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Quantum Isingm odelin one dim ension is an exactly solvable exam pl of a quantum phase transi-
tion. W e Investigate its behavior during a quench caused by a gradualtuming o of the transverse
bias eld. The system isthen driven at a xed rate characterized by the quench tine ¢ across the
critical point from a param agnetic to ferrom agnetic phase. In agreem ent w ith K bbleZurek m ech—
anism (which recognizes that evolution is approxin ately adiabatic far away, but becom es approxi-
m ately in pulse su ciently near the critical point), quantum state ofthe system after the transition
exhibits a characteristic correlation length " proportional to the square root of the quench tine ¢ :

~= P "o . The Inverse of this correlation length is known to detem ine average density of defects

(eg. kinks) after the transition. In this paper, we show that this sam e ” controls the entropy of
entanglem ent, eg. entropy ofa block of L. spins that are entangled w ith the rest of the system after
the transition from the param agnetic ground state induced by the quench. For large L, this entropy
saturates at % Iog, A, as m ight have been expected from the K bbleZurek m echanian . C lose to the

critical point, the entropy saturates when the block size L A, but { In the subsequent evolution
n the ferrom agnetic phase { a som ew hat larger length scale 1=~ o In o developsasa result ofa
dephasing process that can be regarded as a quantum analogue of phase ordering, and the entropy
saturateswhen L 1. W e also study the spin-spin correlation using both analytic m ethods and real
tin e sin ulations w ith the V idalalgorithm . W e nd that at an instant when quench is crossing the
critical point, ferrom agnetic correlations decay exponentially w ith the dynam ical correlation length
A, but (as for entropy of entanglem ent) in the fllow Ing evolution length scale 1gradually develops.
T he correlation function becom es oscillatory at distances less than this scale. However, both the
wavelength and the correlation length of these oscillations are still detemm ined by ". W e also derive

probability distrdbbution for the number of kinks in a nite soin chain after the transition.

PACS numbers: 03.65.w,7343Nqg, 03.75Lm, 32.80Bx, 05.70Fh

I. INTRODUCTION

Phase transition is a findam ental change In the char-
acter of the state ofa system when one of its param eters
passes through the critical point. States on the opposite
sides of the critical point are characterized by di erent
types of ordering. In a second order phase transition, the
fundam ental change is continuous and the critical point
is characterized by divergences in the coherence (or heal-
ing) length and in the relaxation tim e. T his critical slow —
Ing down in plies that no m atter how slow ly a system is
driven through the transition itsevolution cannot be adi-
abatic close to the criticalpoint. If it w ere adiabatic, then
the systam would continuously evolve between the two
types of ordering. H owever, In the wake of the necessar-
iky non-adiabatic (and approxin ately in pulse) evolution
In the critical region, ordering of the state after the tran—
sition is not perfect: It is a m osaic of ordered dom ains
whose nite size depends on the rate of the transition.
This scenario was rst described In the cosn ological set—
ting by K bble [I] who appealed to relativistic casuality
to set the size of the dom ains. The dynam ical m echa—
nisn relevant for second order phase transitionsw as pro—
posed by one of us [Z]. It is based on the universaliy
of critical slow Ing dow n, and leads to prediction that the
size of the ordered dom ains scales w ith the transition

tine o as 5" ,wherew isa combination of criticalexpo—
nents. The K bbleZurek m echanian K ZM ) for second
order them odynam ic phase transitionswascon m ed by
num erical sin ulations of the tin e-dependent G inzburg—
Landau m odel [3] and successfiilly tested by experin ents
In lguid crystals @], super uid heliim 3 [5], both high-
T. [1] and ow-T. [@] superconductors and even in non-—
equilbriim system s [9]. W ih the exception of super uid
‘He { where the early detection of copious defect for-
m ation was subsequently attributed to vorticity inadver-
tently introduced by stirring, and the situation rem ains
unclar { experim ental results are consistent w ith K ZM ,
although m ore experin entalw ork is clearly needed to al-
low form ore stringent experin ental tests ofK ZM .

The K bblZurek m echanisn is thus a universal the-
ory of the dynam ics of second order phase transitions
w hose applications range from the low tem peratureB ose—
E instein condensation BEC) [L0] to the ultra high tem -
perature transitions in the grand uni ed theories ofhigh
energy physics. However, the zero tem perature quan-—
tum 1im it rem ained unexplored until very recently, see
Refs.[11, 112,113, 114, [15, |1€], and quantum phase tran—
sitions are in m any respects qualitatively di erent from
transitions at nite tem perature. M ost in portantly tin e
evolution isunitary, so there isno dam ping, and there are
not them al uctuationsthat initiate sym m etry breaking
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nKZM .

Quantum state ofthem any body system is indeed pro—
foundly di erent from a classical state: Tnstead ofa sin-—
gk broken symm etry con guration i may (and, gener-
ally, will) contain all of the possible con gurations in a
superposition. In addition to the tlassical’ way of char-
acterizing this state through the density of excitations
(eg. defects), one can wonder how entangled various
parts of the system are with each other. Von Neum ann
entropy of a fragm ent due to its entanglem ent w ith the
rest of the system is a convenient way to quantify this.
Tt can be com puted as a function of the size of the frag-
ment. In equilbriim , and away from the critical point,
this entropy ofentanglem ent saturates at distances ofthe
order of the coherence length  of the system at values

In foronedin ensionalsystem s. H owever, at the crit—
icalpoint Wwhereequilbrium coherence length becom es
In nite) entropy of entanglem ent diverges w ith the size
of the fragm ent. In particular, In one din ensional sys—
tem s, the criticalentanglem ent entropy diverges logarith—
mically ( InL) wih the length L ofthe chain fragm ent
[L71.

T hisequilbrium behavior suggeststhe question: W hat
is the entanglem ent entropy lft behind by an outof-
equilbriim phase transition? Such a transition w illpass
through the critical point (W here entanglem ent entropy
is logarithm ically divergent) but thisw illhappen ata -
nie rate set by the quench tine o . W e show that the
resulting entanglem ent entropy is of the order of n",
where " is the healing (coherence) length at the instant
when critical slow Ing down forces the system to sw itch
from the approxim ately adiabatic to approxin ately in —
pulse (Yiabatic’) behavior. T his suggests that the sam e
process that determm ines the size of regions that \break
symm etry In unison" (which sets the density of topo—
logical defects keft by the transition) is also responsble
for the resulting entanglem ent of form ation lft by the
quench. This nding is consistent with recent resuls
on quantum phase transitions induced by instantaneous
quenches [L8] which indicate that structures present in
the Iniial pretransition state determ ine the structures
(and hence entanglem ent of form ation) that arise after
an Instantaneous quench: O ur results also suggest that
{ In accord wih KZM { it is a good approxin ation to
consider quendh to be approxin ately adiabatic until the
instant £ 1= 5 befre the critical point is reached,
and approxin ately in pulse (eg. nearly instantaneous)
Inside this tin e interval. This also con m s and extends
results of the recent study of Chemg and Levitov [L5]
who com puted entropy density and correlations induced
by quenches in one-dim ensional chains, and conclided
that their results support K ZM .

W hile our results below are established for the one—
din ensionalquantum Isingm odel which hasthe consid—
erabl advantage ofbeing exactly solvable), we con ecture
that sin ilar behavior w illbe encountered in other quan—
tum phase transitions, and that their non-equilbbriim
evolution can be anticipated using equilbrium criticalex—

ponents using K ZM . T his con ecture can be then tested
In a variety of system sthat undergo quantum phase tran—
sitions both In condensed m atter and in atom ic physics
experim ents.

A ccording to Sachdev [L9], the understanding of quan—
tum phase transitions is based on tw o prototypicalm od-
els. O ne is the quantum rotorm odeland the other is the
one-dim ensional quantum Ising m odel. O fthe two only
the Ising m odel is exactly solvable. It is de ned by the
Ham ilttonian

3

n=1

w ith periodic boundary conditions
"N+l T Y1l @)

Q uantum phase transition takesplace at the criticalvalue

= 1 of an extemalm agnetic eld. W hen g 1, then
the ground state isa param agnet j! ! !
spins polarized up along the x-axis. O n the other hand,
wheng 1, then there are tw o degenerate ferrom agnetic
ground states w ith all spins pointing either up or down
along the z-axis: J""" :::"ior j### ::: #i. Ih an In—

niesim ally slow classicaltransition from param agnet to
ferrom agnet, the system would choose one ofthe two fer—
rom agnetic states. In the analogous quantum case, any
superposition of these two states is also a ¥egal ground
state providing it is consistent w ith other quantum num —
bers (eg. parity) conserved by the transition from the
Initialparam agnetic state. However,when N ! 1 ,then
energy gap at g = 1 tends to zero (quantum version of
the critical slow ng down) and it is in possible to pass
the critical point at a nite speed w thout exciting the
system . As a resul, the system ends in a quantum su-
perposition of states like

]: e "#####"""""""####""""""# 3 :l (3)

wih nite dom ainsofspinspointing up ordow n and sep—
arated by kinks where the polarization of spins changes
its ordentation. A verage size of the dom ains or, equiva—
lently, average density of kinks depends on a transition
rate. W hen the transition is slow, then the dom ain size
is lJarge, but when it is very fast, then orientation of ndi-
vidual spins can becom e random , uncorrelated w ith their
nearest neighbors. Transition tine ¢ can be unam bigu—
ously de ned when we assum e that close to the critical
pointatg= 1 tin edependent el g (t) driving the tran-
sition can be approxin ated by a linear quench

t
gtt< 0) = — @)
o

w ith the adjustable quench tine o . D ensity ofkinks af-
ter the linear quench was estim ated in Ref. [12] show ing
that KZM can be also applied to quantum phase transi-
tions. In this derivation, it is convenient to use instead of

! iwihall



g ) a din ensionless param eter  (£) = gg—c% =g 1.As
in classicaltransitions [2], one can assum e the adiabatic—
In pulse approxim ation R3, 124]. The quench begins in
the ground state at large initial g and the initial part of
the evolution is adiabatic: the state ollow s the instanta—
neous ground state ofthe system . T he evolution becom es
non-adiabatic close to the critical point when the energy
gap ’ j jbecom es com parable to the nstantaneous tran—
sition rate = jat ' "% when the correlation kngth
In the ground state is proportionalto
A 1=2

= 45 ®)
A ssum Ing inpulse approxim ation, the quantum state
does not change during the follow ing non-adiabatic stage
of the evolution between ~ and *. Consequently, the
quantum state at * is expected to be approxim ately
the ground state at * w ith the correlation length propor-
tionalto ~ and this is the initial state for the naladia-
batic stage ofthe evolution after ~ . T his argum ent show s
that when passing across the critical point, the state of
the system gets inprinted wih a nie KZ correlation
length proportional to " In particular, this correlation
length determm ines average density ofkinks after the tran—
sition as

1

n '’ = ()
Q

T his is an order ofm agniude estin ate w ith an unknown
O (1) prefactor. The estin ate was roughly con m ed by
num erical simn ulations In Ref. [12]. Not much later the
problem was solved exactly in Ref. [14], seealso Ref. [LT],
w ith the exact solution con m ing the KZM scaling in
Eq. [@).

In the next section we review and expand the exact
solution, and then use the expanded version to obtain a
m ore com plete set of resuls. In Subsection [IID], we de-
rive G aussian probability distrdbution for the number of
kinksm easured aftera quench In a nite Ising spin chain.
In Section [II, we calculate entropy of entanglem ent of a
block of L. spins after a dynam ical transition and in Sec—
tion [IV] — work out spin-spin correlation finctions. W e
conclide in Section [7].

II. EXACT SOLUTION
A . Energy spectrum

Here we assum e that the num berof spinsN iseven for
convenience. A fter the nonlocalJordan-W igner transfor—
m ation [R20],

=1 28c ; 7
q%cnY )

&G+ d 1
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Introducing fem ionic operators ¢, which satisfy anti-
comm utation relations G, ;& = nn and fo, ;g =

d ;& = 0theHam ittonian [Il) becom es R1]
H =P " H*P" +P H P ; 9)
w here
" # " #
1 ¥ 1 ¥
P == 1 * -2 1 2
2 o 2 %Cn
n=1 n=1
(10)

are pro gctors on the subspaces w ith even (+) and odd
() num bers of cquasiparticles and

by

g
gda  dar1 Ge1Ga >+ ho:oan

n=1

are corresponding reduced H am iltonians. Thec,'sin H
satisfy periodic boundary conditions gy + 1 = &, but the
G’sinH*Y mustcbey aqv+1 = q { eg, \antiperiodic"
boundary conditions.

T he parity of the num ber of cquasiparticles is a good
quantum num ber and the ground state has even parity
for any non—zero valie of g. A ssum Ing that a quench be-
ginsin the ground state, we can con ne to the subspace of
even pariy. H ¥ isdiagonalized by the Fourier transform
follow ed by B ogoliubov transform ation 21]. T he Fourder
transform consistent w ith the antiperiodic boundary con—
dition qy+1= g is

e 1=4X .
ae™ ; a2)

12 N 12
k = —— iz — 13)
2N 2 N
It transform s the H am iltonian into
X n
HY = 2  ocoska)ldot
8 h i o
shka) gc ,+cxx g 14)

D iagonalization of H ¥ is com pleted by the B ogoliubov
transform ation
G = Uk x*tV o7 (15)

provided that B ogoliibov m odes (ux ;vk ) are eigenstates
of the stationary B ogoliibov-de G ennes equations

u = +2fg oosklx + 2sinkw ;
% = 2lg ocoskly+ 2sinkuy : 16)
T here are two eigenstates for each k w ih eigenenergies
= y,where
S
« = 2 kg cosk}+ sin’k : a7



T he positive energy eigenstate
h o i
Uy ;vic) (@ «cosk)+ g2 2gcosk+ 1l;sink ;
(18)
which has to be nom alized so that j5, ¥ +  F = 1,
de nes the quasipartick operator x = u, G+ v &

and the negative energy eigenstate @, ;v ) = ( %;ux)

denes , = (U)o +v o, = Y. After

th]g B ogoliubov transform ation, the Ham iltonian H ¥ =
% Lk 1ok . 7 equivalent to
X 1

H' = Kk ok S i 19)

which isa sin ple-Jooking sum ofquasiparticlesw ith half-
Integer pseudom om enta. H ow ever, thanks to the pro gc—
tionP* H* P* in Eq. [9) only statesw ith even num bers
of quasiparticles belong to the spectrum ofH .

B . Linear quench

In the linear quench Eqg. [4), the system is initially
(t o) In is ground state at large initial valie of
g 1, but when g is ram ped down to zero, the system
gets excited from its Instantaneous ground state and, in
generalis nalstateatt= 0 has nie number ofkinks.
C om paring the Ising Ham iltonian Eq. [l) at g = 0 with
the Bogoliubov Ham itonian [[9) at g = 0 we cbtain a
sim ple expression for the operator ofthe num ber ofkinks

lX‘I X v
z z
5 1 n n+1 = k k*? 0)
n=1 k

T he num ber ofkinks is equalto the num ber of quasipar-
ticles excited at g= 0. T he excitation probability

px = h 03] xj 01 @1)
In the nalstate can be found w ith the tin edependent
B ogolibov m ethod.

T he initial ground state is Bogoliibov vacuum i an—
nihilated by all quasiparticle operators  which are de—
term Ined by the asym ptotic form of the (positive en—
ergy) Bogoluilbov m odes (ux ;vk ) (1;0) In the regin e
ofg 1.W hen g(t) is ram ped down, then the quantum
state j (t)i gets excited from the instantaneous ground
state. T he tin e-dependent B ogoliibov m ethod m akes an
Ansatz that j )i is a Bogoliubov vacuum annihilated
by a set ofquasiparticlke anniilation operators ~y de ned
by a tin edependent B ogoliubov transfom ation

& = WO+ v o O~ ; (22)
w ith the initial condition fuy (
In the Heisenberg picture,
fug (©); vk (©)] must satisfy

1) ( 1)1 = (;0).
the Bogoliibov m odes
Heisenberg  equation

i~2q = [&;H "' ]wih the constraint that S~ = 0.
T he H eisenberg equation is equivalent to the dynam ical
version of the B ogoliubov-de G ennes equations [16):

d
i~a:uk = +2Q cosk]uy + 2sink w ;
. d .
lNEth = 2 g cosk]y+ 2sink ux :  23)

Atany value ofg, Egs. 23) have two instantaneouseigen-—
states. Initially, them ode fux (t); vk (t)] is the positive en—
ergy eigenstate, but during the quench it gets \excited"
to a com bination of the positive and negative m ode. At
the end ofthe quench at t= 0 when g= 0 we have

Lk 0);vk 0)]1= Ax @kivi) + Bx U, vy (24)

and consequently ~, = Ay x By ;. The nalstate
which is, by construction, anniilated by both ~ and

~ L is
Y
j 0)i= Ay + By ]f yk Pi: (25)
k>0
Pairs of quasiparticles w ith pseudom om enta (k; k) are
excited w ith probability
P = BrF 26)

which can be ound by m apping Egs. [23) to the Landau-
Zener (LZ) problem (sin ilarity between KZM and LZ
problem was st pointed out by D am skiin Ref. [23]).

T he transfom ation

t
— + cosk 27)
Q

= 4Q S]l'lk

brings Egs. [23) to the standard LZ form R2Z]

o d 1 1

W = 5( xug + Sk i

. d 1 1

TV = + 2 ( x)ve + Sk i @8)

w ith kl=4Qsjn2k.Herethetjme runs from 1
tO  npa1 = 2 g sih(2k) corresponding to t = 0. Tunnel
Ing betw een the positive and negative energy eigenstates
happens when 2 4 1; X 1). na1 is well outside
this nterval, a1 . ©r long wavelength m odes
with kj 5.Forthesemodes, tine in Egs.[28) can
be extended to +1 m aking them filly equivalent to LZ
equations RZ2]. This equivalence can be used to easily
obtain several sin ple results [14] described in the next
subsection.

C. Simple results

In the lim it ofslow transitionswe can assum e that only
long wavelength m odes, which have an all gaps at their



anticrossing points, can get excited. Forthesem odes, we
can use the LZ formula RZ2] or excitation probability :

Pk’ e ?«x eZQkZ: (29)
This approxin ation is selfconsistent only when the
width ofthe obtained Gaussian 4 o) =2 ismuch less
than  or, equivalently, for slow enough quenches w ith
0 1.W ith the LZ omula [29), we can calculate the
number of kinks in Eq. 20) as
X
N = Px :
k

(30)

T here are at least two Interesting special cases:

WhenN ! 1 ie. In the lim i of quantum phase
transition, the sum in Eq. [30) can be replaced by
an integral. The expectation value of density of
kinks becom es

_1 ak _l l_ 31)
2 PPt

The density scales like In agreem ent w ith

KZM , see Eq. [@). Thus, sbwer quenches lad to
few er defects.

Follow ing RefllZ], we can ask what the fastest g
iswhen no kinks get excited In a nite chain ofsize
N . This critical ¢ m arksa crossoverbetween adi-
abatic and non-adiabatic regim es. In other words,
we can ask what the probability for a nie chain
is to stay In the ground state. A s di erent pairs
of quasiparticles ; k) evolve Independently, the
probability to stay in the ground state is the prod—

uct
Y
P Gs = (1 €3 ) (32)
k>0
W ell on the adigbatic side only the pair i

is Ikely to get excited and we can approxin ate

Pss 1 p 1 exp 2 3N—QZ 33)
A quench in a nite chain is adiabatic when
N 2
o) F H (34)

Reading this inequality from right to left, the size
N of a defect—free chain grows lke . °

o0, Thisis
consistent w ith Eq. [GZT]).

D . P robability distribution of the num ber of kinks

Equation [31) gives an average density of kinks m ea—
sured after a quench to zero magnetic ed g= 0. In

a nie chain, an average num ber of kinks is N =N n,
provided that the transition is non-adiabatic unlke in
Eq. B4). The average N is an expectation valie of a
probability distrbution P N ) for the num ber ofkinksN
m easured after a quench.

The num ber of kinks N is the num ber of quasiparti-
cles excited by the end of the quench. A s quasiparticles
are excited In pairsw ith opposite quasin om enta k; k),
the number of kinks N must be even. A pair k; k)
is excited with the probability p, .n Eq. 29). W e can
asign to each pair of quasiparticles a random variable
xx which is 1 when the pair is excited and 0 otherw ise:
xx = 1 wih probability py and xx = 0 w ih probability
1 By Wewanta probability distribution for the sum
N = . ,2xx. Thisisa sum of independent random
variables of nite variance so for a Jarge num ber of vari-
ables, the sum N becom es a G aussian random variable
with amean N = Nn and nite variance N .

W e have to be carefil to specify when the num ber of
random variables is large. Naively, on a N -site lattice,
there are N =2 pairs of quasiparticles k; k), or indepen-
dent random variables xy, and the num ber seem s to be
largewhen N islarge. O n second thought, it is clearthat
variables w ith px 0orp 1 cannot really count be—
cause they are hardly random atall. A look at the G aus—
sian py in Eq. [29) show s that the range ofk > 0 where
0 Px 1 has width pl—T which accom m odates
’ pN—? discrete values of pseudom om entum k. T he rele—
vant num ber of random variables is ’ p% " Nn=N .
Tt is Jarge w hen the average num ber of kinks is large,

N 1: 35)

W ith this assum ption P (N ) is G aussian.
K eeping this assum ption in m ind we can proceed as

X
PN) = N D0, o 2%k
Xx
Y
[O;xk 1 R)+ 1;xkpk] = (36)
k>0
1 z . .
o de a @ B)+pee’™
k> 0
Z
— dee TP : 37)
Tt is convenient to evaluate rst
X .
nP (@ = n @ B)+pe™™
k>0
7
N ’s
- dk h @ @)+ ped : (38)

0

Here we used N
sum ption that N
variable to u =

1, a necessary condition for our as-
1. A fter changing the integration

ﬁ , we can extend the integration over



Z h , , i
u)+e u’+ 2igq

+0 () : (39)

Here we used agajnN_= Nn.
F inally, com bination ofEgs. [BI37) givesthe expected

G aussian probability distribbution
1 N NY
3 =P 5
N

2
N

P N) = (40)

w ith a variance
2 Po —
N = 2 2 N : 41)
In the course of our approxin ations, we have lost the
constraint that_N m ust be even, but this is not a big
m istake when N 1.
Tt is also interesting to study the opposie adiabatic
reginewhen N n 1.W hen o is large we can approx—
in ate the product in Eq. [36) by a single factor w ith the

Iowest k= =N,

X

P N) N ;2s 0;s 1 Pyt 1;5P =

s=0;1

nio 1 Pxw t n2Pw @2)
This is a good approxin ation when g 2’ 23 as in
Eq. [34). In this adiabatic regin e

N = 2 = 32 @3)
= 4Py = exXp N2

T he average num ber of kinks decays exponentially w ith
o and theK Z power law scaling [31)) does not extend to
this adiabatic regin e, as was already noted in Ref. [12].

E. Exact solution and the two scales of length

So far we have avoided w riting down solutions of the
Landau-Zener equations 28) whose general form is, see
eg.Appendix B in Ref. 4],

w() = BD s i iz)+ D 5 1(d2)];
@
u () = x +21@— Vi () (44)
with arbitrary com plex param eters a;b. ere Dy (x)
is a W eber function, s = —+—, and z = L &7,

43
The param eters a;b are xed by the initial conditions

U ( 1 )=1landwx ( 1 )= 0.Using the asym ptotes of
the W eber functions when ! 1 ,wegeta= 0and

453)

T he solution ofthe linear quench problem is then

() = D 10z);
ug () = x +Zi@— Vk () 46)
At the end ofthe quench fort= 0 and when = =

2 o sin (2k), the argum ent of the W eber function iz =

P d=t = P—c = wsk)sign k). Tn the Im i of
large o the m odulus of this argum ent is Jarge form ost
k, except the neighborhoodsofk = 5, and we can again
use the asym ptotes of the W eber functions. A fter som e
work we get the products

1 cosk .
jlka=72 te 2ok,
wf =1 #nf;
1
uxv, = —sink+
k Vi 2
sign k) e o sin®k 1 e Qsjnzkei’k;
2
T = —+ ki, ok, Bk
4 2 4 2 x
i
arg 1+ 47
4 i

Here (x) isthe gamm a function.

W e expect that for large ¢ only modes wih snall
kJ 7 getexcited. In this long wave length Iim i, the
products can be further sim pli ed to

1 cosk 2 oK

j = —+e i
Jlkf 2
wf =1 nf;
1. , 2P _
uka=ES:Il’1k+S]ng(k)e ° 1 e ok gk
k= gt20 @ In4)g k% +
kK ol o arg 1+ igk? 48)

T hese products depend on k and o through two combi-
nations: ¢ k?, which inplies the usualK ZM correlation
ngth “ =P, and k? , h , which inplies a second
scale of length o In o . The nalquantum state at
g= 0 cannot be characterized by a single scale of length.
P hysically, this appears to re ect a com bination of two
processes: K ZM that setsup initial post-transition state
of the systam , and the subsequent evolution that can be
regarded as quantum phase ordering.

III. ENTROPY OF A BLOCK OF SPIN S

Von Neum ann entropy ofa block of L. soins due to is
entanglem ent w ith the rest of the system ;
49)

sSL) = Tr  log, 1 ;



isa convenient m easure ofentanglem ent. Above p isre-
duced densiy m atrix of the subsystem ofL spins. In re—
cent years this entropy w as studied extensively in ground
states of quantum critical system s [L7]. At a quantum
critical point, the entropy diverges like logL for large L
w ith a prefactor determ ined by the central charge of the
relevant conform al eld theory [L7]. In particular, n the
quantum Ising m odelat the criticalg= 1

sés @) ! %JogzL (50)
for large L. Slightly away from the critical point, the
entropy saturates at a nite asym ptotic value

1
sfs ! gbgz

w hen theblock size I exceedsthe nite correlation length
In the ground state of the system .

(1)

A . Entropy after dynam ical transition

In a dynam icalquantum phase transition the quantum
state of the system developes a nite correlation length
"~ + P Ifthis dynam ical correlation kength were the
only relevant scale of length, then one could expect en—
tropy of entanglem ent after a dynam ical transition given
by Eq. BI) with simply replaced by . However, as
we saw in Eq. [48), there are two scales of length, and {
strictly speaking { there is no reason to expect that ei-
ther of them alone is relevant In general. This iswhy we
shall not rely on scaling argum ents alone and w ill go on
to calculate the entropy of entanglem ent \from scratch".

W e proceed In a sin ilar way as in the classic papers
[L7]and de ne a correlatorm atrix fortheblock ofL spins

y

= .1 ; (52)
where and arel L m atricesofquadratic correlators
m ;n I‘I;n%zlz
1 . ; o 1
= @ fern
m_ n)2
1 1 e 8
2 0 n3 g um ast TPoT ©3)
and
m ;n hg ci=
1 Z
—_— dk ugv, e*™ M =
2 i
Z
1 n o 1
- dk uxvy, sinkm n)
0
signfm  n)
2 2
if 2 o3 ) S
61 e( fooen m  nj?
42 Ljm njy —F=———e 7 1 e 2

54)

Here " =P isthe KZM dynam ical correlation kength
and

1 Pom, (55)
W e note that and are Toeplitz m atrices w ith con—

stant diagonals. T he expectation values h:::1 are taken
In the dynam icalBogoliubov vacuum state. A s this state
is G aussian, allhigher order correlators can be expressed
by the matrices and -they provide com plkte char-
acterization of the quantum state after the dynam ical
transition. T he m atrices depend on both scales " and 1
and both scales are necessary to characterize the G aus—
sian state.

A's observed in Ref. [L7], the entropy can be conve-
niently calculated as

SL;g) = Tr lg = Tr log, : (56)
Th this calculation we use Eq. [@7) and Egs. 53, [54)
but w ithout their lJarge o approxin ations. The calcu—
lation involves a num erical evaluation of the integrals in
Egs. [B3/54) and num erical diagonalization of the m a—
trix Resuls are shown in Panel A of Fig[ll. The
entropy grow s w ih the block size L and saturates at
a nie valne S; (o) for large enough L. In PanelB,
we t the asym ptotic entropy w ith the linear finction
S1 (g)=A+BIh g.Thesinpl replacament of by

:p? in Eq. [GI) suggests the asym ptotic value
1 N n2
S1 (Q), gng ’ihQ=O:1201nQ:(57)

Ourbest tgivesB = 0128 0:004andA = 180 0:05.
The best B is In reasonably good agreem ent w ith the
expected value of 0:120.
In PanelsC and D ofthe sam e gure, we rescale values
of entropy S (I; o) by is asym ptotic value S; (g)
A + B . After this transform ation we can better
focus on how the entropy depends on the block size L.
A sin ple hypothesis would be that entropy depends on
" and saturateswhen I, > . To check if this is true, in
PanelC we also rescale theblock sizeL by ~ =¥ 5 and
nd that w hile this rescaling brings plots close to overlap,
they do not overlap as well as one m ight have hoped.
By contrast, as shown In PanelD , rescaling of the block
sizeL by 1= 5 In o m akesthe m ultiple plots overlap
quite well indeed. In conclusion, our resuls support the
statem ent that the entropy saturates at
1

= oy, P g (58)

S1 (o) ' p

when

L Pomn, (59)

3 ie. the entropy of a large block of spins is determ ined
.7 7 by K bble-Zurek dynam ical correlation kngth ~ = 7,
5 but the entropy saturates when the block size is greater

than the second scale 1= p?]n Q-
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FIG.1l: PanelA shows entropy of a block of L spins after
the dynam icalphase transition as a function of the block size
L. The multiple plots correspond to di erent values of the
quench tine ¢ . Forall ¢ , the entropy grow s w ith the block
size L and saturatesata nitevalieS: (¢ ) for lJarge enough
L. In PanelB, we t this asym ptotic value of entropy w ith
the function S; (g)= A+ B h o. Thebest thasB =

0:128 0:004 and A = 180 0:05. ThisB is in reasonably
good agreem ent w ith the expected value of B = % = 0:120.
In PanelsC and D, we rescale valies of entropy S (L; o ) by
the best t to is asym ptotic value S; (o) = A+ B I ¢ .
W ith this rescaling we can focus on how the entropy depends
on theblock size L. In PanelC , we also rescale the block size
by "= "o and nd that the rescaled plots do not overlap
exactly. However, as shown in Panel D, rescaling the block
size L by the second scale 1=~ o In ¢ m akes the six plots
overlap quite well.

W e believe that the KZ correlation length " is deter-
m Ined when the system is crossing the criticalpoint while
the second longer scale builds up after the system gets
excited from its adiabatic ground state near the critical
valie ofam agnetic eld. Atthe origin ofthe second scale
is the non-trivial dispersion relation of excited quasipar-
ticles. The k-dependent y in Eq. [I7) leads to a gradual
evolution of m atrix elem ents of the correlator which
are given by integrals overk in Egs. [53[54) . To support
this scenario we calculated the entropy of entanglem ent
at the m om ent when the system is crossing the critical
point at g= 1. The resuls collected in F igure[2 are con—
sistent w ith our expectation that near the critical point,
when the scale 1 set up by quantum phase ordering only
begins to build up, ~ is still the only relevant scal of
¥ngth.

B . Im purity of the state after transition

W e were not ablk to do fully analytic calculation of
entropy. This is why i m ay be worthwhil to calculate
analytically anotherm ore easily tractable entanglem ent—

oA = B
oL _
—_ TQ:400
15—F— — 1,800 | R 1
o T, = 1600 w°175
[ 1= 3200 : B
1# ° P
Q=i;gc0)0 — A+BInT,| |
=
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FIG .2: PanelA shows entropy ofa block of L. spins during
the dynam ical phase transition at the critical point g= 1 as
a function of the block size L. The m ultiple plots correspond
to di erent values of the quench tine o . For all the quench
tin es, the entropy grow s w ith the block size L and saturates
ata nitevaluieS: (o) for large enough L. In PanelB we t
this asym ptotic value of entropy w ith the function S1 (o ) =
A+Bh g. Thebest thasB = 0:126 0:005 and A =
0:80 0:03. ThisB is in reasonably good agreem ent w ith the
expected valuie of B = % = 0:120. In PanelsC and D, we
rescale the entropy S (L; ¢ ) by thebest t to its asym ptotic
valueS1 (o) A+B In o .W ith thisrescaling we can focus
on how the entropy depends on the block size L. In PanelD,
rescaling the block size L by t = "o m akes the six plots
overlap quite well.

related quantity. For exam ple, the \in purity" ofthe cor-
relatorm atrix

(60)

is zero only when the L spins are In a pure state ie.
when alleigenvaluesof areeitherOorl. It ismaxinal
when allthe eigenvalues are %, orwhen the state ism ost
entangled. Thanks to its sin ple quadratic formm , it can
be calculated relatively easily.

Sinple calculation using the block structure of in
Eqg. [52) and the Toeplitz property of the block m atrices
and leadsto

0 1
e 1
1@ = 281 © PG+ 35HR ;6D
=1 L
where 5= 40 and 3= 0. jand 5 can be ex—

pressed by the inverse Fourder transform s in Egs. [53[54).
U sing nom alization jixF + j% f = 1 and com pleteness



of the Fourier basis we notice that
Z

1
0= > dk . F =
1 7
s Gued + dnev f) = (62)
'Xl

G5F+35%:
1

j:

¥ 1
G5F+35H+4 3G5F+35F): 63)

=L =1
Since we assum e that ¢ 1, we can approxin ate these
sum s w ith integrals. Further calculation gives:

1 1 © 1?2
I(L) = §+_ 1 e e +
Yo
@ 1?2
h(g) 1 e?atm o —p—l_ +
2 2 o
" !
L L
Y Erft p—— + (64)
2" g 4 9
! #
p_ P 1P~
ZQhQ Q Q

HereE rfc(x) isthe com plem entary error finction de ned
as:

Z 3
2
Erfx) = p—= e “dt: (65)
W hen In 4 1, then the im purity is dom inated by a
sihgle tem

n ©w 1? !2

Q Z .
I@) > 2 1 e ot o) : (66)

This mpurity saturatesat I, ' In o when the block

size L 1, or in short
In
n o 67)
T he in purity saturates at the second scale 1= P 9 h o

In consistency w ith our resuls for the entropy.

Tt is Interesting to com pare the dynam ical im purity
[68) w ith the in purity in the ground state of the system .
Sin ple calculation givesthe asym ptote of in purity in the
ground state at the critical point

hn
°5@) = nb : (68)

2
when nL 1. N ear the critical point, the asym ptote is
valid for the block size L much less than the correlation
function L and at larger L the In purity saturatesat

n

— (69)

GS
I 3

Sinpl replacem ent of in this equation by the dynam i-
calK Z correlation length ~=P g gives the asym ptotic
value of the dynam ical in purity in Eq. [&7). Again, this
\replacem ent rulke" is the sam e as for the entropy.

v . CORRELATION FUNCTIONS

Correlation finctions are of findam ental interest in
phase transitions because they provide direct m anifesta—
tion oftheir universalproperties and are in generaleasily
accesble experin entally. In this Section we present our
results for spin-spin correlation finctions during a dy-
nam ical quantum phase transition.

To begin w ith, we cbserve that for sym m etry reasons
the m agnetization h ?i= 0, but the transverse m agneti-
zation

1
—p—=; (70)
25 2,

h*i=h

2dci= 2, 1

which isvalid when g 1. This iswhat rem ains of the
initialm agnetization h 7i= 1 in the initial ground state
atg! 1 .Asexpected, when the linear quench is slow,
then the nalm agnetization decays towardsh *i = 0
characteristic of the ground state at the nalg= 0.

F inaltransverse spin-soin correlation function atg= 0
is

C¥ hYfei hihii- 1)
4 3% 3=f
R 2 rRZ R 2
e 212 1 e 112 e—AQ
T o 02

when R > 1 and In ¢ 1. This correlation finction
depends on both " and 1L Long range correlations

ci*  eiw 73)

decay in a G aussian way on the scale 1.

A . Ferrom agnetic correlations at g= 0

In contrast, the ferrom agnetic spin-spin correlation
function

zzZ  _ z z :
CR - hn n+R 1

hZthZ,,i= hZ Zei (74)

cannot be evaluated so easily. As iswell known, in the
ground state, CZ* can be written as a detemm inant of
an R R Toeplitz m atrix whose asym ptote for large R
can be obtained w ith the Schogo lim it theorem R35]. Un-
fortunately, In tim edependent problem s the correlation
function isnot a determm nant In general. H ow ever, below

we avoid this problem in an interesting range of param —
eters.



U sing the Jordan-W igner transfom ation, CZ* can be
expressed as

Cr* = Hypaibjap ::hx 1agi: (75)

Here a, and b, are M aprana ferm ions de ned as a, =
&+ ) andby, = & g.Ushg [B3) and [B4) we get:
hapbhi= 2 5, n+2< 4 n m ;n
My, ani = m ;n 2
ha, api = m;n+2{= m n

M, bhi = m;n+2{=m n

mt 2< 4 o (76)

Theaverage in Eq. [79) isa determ inant ofam atrix w hen
hay api= 0and Mgy b,i= 0 form 6 n, or equivalently
when= , ,= 0 form & n. Inspection of the last line
in Eq. [B4) showsthat= , o,
Consequently, when the correlation distance R lwe
can neglect all= , , assum Ing that ha, a,1i = 0 and
Hyybi= 0 form & n. In this regin e, the correlation
function is a determ inant of the Toeplitz m atrix

u:bn an+ 1l]m m=1;:5R (77)
A sym ptotic behavior ofthis Toeplitz determ inant can be
obtained using standard m ethods RS]w ith the result that

r !

g2 R
cos — =

R
0474=
2

Cz? exp ’ (78)

whenl R 1.

In thisway we nd that the nal ferrom agnetic corre—
Jation function at g= 0 exhibits decaying oscillatory be—
havioron length scalesm uch lessthan the phase —ordered
scale 1, but both the wavelength of these oscillations and
their exponentially decaying envelope are determ ined by
". As discussed in a sin ilar siuation by Chemg and
Levitov [L5], this oscillatory behavior m eans that con—
secutive kinks are approxin ately anticorrelated { they
keep m ore or Jess the sam e distance ’ " from each other
form Ing som ething sim ilar to a regular ...kink-antikink-
kink-antkink-... crystal lattice wih a lattice constant
r " How ever, uctuations in the length ofbonds in this
lattice are com parabl to the average distance itself giv—
ing the exponential decay of the correlator C5* on the
sam e scale of’

W e do not know the tail of the ferrom agnetic correla—
tion function when L 1 because our approxin ations
necessary to derive Eq. [78) do not work in this regim e,
but we can estin ate that this tail is not negligble. In—
deed, when R = 1, then the envelope in Eq. [78) is

1 . .
exp 01745 = e 0:174In ¢ . 0474 . (79)

Due to the am allness of the exponent 0:174 the tail is
negligbl only for extram ely large o .

0 when in nj 1
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B . Correlations at the critical point

In order to 11 in the gaps In our analytic know ledge
of the correlation fiinctions, we attem pted to m ake nu-
m erical sin ulations of the dynam ical transition. Aswe
wanted to get Infom ation on soin-spin correlation func—
tions it proved convenient to work directly w ith spin de-
grees of freedom rather than with the Jordan-W igner
ferm jons. W e used the translationally invariant version of
the realtin eV idalalgorithm 27]. T hisalgorithm , which
is an elegant version of the density m atrix renomm aliza-
tion group [R€], is an e cient way to sin ulate tin e evo—
lution of an in nite translationally nvariant spin chain.
T his am bitious task ism ade e cient by a clever trunca-
tion of Schm idt decom position between any two halves
of the in nite spin chain. Our calculations of the en—
tropy ofentanglem ent dem onstrate that fora nite tran-
sition rate, the entropy saturatesat a nite value beyond
certain block size L. This saturation suggests that in
our case the truncation of the Schm idt decom position
w illm ake sense and, In principle, dynam ical phase tran—
sitions across quantum critical points can be e ciently
sim ulated w ith the V iddal algorithm .

In our sin ulations, we started the linear quench from
the ground state at g= 10 which was prepared w ith the
In aginary tim e version ofthe algorithm . T he sin ulations
were run for a range of 5 such that the iniial part of
the evolution close to g = 10 was well In the adiabatic
regin e. W e checked our results for convergence w th re—
spect to the truncation of the Schm idt decom position
Weusedup to = 40) and tim e step dt. W e used Pourth
order T rotter decom position. W herever it was possble,
we com pared our num erical results with analytical re—
sults which could be obtained for transversalm agneti-
zation, transversal spin-spin correlations, and ferrom ag—
netic nearest-neighbor correlations. W e also controlled if
our truncation ofthe Schm idt decom position is su cient
to preserve the nom of the state evolved In real time.
As illustrated in panel A of Figure [3, our simulations
were stable enough to cross the critical point and enter
the ferrom agnetic phase, but once In the ferrom agnetic
phase, the algorithm wasbreakingdown. Thisiswhy we
trust our num erical results at g = 1, but have no reliablke
resultsbelow g= 1. W e can verify KZM at the critical
point, but we cannot reliably follow the phase ordering
In the ferrom agnetic phase.

Ih panel B of Figure[3, we plot the transverse spin—
spin correlation CX* at g = 1 for several values of g .
For each o, we plot both num erical correlator and is
analytic counterpart from Eq. [7I) and we nd them
to be reasonably identical. Equation [71) can be also
used to obtain analytically, but w ith som e num erical in—
tegration, the exponentialtail ofthe transverse correlator
when o 1:

0:44
— p
o]

R
203<

XX
CR A

®0)

accurate when R ", This tail decays on the K Z cor-
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FIG.3: PanelA shows the dynam ical transverse correlation
CF* as a function of m agnetic eld g in the linear quench.
For each ¢, we show both num erical (dashed) and analyt—
ical (solid) resul. The plots overlap near the critical point
at g = 1 but diverge in the ferrom agnetic phase when g < 1
indicating a breakdown of our num erical sin ulations in this
regin e. Panel B show s analytic and num erical resuls for
the dynam ical transverse correlation finction at them om ent
w hen the quench crosses the criticalpointatg= 1. Thetrans—
verse correlators overlap well con m ing that our num erical
sin ulations are still accurate at the critical point. F inally,
in panelC, we show the dynam ical ferrom agnetic correlation
function C{” at g= 1 and in panelD , we show the sam e cor—
relation function after rescaling R=p "o - The rescaled plots
overlap quite well supporting the idea that near the critical
point the K Z correlation length N = "o isthe only relevant
scale of length.

relation length " which proves to be the relevant scale of
¥ength.

Encouraged by the agreem ent in transverse correla-—
tions In panel C we show the ferrom agnetic spin-spin
correlation finctions at g = 1 for the sam e values of

o - They are roughly exponential and their correlation
length seem sto be set by h =pf. T o verify this scaling
hypothesiswe show in panelD the sam e plots as in panel
C butwih R rescald asR=".W e nd the rescaled plts
to overlap reasonably well con m ing the expected = o
scaling. T he overlap is not perfect, but the scaling is ex—
pected when o 1 which is not quite satis ed by the

o available from our num erical sin ulations.
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V. CONCLUSION

Putting our analytical results and num erical evidence
together, we are led to conclide that, In a quantum
phase transition, the system iniially follow sadiabatically
its Instantaneous ground state. T his adiabatic behavior
becom es I possbl su ciently near the critical point:
W hen crossing the critical regim e the system gets ex—
cited In a m anner consistent wih K ZM , and in printed
w ith the characteristic K Z dynam ical correlation length
~ = p?. W e nd evidence for this correlation length
both In correlation functions and in the entropy of en—
tanglem ent —they are all determ ined by the sam e single
kength scake .

Once the system is excited, then the non-trivial dis—
persion relation of its quasiparticle excitations leads to
the gradual quantum phase ordering: Thanks to this
post—critical evolution, the state of the system develops
the second, longer, phase-ordered length scale which -
nally at g = 0 becomes 1= ~ g In g . This process
m akes short range ferrom agnetic correlation finction os-
cillatory rather than purely exponential, which m eans
that on length scales shorter than 1 the random -kink-—
antikink-kink-antikink— train looks m ore lke a reqular
crystal lattice. At the sam e tin ¢, thanks to phase order—
ing, a Jonger block of spins is necessary to saturate the
entropy of entanglem ent.

Tt is In portant to note that the rst process depends
on the universal characteristics of (quantum or classi-
cal) second order phase transitions. T herefore, w e expect
that conclusions we have reached for the speci ¢ case of
the quantum Ising m odel are generally applicable: O nce
the universality class of the transition is characterized
by m eans of the relevant critical exponents, predictions
of eg. the entanglem ent entropy left in the wake of the
phase transition can bem ade. By contrast, the dynam ics
of the phase ordering that ©llow s can be m odelspeci c,
and is unlkely to be captured by the scalings of relax—
ation tin e and healing length that su ce orK ZM .

VI. ACKNOW LEDGEMENTS

W e thank Bogdan D am ski for discussions. W ork of
LLC.,JD.andM R .wassupported in part by P olish gov—
emm ent scienti ¢ finds 20052008) asa research pro gct
and in partby COCO S.

l]T.W .B.Kbbl, J.Phys.A 9, 1387 (1976); Phys.Rep.
67,183 (1980).

RIW . H. Zurek, Nature 317, 505 (1985); Acta Physica
Polonica B 24,1301 (1993); Phys.Rep.276, 177 (1996).

B1P.Laguna and W H . Zurek, Phys. Rev. Lett. 78, 2519
(1997); Phys.Rev.D 58,5021 (1998);A .YatesandW H.

Zurek, Phys. Rev. Lett. 80, 5477 (1998); G J. Stephens
et al,Phys.Rev.D 59, 045009 (1999); N D .Antuneset
al, Phys.Rev. Lett. 82, 2824 (1999); J.D ziam aga, P.
Laguna and W . H. Zurek, ibid. 82, 4749 (1999); M B.
H indm arsh and A .Rantie, bid. 85, 4660 (2000); G .J.
Stephens, L.M .A .Bettencourt, and W .H . Zurek, did.



88, 137004 (2002).

4] IL.Chuangetal, Science 251, 1336 (1991); M .I.Bow ick
et al., bid. 263, 943 (1994).

Bl]V M H.Ruutu et al,, Nature 382, 334 (1996); C .Baurlk
et al, ibid. 382, 332 (1996).

[b] P C.Hendry et al, Nature 368, 315 (1994); M E.D odd
et al, Phys.Rev.Lett. 81, 3703 (1998).

[71R.Cam iet al, Phys. Rev. Lett. 84, 4966 (2000); A .
M aniv et al, dbid. 91, 197001 (2003).

Bl R .M onaco et al, Phys. Rev. Lett. 89, 080603 (2002);
Phys. Rev.B 67, 104506 (2003); Phys. Rev. Lett. 96,
180604 (2006).

O] S.Ducci, PL.Ramazza, W .GonzalzV nas, F.T . A rec—-
chi, Phys.Rev.Lett.83(25), 5210 (1999); S.Casado, W .
G onzalez-V nas, H .M ancini, S.Boccalktti, Phys.Rev.E
63, 057301 (2001); S.Casado at al,, European Joumalof
P hysics, subm itted.

[10] JR .Anglin and W H . Zurek, Phys.Rev. Lett. 83, 1707
(1999).

1] J. Dziamaga, A. Smerzi, W . H. Zurek, and A. R.
Bishop, Phys. Rev. Lett. 88, 167001 (2002); F. Cuc-
chietti, B. Dam ski, J. Dziam aga and W . H. Zurek,
cond-m at/0601650| (to appear In Phys.Rev.A).

2] W H.Zurek, U.Domer and P. Zoller, Phys. Rev. Lett.
95, 105701 (2005).

[13]1 A .Pokovniov, Phys.Rev.B 72, R161201 (2005).

[L4] J.D ziam aga, PhysRev Lett. 95, 245701 (2005).

5] R .W .ChemgandL.S.Leviov,Phys.Rev.A 73,043614
(2006) .

[l6] J.D ziam aga, Phys.Rev.B 74, 064416 (2006).

12

[l7] C .Holzley,F .Larsen and F .W ilczek, Nucl.Phys.B 424,
443 (1994); G .V idal, JI. Latorre, E.Rico and A .K i+
taev, Phys. Rev. Lett. 90, 227902 (2003); N . La oren—
cie, Phys.Rev.B 72, R140408 (2005); G .Refaeland J.
E .M oore, Phys. Rev. Lett. 93, 260602 (2004); R . San—
tachiara, cond-m at/0602527; A .R. Its, B . Jn and
V E.Korepin, J.Phys.A :M ath.Gen. 38, 2975 (2005).

[18] P. Calabrese and J. Cardy, J. Stat. M ech. 0406, P 002
(2004); iboid. 0504, P010 (2005); Phys. Rev. Lett. 96,
136801 (2006); G.De Chiara, S. M ontenegro, P. Cal
abrese and R . Fazio, J. Stat.M ech. 0603 P .001 (2006).

[19] S. Sachdev, Quantum Phase Transitions, C am bridge UP
1999.

R0l P.Jordan and E .W igner, Z.Phys 47, 631 (1928).

Rl1E.Lib etal,Ann.Phys. WY . 16,406 (1961); S.K at—
sura, Phys.Rev.127, 1508 (1962).

R2] LD . Landau and E M . Lifshiz, Quantum M echanics,
Pergam on, 1958; C . Zener, P roc.Roy. Soc.Lond.A 137,
696 (1932).

R3]1 B .D am ski, Phys.Rev. Lett. 95, 035701 (2005).

R4]B.Dam skiand W .H . Zurek, cond-m at/0511709.

R5] P.J.ForresterandN .E .Frankel, J.M ath.Phys.45, 2003
(2004); M . E.Fisher and R.E. Hartwig, Adv. Chenm .
Phys. 15, 333 (1968); E. L. Basor and C. A . Tracy,
Phys.A 177,167 (1991);F .Franchiniand A .G .A banov,
cond-m at/0502015|.

R6] S.R.W hite, Phys.Rev.Lett. 69, 2863 (1992).

R7]1 G .vidal, Phys.Rev.Lett.91, 147902 (2003); Phys.Rev.
Lett. 93, 040502 (2004); /cond-m at/0605579|.


http://arxiv.org/abs/cond-mat/0601650
http://arxiv.org/abs/cond-mat/0602527
http://arxiv.org/abs/cond-mat/0511709
http://arxiv.org/abs/cond-mat/0502015
http://arxiv.org/abs/cond-mat/0605579

