width ’ 1
p
�Q

which accom m odates

’ N
p
�Q

discrete valuesofpseudom om entum k.The rele-

vantnum berofrandom variablesis’ N
p
�Q

’ N n = N .

Itislargewhen the averagenum berofkinksislarge,

N � 1 : (35)

W ith thisassum ption P (N )isG aussian.

K eeping thisassum ption in m ind wecan proceed as

P (N ) =
X

xk

�N ;
P

k> 0
2xk

Y

k> 0

[�0;xk (1� pk)+ �1;xk pk] = (36)

1

2�

Z �

� �

dqe
� iqN

Y

k> 0

�
(1� pk)+ pke

2iq
�

�

1

2�

Z �

� �

dqe
� iqN ~P (q): (37)

Itisconvenientto evaluate�rst

ln ~P (q) =
X

k> 0

ln
�
(1� pk)+ pke

2iq
�
�

N

2�

Z �

0

dk ln
�
(1� pk)+ pke

2iq
�
: (38)

Here we used N � 1,a necessary condition for ouras-

sum ption that �N � 1. After changing the integration

variable to u = k

2�n
,we can extend the integration over
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u to in�nity:

ln ~P (q) = N

Z 1

0

du ln

h

(1� e
� �u

2

)+ e
� �u

2
+ 2iq

i

�

N

 

iq�

p
2� 1
p
2

q
2

!

+ O (q3): (39)

Hereweused again N = N n.

Finally,com bination ofEqs.(39,37)givestheexpected

G aussian probability distribution

P (N ) =
1

p
2��2

N

exp

�

�
(N � N )2

2�2
N

�

: (40)

with a variance

�
2

N =

�

2�
p
2

�

N : (41)

In the course ofour approxim ations,we have lost the

constraint that N m ust be even,but this is not a big

m istakewhen N � 1.

It is also interesting to study the opposite adiabatic

regim ewhen N n � 1.W hen �Q islargewecan approx-

im atetheproductin Eq.(36)by a singlefactorwith the

lowestk = �=N ,

P (N ) �
X

s= 0;1

�N ;2s

�
�0;s

�
1� p�=N

�
+ �1;sp�=N

�
=

�N ;0

�
1� p�=N

�
+ �N ;2 p�=N : (42)

This is a good approxim ation when �Q � N
2

2�3 as in

Eq.(34).In thisadiabaticregim e

N = 2p�=N = exp

�

� 2�3
�Q

N 2

�

: (43)

The average num berofkinksdecaysexponentially with

�Q and theK Z powerlaw scaling (31)doesnotextend to

thisadiabaticregim e,aswasalready noted in Ref.[12].

E. Exact solution and the tw o scales oflength

So farwe have avoided writing down solutionsofthe

Landau-Zenerequations(28)whose generalform is,see

e.g.Appendix B in Ref.[24],

vk(�) = � [aD� s� 1(� iz)+ bD� s� 1(iz)];

uk(�) =

�

� �k� + 2i
@

@�

�

vk(�); (44)

with arbitrary com plex param eters a;b. Here D m (x)

is a W eber function, s = 1

4i� k

, and z =
p
� k�e

i�=4.

The param eters a;b are �xed by the initialconditions

uk(� 1 )= 1 and vk(� 1 )= 0.Using the asym ptotesof

the W eberfunctionswhen � ! � 1 ,wegeta = 0 and

jbj2 =
e� �=8� k

4� k

: (45)

Thesolution ofthe linearquench problem isthen

vk(�) = � bD� s� 1(iz);

uk(�) =

�

� �k� + 2i
@

@�

�

vk(�); (46)

Atthe end ofthe quench fort= 0 and when � = �k =

2�Q sin(2k),the argum ent ofthe W eber function iz =
p
� k�e

i�=4 = 2
p
�Q e

i�=4 cos(k)sign(k). In the lim it of

large �Q the m odulusofthisargum entislarge form ost

k,excepttheneighborhoodsofk = � �

2
,and wecan again

use the asym ptotesofthe W eberfunctions. After som e

work wegetthe products

jukj
2 =

1� cosk

2
+ e

� 2��Q sin
2
k
;

jvkj
2 = 1� jukj

2
;

ukv
�
k =

1

2
sink+

sign(k)e� ��Q sin
2
k
p

1� e� ��Q sin2 k e
i’ k ;

’k =
�

4
+
� k�

2
k

2
+
ln� k

4� k

+
ln�k

2� k

�

arg

�

�

�

1+
i

4� k

��

: (47)

Here�(x)isthe gam m a function.

W e expect that for large �Q only m odes with sm all

jkj� �

4
getexcited. In thislong wave length lim it,the

productscan be furthersim pli�ed to

jukj
2 =

1� cosk

2
+ e

� 2��Q k
2

;

jvkj
2 = 1� jukj

2
;

ukv
�
k =

1

2
sink + sign(k)e� ��Q k

2
p

1� e� ��Q k
2

e
i’ k ;

’k =
�

4
+ 2�Q � (2� ln4)�Q k

2 +

k
2
�Q ln�Q � arg

�
�
�
1+ i�Q k

2
��

: (48)

Theseproductsdepend on k and �Q through two com bi-

nations:�Q k
2,which im pliesthe usualK ZM correlation

length �̂ =
p
�Q ,and k2�Q ln�Q which im plies a second

scale oflength
p
�Q ln�Q . The �nalquantum state at

g = 0 cannotbecharacterized by a singlescaleoflength.

Physically,this appears to reecta com bination oftwo

processes:K ZM thatsetsup initialpost-transition state

ofthe system ,and the subsequentevolution thatcan be

regarded asquantum phaseordering.

III. EN T R O P Y O F A B LO C K O F SP IN S

Von Neum ann entropy ofa block ofL spinsdueto its

entanglem entwith the restofthesystem ;

S(L) = � Tr�L log2 �L ; (49)
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isaconvenientm easureofentanglem ent.Above�L isre-

duced density m atrix ofthesubsystem ofL spins.In re-

centyearsthisentropy wasstudied extensively in ground

states ofquantum criticalsystem s [17]. At a quantum

criticalpoint,the entropy divergeslike logL forlarge L

with a prefactordeterm ined by thecentralchargeofthe

relevantconform al�eld theory [17].In particular,in the

quantum Ising m odelatthe criticalg = 1

S
G S(L) ’

1

6
log2 L (50)

for large L. Slightly away from the criticalpoint,the

entropy saturatesata �nite asym ptotic value

S
G S

1 ’
1

6
log2 � (51)

when theblocksizeL exceedsthe�nitecorrelationlength

� in the ground state ofthe system .

A . Entropy after dynam icaltransition

In adynam icalquantum phasetransition thequantum

state ofthe system developesa �nite correlation length

�̂ ’
p
�Q . Ifthis dynam icalcorrelation length were the

only relevantscale oflength,then one could expect en-

tropy ofentanglem entaftera dynam icaltransition given

by Eq.(51) with � sim ply replaced by �̂. However,as

wesaw in Eq.(48),there aretwo scalesoflength,and {

strictly speaking { there is no reason to expectthat ei-

therofthem aloneisrelevantin general.Thisiswhy we

shallnotrely on scaling argum entsaloneand willgo on

to calculatetheentropy ofentanglem ent\from scratch".

W e proceed in a sim ilar way as in the classic papers

[17]and de�neacorrelatorm atrixfortheblockofL spins

� =

�
� ; �y

� ; 1� �

�

; (52)

where� and � areL� L m atricesofquadraticcorrelators

�m ;n � hcm c
y
ni=

1

2�

Z �

� �

dk jukj
2
e
ik(m � n)

�Q � 1

�

1

2
�0;jm � nj�

1

4
�1;jm � nj+

e
�

(m � n )
2

8� �̂2

2
p
2� �̂

: (53)

and

�m ;n � hcm cni=

1

2�i

Z �

� �

dk ukv
�
k e

ik(m � n) =

1

�

Z �

0

dk ukv
�
k sink(m � n)

ln �Q � 1

� (54)

sign(m � n) �
2

6
4
1

4
�1;jm � nj�

e
i

„

2�Q �
jm � n j

2

4 �̂l

«

2

q

� �̂ l

e
�

�jm � n j
2

4 l2

q

1� e
�

�jm � n j2

4 l2

3

7
5

Here �̂ =
p
�Q isthe K ZM dynam icalcorrelation length

and

l �
p
�Q ln�Q : (55)

W e note that � and � are Toeplitz m atrices with con-

stantdiagonals. The expectation valuesh:::iare taken

in thedynam icalBogoliubov vacuum state.Asthisstate

isG aussian,allhigherordercorrelatorscan beexpressed

by the m atrices � and � -they provide com plete char-

acterization of the quantum state after the dynam ical

transition. The m atricesdepend on both scales �̂ and l

and both scalesare necessary to characterize the G aus-

sian state.

As observed in Ref.[17], the entropy can be conve-

niently calculated as

S(L;�Q ) = � Tr� log2 � = � Tr� log2 � :(56)

In this calculation we use Eq.(47) and Eqs.(53, 54)

but without their large �Q approxim ations. The calcu-

lation involvesa num ericalevaluation ofthe integralsin

Eqs.(53,54) and num ericaldiagonalization ofthe m a-

trix �. Results are shown in PanelA of Fig.1. The

entropy grows with the block size L and saturates at

a �nite value S1 (�Q ) for large enough L. In PanelB,

we �t the asym ptotic entropy with the linear function

S1 (�Q )= A + B ln�Q . The sim ple replacem entof� by

�̂ =
p
�Q in Eq.(51)suggeststhe asym ptoticvalue

S1 (�Q ) ’
1

6
log2 �̂ ’

ln2

12
ln�Q = 0:120 ln�Q : (57)

O urbest�tgivesB = 0:128� 0:004and A = 1:80� 0:05.

The best B is in reasonably good agreem ent with the

expected valueof0:120.

In PanelsC and D ofthesam e�gure,werescalevalues

ofentropy S(L;�Q ) by its asym ptotic value S1 (�Q ) �

A + B ln�Q . After this transform ation we can better

focus on how the entropy depends on the block size L.

A sim ple hypothesis would be that entropy depends on

�̂ and saturateswhen L > �̂. To check ifthisistrue,in

PanelC wealso rescaletheblock sizeL by �̂ =
p
�Q and

�nd thatwhilethisrescalingbringsplotsclosetooverlap,

they do not overlap as wellas one m ight have hoped.

By contrast,asshown in PanelD,rescaling ofthe block

sizeL by l=
p
�Q ln�Q m akesthem ultipleplotsoverlap

quite wellindeed.In conclusion,ourresultssupportthe

statem entthatthe entropy saturatesat

S1 (�Q ) ’
1

6
log2

p
�Q (58)

when

L �
p
�Q ln�Q (59)

i.e. the entropy ofa large block ofspins is determ ined

by K ibble-Zurek dynam icalcorrelation length �̂ =
p
�Q ,

butthe entropy saturateswhen the block size isgreater

than the second scalel=
p
�Q ln�Q .
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FIG .1: PanelA shows entropy ofa block ofL spins after

thedynam icalphasetransition asa function oftheblock size

L. The m ultiple plots correspond to di�erent values ofthe

quench tim e�Q .Forall�Q ,theentropy growswith theblock

sizeL and saturatesata �nitevalueS1 (�Q )forlargeenough

L. In PanelB,we �t this asym ptotic value ofentropy with

the function S1 (�Q ) = A + B ln�Q . The best �t has B =

0:128 � 0:004 and A = 1:80 � 0:05. This B is in reasonably

good agreem entwith the expected value ofB = ln 2

12
= 0:120.

In PanelsC and D ,we rescale valuesofentropy S(L;�Q )by

the best �t to its asym ptotic value S1 (�Q ) = A + B ln�Q .

W ith thisrescaling wecan focuson how theentropy depends

on theblock sizeL.In PanelC,wealso rescale theblock size

by �̂ =
p
�Q and �nd that the rescaled plots do not overlap

exactly. However,as shown in PanelD ,rescaling the block

size L by the second scale l=
p
�Q ln�Q m akesthe six plots

overlap quite well.

W e believe that the K Z correlation length �̂ is deter-

m ined when thesystem iscrossingthecriticalpointwhile

the second longer scale builds up after the system gets

excited from itsadiabatic ground state nearthe critical

valueofam agnetic�eld.Attheoriginofthesecond scale

isthe non-trivialdispersion relation ofexcited quasipar-

ticles.Thek-dependent�k in Eq.(17)leadsto a gradual

evolution ofm atrix elem ents ofthe correlator � which

aregiven by integralsoverk in Eqs.(53,54).To support

thisscenario we calculated the entropy ofentanglem ent

at the m om ent when the system is crossing the critical

pointatg = 1.Theresultscollected in Figure2 arecon-

sistentwith ourexpectation thatnearthe criticalpoint,

when the scalelsetup by quantum phaseordering only

begins to build up, �̂ is stillthe only relevant scale of

length.

B . Im purity ofthe state after transition

W e were not able to do fully analytic calculation of

entropy. This is why itm ay be worthwhile to calculate

analytically anotherm oreeasily tractableentanglem ent-
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FIG .2: PanelA showsentropy ofa block ofL spinsduring

the dynam icalphase transition atthe criticalpointg = 1 as

a function oftheblock size L.The m ultiple plotscorrespond

to di�erentvaluesofthe quench tim e �Q .Forallthe quench

tim es,the entropy growswith the block size L and saturates

ata �nitevalueS1 (�Q )forlargeenough L.In PanelB we�t

thisasym ptoticvalueofentropy with thefunction S1 (�Q )=

A + B ln�Q . The best �t has B = 0:126 � 0:005 and A =

0:80� 0:03.ThisB isin reasonably good agreem entwith the

expected value ofB = ln 2

12
= 0:120. In Panels C and D ,we

rescale the entropy S(L;�Q )by the best�tto itsasym ptotic

valueS1 (�Q )� A + B ln�Q .W ith thisrescaling wecan focus

on how theentropy dependson theblock size L.In PanelD ,

rescaling the block size L by �̂ =
p
�Q m akes the six plots

overlap quite well.

related quantity.Forexam ple,the\im purity"ofthecor-

relatorm atrix �

I(�) = Tr� (1� �) (60)

is zero only when the L spins are in a pure state i.e.

when alleigenvaluesof� areeither0 or1.Itism axim al

when alltheeigenvaluesare 1

2
,orwhen thestateism ost

entangled. Thanks to its sim ple quadratic form ,it can

be calculated relatively easily.

Sim ple calculation using the block structure of� in

Eq.(52)and theToeplitzproperty oftheblock m atrices

� and � leadsto

I(L) = 2

0

@ L�0 �

j= L � 1X

j= 1� L

(L � jjj)(�2j + j�jj
2)

1

A ;(61)

where �j = �j;0 and �j = �j;0. �j and �j can be ex-

pressed bytheinverseFouriertransform sin Eqs.(53,54).

Using norm alization jukj
2 + jvkj

2 = 1 and com pleteness
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ofthe Fourierbasiswenotice that

�0 =
1

2�

Z �

� �

dk jukj
2 =

1

2�

Z �

� �

dk (jukj
4 + jukv

�
kj
2)= (62)

j= 1X

j= � 1

(j�jj
2 + j�jj

2):

Thisleadsto

I(L)= 4L

1X

j= L

(j�jj
2+ j�jj

2)+ 4

L � 1X

j= 1

j(j�jj
2+ j�jj

2): (63)

Sinceweassum ethat�Q � 1,wecan approxim atethese

sum swith integrals.Furthercalculation gives:

I(L) =
1

2
+
1

�

�

1� e
�

(L � 1)
2

4�� Q

�

+

ln(�Q )

2�2

 

1� e
�

�(L � 1)
2

2�Q (ln �Q )2

! 2

�
1

�
p
2�Q

+

L

2�
p
�Q

"

Erfc

 

L
p
4��Q

!

+ (64)

p
2Erfc

 
L
p
�

p
2�Q ln�Q

!

� Erfc

�
L
p
�

p
�Q ln�Q

�#

:

HereErfc(x)isthecom plem entary errorfunction de�ned

as:

Erfc(x)=
2
p
�

Z 1

x

e
� t

2

dt: (65)

W hen ln�Q � 1,then the im purity is dom inated by a

singleterm

I(L) �
ln�Q

2�2

 

1� e
�

�(L � 1)
2

2�Q (ln �Q )2

! 2

: (66)

This im purity saturates at I1 ’ ln�Q when the block

sizeL � l,orin short

I1 �
ln�Q

2�2
: (67)

Theim purity saturatesatthesecond scalel=
p
�Q ln�Q

in consistency with ourresultsforthe entropy.

It is interesting to com pare the dynam icalim purity

(66)with theim purity in theground stateofthesystem .

Sim plecalculation givestheasym ptoteofim purity in the

ground stateatthe criticalpoint

I
G S(L) =

lnL

�2
: (68)

when lnL � 1.Nearthecriticalpoint,theasym ptoteis

valid forthe block size L m uch lessthan the correlation

function L � � and atlargerL theim purity saturatesat

I
G S

1 ’
ln�

�2
: (69)

Sim plereplacem entof� in thisequation by thedynam i-

calK Z correlation length �̂ =
p
�Q givesthe asym ptotic

valueofthedynam icalim purity in Eq.(67).Again,this

\replacem entrule" isthe sam easforthe entropy.

IV . C O R R ELA T IO N FU N C T IO N S

Correlation functions are of fundam entalinterest in

phasetransitionsbecausethey providedirectm anifesta-

tion oftheiruniversalpropertiesand arein generaleasily

accesible experim entally. In thisSection we presentour

results for spin-spin correlation functions during a dy-

nam icalquantum phasetransition.

To begin with,we observe thatforsym m etry reasons

them agnetization h�zi= 0,butthetransversem agneti-

zation

h�xni = h1� 2cyncni = 2�0 � 1 �
1

2�
p
2�Q

; (70)

which isvalid when �Q � 1.Thisiswhatrem ainsofthe

initialm agnetization h�xni= 1 in theinitialground state

atg ! 1 .Asexpected,when the linearquench isslow,

then the �nalm agnetization decays towards h�xni = 0

characteristicofthe ground state atthe �nalg = 0.

Finaltransversespin-spin correlation function atg = 0

is

C
xx
R � h�xn�

x
n+ R i� h�xnih�

x
n+ R i = (71)

4
�
j�R j

2
� j�R j

2
�

�

e
� �R

2

2 l2

�

1� e
� �R

2

4 l2

�

� �̂ l
�
e
� R

2

� �̂2

2�2 �̂2
; (72)

when R > 1 and ln�Q � 1. This correlation function

dependson both �̂ and l.Long rangecorrelations

C
xx
R � e

� �R
2

2 l2 (73)

decay in a G aussian way on the scalel.

A . Ferrom agnetic correlations at g = 0

In contrast, the ferrom agnetic spin-spin correlation

function

C
zz
R = h�zn�

z
n+ R i � h�znih�

z
n+ R i = h�zn�

z
n+ R i (74)

cannotbe evaluated so easily. As is wellknown,in the

ground state, C zz
R can be written as a determ inant of

an R � R Toeplitz m atrix whose asym ptote forlarge R

can beobtained with theSch�ogo lim ittheorem [25].Un-

fortunately,in tim e-dependent problem sthe correlation

function isnotadeterm inantin general.However,below

we avoid thisproblem in an interesting range ofparam -

eters.
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Using the Jordan-W ignertransform ation,C zz
R can be

expressed as

C
zz
R = hb0a1b1a2 :::bR � 1aR i: (75)

Here an and bn are M ajorana ferm ionsde�ned asan =

(cyn + cn)and bn = cyn � cn.Using (53)and (54)weget:

ham bni = 2�n� m + 2<�n� m � �m ;n

hbm ani = �m ;n � 2�n� m + 2<�n� m (76)

ham ani = �m ;n + 2{=�m � n

hbm bni = �m ;n + 2{=�m � n

Theaveragein Eq.(75)isadeterm inantofam atrixwhen

ham ani= 0 and hbm bni= 0 form 6= n,orequivalently

when =�m � n = 0 form 6= n. Inspection ofthe lastline

in Eq.(54) shows that =�m � n � 0 when jm � nj� l.

Consequently,when the correlation distance R � lwe

can neglect all=�m � n assum ing that ham ani = 0 and

hbm bni = 0 for m 6= n. In this regim e,the correlation

function isa determ inantofthe Toeplitz m atrix

[hbm an+ 1i]m ;n= 1;:::;R
: (77)

Asym ptoticbehaviorofthisToeplitzdeterm inantcan be

obtained usingstandardm ethods[25]with theresultthat

C
zz
R � exp

�

� 0:174
R

�̂

�

cos

 r
log2

2�

R

�̂
� ’

!

(78)

when 1� R � l.

In thisway we�nd thatthe�nalferrom agneticcorre-

lation function atg = 0 exhibitsdecaying oscillatory be-

havioron length scalesm uch lessthan thephase-ordered

scalel,butboth thewavelength oftheseoscillationsand

theirexponentially decaying envelopearedeterm ined by

�̂. As discussed in a sim ilar situation by Cherng and

Levitov [15],this oscillatory behavior m eans that con-

secutive kinks are approxim ately anticorrelated { they

keep m oreorlessthesam edistance’ �̂ from each other

form ing som ething sim ilarto a regular...-kink-antikink-

kink-antikink-... crystallattice with a lattice constant

’ �̂.However,uctuationsin thelength ofbondsin this

lattice arecom parableto the averagedistance itselfgiv-

ing the exponentialdecay ofthe correlator C zz
R on the

sam escaleof’ �̂.

W e do notknow the tailofthe ferrom agnetic correla-

tion function when L � lbecause our approxim ations

necessary to derive Eq.(78)do notwork in thisregim e,

but we can estim ate that this tailis not negligible. In-

deed,when R = l,then the envelopein Eq.(78)is

exp

�

� 0:174
l

�̂

�

= e
� 0:174ln �Q = �

� 0:174

Q
: (79)

Due to the sm allness ofthe exponent 0:174 the tailis

negligibleonly forextrem ely large�Q .

B . C orrelations at the criticalpoint

In orderto �llin the gaps in our analytic knowledge

ofthe correlation functions,we attem pted to m ake nu-

m ericalsim ulations ofthe dynam icaltransition. As we

wanted to getinform ation on spin-spin correlation func-

tionsitproved convenientto work directly with spin de-

grees of freedom rather than with the Jordan-W igner

ferm ions.W eused thetranslationallyinvariantversionof

therealtim eVidalalgorithm [27].Thisalgorithm ,which

isan elegantversion ofthe density m atrix renorm aliza-

tion group [26],isan e�cientway to sim ulate tim e evo-

lution ofan in�nite translationally invariantspin chain.

Thisam bitioustask ism ade e�cientby a clevertrunca-

tion ofSchm idt decom position between any two halves

ofthe in�nite spin chain. O ur calculations ofthe en-

tropy ofentanglem entdem onstratethatfora �nitetran-

sition rate,theentropy saturatesata�nitevaluebeyond

certain block size L. This saturation suggests that in

our case the truncation of the Schm idt decom position

willm akesenseand,in principle,dynam icalphasetran-

sitions across quantum criticalpoints can be e�ciently

sim ulated with the Vidalalgorithm .

In oursim ulations,we started the linearquench from

the ground stateatg = 10 which wasprepared with the

im aginarytim eversion ofthealgorithm .Thesim ulations

were run for a range of�Q such that the initialpartof

the evolution close to g = 10 was wellin the adiabatic

regim e.W e checked ourresultsforconvergencewith re-

spect to the truncation of the Schm idt decom position

(weused up to � = 40)and tim estep dt.W eused fourth

orderTrotterdecom position. W hereveritwaspossible,

we com pared our num ericalresults with analyticalre-

sults which could be obtained for transversalm agneti-

zation,transversalspin-spin correlations,and ferrom ag-

neticnearest-neighborcorrelations.W ealso controlled if

ourtruncation oftheSchm idtdecom position issu�cient

to preserve the norm ofthe state evolved in realtim e.

As illustrated in panelA ofFigure 3, our sim ulations

were stable enough to crossthe criticalpointand enter

the ferrom agnetic phase,but once in the ferrom agnetic

phase,thealgorithm wasbreaking down.Thisiswhy we

trustournum ericalresultsatg = 1,buthaveno reliable

resultsbelow g = 1. W e can verify K ZM atthe critical

point,but we cannot reliably follow the phase ordering

in the ferrom agneticphase.

In panelB ofFigure 3,we plot the transverse spin-

spin correlation C xx
R at g = 1 for severalvalues of�Q .

For each �Q ,we plot both num ericalcorrelator and its

analytic counterpart from Eq. (71) and we �nd them

to be reasonably identical. Equation (71) can be also

used to obtain analytically,butwith som enum ericalin-

tegration,theexponentialtailofthetransversecorrelator

when �Q � 1:

C
xx
R �

0:44

�Q
exp

�

� 2:03
R

�̂

�

(80)

accurate when R � �̂. Thistaildecayson the K Z cor-



11

0 10 20 30r
0

0.2

0.4

0.6

C
zz

τQ=0.5
τQ=1
τQ=2
τQ=4
τQ=8
τQ=16
τQ=32

0.5 1 1.5 2
g

0.05

0.1

0.15

0.2
C

1xx

τQ=0.5
τQ=1
τQ=2
τQ=4
τQ=8
τQ=16
τQ=32

0 10 20 30r/(τQ)
1/2

0

0.2

0.4

0.6

C
zz

0 8 16 24
r

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

C
xx

τQ=0.5
τQ=1
τQ=2
τQ=4
τQ=8
τQ=16
τQ=32

A

C

B

D

FIG .3: PanelA showsthe dynam icaltransverse correlation

C
xx

1 as a function ofm agnetic �eld g in the linear quench.

For each �Q ,we show both num erical(dashed) and analyt-

ical(solid) result. The plots overlap near the criticalpoint

atg = 1 butdiverge in the ferrom agnetic phase when g < 1

indicating a breakdown ofour num ericalsim ulations in this

regim e. Panel B shows analytic and num erical results for

the dynam icaltransverse correlation function atthem om ent

when thequench crossesthecriticalpointatg = 1.Thetrans-

verse correlators overlap wellcon�rm ing that our num erical

sim ulations are stillaccurate at the criticalpoint. Finally,

in panelC,we show the dynam icalferrom agnetic correlation

function C
zz

R atg = 1 and in panelD ,weshow thesam e cor-

relation function after rescaling R =
p
�Q . The rescaled plots

overlap quite wellsupporting the idea that near the critical

pointthe K Z correlation length �̂ =
p
�Q isthe only relevant

scale oflength.

relation length �̂ which provesto betherelevantscaleof

length.

Encouraged by the agreem ent in transverse correla-

tions in panel C we show the ferrom agnetic spin-spin

correlation functions at g = 1 for the sam e values of

�Q . They are roughly exponentialand their correlation

length seem sto besetby �̂ =
p
�Q .To verify thisscaling

hypothesisweshow in panelD thesam eplotsasin panel

C butwith R rescaled asR=�̂.W e�nd therescaled plots

to overlap reasonably wellcon�rm ing the expected
p
�Q

scaling.Theoverlap isnotperfect,butthescaling isex-

pected when �Q � 1 which isnotquite satis�ed by the

�Q availablefrom ournum ericalsim ulations.

V . C O N C LU SIO N

Putting ouranalyticalresultsand num ericalevidence

together, we are led to conclude that, in a quantum

phasetransition,thesystem initiallyfollowsadiabatically

itsinstantaneousground state. Thisadiabatic behavior

becom es im possible su�ciently near the criticalpoint:

W hen crossing the criticalregim e the system gets ex-

cited in a m anner consistentwith K ZM ,and im printed

with the characteristic K Z dynam icalcorrelation length

�̂ =
p
�Q . W e �nd evidence for this correlation length

both in correlation functions and in the entropy ofen-

tanglem ent-they are alldeterm ined by the sam e single

length scale �̂.

O nce the system is excited,then the non-trivialdis-

persion relation ofits quasiparticle excitations leads to

the gradual quantum phase ordering: Thanks to this

post-criticalevolution,the state ofthe system develops

the second,longer,phase-ordered length scale which �-

nally at g = 0 becom es l =
p
�Q ln�Q . This process

m akesshortrangeferrom agneticcorrelation function os-

cillatory rather than purely exponential, which m eans

that on length scales shorter than lthe random -kink-

antikink-kink-antikink- train looks m ore like a regular

crystallattice.Atthesam etim e,thanksto phaseorder-

ing,a longerblock ofspins is necessary to saturate the

entropy ofentanglem ent.

Itisim portantto note thatthe �rstprocessdepends

on the universalcharacteristics of (quantum or classi-

cal)second orderphasetransitions.Therefore,weexpect

thatconclusionswe havereached forthe speci�c case of

the quantum Ising m odelaregenerally applicable:O nce

the universality class ofthe transition is characterized

by m eans ofthe relevantcriticalexponents,predictions

ofe.g. the entanglem ententropy leftin the wake ofthe

phasetransition can bem ade.By contrast,thedynam ics

ofthe phaseordering thatfollowscan bem odel-speci�c,

and is unlikely to be captured by the scalings ofrelax-

ation tim e and healing length thatsu�ce forK ZM .
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